
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Beyond just “flattening the curve”: Optimal control of epidemics

with purely non-pharmaceutical interventions

Markus Kantner, Thomas Koprucki

submitted: August 13, 2020

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: markus.kantner@wias-berlin.de

thomas.koprucki@wias-berlin.de

No. 2748

Berlin 2020

2010 Mathematics Subject Classification. 92D30, 37N25, 37N40, 93C10, 49N90, 34B15.

Key words and phrases. Mathematical epidemiology, optimal control, non-pharmaceutical interventions, effective reproduc-
tion number, dynamical systems, COVID-19, SARS-CoV2.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Beyond just “flattening the curve”: Optimal control of epidemics
with purely non-pharmaceutical interventions

Markus Kantner, Thomas Koprucki

Abstract

When effective medical treatment and vaccination are not available, non-pharmaceutical
interventions such as social distancing, home quarantine and far-reaching shutdown of public life
are the only available strategies to prevent the spread of epidemics. Based on an extended SEIR
(susceptible-exposed-infectious-recovered) model and continuous-time optimal control theory, we
compute the optimal non-pharmaceutical intervention strategy for the case that a vaccine is never
found and complete containment (eradication of the epidemic) is impossible. In this case, the
optimal control must meet competing requirements: First, the minimization of disease-related
deaths, and, second, the establishment of a sufficient degree of natural immunity at the end of
the measures, in order to exclude a second wave. Moreover, the socio-economic costs of the
intervention shall be kept at a minimum. The numerically computed optimal control strategy is
a single-intervention scenario that goes beyond heuristically motivated interventions and simple
“flattening of the curve”. Careful analysis of the computed control strategy reveals, however, that
the obtained solution is in fact a tightrope walk close to the stability boundary of the system, where
socio-economic costs and the risk of a new outbreak must be constantly balanced against one
another. The model system is calibrated to reproduce the initial exponential growth phase of the
COVID-19 pandemic in Germany.

1 Introduction

Preventing the spread of new diseases, to which there is no immunity in the population, is a huge
problem, since there are often neither vaccines nor other effective medical treatments available in the
early stages. In this case, non-pharmaceutical interventions (NPIs) such as intensive hand hygiene,
home quarantine and measures of social distancing, e.g. closure of schools, universities and shops,
prohibition of mass events up to curfew and shutdown of entire territories, are the only available
measures. The NPIs are aimed at “flattening the curve”, i.e., a reduction of the transmission rate in
order to break the exponential growth of the epidemic.

In the case of the currently spreading COVID-19 pandemic caused by the new SARS-CoV2 coronavirus
[1, 2], the fundamental concern of the mitigation measures is not to exceed the available number
of intensive care unit (ICU) beds, in particular for respiratory support or extracorporeal membrane
oxygenation, in order to prevent actually avoidable deaths [3]. Since the outbreak of the epidemic, a
large number of simulation studies have been conducted using mathematical models to assess the
efficacy of different NPIs and to estimate the corresponding demands on the health care system [4–12].
Moreover, mathematical models are employed to deduce important epidemiological parameters [13–15]
and to evaluate the effect of particular measures from empirical data [16, 17].

The vast majority of research papers on the control of COVID-19 examines the impact of rather simple
intervention schemes such as bang-bang control or cascaded on-off (i.e., repeated lockdown and
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release) strategies [12, 18–20]. Instead, however, intervention strategies derived from continuous-time
optimal control theory [21] following a variational principle are actually preferable. There is a large
number of studies on the application of optimal control theory following Pontryagin’s maximum principle
[22] in mathematical epidemiology, see Refs. [23–27] and references therein. The by far largest part of
these works deals with optimal control of epidemics through vaccination and immunization [28–31],
medical treatment [32, 33] and combinations thereof [34–39]. Significantly fewer papers are concerned
with the optimal control of transmission dynamics and the mitigation of epidemics through social
distancing measures. The paper by Behncke [25] studies the optimal control of transmission dynamics
via optimally steered health-promotion campaigns and seems to be one of the first works devoted to
this problem. During the current COVID-19 pandemic, the control of the disease by NPIs has moved
into the focus of attention and a number of recent papers are devoted to this problem. Djidjou-Demasse
et al. [40] investigated the optimal control of the epidemic via social distancing and lockdown measures
until a vaccine becomes available. They propose to delay the peak of the epidemic by increasingly strict
interventions and finally to relax the measures in such a way that a significant burden on the health
care system only occurs when the availability of a vaccine is already expected. A similar problem has
been considered by Perkins and España [41], who studied the optimal implementation of NPIs under
the assumption that an effective vaccine would become available in about one year after the outbreak
of the epidemic. The paper by Kruse and Strack [42] is devoted to the analysis of the optimal timing of
social distancing measures under the constraint that the overall (temporal) budget for NPIs is limited.
Ketcheson [43] presented a detailed analysis for optimal transmission control in a SIR (susceptible-
infected-recovered) epidemic model with the aim of achieving a stable equilibrium (“herd immunity”)
within a fixed finite time interval while simultaneously avoiding hospital overflow. A similar problem
(including a simple state-dependent mortality rate) was studied by Alvarez et al. [44], who focussed on
minimizing the lockdown costs and included further economic aspects such as the assumed value of
statistical life. An extension of the optimal transmission control problem to an age-structured model has
been presented by Bonnans and Gianatti [45], who proposed a different temporal course of the contact
reduction for the high and low risk sub-populations. Köhler et al. [46] have applied model predictive
control to social distancing measures with the objective of minimizing the fatalities over a fixed period of
time of two years. Next to adaptive feedback strategies for iterative loosening of the social distancing
policies after an initial lockdown, the authors also examined the possibility of eradicating the virus. All of
these papers on optimal control deal with deterministic epidemiological models, in particular the basic
SIR model [25, 42–44, 47] or various extended SEIR-type models [40, 41, 46]. We remark that this
survey on optimal control of COVID-19 is not exhaustive.

