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Pricing options under rough volatility with backward SPDEs

Christian Bayer, Jinniao Qiu, Yao Yao

Abstract

In this paper, we study the option pricing problems for rough volatility models. As the framework is non-
Markovian, the value function for a European option is not deterministic; rather, it is random and satisfies a
backward stochastic partial differential equation (BSPDE). The existence and uniqueness of weak solution
is proved for general nonlinear BSPDEs with unbounded random leading coefficients whose connections
with certain forward-backward stochastic differential equations are derived as well. These BSPDEs are then
used to approximate American option prices. A deep leaning-based method is also investigated for the
numerical approximations to such BSPDEs and associated non-Markovian pricing problems. Finally, the
examples of rough Bergomi type are numerically computed for both European and American options.

1 Introduction

Let (2, Z, (Ft)eo,1], IP) be a complete filtered probability space with the filtration (-7 ),c[0,7] being the aug-
mented filtration generated by two independent Wiener processes W and B. Throughout this paper, we denote
by (ﬁ}W)te[O’T] the augmented filtration generated by the Wiener process W . The predictable ¢-algebras on

Q x [0, T corresponding to (:ZV),e(0.7] and (:F¢)se(o, 1] are denoted by 2"V and 7, respectively.

We consider a general stochastic volatility model given under a risk neutral probability measure as

dSy = rS,dt + Si\/V, (det /12 dBt> :

So = so,

(1)

where p € [—1,1] denotes the correlation coefficient and the constant 7 the interest rate. We impose the
following assumptions on the stochastic variance process V.

Assumption 1.1. V' has continuous trajectories, takes values in R>(, and is adapted to the filtration generated
by the Brownian motion V. We further assume that V' is integrable, i.e.,

T
E[/ Vsds]<oo, T >0.
0

Note that we do not assume that V' (or even (S, V")) is a Markov process or a semi-martingale, and, in fact,
our main examples will be neither. Indeed, the motivation of this work is to extend the backward stochastic
differential equation-based pricing theory to rough volatility models. These models were put forth in [GJR18] in
order to explain the roughness of time series of daily realized variance estimates. The idea is that the spot price
process is modeled by a stochastic volatility model, with the stochastic variance process essentially behaving
like an exponential fractional Brownian motion with Hurst index 0 < H < 1/2 —in contrast to an earlier strand
of literature (see, e.g., [CCR12]) which tried to model long memory in the variance by fractional Brownian motion
with 1/2 < H. In the pricing domain, rough volatility was found in [BEG16] to lead to extremely accurate fits
of SPX implied volatility surfaces with very few parameters, in particular explaining the power law behaviour of
the ATM implied volatility skew for short maturities; see also [ALV07, [Fuk11]. Since then, there have been many
new contributions to the literature of rough volatility models, including developments of rough Heston models
with closed expressions for the characteristic functions (see [EER19]), microstructural foundations of rough

DOI 10.20347/WIAS.PREPRINT.2745 Berlin 2020



C. Bayer, J. Qiu, Y. Yao 2

volatility models (JEEFR18]), calibration of rough volatility models by machine learning techniques (JBHM™19]),
a theory of affine rough Volterra processes ([JLP19]) and a regularity structure (in the sense of Hairer) for rough
volatility ([BEG™19]), to mention just a few.

In this work, we keep the following examples specifically in mind.

Example 1.1. /n the rough Bergomi model (see [BEG16]), the stochastic variance is given as
Vi= &€ (nWi) @)

where &; denotes the forward variance curve (a quantity which can be computed from the implied volatility
surface), € denotes the Wick exponential, i.e., £(Z) := exp (Z — %var Z ) for a zero-mean normal random

variable Z, and ) > 0. Finally, W denotes a fractional Brownian motion (fBm) of Riemann-Liouville type with
Hurst index 0 < H < % ie.,

t
Wy = / Kt —s)dW,, K(r)=v2Hr"12 >0, (3)

0
If the correlation p is negative, then Gassiat [Gas18] showed that the discounted price e S, is, indeed, a

martingale; otherwise, it may not be a martingale. But the conditions of Assumption|[1.1] are always satisfied.

Example 1.2. In the rough Heston model introduced in [EER19], the stochastic variance satisfies the stochastic
Volterra equation

t t
Vs Vot [ K= 0-Vds+ [ K- 90T, @
0 0
where the Kernel satisfies 1
K(r) =r*"YT'(a), >0, 5 <a< 1. (5)
The rough Heston process also satisfies Assumption[1.1]; see [JLP19].
For each (t,s) € [0,T] x R™, denote the asset/security price process by ShS for T € [t, T'], which satisfies
the stochastic differential equation (SDE) in but with initial time ¢ and initial state s (price at time ¢). The

fair price of a European option with payoff H, as the smallest initial wealth required to finance an admissible
(super-replicating) wealth process, is given by

P(s):=F [e_r(T_t)H(S%SHﬁt} : (6)

refer to [CHO5] for the cases when the discounted price e =" S, is just a local martingale. Taking X; = —rt +
log S, we may reformulate the above pricing problem, i.e.,

u(x) :=FE {e_T(T_t)H(eX%IJ”T)}ﬁt] , (t,z) €]0,T] xR, (7)
subject to
dxbe = \/Vs(deS+ ﬂst) - %ds, 0<t<s<T,
Xf’x = z.
Obviously, we have the relation u;(x) = P;(e*1") as..

The non-Markovianity of the pair (S, V') (or (X, V')) makes it impossible to characterize the value function
u(x) with a conventional (deterministic) partial differential equation (PDE). Indeed, we prove that the function
ut(x), for (t,x) € [0,7] x R, is a random field which together with another random field 1/, (x) satisfies the
following backward stochastic partial differential equation (BSPDE):

—duy(x) = [%DQUt({L‘) + p\/VtDl/)t(az) - %Dut(x) - rut(:n)} dt — () dWy;

uT(a:) _ H(ex-i-rT)’

(9)

DOI 10.20347/WIAS.PREPRINT.2745 Berlin 2020



Pricing options under rough volatility with backward SPDEs 3

where the pair (u, ) is unknown and the volatility process (V;);>0 is defined exogenously as in Examples|[{.1]
and[l.2

While the BSPDEs have been extensively studied (see [BD14, DQT11, [HMY02, [Pen92] for instance), to the
best of our knowledge there is no available theory for the well-posednesss of BSPDE (9) because the leading
coefficient % 5 is neither uniformly bounded from above nor uniformly (strictly) positive from below and the termi-
nal value H (e+""") may not belong to any space L”(£2 x R) for p € (1, 00). Hence, a weak solution theory
is established for the well-posedness of general nonlinear BSPDEs and associated stochastic Feynman-Kac
formula, particularly applicable to (9). Such nonlinear BSPDEs are further used to approximate the Ameri-
can option prices. Based on the stochastic Feynman-Kac formula with forward-backward stochastic differential
equations (FBSDEs), we develop a deep learning-based method for numerical approximations for the solutions
which are essentially defined on the (infinite dimensional) probability space due to the randomness. Accordingly,
the universal approximation theorem of neural networks is generalized from finite dimensional input spaces to
infinite dimensional cases in the probabilistic setting. On the basis of this approximation result, we design the
schemes in the spirit of the Markovian counterpart by Huré, Pham, and Warin [HPW19] but equipped with neural
networks with changing and high input dimensions. Some numerical results are also presented for examples of
rough Bergomi type, along with an appended convergence analysis. Here, although the theory and application
results are presented for the case of a single risky asset under rough volatility, leading to associated BSPDEs
on the one-dimensional space R, a multi-dimensional extension may be obtained under certain assumptions in
a similar manner; nevertheless, we would not seek such a generality to avoid cumbersome arguments.

Finally, let us contrast the present work with the recent work [JO19]. Therein, with the method developed in
[VZT19] the European option price in a local rough volatility model is expressed as a function of ¢, S; and
an additional, infinite-dimensional term ©, which is closely related to the forward variance curve. An infinite-
dimensional pricing PDE for the option price with respect to these variables is then formulated and solved with
a discretization method using deep neural networks as basis functions. The focus of [JO19] is clearly on the
mathematical finance and numerical side, whereas well-posedness of the path-dependent PDE is more or less
assumed. (They do refer to [EKTZ14], which, however, only covers the case of path-dependent PDEs with
constant diffusion coefficients. Moreover, the arguments in [JO19] seem to require classical — not viscosity —
solutions of the path-dependent PDE.) In this sense, our present work is complementary, as the well-posedness
of the BSPDE is a serious concern of this paper. We also extend the consideration from the European to the
American case, and provide similar type of numerical discretization also based on deep neural networks, but for
approximation of the associated FBSDEs.