The objective of this paper is the investigation of the optimal control of epidemics in the (hopefully
unlikely) case in which an effective vaccine is impossible or never found and the epidemic must
be controlled with purely non-pharmaceutical measures. Furthermore, we exclude the possibility
of complete containment (“eradication of the virus”). Then, optimal control must pursue competing
objectives: On the one hand, the number of disease-related deaths shall be minimized by strictly
avoiding an overload of the intensive care treatment capacities. On the other hand, however, sufficient
natural immunity must be established in the population in the long run to prevent a second outbreak of
the epidemic (“herd immunity”). Moreover, the socio-economic costs of the intervention shall be kept
at a minimum. We compute the optimal solution to this problem by applying Pontryagin’s Maximum
Principle to an extended SEIR-type model tailored to specific aspects of COVID-19. Our main result is
the optimal time course of the mean contact reduction (and the corresponding time-dependent effective
reproduction number) that serves as a guideline on how to optimally enter and finally exit the lockdown.
The corresponding NPI policy is a single-intervention scenario that can be divided into three distinct
phases: (1) a strict initial lockdown, (2) a long lasting period (“critical period”) during which the number
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(a) (b)

Fig. 1. (a) Schematic illustration of the compartmental epidemic model (1). The function u (t) describes a modification of
the transmission dynamics due to NPIs. (b) State-dependent mortality rate f as a function of the number of patients in a
critical state requiring intensive care. The mortality rate grows rapidly if the number of critical patients exceeds the number
of available ICUs C0. Inset: The solid line is the regularized mortality rate (4b) that is used in the computations throughout
the paper.

of active cases is kept approximately constant and (3) a moderate tightening of the measures towards
the end of the intervention. We present a detailed analysis of the numerically computed result and
develop an analytical understanding of its distinct features. Moreover, we show that our numerically
computed optimal control obeys two fundamental stability criteria, which impose an upper limit on the
transmission rate and its rate of change on the way out of the initial lockdown. The precise structure of
the optimal control (i.e., three phases of the intervention) obtained in this paper differs from the results
described in similar works [42–44]. After the initial submission of this paper, the preprint by Charpentier
et al. [48] appeared, who studied a similar optimization problem on the basis of an extended SIR-type
model with parameters adjusted to the COVID-19 pandemic in France. Their independently obtained
results are comparable to those presented in this paper, which demonstrates the robustness of the
obtained optimal intervention strategy with respect to model and parameter variations.

The mathematical model for the progression of the epidemic and the estimation of the demand for
intensive care resources is described in Sec. 2. The optimal control problem is derived in Sec. 3 and
the results are described in Sec. 4. We close with a critical discussion of our findings in Sec. 5. The
model has been calibrated to reproduce the exponential growth phase of the COVID-19 pandemic in
Germany. Details on the parameter adjustment are described in the Appendix.

2 Modeling of Disease Spreading and Demand for Intensive Care
Units

Mathematical modeling of the spread of epidemics is an indispensable tool to project the outcome
of an epidemic, estimate important epidemiological parameters and to make predictions for different
intervention scenarios. Compartment models [49–51], where the population is divided into different
macroscopic sub-populations, such as susceptible, infectious, recovered etc., are a simple but effective
tool to model the progression of epidemics. In contrast to complex (but more realistic) stochastic
agent-based models [52, 53], deterministic mean-field models are limited to the description of the
average infection dynamics in macroscopic (sub-)populations, but allow for fast parameter scans and a
straightforward application of continuous-time optimal control theory [21].
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2.1 Model equations

In this paper, an extended SEIR model, similar to that proposed by Neher et al. [54, 55], is used to model
the spread of an epidemic and to estimate the number of patients in a critical state that require intensive
care. Similar models are described in Refs. [14, 46, 56]. For the sake of simplicity, vital dynamics
(except for disease-related deaths), seasonality effects [57], dispersion of transmission [58] and any
effects caused by population heterogeneity (different age and risk groups) are neglected. The total
population is divided into distinct compartments: susceptible S, exposed E, infectious I , hospitalized
H (severely ill), critical C , recovered R (i.e., immune) and deceased D. The model equations read

Ṡ = −βu (t)
IS

N
, (1a)

Ė = βu (t)
IS

N
− γlE, (1b)

İ = γlE − γiI, (1c)

Ḣ = (1−m) γiI + (1− f (C/C0)) γcC − γhH, (1d)

Ċ = cγhH − γcC, (1e)

Ṙ = mγiI + (1− c) γhH, (1f)

Ḋ = f (C/C0) γcC. (1g)

The group of initially healthy and not yet infected (susceptible, S) is vulnerable to infection through
contact with infectious (I), who may transmit the disease to the susceptible population. The infection
probability is determined by the transmission rate β, and the share of the susceptible and infectious
population on the total (living) population N = N(t), which is given as

N = S + E + I +H + C +R. (2)

The newly infected (exposed, E) become infectious themselves only after a latency period γ−1
l (which

must not be confused with the incubation time). The infectious either recover or turn severely ill after an
average period γ−1

i . Severely ill (H) can either deteriorate into a critical state (C) or recover after a
period γ−1

h . The recovered population (R) is assumed to be immune against new infections. Patients in
a critical state either stabilize to the severely ill state or die from the disease on a time scale γ−1

c . The
disease-related deaths reduce the size of the population

Ṅ = −Ḋ, (3)

such that, assuming initially D (0) = 0, it holds N (t) = N (0) −D (t). Moreover, m is the share
of infectious that are asymptomatic or have at most mild symptoms, c is the fraction of severely ill
that become critical and f is the fraction of critically ill that are going to die from the disease. Finally,
the time-dependent function u (t) describes a modification of the transmission rate (mean contact
reduction) due to NPIs. Here, u = 1 means no intervention, and u = 0 corresponds to the extreme
case of total isolation of the whole population. The model system is illustrated in Fig. 1 (a). A rescaled
version of the dynamical system (1), where the sub-populations are considered in terms of their relative
share of the initial population N (0), is given in Eq. (23) in the Appendix D.

2.2 State-dependent fatality rate

The disease-related mortality grows tremendously as soon as the number of critically ill exceeds
the capacity limit C0 of the health care system (number of available ICUs). This is modeled by a
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Fig. 2. (a) Evolution of the epidemic without interventions (u = 1). The number of available ICUs was set to C0 = 30 000.
The inset shows the overflow in ICU demand, which leads during a period of about 57 days to an increased mortality rate
according to Eq. (4). (b) Same as in (a) but on a logarithmic scale. The markers indicate the estimated number of cumulative
cases (see Appendix C) and the reported numbers for ICU demand and deaths during the early phase of the COVID-19
pandemic in Germany. The first disease-related fatalities were reported on March 9, 2020 (day number 20 in the simulation).
Social distancing measures, which came into force nationwide in mid-March [16], have flattened the initial exponential
growth.

state-dependent average fatality rate

f = f

(
C

C0

)
=

{
f0 for C ≤ C0,

f1 − C0

C
(f1 − f0) for C > C0.