The rest of this paper is organized as follows. Section 2 is devoted to the well-posedness of a class of non-
linear BSPDEs and associated stochastic Feynman-Kac formula. The weak solution theory is then applied to
approximations of American option prices under rough volatility in Section 3. Then in Section 4, we discuss the
numerical approximations with a deep learning-based method: in the first subsection we addressed the approx-
imations of neural networks to random functions involving infinite-dimensional input spaces in the probabilistic
setting, then a deep learning-based method is introduced for non-Markovian BSDEs and associated BSPDEs in
the second subsection, and in the third subsection we present some numerical examples for the rough Bergomi
model. Finally, in the appendix, a convergence analysis is presented for the deep learning-based method.

2 Well-posedness of nonlinear BSPDEs and stochastic Feynman-Kac formula

This section is devoted to a weak solution theory for the following nonlinear BSPDE:
Vi Vi
tD2ut (x) + pv/ ViDipe () — —tDut(:c)
+ Ft 6 Ut \/ ]. — ‘/t_DUt ) + PV ‘/tDUt(ﬁ)):| dt (10)

— r(x) AW, (t, T) € [O,T) x R;
ur(z) = G(e®), xeR.

—dut( )
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Noteworthily, BSPDE (8) turns out to be a particular case when Fy(z,y, 2, 2) = —ryand G(e*) = H (e*+™T).

We shall study the well-posedness of BSPDE for given continuous nonnegative process (V;):>( and ad-
dress the representation relationship between BSPDE and associated FBSDE. Following are the assump-
tions on the coefficients G and F.

Assumption 2.1. (1) The function G : (2 x R, 7}V @ B(R)) — (R, B(R) satisfies
G(z) < LO+al), @ €R,
for some constant L > 0.

(2) The function F' : (2 x [0, T] x R*, 2V @ B(R*)) — (R, B(R)) satisfies that there exists a positive
constants Ly € (0, 00) such that for all z, y*, 42, 21, 22, 21,22 € R, and t € [0, T],

]Ft(x,yl,zl,él) — Ft(a:,yl,ZQ,éz)] < Ly (|y1 — yQ\ + \21 — 22\ + ]21 — 52\) , a.s.,
|Fy(x,0,0,0)| < Lo(1 + |z]), as.,
|Ft($7y1>z1751) - Ft(m>y17070)‘ < LOa a.s..

For the well-posedness of BSPDE under Assumption the difficulty lies in the combination of the non-
uniform-boundedness of (V;);c[o,7] and the inintegrability of G'(e”) and Fi(e®,y, z, Z) w.rt. z on the whole

0,
space R. Indeed, from the condition on (V')¢>0 in Assumption we may conclude that e is a positive local
0,z
martingale and thus a supermartingale, satisfying E[eXt ] < e” for instance; however, it is not appropriate to

0,z
expect [}eXt ﬂ < oo for some p > 1 without further restrictive assumptions (see [Gas18, Theorem 2]).

The dependence of F' on (Z, Z) is not necessary for the concerned examples in this paper. We assume the
Lipschitz continuity and boundedness in (Z, Z) for the reader’s interests. In fact, for the well-posedness of the
involved BSDEs and BSPDEs in the L' spaces, it is not appropriate to assume the linear growth in (Z, Z) as
indicated in the theory of L' solutions for BSDEs (see [BDHT03, Section 6]); it might be workable for certain
fractional growths in (Z, Z), while we would not seek such a generality to avoid cumbersome arguments in this
work.

Corresponding to BSPDE (10}, there follows the BSDE:

B tax Xb® tax otrx Sta St _ ota .
{ AYH® = Fy(eXs7  YI®, Z5% 780 ds — Z5* dW, — Z5"dB,, 0<t<s<T; )

Ypt = GXp"),
where the triple (Yst’x, A Zﬁx) is defined as the solution to BSDE in the sense of [BDH™03, Definition

2.1]. Under Assumptions 1.1 and BSDE has a unique solution (Y&, ZL™ ZL®) for each (t, ) €
[0,7) x R (see [BDH™ 03, Theorem 6.3]).

2.1 Definition of the weak solution for BSPDE
Denote by C'° the space of infinitely differentiable functions with compact supports in R and let Z be the space

of real-valued Schwartz distributions on C'°. The Lebesgue measure in R will be denoted by dz. L*(R) (L?
for short) is the usual Lebesgue integrable space with scalar product and norm defined

(6, ) = /R p@)p(@)dz, (6] = (6, 62, Vo, € L2,

For convenience, we shall also use (-, -) to denote the duality between the Schwartz distribution space & and
cee.
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Pricing options under rough volatility with backward SPDEs 5

By © & (respectively, © zw ) we denote the set of all Z-valued functions defined on 2 x [0, T'] such that, for any
u € D 7 (respectively, u € D zw) and ¢ € C°, the function (u, ¢) is & (respectively, 22"V)-measurable.
When there is no confusion about the involved filtration, we shall just write .

For p = 1, 2 we denote by DP the totality of u € © such that for any R; € (0, 00) and ¢ € C2°, we have

T
/0 sup [(ue(-),o(- — )P dt < oo as.

|z| <Ry

Lemma 2.1. Givenu € DP forp = 1, 2, it holds that:

(i) Du € DP;
(ii) For each continuous function o on R, we have ou € P ifu € L*(Q x [0,T] x R).
(iii) For any continuous processes (¢);c(o,1] and (Yi)eejo,r] With maxcjo 7 |7¢| + |y < oo a.s., the

random field Gy () := yyuy(z + x4) is also lying in DP.

Proof. The assertion (i) may also be found in [Kry10} page 297]. In fact, for each ¢ € C>°, we have D¢ € C'Z°,
and the integration-by-parts formula indicates that

(Dur(+), ¢(- — 2)) = —(ue(), (DP) (- — x)).
Hence, Du € DP if u € DP.

For assertion (i), notice that for each v € (0, 00),

li‘ugpwl<@(')w('),¢(‘ —ol < ulPllol” | max, lo(@)),

where we choose a sufficiently big R > 0 so that the support of ¢ is contained in [—R, R]. Then it follows
obviously that pu € DP.

Lastly, as max;c(o 7] |7¢| + |y:| < oo a.s. and for each v € (0, 00),

Sup (e (- + x1), ¢(- — )P = Sup [(ue(-), (- — 2 — ) [P

< sup [{us(+), (- — x))|P max |y|?,
x| <v4maxieo,1) |t t€[0,7]

there holds assertion (iii). O
For u, f, g € ©, we say that the equality
du(z) = fi(x)dt + gi(z) dWy, t €10,T],
holds in the sense of distribution if f € D!, g € D2 and for each ¢ € C°, it holds a.s.,
(), )= (o) )+ [ (00, 9+ [ o) o)W, vie 0.7
Definition 2.1. A pair (u, ) € 33_1,7‘4/ X ZD;W is said to be a weak solution of BSPDE ({0), if
(i) ur(z) = G(e"¥) as;

(i) for almost all (w,t) € Q x [0, 7], the functions u¢ (), \/(1 — p2)ViDvy(x), and py/ViDuy(x) +
Yi(z) are locally integrable in z € R{T]

"Here, by the local integrability of a function g in z € R we mean that for each bounded measurable set D C R, it holds that the
truncated function g - 1p liesin L' (R).
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(iii) the equality
Vi

—duy(x) :[%Dzut(x) + P\/VtD¢t( - ED“f( x)

+ B, uy(x), /(1 — p2) Vs Dug(z )—i—p\/vtDut(x)}dt—wt() .

holds in the sense of distribution.

By Assumption the linear growth of (G, F') w.r.t. * produces the local integrability in € R. Therefore, in
Definition [2.1] the local integrability is set for the weak solution, which does not just give a point-wise meaning
of the compositions involved in function I but also make the weak solution be potentially workable under
Assumption particularly encompassing the concerned examples in this paper. Obviously, it differs from the
LP (p € (1, 00))-integrability requirements for the weak or viscosity solutions in the existing BSPDE literature
(see [DQT11,HMYO02, |Qiu18,1Zho92] for instance).

2.2 Well-posedness of BSPDE and the stochastic Feynman-Kac formula

First comes a result about the measurability of Ytt’m which basically states that the randomness from Wiener
process B is averaged out as the randomness of all the coefficients is only (explicitly) subject to the sub-filtration

{F }iso.