(4a)

As long as every critical patient can be served with an ICU (C ≤ C0), the fatality rate is a constant
f = f0. As soon as the ICU resources are exceeded, an increasing fraction of the critical patients dies
with a higher rate f1 > f0, which on average results in the state-dependent fatality rate (4a). Here,
f1 = 2f0 is assumed. In the following, the regularization

f (x)→ fε (x) = f0 +
ε

x+ 1.1ε
log

(
1 + exp

(
x− 1

ε

))
(f1 − f0) (4b)

with 0 < ε � 1, of Eq. (4a) is used, in order to avoid problems due to the non-differentiability at
C = C0. The function f (C/C0) is plotted in Fig. 1 (b).

2.3 Basic and effective reproduction number

The basic reproduction number [59]
R0 = β/γi (5)

can be thought of as the expected number of cases (without intervention, u = 1) that is directly
generated by one case in a population where all individuals are susceptible to infection. The effective
reproduction number

Reff (t) = R0u (t)S (t) /N (t) (6)

depends on time and includes the impact of intervention measures.
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symbol value description
R0 2.7 basic reproduction number
N(0) 83× 106 initial population size
γ−1
l 2.6 d average latency time between exposure and infectious period
γ−1
i 2.35 d average infectious period before recovery or hospitalization
γ−1
h 4.0 d average period before severely ill patients turn critical or recover
γ−1
c 7.5 d average period before critical patients recover or die
β (1.15 d)−1 transmission rate
m 0.92 fraction of infected with at most mild symptoms
c 0.27 fraction of hospitalized patients that turn critical
f see Eq. (4) fraction of critical patients that turn fatal
f0 0.31 mortality of a critical patient with ICU
f1 2 f0 = 0.62 mortality of a critical patient without ICU
C0 variable number of ICUs/ max. number of simultaneously critical cases
T 10× Tcrit final time of the simulation, for Tcrit see Eq. (17)

Tab. 1. List of parameters used in the simulations. See Appendix C for details.

2.4 Numerical results for the uncontrolled epidemic (COVID-19 in Germany)

Figure 2 shows the progression of an uncontrolled epidemic starting from an initially small fraction of
exposed population. The initial conditions are listed in Appendix D. The parameters are adjusted (see
Appendix C) to reproduce the initial exponential growth phase of the COVID-19 disease in Germany
(late February – mid March 2020) and are summarized in Tab. 1. The numerical solution was obtained
by a 4th order Runge–Kutta method. Without intervention, the peak number of simultaneously active
cases is about 23 million and the peak number of patients in a critical state exceeds the number of ICUs
by a factor of about Cmax/C0 ≈ 16.7, see inset of Fig. 2 (a). The simulated value Cmax ≈ 5.0× 105

is in very good agreement with the projection by Khailaie et al. [14]. Due to the increased fatality in
the period with ICU overflow, see Eq. (4), the epidemic terminates with a very high number of deaths
D (T ) ≈ 1.0× 106, which is in line with previous studies [11].

3 Optimal Control

In the scenario outlined in Sec. 1, where an effective vaccine is never found, the optimal transmission
control due to NPIs is required (i) to avoid ICU overflow (more patients in a critical state than available
ICUs) but at the same time (ii) exclude a second wave of the epidemic after the end of the measures.
The optimal solution is computed by minimizing the index functional

J [u] = ϕ (x (T )) +

∫ T

0

dt C (u (t)) (7a)

where

ϕ (x (T )) = P D (T ) + C
(

1

ε

(
1−R0

S (T )

N (T )

))
(7b)

is the terminal cost function. The first term in Eq. (7b) describes the number of disease-related deaths
D (T ) at the end of the epidemic, which should be minimized. As the increment of the disease-related
deaths depends on the state-dependent fatality rate, see Eq. (1g), this condition implies that the ICU
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Fig. 3. Plot of the cost functions for
(a) minimal intermediate costs and
(b) the enforcement of herd immunity
at the end of the intervention for differ-
ent values of ε. We use the short no-
tation X = R0S (T ) /N (T ). The
shaded region corresponds to unsta-
ble terminal states. 0.94 0.96 0.98 1.0
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capacities must not be exceeded. The second term in Eq. (7b) controls the size of the of susceptible
population S (T ) at the end of the epidemic. In order to approach a stable, disease-free stationary
state (“herd immunity”), the share of susceptibles on the total population must be less than R−1

0 at
the end of the intervention, see Appendix A. The term in Eq. (7b) enforces a final state slightly below
the stability boundary (just in the stable regime), where 0 < ε � 1 is a small parameter. We use
ε = 10−2 in the numerical simulations throughout this paper. The function

C (x) = x log (x)− x+ 1 (8)

is convex on the whole domain x ∈ [0,∞). It appears also in the last term of Eq. (7a) as an intermediate
cost function, which provides an abstract measure for the total socio-economic costs caused by the
intervention. The term is minimal and zero if no intervention is applied C (1) = C ′ (1) = 0, see
Fig. 3. The advantage of using (8) over the commonly used quadratic cost functions is that “unphysical”
negative values of u are a priori excluded. The control parameter P balances between the competing
objectives of minimal disease-related deaths (first term), while attaining at the same time a minimum
number of cases to enforce S (T ) slightly below the stability boundary (second term). Ramping up P
puts an increasing emphasis on minimizing the disease-related deaths. The time interval [0, T ] of the
simulation is chosen sufficiently large, such that the results are practically independent from the chosen
final time T , see Tab. 1.