Theorem 2.2. Under assumptions and for each (t,z) € [0,T] x R, let (Y{*, ZL", ZL™) be the
solution to BSDE (11). Then the value function:

®(x) =Y s just.Z)V -measurable.
Proof. We shall adopt some techniques by Buckdahn and Li in [BL0O8]|. For the underlying probability space,
w.l.o.g., we may take 2 = C([0, T]; R?) = Q" x QB with Q" = C([0, T];R), Q8 = C([0, T];R), and

for each w € ©, one has w = (W', wW?) with W € QW and WP € QF. And the two independent Wiener
processes W and B may be defined on Q" and Q7 respectively.

Set -
= {h;h(o) =0, € L*0,T; R)} ,

which is the Cameron-Martin space associated with the Wiener process B. For any h € H, we define the
translation operator 77, :  — Q, 7, (W, w?P)) = (W, w8 + h) forw = (WY, wP) € Q. Itis obvious
that 77, is a bijection and that it defines the probability transformation: (P o 7, ') (dw) = exp{ fo |92 gt —
S dh 4B YP(dw).

Fix some (¢, z) € [0,T] x R and set H; = {h € H|h(-) = h(- At)}. Recall

T T
Vs W

By Girsanov theorem, it follows that Xéix(Th) = X for all b € Hy, and thus, we have ®;(x) (1) = ®¢(z)
P-a.s. for any h € H;. In particular, for any continuous and bounded function G,

E[Q(@t(m))exp{/ |7\2 2/0 Z};dB }}
= oo [ 15— [ %]

= E[G(®4())]

= plg@on s o { [ 15pas— 5 [ %],
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Pricing options under rough volatility with backward SPDEs 7

which together with the arbitrariness of (G, h) implies that ®;(x) is just %}V -measurable. 0

Following is the It6-Wentzell-Krylov formula.

Lemma 2.3 (Theorem 1 of [Kry10]). Letx; be an R-valued predictable process of the following form

t t t
a:t—/ by ds + ﬁdeS+/ o dBs,
0 0 0

where b, o and 3 are predictable processes such that for allw € €2 and s € [0, T, it holds that

T
B Lo < o0 and [ (bl + |8+ o) dt < o
0

Assume that the equality
dUt(.’I}) = ft(x) dt+gt($) th7 le [OvT]a

holds in the sense of distribution and define v¢(x) := uy(x + x1). Then we have
1
dv(z) = (ft(ff + 1) + §(|5t|2 + |o¢*) D*vi(x) + BiDge(w + x¢) + thUt($)> dt
+ (gt(z + x) + BeDvy(x)) dWy + oy Dvy(x) dBy, t € [0,T]
holds in the sense of distribution.

We note that in the 1t6-Wentzell formula by Krylov [Kry10, Theorem 1], the Wiener process (Wt)tZO may be
general separable Hilbert space-valued and the process (:Et)tzo may be multi-dimensional. An application of the
above It6-Wentzell-Krylov formula gives the following stochastic Feynman-Kac formula that is the probabilistic
representation of the weak solution to BSPDE via the solution of associated BSDE coupled with the
forward SDE (8).

Theorem 2.4. Let Assumptions|1.1|and[2.1| hold. Let (u, 1)) be a weak solution of BSPDE (T0) such that there
is Cy, € (0, 00) satisfying for eacht € [0,T]

lug(z)| < Cy (1+€%), foralmostall (w,z) € Q x R. (12)

Then (u, 1)) admits a version (denoted by itself) satisfying a.s.

ur (X5 = Y5 /(1 = p2)ViDur (X5%) = 257 4p (XE®) + p\/ Vi Dun (X5%) = Z1®

for0 <t <7 <Tandx € R, where (YTt’x, Z5* | Z5"Y is the unique solution to BSDE (TT).

Proof. Foreacht € [0,T), recall

:x—/:‘gdr—i-/tsp\/vrdWT—i-/ts\/mdBr, t<s<T.
Applying Lemma(2.3|to u over the interval [t, T'] yields that
dug(XE7) = (05(XE) + py/VoDuy(XE7)) AW, + /(1= p2)V; Duy(XL7)dB,
—F (X7 ug(X57), V(U= p2)VaDu(XE7), s (XE7) + py/VoDug(XE7)) ds, s € [1, ],
holds in the sense of distribution with uT(X%Z) = G(ex;x).

Notice that for all 7 € [¢, T, we have X' € LY(Q,P)and E [eXim} < €*. This together with Assumption

.and relation . implies that u, (X2") € L'(Q,P) for all 7 € [t, T]. Further, the uniqueness of L!-
solution for BSDEs (see [BDH*OS, Section 6]) yields a version of (u, ) (denoted by itself) satisfying that a.s.

ur (X5 = Y5 /(1 = p2)ViDur (X5%) = 257 4p (XE®) + p\/ Vi Du (X5%) = ZL
for0 <t <7 <Tandx € R, where (YTt’x, A Zim) is the unique solution to BSDE (T7). O
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From the proof, we may see that the growth condition confirms that the distribution-valued process u is
locally integrable and a.e. defined on Q x [0, 7] x R which means more than distributions. More importantly,
it implies the integrability of u(, Xﬁx) which is needed for the uniqueness of solution to BSDEs. The growth
condition may be relaxed; however, power growth condition like |us(x)| < C (1 + |e*|P) for some p > 1
may fail to imply the integrability of (T, Xﬁx) (see [Gas18, Theorem 2]). On the other hand, the stochastic
Feynman-Kac formula in Theorem [2.4] actually implies the uniqueness of weak solution for BSPDE which
together with the existence is summarized in what follows.

Theorem 2.5. Under Assumptions|[T.1|and[2.1] suppose further that there is an infinitely differentiable function
(¢ such that ((x) > 0 for allz € R and

GetXT)C() € LA(Q Frs LX(R), CCE(eX7,0,0,0) € LAQx (0,7} L2(R).  (13)

Then BSPDE admits a unique weak solution (u, 1)) such that there is C,, € (0, 00) satisfying for each
te[0,7T]

lu(t,z)| < Cyu(1+€"), foralmostall (w,z) € 2 x R. (14)
Proof. Step 1 (Existence). Put §(z) = % for x € R. The theory of Banach space-valued BSDEs

in [DQT11, Section 3] may be extended to nonlinear cases under Lipschitz assumptions with the standard
application of Picard iteration. In particular, for the case of Hilbert spaces, applying [HP91, Theorem 3.1] to the
following Hilbert space-valued BSDE (with a trivial operator A = 0 therein):

T ~ ~
i(a) = G () + [ 0 Fer ™ (00) (), (00) 1 F ), (0() 10 (@) ds
t
T T
- [ dtwan. - [ ¥ @aw., tepT) (15)
t t

gives the solution of the triple of L?(IR)-valued (.%;)-adapted random fields

(@, 2, 9" € L2(Q; C ([0, T); LA(R))) x L*(Q x [0,T] x R) x L*(Q x [0,T] x R).  (16)
Obviously, we have (@i, 2, W) € DL, x D% x D%, and thus by assertion (ii) of Lemma it holds that

(ORVERTLS

7 € DL x 0% x 0%,

(@, 9%, ") =
satisfying BSDE:

0,0 T 0,0 A~ T A
in(x) = G(emH8") 4 / Fo(e (), 85 (2), O (2)) ds — / JB(x) dB,
t

t
g W
—/ YW (2) dWs, te[0,T).
t
Also, it is straightforward to have that
t,:r+Xt0’0

u(z) =Y, as., forall (t,z) € [0,T] x R, (17)

with the triple (Y™, Z5%, Zo™) s 1.7) satisfying BSDE (T1).
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Pricing options under rough volatility with backward SPDEs 9

By Lemma[2.1] we may apply the It6-Wentzell-Krylov formula in Lemma [2.3] which yields that the equality
— diy(z — X°) (18)

Vi
:{ tD2A X204 /(1 = p)ViDYP (@ — X204 p/ViD9Y ( )

Vi R o o
- EtDut(m - Xt(lo) + Ft(exvut(x - Xi)’O)?th(x - X?’O)wav(x - X?O))}dt

— (84 (@~ XP°) — py/ViDia(x — X0)) aw
— (9P - XP%) = /(T = AViDin(e — X)) dBy, € [0,T], 19)

holds in the sense of distribution. Notice that the equality indicates that for each s € [0, 7]

(= X30) = Y2, (20)
which is just .7 W _measurable by Theorem [2.2| Thus, the stochastic integration w.r.t. B should be vanishing,
i.e., we have

— (1= p?)V;Diy(z) =0, as.forall (t,z) € [0,T] x R.
Put

w(2) = iz — X2 and () = Y (2 — X0 — p\/ViDin(a — XP°), (t,2) € [0,T] x R,

The .%,V -adaptedness of u; (), and the assertions (i) and (iii) of Lemmalmply (u,v) € @;W X Q?W,
and the equality writes equivalently

—duy(x) = {VDQut () + p/Vi Dy (2) —EDW()

+ Fi(e”, ui(z), /(1 — p2)ViDuy(z )—{—p\/VtDut(x))}dt—@Dt(:z) dwy, te0,T7],

which holds in the sense of distribution with the terminal condition up(x) = G(e”). The local integrability of
(u, /(1 — p2)ViDu, v + py/ViDu) required in Definition (i) may be obtained by combining the relation
(6), the path-continuity of (XS’O)QO, and the positivity of 6. Therefore, the pair (u, 1)) is a weak solution of
BSPDE (70).