From the augmented index functional [21]

J̄ [u] = ϕ (x (T )) +

∫ T

0

dt
(
C (u (t)) + λ (t) · (F (x (t) , u (t))− ẋ (t))

)
,

where x = (S,E, I,H,C,R,D) is the state vector, ẋ = F (x, u) is the dynamical system (1)
and λ (t) is a vector of time-dependent Lagrange multipliers (also denoted as co-state variables)
λ = (λS, λE, λI , λH , λC , λR, λD), one obtains the Hamiltonian function

H (x, u,λ) = C (u) + λ · F (x, u) . (9)

Following Pontryagin’s maximum principle [21, 22], the optimality condition reads

∂H
∂u

= 0 ⇔ u = exp

(
β (λS − λE)

IS

N

)
. (10)

Finally, the co-state equations and the final time conditions are obtained as

λ̇ (t) = −∇xH, (11)

λ (T ) = ∇x ϕ (x)|T . (12)

Together with the initial conditions x (0), the system (1), (11)–(12) represents a nonlinear two-point
boundary value problem. The full set of equations is given in Appendix D. Numerical solutions are
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Fig. 4. Optimal transmission control for C0 = 30 000 available ICUs. (a) Temporal evolution of the optimally controlled
epidemic. The susceptible population terminates slightly below the critical valueR−1

0 , which guarantees herd immunity
and rules out a second wave of the epidemic. Moreover, the optimal control ensures that the available number of ICUs
is not exceeded by the critically ill: C (t) < C0 for all t ∈ [0,∞). A more detailed plot of the ICU load is given in
Fig. 5 (c). (b) Effective reproduction number (6) corresponding to the optimally steered intervention. The optimal mean
contact reduction u (t) is shown for comparison. (c) Comparison of the trajectories of the uncontrolled (dashed lines) and
the optimally controlled epidemic (solid lines) in different projections of the state space. The arrows indicate the direction of
time. The grey shaded region highlights the critical period.

obtained by using Matlab’s built-in routine bvp4c [60] in combination with an analytic Jacobian matrix
and a step-size adaptive homotopy method, where the control parameter P is gradually ramped up
while always using the result of the previous step as initialization. The procedure is initiated from the
numerical solution of the initial value problem (1) without interventions, see Fig. 2.

4 Results

4.1 Structure of the optimal intervention strategy

With optimal control of the transmission rate (in the sense of Sec. 3) via accordingly steered NPIs, the
epidemic develops dramatically different from the uncontrolled case. The whole intervention is shown in
Fig. 4 and can be structured into three phases:

1 The intervention begins with a strict initial “lockdown” that is built up over a period of about 25
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days (starting around day 25), see Fig. 4 (a, b). The effective reproduction number (6) must
be held below one Reff < 1 for about 13 days, see Fig. 4 (b) and Fig. 5 (b). This strict initial
intervention breaks the early exponential growth and damps the peak number of infected such
that an overshoot of the critically ill population beyond C0 is just barely avoided, see Fig. 4 (a)
and Fig. 5 (c).

2 The initial lockdown is followed by a long period (about 300 days in the case of C0 = 30 000),
which is denoted as the “critical period” in the following, during which the number of simultane-
ously active cases is kept approximately constant. This corresponds to an effective reproduction
number Reff ≈ 1, see Fig. 4 (b). During this phase, the intensive care system is constantly
stressed by slightly less than C0 patients in a critical state. This situation must of course be
avoided in reality by all means, in particular, since stochastic fluctuations of the case number are
not included in the deterministic model (1) at all. During this period, the NPIs are relaxed on a
gradually increasing rate, but initially (when the disease is not yet widespread in the population)
only very slowly, see Fig. 4 (b). The duration of the critical period scales with C−1

0 . Further details
are discussed in Sec. 4.3 below.

3 After the critical period, i.e., when the number of active cases starts to decay, a final moderate
tightening of the measures is required. This is reflected by a notable dip in the transmission
control function and a reduction of the effective reproduction number below one, see Fig. 4 (b).
This final intervention reflects the requirement to meet the herd immunity threshold towards the
end of the intervention. An unnecessarily wide overshooting into the stable regime would result
in additional infections and deaths, see Sec. 4.4. Finally, the measures are lifted on a gradually
decreasing rate while the system slowly approaches the herd immunity threshold.

Figure 4 (c) shows the trajectories of the controlled and the uncontrolled epidemic in different state
space projections. By controlling the transmission of infection, the enormous excursion of the trajectory
is prevented and the optimal path to a stable disease-free stationary state is taken. Note that the
uncontrolled epidemic terminates far in the stable regime (S(T )/N (T ) � R−1

0 ), whereas in the
optimally controlled case the final state is just slightly below the stability threshold S(T )/N (T ) > R−1

0 .

We point out that the optimal transmission control described above differs from the results obtained for
similar optimization problems considered in Refs. [43, 44, 47], which do not exhibit the distinct structural
features of the intervention (initial lockdown, critical period, final phase intervention) presented here.
A comparable result was described in Ref. [48], where the intervention was divided into four different
phases which essentially coincide with our findings. Merely the lockdown was further subdivided into a
“quick activation of a strong lockdown” and a “light lockdown release.”

4.2 Dependence on the maximum number of simultaneously critical cases

The state-dependent mortality rate (4) effectively imposes a state-constraint that strictly enforces
C < C0 for P → ∞, i.e., a maximum number of simultaneously infected in a critical condition. In
principle, this allows to investigate the optimal control of other (less extreme) scenarios, where the
maximum number of simultaneously critically infected should be held far below the number of available
ICUs (i.e., the meaning of C0 will be reinterpreted). In this case, the increased mortality rate f1 is an
artificial parameter that penalizes the excess of the critically infected population over a freely chosen
threshold of C0. By ramping up the control parameter P , an optimal solution with C (t) < C0 for all
t ∈ [0,∞) is found, that is independent of f1.
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Fig. 5. (a) Optimal time evolution of the transmission control function u (t) for different values of C0. The value of C0 is
color-coded. In all scenarios, the interventions start with a strict lockdown, where u (t) is reduced belowR−1

0 for about
10 to 12 days. This initial lockdown is followed by a long “critical period” during which the measures are gradually relaxed.
The length of this period is determined by the peak number of simultaneously critically infected C0. Towards the end of the
intervention, a moderate tightening of the NPIs is required. (b) Same as (a), but zoomed on the region with u (t) < R−1

0 .
(c) By optimal transmission control, the number of patients in a critical state C is kept below the limiting value C0 at all times.
(d) Characteristic time span TFWHM of the critical period during which the peak number of simultaneously infected must be
held constant. The dashed line shows the analytical approximation Tcrit given in Eq. (17). (e) Total number of disease-related
deaths (solid lines) and total costs of the measures (dashed lines) at the end of the epidemic vs. the control parameter P
(see Sec. 3). The optimized transmission function minimizes the number of disease-related deaths to a C0-independent
value for P → ∞, but to a high cost in the case of low C0. The squares indicate the minimal values of P that guarantee
C(t) < C0 for all times.
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Beyond just “flattening the curve”: Optimal control of epidemics ... 11

Figure 5 shows the optimal control for different values of C0. The time course of the optimally controlled
transmission rate is qualitatively the same for all considered values of C0, see Fig. 5 (a, b). Most notably,
the time scale of the entire intervention scenario is governed by the duration of the critical period,
during which the number of critical patients is held at C > C0, see Fig. 5 (c). We characterize this
time scale by the full width half maximum (FWHM) time TFWHM = t2 − t1, where t1 and t2 > t1
are the two points in time at which the number of critically infected equals half the allowed maximum
value: C (t1) = C (t2) = C0/2. As shown in Fig. 5 (d), the FWHM time scales inversely with the
peak number of simultaneously infected in a critical state: TFWHM ∼ C−1

0 . The minimization of the
disease-related deaths is controlled by the parameter P in the terminal cost function (7b). Figure 5 (e)
displays the progression of the optimization routine into the targeted optimal state (i.e., without excess of
C0) while P is ramped up. At a certain value of P , which depends on C0, the routine reaches a plateau
where both the number of disease-related deaths as well as the total costs of the intervention measures∫ T

0
dt C (u (t)) become constant. The corresponding values of P , which correspond to the scenario

that fully avoids excess of critically ill over C0, are located on that plateau and are marked by square
symbols in Fig. 5 (e). The optimized transmission function minimizes the number of disease-related
deaths to a C0-independent value Dmin (T ) for P → ∞, but at total cost that scales with C−1

0 . An
analytical estimate of the minimum attainable number of deaths is given in Eq. (18).

Within the present model, further reduction of disease-related deaths below Dmin (T ) can only be
achieved by pharmaceutical interventions, in particular by vaccination. The result of the C0-independent
number of deaths at the end of the epidemic is an artifact of the simplified modeling framework, in which
a homogeneous population with an averaged set of parameters is considered. Since the mortality rate
typically strongly depends on age and health condition, it might be advisable to extend the model and
divide the compartments into several age or risk groups as in Refs. [11, 45, 54, 61]. The so-extended
model features a matrix-valued transmission rate, which describes the infections caused by contacts
within and between different groups, that could be further optimized by intra- and intergroup-specific
measures. This is, however, beyond the scope of this paper.

4.3 Analysis of the critical period

The numerical results shown in Fig. 4 (a, b) indicate that during the critical period the populations S, R,
and D change approximately linear, while the active cases (E, I , H , C) are practically constant. To
gain further insights, we consider the ansatz (for t > t∗)

S (t) ≈ N (0)− γS(t− t∗), R (t) ≈ γR(t− t∗), D (t) ≈ γD(t− t∗),

where t∗ is a reference time that depends on the initial conditions, γS , γR, γD are initially unknown rates
and the infected sub-populations (E, I,H,C) ≈ (E∗, I∗, H∗, C0) are constant. From substituting the
ansatz into the model equations (1), one obtains by a straightforward calculation analytical expressions
for the rates

γS =
1− c (1− f0)

(1−m) c
γcC0, γR =

1− c (1−mf0)

(1−m) c
γcC0, γD = f0γcC0,

and the constants

E∗ ≈ 1

γl
γS, I∗ ≈ 1

γi
γS, H∗ ≈ 1

γh

1

cf0

γD.

The rate of new infections per day γS during the critical period depends only on the parameters of the
disease and the maximum capacity C0. Note that it holds γS = γR + γD, i.e., the number of active
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Fig. 6. (a) Analysis of the optimal mean
contact reduction u (t) during the critical
period, where the number of simultane-
ously infected must be kept constant (the
plot is for C0 = 10 000). The numer-
ically exact result is plotted along with
the stability boundaryR−1

0 N (t) /S (t)
(blue dashed line) and the analytical ap-
proximation (13) (red dotted line). The
inset shows that the optimal control re-
spects the stability requirement (14) dur-
ing the critical period. (b) Plot of effec-
tive reproduction numberReff (t) corre-
sponding to the optimal control. Through-
out the critical period, Reff (t) is kept
slightly below one.

cases remains constant since susceptibles become infected at the same rate on which active cases
either recover or die. The number of active cases in this dynamical equilibrium is a multiple of C0:

N∗act = E∗ + I∗ +H∗ + C∗ =

(
1− c (1− f0)

c (1−m)

(
1

γl
+

1

γi

)
γc +

1

c

γc
γh

+ 1

)
C0.

With the parameters listed in Tab. 1, we find N∗act ≈ 28.3C0, i.e., one out of about thirty infections
turns critical.

Let us now come to the major results of this section. The ansatz stated above yields an instantaneous
relationship between the current value of the transmission control function and the share of the
susceptibles on the total population S(t)/N(t), which is

u (t) ≈ 1

R0

N (t)

S (t)
≈ 1

R0

(
1− γS

N (0)
(t− t∗)

)−1

=

(
R0 − (R0 − 1)

t− t∗

Tcrit

)−1

(13)

for a certain range of t in t∗ < t < Tcrit with Tcrit defined below. Here, we approximated N (t) ≈ N (0)
(since γD � γS). Note that Eq. (13) implies Reff ≈ 1 during the critical period. This approximate
relation is an interesting result, as it hints that the obtained optimal control steers the system’s trajectory
close to the stability boundary. Comparison with the stability criterion for the disease-free stationary
state R0 < N̄/S̄, see Eq. (19), suggests that during the critical period one must make sure that
Reff (t) < 1, i.e.,

u (t) <
1

R0

N (t)

S (t)
. (14)

This allows to have a stable control of the number of active cases, while the intervention measures
can be gradually relaxed. Stable means that sufficiently small fluctuations of the number of infected
are damped and do not lead to a new exponential outbreak of the epidemic. Indeed, substituting
u (t) = (1 + ε)N (t) /(R0S (t)) into the model equations (1) yields a linear, autonomous dynamical
system (up to the state-dependent mortality rate (4)), which is easily seen to evolve close to a stable
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Beyond just “flattening the curve”: Optimal control of epidemics ... 13

dynamical equilibrium for ε < 0 and |ε| � 1, see Appendix B. The optimal transmission control
function is shown in Fig. 6 along with the analytical approximation (13), the stability criterion (14) and
the corresponding effective reproduction number for the critical period.