Step 2 (Growth condition (74)). Consider the following Hilbert space-valued BSDE:
T _ T _
oa) - [ 2w)ds.~ [ 2 (@ aw.
t t

T 0,0 ~
+/t <9(x)}Fs(e$+Xs7 ,0,0,0)} + Lob(z) —|—L0|Ys(ac)\) ds,

Viw) = |Glem+1")

(21)

where the positive constant Ly is from Assumption [2.1](iii). The standard BSDE theory (see [PP90]) yields the
unique existence of the L2-solution to BSDE (7). In fact, for each (¢,z) € [0,T) x R we have

T
Yi(x) = B [\G@“X?”)\ blary+ [ 6) (Lo +[F(eH,0,0,0)]) oL ds ﬂ] L@
t
with vt = exp {Lo(s — 1)}, s€[t,T).

Putting the BSDEs and together, we may use the comparison theorem (see [EPQ97], Theorem 2.2]) to
achieve the relation

iy (z) < Yi(z), as.,V(t,z)e€[0,T] xR,
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which together with implies that
uy(z) < (0(z — X)) Vel(z - X}

’ | ’ )
_E ‘G(eXtT’ ) fy,prr/ (}Fs(exi ,0,0,0)] +L0) .7§ds’%‘t]
t

T
<E (LeX? +L) A +/ (Loex? +2L0) At ds
t

| g

T
< E Lem+L0(T—t)+L6L0(T—t) +/ <L06I+L0(s—t)+2L06L0(S—t)> ds‘yt]
L t
< C(L,T,Lo)(1+€%), as., ¥(t,x) € [0,T] x R,

t,z‘

where we have used the relation [eXS fft} < eas.,for0 <t < s <T.This gives the growth estimate

(14).
Step 3 (Uniqueness). The uniqueness follows from Theorem [2.4] and the proof is complete. O

Remark 2.1. In view of the above proof, the assumption (I3) on G and F is to ensure (5, 9") € D% x D2,
and further ¢ € ”D_%;W. It is for simplicity and may be relaxed; for instance, the L?-requirements in may
be replaced correspbndingly by LP-integrability but with 1 < p < oo and the associated well-posedness result
with LP-integrability in may be obtained by standardly extending the theory of Banach space-valued BSDEs
in [DQT11}, Section 3] as stated at the beginning of the proof. A typical example satisfying is the European
put option where F}(z,y,2,%) = —ry, G(e®) = (K — **"T)* for some K € (0, 00) and one may take
((x) = ﬁ for instance. However, it is by no means obvious to see if it is satisfied for the call options, while
for pricing calls, we may use the put-call parity if applicable.

3 An application: approximating American option prices

Assuming the same setting as the European options, we consider instead the American type, that is to compute

W() = sup B TG (XN F] L (te) € 0,7) xR,
T t

where r > 0 is the interest rate and 7; denotes all the stopping times 7 satisfying t < 7 < T. For simplicity,
we assume:

Assumption 3.1. The function g : (2 x [0,T] x R, 2" @ B(R)) — (R, B(R)) satisfies that there exists
a positive constant L; > 0 such that for each (t,z) € [0,T] x R,

(i) gs(eth"I) is almost surely continuous in s € [t,T7;
(i) gs(e”) < Li(1+e%),as,;

(i)

Js (eX?IM < I";@N(:U), as., Vs e [t,T], with E

sup ‘I";f] < 00,
s€t,T)

where the positive function § : R — (0, o0) is infinitely differentiable.

A typical example satisfying Assumption is the American put option with g¢(e”) = (K — )™ for some
K > 0, where one may take L1 = K, T = K, and (x) = 1. By the theory of reflected BSDEs (see

DOI 10.20347/WIAS.PREPRINT.2745 Berlin 2020



Pricing options under rough volatility with backward SPDEs 11

[EKP+97, Section 3]), the following reflected BSDE

AV = Y ds + dAY — 729 aB, — 7290 aw,, s e [t T);

—t, t,x <, 5
YTx = gT(GXT ); st > gs(e S )7 s € [t’T]; (23)

S

T
A% is increasing and continuous, A" = 0, / (?t’ — gs(e® )) dAL" =
t
. . . b >t B =tz W
admits a unique solution (th,At’m, Vi ,Zm
[EKPT97, Proposition 7.1], we have

t,T

Y,

) for each (t,z) € [0,7] x R, and in particular, by

= u(x), as. foreach (¢t,z) € [0,7] x R. (24)
We would stress that the above relation only indicates that u(z) is .%;-measuable for each (¢,z) €
0,7] x R.

In fact, the penalization method provides an approximation of reflected BSDE with a sequence of BSDEs
without reflections (see [EKP 97, Section 6)), i.e., for each N € N7, the following BSDE

_dYta: N |:_rYt,x;N N (gs(exzwr) B ?t,a:;N) :| ds — tx B, NdBS

S S

7N aw,, s e [t T;
—t,z;N

VN = gp(eX7),

(25)

t,x;N —t,x;B,N ft,az;W,N)

. . . S Vad) 't 7N . . i .
admits a unique solution (Y A A such that st converges increasingly to st with

2
lim E | sup ‘Yta:N Yi,m / ‘thBN thB‘ ‘ZthN thw‘ ds| = 0. (26)
N—oo s€t,T]
lim E | sup ‘AMN Atx‘ 0, (27)
N—oo s€t,T]

for each (¢,z) € [0,T] x R, where

s

ta;N " xtey otaN\ T
Ara ) — N <gS(e s ) — Y ) d87 fOrO S t S T S T.
t

—ta;N
Notice that Theorem says that Y, is .#V -measurable for each (t,z) € [0,7] x R. Hence, the

approximation implies that Y?m (and thus ¢ (2)) is also just %V -measurable for each (¢, z) € [0, T] xR,
which together with Theorems [2.4|and [2.5]yields the following

Corollary 3.1. Let Assumptions[7.1| and[3_1| hold. It holds that:

(i) The value functiont;(x) is just 7}V -measurable for each (t,x) € [0,T] x R.
(i) Foreach N € N, the following BSPDE

Vi Vi

—duj (z) = [5D2uiv (@) + PV VDU (2) = 3 Du () = ru ()
N (gule”) = u¥ (@) " | dt =l (@) W (28)

u (z) = gr(e”),

admits a unique weak solution (u'¥ | 1)™") such that there exists Cy € (0, 00) satisfying for each t €
[0, 7]

lulN (z)| < Cn (14 €®), foralmostall (w,z) € Q x R.
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(iii) Foreach N € N, the above weak solution (u'Y, ™) satisfies a.s. uN (X2) = ?tf;N,
t, 7B7N ts 7WN
= PWVoDul (X0%) = 25BN ang N (X5 + py/V Dl (1) = 725N,

—to;N —t,z;B,N —t,z;W,N
for0 <t <7 <Tandz € R, where (Yt’w’ ,Zt’z’ ’ 7th’gc’W’ )

(25).

is the unique solution to BSDE

(iv) Foreach (t,z) € [0,T] x R, ul¥ (x) converges increasingly toui;(z) in L?(Q2, Z; R).

(v) There s a triple (u, @B, @W) defined on (2 x [0, T] x R, 2V @ B(R)) such that

U (X2 =27

T

—t,x; W

u (X67) = V)" and Y (xb0) =77

S a.s.,

for0 <t <7 <T.