We formulate the stability criterion (14) once again in a different way. Since it holds S (t) ≈ N (0)−
Ncases (t), where Ncases (t) is the cumulative number of cases that includes next to the active cases
also the recovered and deceased populationNcases (t) = Nact (t)+R (t)+D (t), the stability criterion
(14) can be written as

u (t) <
1

R0

(
1− Ncases (t)

N (0)

)−1

. (15)

Hence, since the optimal control depends solely on the cumulative number of cases, it is crucial to
have an accurate estimate of Ncases at any time during the critical period. Next, we derive an upper limit
for the admissible rate of change of u(t). By differentiating Eq. (14), using Eq. (1a) and approximating
N (t) ≈ N (0) as well as I(t) ≈ I∗ (see above), we obtain

u̇ (t) <
1

R0

(
−Ḋ (t)

S (t)
− N (t)

S2 (t)
Ṡ (t)

)
<
N (t)

S (t)
u (t)

γiI (t)

N (t)
<

(
N (t)

R0S (t)

)2 R0γS
N (0)

.

Using the approximation (13), the rate on which the measures can be relaxed is limited by the square
of the current value of the control function. It holds

u̇ (t) <
R0γS
N (0)

u2 (t) . (16)

The numerically computed optimal control obeys the criteria (15)–(16), see Fig. 6, and is therefore
(weakly) stable against small perturbations. The merely weak stability reflects the demand for minimal
socio-economic costs, see Sec. 3. The two rules (15)–(16) for the optimal and stable steering of
the transmission control function are widely independent of the details of the current model system.
Equivalent results for a stable dynamical equilibrium with a constant number of infected cases are
easily obtained for the much simpler SIR model.

The characteristic duration Tcrit of the critical period is estimated from Eq. (13) and the condition
u (t∗ + Tcrit) ≈ 1. One obtains

Tcrit ≈
N (0)

γS

(
1− 1

R0

)
∝ N (0)

C0

(
1− 1

R0

)
, (17)

which is in excellent agreement with the numerically obtained values for the FWHM time plotted
in Fig. 5 (d). Finally, we estimate of the total number of disease-related deaths from D (T ) ≈
D (t∗ + Tcrit) ≈ γDTcrit as

D (T ) ≈ N (0)
γD
γS

(
1− 1

R0

)
= N (0)

(1−m) cf0

1− c (1− f0)

(
1− 1

R0

)
, (18)

which is independent of C0, cf. Sec. 4.2 and Fig. 5 (e).

4.4 Final phase of the intervention

Finally, we briefly discuss the moderate tightening of the measures in the last (third) phase of the
intervention. To this end, we compare the optimal intervention scenario with a nearly optimal control,
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Fig. 7. (a) Comparison of the optimal (dashed) and near optimal (dotted) control of the mean contact reduction. In the near
optimal control, the strengthening of the measures in the final phase of the intervention is omitted. Instead, the near optimal
control adheres to the stability boundary (14) and causes an overshoot of the susceptible population below the stability
threshold (S (T ) < N (T ) /R0), (b) Plot of the corresponding effective reproduction number.

which lacks the last intervention phase as shown in Fig. 7. In the case of nearly optimal control,
the mean contact reduction after the initial lockdown continuously follows the course of the stability
boundary (14), which leads to an excess of infections beyond the required herd immunity threshold, see
Fig. 7 (a). The final state therefore is considerably further in the stable region than required. This implies
that more infections than necessary are passed through, which results in exceeding the minimum
number of deaths (not shown), cf. Eq. (18). In order to prevent this, the measures must be slightly
tightened towards the end of the intervention such that the number of active cases is diminished and
thus an unnecessary decrease of the susceptible population below the herd immunity threshold is
avoided.

5 Summary and Conclusions

Non-pharmaceutical measures to control the spread of infectious diseases and to prevent a potential
collapse of the health care system must be precisely coordinated in terms of timing and intensity. Based
on well-calibrated mathematical models, the optimal intervention strategy for specific scenarios and
objectives can be computed using continuous-time optimal control theory.

In this paper, an extended SEIR model was calibrated to reproduce the data of the initial exponential
growth phase of the COVID-19 pandemic in Germany. Optimal control theory has been applied for the
scenario in which an effective vaccine is impossible or will never be found and the epidemic must be
controlled with purely non-pharmaceutical measures. We have computed the optimal control of the
transmission rate that satisfies competing objectives: First, the minimization of the disease-related
deaths by strictly avoiding an overflow of intensive care resources and, second, the suppression of a
second outbreak by establishing sufficient natural immunity at the end of the measures. Moreover, the
total costs of the intervention shall be kept at a necessary minimum for socio-economic reasons.

The optimal control obtained in this paper is a single-intervention scenario that exhibits several notable
features, which allow to structure the whole intervention into three distinct phases: (i) strict initial
lockdown, (ii) critical period and (iii) moderate tightening of measures in the final phase. The obtained
control differs from the results described in related works [43, 44, 47], but is comparable to the NPI
strategy presented in Ref. [48]. We have shown that our optimized time-resolved NPI policy is robust
under parameter variation and developed a qualitative understanding of its distinct phases.
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The comparison of the computed optimal transmission control function with the stability criteria (15)–(16)
reveals, however, that the obtained solution is in fact a tightrope walk close to the stability boundary of
the system, where socio-economic costs and the risk of a new outbreak must be constantly balanced
against one another. Furthermore, our analysis clearly shows that the goal of achieving herd immunity
via natural infections is either extremely expensive (in terms of socio-economic costs due to measures
maintained over a long period of time) or extremely dangerous (due to the constantly high load on
intensive care resources just below the stability limit). Note that the values of C0 considered in the
computations are relatively high throughout. In any case, in view of the long duration and the enormous
number of infections that this route entails, as well as the uncertain role of sequelae and the uncertain
prospects for appropriate vaccines, it is strongly advisable to consider other strategies, in particular
the attempt to reduce the number of cases to a level that is manageable for case tracking [62] or to
eradicate the epidemic completely [63].