Remark 3.1. The assertion (v) is concluded from the approximating relations and (27). In fact, by the
theory of reflected BSPDEs (see [QW14] or [Qiui7, Section 3.3]), one may expect the value function u;(z) to
be characterized via the following reflected BSPDE

—duy(x) = [%DQQ(@ + o/ ViDy,(z) — %Dﬂt(m) — rug(x) | dt + [(dt, x)

- 1/’(@»”5) th7 (t,l‘) S [O7T] X ]Ra
up(z) =gr(e*), zeR; (29)
ut(x) > ge(e”), dP ® dt ® dz-a.e.;

/ (ﬂt(
[0,T]xR

for which the solution is a triple (1, @, 7i) with 7z being a regular random radon measure. A solution theory
may be developed by generalizing the regular stochastic potential and capacity theory in [Qiu17, |QW14]; nev-
ertheless, we would not seek such a generality in this paper, in order to put more efforts in the numerical
approximations.

8

) — 9:(€¥)) fi(dt,dz) = 0, as,  (Skorohod condition)

4 Numerical approximations with a deep learning-based method

Throughout this section, we assume that the functions GG, F" and g are deterministic, i.e.,
(A*) G:R—=R, F:[0,T]xR*=R, g¢:[0,7T] xR —R.

In fact, this assumption may be relaxed by allowing (explicit) dependence on the variance process V' and the
Wiener process W, and together with Assumptions and it ensures that all the coefficients may
be simulated in the subsequent numerical computations, given the approximations of the unknown functions.
In what follows, we first introduce and discuss the neural networks approximating random functions, a deep
learning-based method is then introduced for non-Markovian BSDEs and associated BSPDEs and finally, the
numerical examples are presented for the rough Bergomi model.

4.1 Neural networks approximating random functions
First, we introduce a feedforward neural network with input dimension dy and output dimension d;. Suppose

thatithas M + 1 € NT\ {1, 2} layers with each layer having m,, neurons, n. = 0, - - - , M. For simplicity, we
choose an identical number of neurons for all hidden layers, i.e., m,, = m,n =1,--- , M — 1. Obviously, we
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have mg = dy, and my; = d. The neural network may be thought of as a function from R% to R% defined
by composition of simple functions as

z€eR® — Ay opoAy_10---000 A (z) € R, (30)

Here, A; : R% — R™ Ay : R™ — R% and A4, : R™ — R™,n = 2,---, M — 1 are affine
transformations on a whole layer and defined by

An(l') = Wyha + /Bm

where the matrix Y, and the vector (3,, are called weight and bias respectively for the nth layer of the network.
For the last layer we choose identity function as activation function, and the activation function g is applied
component-wise on the outputs of A, forn =1,..., M — 1.

The parameters of neural network may be denoted by 8 = (W, Bn)ﬁ/le. Given dy, d1, M and m, the total

number of parameters in a network is M, = 2%;01 (mp + )mpt1 = (do + D)m + (m + 1)m(M —

1)+ (m + 1)d; and thus 6 € RMm By ©,,, we denote the set of all possible parameters and if there are no
constraints on parameters, we have ©,,, = RMm By ®,,,(-; 8) we denote the neural network function defined
in and set of all such neural networks @,,,(+; 0), 6 € ©,, is denoted by NN§O &y M (Om)-

Deep neural networks may approximate large classes of unknown functions. Following is a fundamental result
by Hornik et al. [HSW89, [HSW90|:

Lemma 4.1 (Universal Approximation Theorem). It holds that:

(i) Foreach M € NT \ {1}, the set UmeNNN§O7d1’M7m(RM"L) is dense in L?>(R%, v(dx); R%) for
any finite measure v on R%, whenever o is continuous and non-constant.

(i) Assume that o is a non-constant C k function. Then the neural networks/functions in UmenNN ﬁo dy 2 m(R2m)
can approximate any function and its derivatives up to order k, arbitrarily well on any compact set of R,

Notice that in the above lemma the approximated functions are defined on the finite dimensional spaces i.e.,
R%_ In fact, the approximations may be extended to some classes of functions defined on infinite dimensional
spaces. In this paper, we need the following one:

Proposition 4.2. ForeachTy € (0,T], M € Nt \ {1}, and dy, d; € N, the function set

{On(Wiy o Wi 30) 5 @n(50) € NNG gy 2 (RM™), ok € N,

O<t1<t2<"'<tk§Tg}

is dense in L? (2 x R%, . Z)V @ B(R®), P(dw) ® dx; R?), whenever g is continuous and non-constant.

Proof. Take f € L? (Q x R%, .7}V @ B(R%), P(dw) ® dx) arbitrarily. Notice that
L2 (Q x RD ZW @ BRY), P(dw) © dx;Rdl) = 2 (Q FW P, LQ(RdO;Rd1)> .

The denseness of simple random variables (see [DPZ14, Lemma 1.2, Page 16] for instance) implies that the
function f may be approximated monotonically by simple random variables of the following form:

l
ZlAi(w)hi(x)7 with h; € LQ(RdO;RdI), A€ I, le N+, i=1,...,L
=1
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a7,

Further, applying [Oks03, Lemma 4.3.1., page 50] yields that each 14, may be approximated in LZ(Q, Fr,)
by functions in the following set

{gi(Wﬁ,...,Wg};_) c k€ N+, g; € Cso(sz)’ 0< le <0< E;ﬁ < To}.

To sum up, the function f may be approximated in L? (Q x R% .7}V @ B(R%), P(dw) ® dz; R ) by the fol-
lowing random fields:

l

W, Wa2) =D g (ng,---,Wf;%) hi(z),
i=1

where g; € C°(RFi), h; € L2 (R%),0 <t < --- <1}, < T, and

_ _ I » »
{1, e} = Uit - 1, )

Applying the approximation in (i) of Lemma to the functions fk yields the approximation of f, and this

completes the proof. O

Remark 4.1. In fact, the process (W;);>0 and the filtration (%} );>0 may be replaced by an arbitrary contin-

uous process (W }):>0 and corresponding gernerated filtration (.7}");>(, where the process (W);>0 is not
necessarily a Brownian motion.

4.2 Deep learning-based method for non-Markovian BSDEs and associated BSPDEs

Inspired by [HPW19| IHJW18], we adopt a deep learning method bas~ed on the following representation relation-
ship by Theoremsand Letting the quadruple (X, Ys, Zs, Z5) be the solution to the following FBSDE

—dY, = Fy(e™,Yy, Zy, Zy)ds — Zs AWy — ZydBs, 0< s <T;

YT:G(eXT),
dX, = \/V, <de5+\/1—p2st>—%ds, 0<s<T; 1)
Xo =x;

S
Vs =& EMWs) with Wy = / K(s,r)dW,, se€l0,T],
0
with K being a general Kernel function including the particular cases in Examples|[i.1]and one has

ur(Xr) =Y, V(1- P2)VTDUT(XT) =2Zr, Y (X7)+ P\/VTD“T(XT) = Zﬂ

for 0 < 7 < T and 2 € R, where the pair (u, ) is the unique weak solution to BSPDE in Theorem
In particular, we may write forwardly, for ¢ € [0, T,

w(Xe) = uo(Xo) — /0 F, (eXs,us(XS), VI = P2 ViDug(Xs), bs(Xs) + pJﬁDus(Xs)) ds
+ /Ot (¢S(XS) n pJﬁDuS(XS)) AW, + /Ot VA = 2)WVsDuy(X,) dB,. (32)

Given a partition of the time interval: 7 = {0 = ¢ty < t; < ... < ty = T} with modulus || =

' Orlna>§v ) At;, At; = ti41 — t;, we first simulate (or approximate) the joint process (B, W, V'), and then
1=U, 1, N =

the forward process X may be approximated by X ™ obtained through an Euler scheme. Further, the forward
representation yields an approximation for (u, ) under the Euler scheme

Uty (Xti+1) ~ Hti (th‘v Ug,; (Xti)’ (1 - p2)‘/;iDuti (Xti)’ d)ti (th) +p V V;‘/iDuti (Xti)’ ABtw AWti)
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with
Hy(z,y,z,2,b,w) =y — Fi(e*,y, z, 2) At; + zb + Zw.

Inspired by [HPW19], we design the numerical approximation of u:, (X, ) as follows:
(1) start with ZJN =G;
(2) fort =N —1,...,0, given Z/A{i+1, use the triple of deep neural networks

(u1(70)7zl(70)7z( )) GN 1+211Mm(RMm) XN 1+2lem(RJ\/[m)
X NN1+2i,1,M,m(RMm) (33)

for the approximation of

<u (X)L 2)Vi D (50, (X1,) + o/ Vi D, <Xti>) |

to achieve an estimate

Usir = Hi, (X U (X1, 00). Zi( X0, 00), Zi(X,,00), ABy,, AW )

(3) compute the minimizer of the expected quadratic loss function

~ ~ 2
Li(0) : = B |1 — H,, (Xt,i,uxxn,ei),zi(th,eo,zi(Xn,ei), ABi, AW )|
J , . . , , N2

07 € arg er%lkrll Li(0),

where the Adam (adaptive moment estimation) optimizer may be used to get the optimal parameter 6*;
(4) update and setll; = U(-, 65), Z = Zi(-,07), and Z;= 2¢(~,9§*).