A Stability Analysis of the Disease-Free Stationary State

Without intervention, i.e. u = 1, the system (1) has a family of disease-free stationary states x̄ =(
S̄, 0, 0, 0, 0, R̄, D̄

)
. The stability of a stationary state with respect to small perturbations x̄ →

x̄ + δx (t) is determined by the sign of the real parts of the eigenvalues η of the linearized system’s
coefficient matrix

A (x̄) =



0 0 −βS̄/N̄ 0 0 0 0
0 −γl βS̄/N̄ 0 0 0 0
0 γl −γi 0 0 0 0
0 0 (1−m) γi −γh (1− f0) γc 0 0
0 0 0 cγh −γc 0 0
0 0 mγi (1− c) γh 0 0 0
0 0 0 0 f0γc 0 0


.

with N̄ = S̄ + R̄. From the characteristic polynomial

0 = χ (η) = det (A (x̄)− ηI) ,

one obtains the eigenvalues

η
(1)
± =

1

2

(
− (γi + γl)±

√
(γi − γl)2 + 4R0γiγlS̄/N̄

)
,

η
(2)
± =

1

2

(
− (γc + γh)±

√
(γc − γh)2 + 4c (1− f0) γcγh

)
,

and the threefold degenerate eigenvalue η(0) = 0. Since c (1− f0) < 1, it holds η(2)
± < 0. The

leading eigenvalue is η(1)
+ , which is negative for

S̄/N̄ < R−1
0 , (19)

see Fig. 8. Hence, the disease-free stationary state is unstable if the susceptible population size
exceeds a critical threshold value that is given by the inverse basic reproduction number (5). For
S̄/N̄ < R−1

0 an epidemic outbreak is suppressed by a sufficiently high degree of herd immunity.
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Fig. 8. The stability of the disease-free stationary state
depends on the size of the susceptible population S̄ and
the basic reproduction number R0. For S̄/N < R−1

0 ,
the outbreak of an epidemic is suppressed by a sufficiently
high degree of herd immunity.

B Dynamical Equilibrium and Stability during the Critical Period

For the stability analysis of the dynamical equilibrium during the critical period it is sufficient to consider
the (S,E, I)-block of the system (1), which drives the remaining equations. At first,

Ṡ = −βu (t)
IS

N
, Ė = βu (t)

IS

N
− γlE, İ = γlE − γiI,

is a nonlinear and non-autonomous dynamical system. Substituting the control function

u (t) = (1 + ε)
1

R0

N (t)

S (t)
,

yields a linear and autonomous system

Ṡ = − (1 + ε) γiI, Ė = (1 + ε) γiI − γlE, İ = γlE − γiI.

For ε = 0, it is easily seen that Ė+İ = 0, such that there exists a dynamical equilibrium with a constant
number of actively infected: E∗ + I∗ = const., where E∗ = (1 + γi/γl) I

∗. The corresponding
susceptible population is linearly decreasing on a rate γS = γiI

∗. The stability of the dynamical
equilibrium (E∗, I∗) is determined by the roots of the characteristic polynomial

0 = Λ2 + (γl + γi) Λ− γlγiε

that are easily obtained as

Λ± = −γl + γi
2
±

√(
γl + γi

2

)2

+ γlγiε.

Clearly, for ε > 0, the dynamical equilibrium becomes unstable due to Λ+ > 0. The stability boundary
is given by ε = 0, on which the dynamical equilibrium exists. The optimal control obtained in the main
text drives the system slightly below the stability boundary (ε < 0, |ε| � 1), see Fig. 6 (a). In this
case it holds Λ± < 0, such that the system is weakly stable against small perturbations, because the
number of active cases is constantly decreasing.

C Parameter Adjustment

The parameters are adjusted such that the model reproduces the data of the early exponential growth
phase of the COVID-19 pandemic in Germany. It is of course questionable to calibrate an epidemic
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Fig. 9. Ratio of the state variables in the initial exponential
growth phase and the number of disease related deaths.
The numerically exact solution (solid lines) is plotted along
with an analytical approximation (solid lines) that holds in
the early stage of the epidemic. The corresponding alge-
braic relations are used to describe ratios between differ-
ent sub-populations to facilitate the parameter adjustment.
Symbols indicate the reported number of disease-related
deaths (black), estimated number of cases (grey) and es-
timated ICU load (purple) of the COVID-19 pandemic in
Germany. See the text for details. During mid-March, strict
social distancing measures were implemented, that flat-
tened the initial exponential growth.
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model to a single country, but in a scenario with extensive border closures this seems to be justified. In
the exponential growth phase of the epidemic, all sub-populations grow exponentially with the same
rate, see Fig. 2 (b). This observation can be exploited to derive a series of algebraic equations (which
hold approximately in the initial phase of the epidemic) that relate all state variables to each other.
On the basis of empirical data (reported number of cases and deaths etc.), several missing model
parameters can be directly determined from the algebraic relations. The number of reported cases and
deaths used in this study is based on the figures provided by the Robert Koch-Institute [64, 65].

One starts with the ansatz

I (t) ≈ I (0) eΓt, S (t) ≈ N (0) (20)

where Γ is the initial exponential growth rate that is estimated from reported data (see Fig. 2 (b))
as Γ ≈ 0.26 d−1 (doubling time of infections within Γ−1 log (2) ≈ 2.67 d). Substituting Eq. (20) in
Eqs. (1b)–(1c) yields

E (t) ≈ 1

γl
(Γ + γi) I (t)

and the relation between the growth rate andR0:(
1 +

Γ

γl

)(
1 +

Γ

γi

)
= R0. (21)

Note that Eq. (21) is equivalent to the equation for the leading eigenvalue η(1)
+ if the whole population is

susceptible, i.e. Γ = η
(1)
+ |S̄=N(0) (see Appendix A). Hence, Eq. (21) implies that the exponential growth

rate Γ changes sign atR0 = 1, i.e., the epidemic recedes forR0 < 1. The mean incubation period
was reported to be 5.1 d, but there are indications that the latency time may be shorter [66]. Assuming
the onset of infectiousness 2.5 d before the onset of symptoms, this implies an average latency period
of γ−1

l = 2.6 d, i.e., the latency period is assumed to equal roughly half of the incubation period. The
reported values of the basic reproduction numberR0 are heavily scattered. According to the Robert
Koch Institute, serious estimates range between 2.4 and 3.3 [67]. In the following R0 = 2.7 shall
be used, which is situated approximately in the middle of the interval in question. From Eq. (21), the
corresponding average infectious period is obtained as γ−1

i ≈ 2.35 d.

The overall infection fatality rate of COVID-19 was estimated as 0.66 % [68], such that (1−m) cf0 =
0.0066. On April 8, the Robert Koch Institute reported that a fraction of f0 = 0.31 patients in a critical
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state died (without ICU overflow) [69]. Finally, the fraction of infected with at most mild symptoms is
estimated as m = 0.92, such that c = 0.0213/ (1−m) ≈ 0.266.

Substituting the exponential ansatz (20) in Eqs. (1d)–(1g), yields

H (t) ≈ (1−m)

K

γi
Γ

(
1 +

γc
Γ

)
I (t) , C (t) ≈ (1−m) c

K

γiγh
Γ2

I (t) ,

R (t) ≈ γi
Γ

(
m+

(1−m) (1− c)
K

γh
Γ

(
1 +

γc
Γ

))
I (t) , D (t) ≈ (1−m) cf0

K

γiγcγh
Γ3

I (t)

with K = 1 + (γh + γc) /Γ + γcγh (1− (1− f0) c) /Γ2. The analytically obtained ratio between all
sub-population and deaths (which are believed to be the most reliably reported data) are plotted along
with the corresponding numerically exact result for the initial uncontrolled epidemic in Fig. 9 (b). The
analytical results imply the relation

D (t) /C (t) = γcf0/Γ. (22)

Unfortunately, there is only little data available on the demand for ICUs in the early phase of the
epidemic. In mid-March 2020, i.e. near the end of the initial exponential growth phase, the German
Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI) initiated a register that
reports on the availability of ICUs in Germany [70]. On March 27, 687 out of 1 160 hospitals with ICUs
contributed to the register and reported a total number of 939 COVID-19 patients in a critical state
receiving intensive care [71]. At the same day, 253 disease-related deaths were reported. From the
estimated ratio C/D ≈ 6.3 (the actual number of critical patients was estimated based on the ratio of
contributing and non-contributing hospitals as C ≈ 1 586), the average period after which patients in a
critical state either recover or die, is estimated from Eq. (22) as γ−1

c ≈ 7.5 d.

Finally, assuming that only r = 2/3 of all cases have been discovered initially and an assumed
average time delay between infection and report of cases of ∆tr = 5 d, the number of actual
cases is estimated from the number of reported cases as N est

cases (t) = r−1N rep
cases (t+ ∆tr) =

r−1eΓ∆trN rep
cases (t) ≈ 5.5N rep

cases (t). This yields a good agreement between the simulated number
of cases (Ncases = E + I + H + C + R + D) and N est

cases before measures came into force, see
Fig. 2 (a) and Fig. 9. The average time between infection and death ∆td can be estimated from the
ratio N est

cases (t) /D (t) ≈ 2370 (see Fig. 8 (b)) and N est
cases (t−∆td) = N est

cases (t) e−Γ∆td = D (t) as
∆td ≈ 29.9 d.

D Two-Point Boundary Value Problem

Rescaling the populations x = (S,E, I,H,C,R,D) subject to the dynamical system (1) by the initial
population size N(0) and using N (t) = N (0) − D (t), see Eq. (3), we obtain the equations of
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motion for the rescaled sub-populations x̃ (t) = x (t) /N (0) as

˙̃S = −βu (t)
Ĩ S̃

1− D̃
, (23a)

˙̃E = βu (t)
Ĩ S̃

1− D̃
− γlẼ, (23b)

˙̃I = γlẼ − γiĨ , (23c)

˙̃H = (1−m) γiĨ +
(

1− f(C̃/C̃0)
)
γcC̃ − γhH̃, (23d)

˙̃C = cγhH̃ − γcC̃, (23e)

˙̃R = mγiĨ + (1− c) γhH̃, (23f)

˙̃D = f(C̃/C̃0)γcC̃, (23g)

where C̃0 = C0/N(0). The co-state equations of the optimal control problem considered in Sec. 3 for
the rescaled Lagrange multipliers λ̃ (t) = N (0)λ (t) read

˙̃λS (t) = L+ β (λ̃S − λ̃E)u
Ĩ

1− D̃
,

˙̃λE (t) = L+ γl (λ̃E − λ̃I),

˙̃λI (t) = L+ β (λ̃S − λ̃E)u
S̃

1− D̃
+ γi

(
λ̃I − λ̃H +m (λ̃H − λ̃R)

)
,

˙̃λH (t) = L+ γh

(
λ̃H − λ̃R + c (λ̃R − λ̃C)

)
,

˙̃λC (t) = L+ γc (λ̃C − λ̃H) + γc

(
f

(
C̃

C̃0

)
+
C̃

C̃0

f ′

(
C̃

C̃0

))
(λ̃H − λ̃D),

˙̃λR (t) = L,

˙̃λD (t) = 0,

with

L = −u log (u)

1− D̃
, u = exp

(
β (λ̃S − λ̃E)

Ĩ S̃

1− D̃

)
.

The initial conditions are taken as

S̃ (0) = 1− Ẽ (0) , Ẽ (0) = 2.41× 10−7, Ĩ (0) = H̃ (0) = C̃ (0) = R̃ (0) = D̃ (0) = 0,

and the final time conditions (12) read

λ̃S (T ) = −1

ε

R0

1− D̃ (T )

(
1− S̃ (T )

1− D̃ (T )

)
log

(
1

ε

[
1− R0S̃ (T )

1− D̃ (T )

])
,

λ̃E,I,H,C,R (T ) =
1

ε

R0

1− D̃ (T )

S̃ (T )

1− D̃ (T )
log

(
1

ε

[
1− R0S̃ (T )

1− D̃ (T )

])
,

λ̃D (T ) = N (0)P .

The choice of the initial time conditions guarantees u (0) = 1 (no intervention) at the beginning of the
scenario.
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