Remark 4.2. Here, (X0, B W) W), V9))1< < are independent simulations of (X, B, W, W, V).

Noticing that .V = fWW for t € [0,T], by Proposition and Remark [4.1| we have the functions in
NNY 4 Mm(RMm) of the following form:

m(Wtu"' aWthtla"' 7thx)7 1=0,1,2,--- 7N_17

which incorporates all the simulated values of (I, /I/T7) until time ¢;, leading to the changing dimension of the
inputs. One may also see that the finer the partition of [0, 7] is, the higher input dimension it involves. The
changing and high dimensionality arising from the approximations prompts us to adopt a deep learning-based
method, and this also unveils the difference from the scheme in [HPW19].

On the other hand, a convergence analysis of the above scheme is given in the appendix. Even though we are
working with dimension-changing neural networks under a non-Markovian framework with different assumptions,
we adopt a similar strategy to [HPW19] for the proof of the convergence analysis.

4.3 Numerical examples for the rough Bergomi model
4.3.1 European put option
We consider the rough Bergomi model of [BFG16] in Example [1.1] with the following choice of parameters:

H =007,1n=19,p=—-09,r =0.05T = 1, Xo = In(100). For simplicity, we choose the forward
variance curve to be £(t) = 0.09, independent of time.
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We compute the numerical approximations to the European option price given in (7). The value function u
together with another random field 1 constitutes the unique solution to BSPDE (9) which corresponds to the
BSPDE in Theorem [2.5| with

Fy(z,y,2,2) = —ry, and G(e%) = (K —*T )T,
By Theoremsand the triple (Y, Z,?“,Z?“)te[m with
—0,
YO = w(XP0), 207 = o ViDu(X)T) 4 (X)), 20 = V(L= ) ViDug (X]),
for t € [0, T'] satisfies the following FBSDE:
v
dx%e = \/V, (deS /1= 2 dB5> —ds, 0<s<T;
X" =
S
V, = &, E(nTW,) with T, :/ VIH(s — ) HV2aw, s € [0,T]; (34)
0

dYso’x _ TYSO,I ds + Zg,x dWs "‘7(5]@ st’ S € [O,T];
YTUv”” = G(eX%x).

Then the deep learning-based method in Sectionis used for the numerical approximations. We take N = 20
in the Euler Scheme and set a single hidden layer whose number of neurons is equal to half of the total number
of neurons in the input and output layers. We adopt the Sigmoid function for the activation function and the
optimization algorithm is Adam. We implement 10000 trajectories in mini-batch and check the loss convergence
every 50 iterations. In the following Table 1, the reference values are calculated by Monte Carlo method and
they are close to the results obtained by averaging 20 independent runs with the deep learning method.

__ standard deviation :
RSD = average value Estimated value | RSD

‘ Reference value

K =90 4.9550 0.0259 4.9535 0.0228
K =100 7.8284 0.0135 7.8061 0.0201
K =110 12.1844 0.0100 12.1940 0.0143
K =120 18.1631 0.0077 18.1699 0.0055

Table 1: Prices of European put options at t=0 under the different strike prices K.

On the other hand, we also investigate the dependence of the value function on the paths of process V. We
simulate 10000 independent trajectories of the stochastic variance process V' and evaluate the corresponding
values of ©(0.5,In100) when ¢t = 0.5, x = In 100, and K = 100. The mean of these u(0.5,1n 100) is
9.9287 and the standard deviation 0.4240. Four of these trajectories are randomly chosen in Figure 1 (a), and
the corresponding values of u(0.5,1n 100) are listed in Table 2. From Figure 1(a) and Table 2, one may see
that bigger values of V(0.5) do not always lead to bigger option prices. Meanwhile, for the simulated 10000
trajectories of 1/, we reset the values of V to be the same and equal to the average of simulated values of V' (t)
at time t = 0.5, i.e., we fix V(0.5) = 0.0825. Then the mean of these values of u(0.5,1n 100) turns out
to be 9.9292 with the standard deviation equal to 0.4226. Four of the trajectories corresponding to Figure 1
(a) are drawn in Figure 1 (b), and we show the corresponding values of % (0.5,1n 100) in Table 3. Comparing
the obtained means, the standard deviations, and the four paths and associated values of «(0.5,1n 100) in
these two cases, we may see that the value of V at ¢ = 0.5 does not play a dominating role in determining
the price of the options (0.5, In 100), which is different from the classical Markovian cases; this is due to the
path-dependence and thus the non-Markovianity, i.e., the trajectory of V' before t = 0.5 actually affects the
value of ©(0.5,1n 100) in a non-negligible manner.
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— 1 — w1

V2 vz
04— V3 044~ V3
— V4 — v

0.3+ 0.3 4

0.2 1 0.2 4

V(t=D.5)50.0825

0.1+ 0.1+

0.0 4 0.0 4

0.‘0 O.‘l 0.‘2 0:3 O.‘4 0:5 0.‘0 0.‘1 0:2 O.‘3 0:4 O.‘S
(a) Paths of V with different values at t=0.5 (b) Paths of V' with a fixed value att = 0.5

Figure 1: Different paths of V' on time interval [0, 0.5]

Paths of process V with ‘ 1(0.5,1n 100) ‘
V1(t =0.5) = 0.0038 10.3310
V2(t=0.5) = 0.0237 |  10.4847
V3(t =0.5) = 0.0369 10.1519
V4(t=0.5) =0.0014 |  10.3003

Table 2: u(0.5,1n 100) on different paths of V" in Figure 1(a)

Paths of process V with ‘ 1(0.5,1n100) ‘
V1(t =0.5) = 0.0825 10.3290
V2(t = 0.5) = 0.0825 |  10.4878
V3(t=05)=0.0825 | 10.1457
VA4(t =0.5) = 0.0825 10.2769

Table 3: u(0.5,1n 100) on different paths of V" in Figure 1(b)

4.3.2 Two schemes for approximating American put options

Again, consider the rough Bergomi model in Examplewith the following choice of parameters: H = 0.07,
n=19p=-09r=0.057T =1, Xy = In(100). Also, we choose the forward variance curve to be
&(t) = 0.09 independent of time, for simplicity. The strike prices may take different values. Then, pricing the
American put option is to compute

() = sup B e—”gT(eX?’“)} , with g, (%) = (K — ™), for (r,2) € [0,T] x R.
T 0

We shall adopt two different schemes for the computations for the numerical approximations.

The first scheme is based on the penalization. By Corollary Up(x) may be approximated by ﬂ(])v(a:) as N
v —N
tends to infinity, where the pair (u”,v)" ) is the unique weak solution to BSPDE (T0) with

Fy(e,y,z,2) = —ry + N (gu(e") =) and G(e") = gr(e”).
Then the first scheme is to use the algorithm in Section to compute ﬂ(])v(Xo) which approximates o ()

when N tends to infinity.
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The second scheme is based on the representation via the following forward-backward system:

ng’I:\/i(de-F\/l—;dB)_*d 0<s<Ty
X" =
‘/292555(77/”75) with WS_/ \/E(S_T)Hil/QdWﬁ SG[O7T];

—dY" = VY ds + dAY — 720" ap, - 70" aw,, s € (0,7

7%=w@ﬁ5;??2%@3ﬂvs€Mﬂ;

T
A% is increasing and continuous, Ag’x = O,/ (?S’x — gs(eX )) dA%* = 0.
0

\
Recalling the assertion (v) in Corollary (3.1) which gives the following representation

—0,x —B —0,x;B —W —0,x; W
7, (X00) = VO, G2 (x00) = 2078 ang G (X07) = 720V as,

for 0 < 7 < T, for some triple (@, ¢, %) defined on (€ x [0, 7] x R, 2" @ B(R)), we may use the
following scheme:

(1) Start with Un = gr.
(2) Fori = N —1,...,0, given Z;[\Z-H, use the triple of deep neural networks
(ul(ae)vzzB(ae)7Z~1vV( )) EN 1+2lem(RMm) XN 1+211Mm(RMm)
x NN1+2i,1,M,m(RMm) (36)
L _ —B —W . .
for the approximation of (uti(Xti), Uy (Xt,), Yy, (Xti)> , and obtain an estimate
Uisr = Ui( Xy, 0;) + Ui ( Xy, 0) At + ZP (X4, 00) ABy, + 2V (X4, 0:) AW,
(3) Compute the minimizer of the expected quadratic loss function:
‘2

Li(0) : = E|Ust1 — Ui

)

0; € arg ,nin L;(0).

(4) Update Z/{ max {Z/{ (th, 07, ) gt; (th)}

The above scheme extends the one proposed in [HPW19, Section 3.3] from Markovian cases to a non-Markovian
setting, with the main difference lying in the changing dimensions in the neural networks (36). Looking into Ap-
pendix for the convergence analysis of the scheme in Section [4.2] we may extend the convergence analysis in
[HPW19! Section 4.3] to our non-Markovian setting, and as such an extension is similar to that of the scheme in
Section the proof is omitted.

In Table 4, the estimates of the above two schemes are presented together with the reference values which are
lower bound estimates from [BTW18]. We take N = 20 and implement a single hidden layer whose number
of neurons is equal to half of the total number of neurons in the input and output layers. The activation function
and optimization algorithm we use here are Sigmoid function and Adam. The results are obtained by averaging
20 independent runs. For the first scheme, in theory, (XO) is (bigger and) closer to the real value than
U N (Xo) when N > N, which is affirmed by the numerical experiments. We set N equal to 40 and 10000
for comparisons. The same neural networks are put to use in the second scheme. Here, neural networks with
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> 2 hidden layers and/or big number of neurons were also tried, which, we believed, might produce better
approximations. However, we found the obtained results were largely different and quite sensitive to the learning
rate, the optimizer, the iteration numbers, and even the activation function, and this enlightened us to reduce the

complexity to use the selected neural networks for relatively stable estimates.

1st scheme
reference value N=40 RSD N=10000 RSD 2nd scheme RSD
K =90 5.32 5.5053 | 0.0998 | 5.5113 | 0.0980 5.5497 0.0895
K =100 8.51 9.6392 | 0.0553 | 9.6672 | 0.0582 9.6867 0.0552
K =110 13.24 15.4707 | 0.0196 | 15.4882 | 0.0243 15.5020 0.0292
K =120 20 22.5800 | 0.0213 | 22.6069 | 0.0221 22.5742 0.0114

Table 4: Prices of American put options at t=0 under two different schemes.

While the two schemes presented in this paper yield results that are very close to each other (well within
confidence intervals for the Monte Carlo error), the references values from [BTW18] differ significantly. It should
be noted that the results from [BTW18] — which were also recovered by a similar method suggested in [GMZ20]
— are only supported by theory for Markov models. Moreover, those results are lower bounds, and currently, to
the best of our knowledge, no efficient numerical methods providing upper bounds of American option prices in
rough volatility models has been provided. In contrast, our method is supported by theory. In essence, this leads
us to the uncomfortable conclusion that either the reference values from [BTW18] or our own results — or both —
are highly inaccurate, and that we are unable to discern which.

In order to backtest our algorithm, we additionally consider a classical Markovian case, setting p = n = 0
and keeping the other parameters unchanged, The estimates of the above two schemes are compared with the
option prices calculated by binprice function in the financial toolbox of Matlab. It can be seen from Table 5 that
our results are pretty close to the option price estimates by using the Cox-Ross-Rubinstein binomial model.

1st scheme
Reference value N=40 RSD N=10000 RSD 2nd scheme RSD
K =90 5.6168 5.5700 | 0.0949 | 5.5945 | 0.0931 5.6157 0.0881
K =100 9.7980 9.7465 | 0.0520 | 9.7779 | 0.0504 9.7928 0.0555
K =110 15.6720 15.6176 | 0.0265 | 15.6516 | 0.0210 15.6341 0.0221
K =120 22.7501 22.7140 | 0.0204 | 22.7367 | 0.0185 22.6994 0.0106

Table 5: American option prices when p = 1 = 0.

A Convergence analysis
This section is to devoted to a convergence analysis for the deep learning-based scheme proposed in Section

The discussions are conducted under Assumptions (A*), and the following one:

(H1) (i) There exists a continuous and increasing function p : [0,00) — [0, 00) with p(0) = 0 such that for

any 0 < t; <t <T,it holds that
to to 2
E [/ vsds] + B (/ vsds) < p(lts — tal).
t1 t1
|Ft1(€z17y17217§1) _Ft2(€x27y27227§2)|

(i) There exists a constant Lo > 0 such that
< La(v/p(lt2 — t1]) + |z2 — 21| + |y2 — y1] + |22 — 21| + |22 — Z1]),
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for all (¢1,x1,y1, 21, 21) and (t2, T2, Y2, 22, 22) in [0,T] x R x R x R x R.

Remark A.1. In fact, for examples like[T.7]and[1.2] one has
T
E [/ ]Vt]pdt} < oo, forsomep > 2,
0

which, by Hélder’s inequality, implies
to

_1 to 1/p p_1
E tht§|t1—t2pP<E/ \Vt\pdt> <Cplty—to] 7, for0<t; <ty <T,
t

t1 1

t2 2 2(p-1) t2 2/p ) 2(p—1)
</ tht> <t — o5 <E/ |Vt|pdt> <l r0<h <t <T
t t

1 1
9 p—1 2(p=1) )
and thus, we may take p(r) = (Cp+Cy)-( |r| » V|r|" » ), forr > 0. Further, one may straightforwardly

E

check that the numerical examples discussed in Section have Assumption (H1) satisfied.

In what follows, we denote by C' a positive generic constant whose value is independent of 7 and may vary from
line to line, and by X we denote the unique (strong) solution to the SDE (8) start atf = O and by X = X™
the Euler-Maruyama approximation with a time grid 7 = {to = 0 < t; < ... < ty = T'}, with modulus
|| = maxj<;<n |t; —ti—1| bounded by % for some constant C'. UnderAssumptionsand (H1), standard
calculations yield that

E | sup \Xﬁ] < C(1+ zol), (37)
0<t<T
_ max E |Xti+1 - Xti+1‘2 + sup ’Xt - Xti|2 < Cp(‘ﬂ") (38)
i=0,...,N—1 te[ts tig1]

By the theory of BSDEs (see [BDH™03] for instance), Assumptions and (H1) imply the existence and
uniqueness of an adapted L?-solution (Y, Z, Z) to BSDE (T7), which together with and (H1)-(ii) gives

T
E [/ Ft(eXt,Kg,Zt,Zt)\Zdt] < 00 (39)
0
and the standard LQ-reguIarity result on Y:

2
sup Y — Yy
tE[ti,ti+1]

— O(|n)). (40)

max F
i=0,....N—1

For the pair (Z, Z), set

eZ(m) = E | [0 20— ZiPat|, with Zy, o= R By | [ Zudt ],

=0 ti t;
Z N—1 ptiz1 |7 = 12 L 1 tiv1 75 (41)
9 (71') =F Zi:O t |Zt - Ztl‘ dt 5 with Zti = EEl ftz tht y

where I; denotes the conditional expectation given F,.

To investigate the convergence of the deep learning scheme, we define, forz = 0, ..., N — 1,

Ati = E7, [Z:{\i—f—l(XtHl)] —+ Fti (eX’fz‘ s i)\ti, Z\t“ Zti)Ativ

Zy, = ap EilUit1 (X, ) ABy), (42)
Zt, = R B (U1 (X1, ) AW,
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where, 9t is well-defined for sufficiently small || due to the uniform Lipschitz continuity of F'. In view of

Theorem|2.4} we may find .%, V® B( )-measurable functions 0, 27 and §Z s.t.

V. = 0:(X1), Zy, =Z%(Xy,), and Z, =:(Xy), i=0,..,N—1. (43)

:)‘

On the other hand, by the martingale representation theorem, there exist two R-valued square integrable pro-
cesses {Z;} and {Z;} sit.

~ ~ tiv1 tit1 ~
ui+1(Xti+1) = Vti - th( K Vt Zt )Atz / ZydBy + / Zy th: (44)
t t

T i

and Itd’s isometry gives

Zt = Alt E; [f S Zdt] Zti = AltiEi[ftiiH tht], 1=0,....N —1.

~ /\ ~

The distance between the optimal triple (U;, Z;, Z;) from the deep learning-based scheme and (Vt Zt )
from the system is given as follows.

Lemma A.1. Let Assumptions (A*), and (H1) hold. When |r| is sufficiently small, we have

EWy, — (X)) + AGE || Zi, — Z(X,) P + |Zt i(Xti)|2
< CeMNU 4 CALEN* + CALEN?, (45)

where we use

eV = inf BJo; (Xi,) - Us( X o2, eNF = inf B|2(X5,) = 2i(Xe: )2,

and aév’g = inf,, B|%(Xy,) — Zi(Xy,; )| to denote the L?-approximation errors of ; ,%;, and Z; by neural
networksU; , Z;, and Z;, fort = 0,..., N — 1.

To focus on the convergence analysis, we postpone the proof of Lemma[A.1] Define the following square error:

Z/Z“ Z — Z(X,)| dt]

~

S, 2,2),(Y.Z,Z)] = max [\Yt U (X)) +E

i=0,...,N—
tit1
/ 2, — 24, Pt
t;

Theorem A.2. Under Assumptions (A*), and (H1), it holds that

~

ElU,Z, 2 2)]

=

{E|GXT G(X7)[2 + p(|n]) + 7| + €7 (x) + &7 (m) + <Ne£“’“+e?“+eé“’f>}, (46)

Il
=

where the constant C' is independent of the partition .
The computations involved in the proofs of Lemma and Theorem are conducted in a similar way to
[HPW19, Section 4.1] by Huré, Pham, and Warin, with the main differences lying in the approximations of the

random variables with dimension-varying neural networks and the general modulus function p(7). We provide
the proofs for the reader’s interests.
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Proof of Theorem[A.Z Step 1. We first derive a recursive estimate for the square norm of Yy, — )A/ti, i.e.,

~ ~ lit1 N
E’}/tz _Vti|2 < (1+C’7T|)E‘Y;f _ui+1(Xti+1>’2+C‘7r‘E |:/ ‘Ft(€Xt7Y;faztazt)|2dt
ti

i1
bl 2 5 12

08| [ (1= 2 4120~ 2) de| + Cotlaal )
t;

foreachi € {0,...,N — 1}.
In view of and (42), we have

3 -~ tit1 ~ ~ = =
thz' - Vti :Ei[)/‘ti+1 - Z/li-‘rl(XtH_l)] + E’L |:/ Ft(eXt7}/27 Zt7 Zt) - Fti (eXti 9 th Zt“ Zti)dt .
t;

Young’s inequality gives (a + b)? < (1 + vyAt;)a® + (1 + ﬁ)b2 forany a,b € R and v > 0, which
combined with Cauchy-Schwarz inequality, the Lipschitz condition on F' in (H1), and the estimation on the
forward process, implies that

E|Yt1 - i}\ti|2

< E{(l + yAt;) (Ei[Y;tiH - Z:{\Prl (Xt¢+1)])2

1 tit1 X, ~ X ~ = = 2
+ <1+ ) <E7,|:/ (Ft(e t,Y;faZtaZt) _Fti(e ti,Vti,Zti,Zti))dt}> }
’YAtZ ti

~ 1
< (L+AA6)E [|BilYiy, —Uhin (X, )] +5 (1 + W) L%At@-{cp<w|>|7r|

tit1 —~ tit1 = ~ =
+E[/ |Yt—Vti|2dt] +E[/ (|Zt—Zti|2+]Zt—Zti|2> dt]}
t; t

~ / L2
< (L4984 B [|ElYs,, = Ui (Xe )] +5 (1+7A) ,;{Cpﬂw\)rwr

~ ti+1 e~ - =
+ 2At B Y, —Vti2+E[/ (\Zt—zti\u \Zt—th.P) dt”, (48)
t;

where the L2-regularity of Y’ is used in the last inequality.

Recalling that Z and Z are the L2-projections of Zand Z respectively, we have

B[ 12y — Zy,|2dt) = E[ [} | Zy — Zy,|%dt] + A4 E || 2y, — 24, ],
. = .z = = (49)
B[ 2y — Zy, 2dt] = B[ |2y — Zy,|?dt) + AGE || 2, — Zy, 2|

i

Integrate equation over time interval [t;,¢;+1] multiplied by AW}, and A By, respectively. This together
with gives

Ati <Zt1 - th) =FE; [AWtz‘ (Yti+1 - Z;{\i+1(‘Xti+l) - Ei[YtiH - Z;{\i+1(Xti+1)]):|

r tit1
+ E; | AWy,

L t;

At; (Zti - Z) =FE; [ABti (Ytiﬂ - Z/A{i+1(Xti+1) - EilY;, ., — Z:l\i+1(Xti+1)]>]

Ft(eXt7 )/;fv Zt7 Zt)dt:| )

tit1 -
+E’L ABtl/' Ft(eXtv}Q)Zt)Zt)dt] .

L t;
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Standard computations further indicate that
AGE || Ze, = Z2,P| <2 (ElYay = Uit (X)) = BBV, — Gt (X1,)]?)
tz 1 -
+ 2A4E [/ | Fi(e 7YtaZt>Zt)’2dt] ; (50)
t;
it follows similarly for Z. Then, by plugging and into (8), and choosing v = 20L3, we have
E [‘Y;fz - )/}ti|2i|
. L3 ~
< (L4980 B |By Vi, = Ui (X ]+ 5(1+ 7802 {c;)(rwmw + 204 E[Y;, — V|
f > 2.5 o2 7 2
e8| [ (12 2P 412~ ) ]+ 4(E T (Xi)
t;
o 2 [ [l X, D
- BB ~ o (X)) + 4868 | [ 1R Y 2 20 Pat] |
t

L/ L

< Cp(m)|x| + (1 +yAL) BNy, — Uit (Xeiy)) P + CALE[Y;, =V,

ti+1 — ~ = 1 tz 1 -
+CE[/ (!Zt — Zi,|* + 1 Z; —ZtiP)dt +CAtZ-E[/ |Fy(e t,yt,zt,zt)pdt], (51)
ti ] t;

which implies when || is sufficiently small.

Step 2. We prove the estimate for the Y'-component in (46), i.e.,
max FE|Y;, — (Xt )|? < Cp(|n|) + CE|G(Xr) — G(X7)|> + Ce? () + CsZ(w)

i=0,...,N—1

+O Y (N + e+ e)). (52)

Indeed, using Young inequality of the form:

(a+b)2> (1 |x)a? + <1 _ !|> B2 > (1— |r|)a2 — |71T|b2,
we have
ElY,, — V. |? = E|Y,, — Ui(Xy,) + Us(Xy,) — Vi, )2
> (1 7)) BV, — Us(Xy,)|* — *E|L7i(Xti) — Vil (53)

Plugging the above inequality into and letting || be small enough yield that
BIY;, — Ui(Xy,)?

~ tit1 _ - =
< CollmDlrl + (L4 Clal BlYis ~ Goor (X )P+ CE| [ (122 20 + 121 - 2u)
ti
tz 1
+ C’?T’E|:/ ’Ft< Y;g, Zt, Zt)’2dt + CNE|Vt - (Xt )’ . (54)
ti

Recalling Y;,, = G(Xr) and LA{Z'(XtN) = G(Xr), and (39), we may use the discrete Gronwall’s inequality to
reach the following estimate:
ma ElY: — U;( X,
nax B — Uy( X,

~ N-1 R R
<C {p(!ﬂ) + |n| + E|G(Xr) — G(X1)|* + &7 (m) + e(m) + N Y Blti(Xe,) — Vii\z} , (55)
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which combined with Lemmal[A.1]gives (52).
Step 3. We prove the estimate for the (Z, Z)-component in @6}, i.e.,

Z/ 20— 2K + 12— Zi(X mr?)dt]

gc{éﬂm+f2my+mwp+7ﬂ+EKxxﬂ ;&w2+§: Nﬁ,wﬁﬁ}.
From and (50), it follows that forany 2 = 0, ..., N — 1,

tit1 = 12
EM‘|&—&AM
t;

tit1 B R
<FE [/ ’Zt - Zti’2dt:| +2 (E‘Y;fi-q-l - ui-l-l(Xti-q-l)‘Q - E’Ei[yvtwl - uH-l(XtH-l)” )
t;

tz 1 -
+ 2|7|E [/ |Fy(e ,Yt,Zt,Zt)]th} )
t;

which, together with (39), gives

N=1 gy _ N—-1
S [ 2= Bulat] < <2 () + 2E1G(¥) - GOXP +2 3 (BN ~ ()P
—0 Yl =0
— BBV, — Ui (Xi,,,)]P) + Clrl, (56)
where the indices are changed in the last summation. Analogously,
N-1 iy = R N—-1
> [ 12 2uPar| < Fm) +2B1G@) - GODP +2 Y (B - G
ti =0
~ BIEYs,y, — Ui (Xo,,,)]?) + Cll. 7)

Notice that by and we have

2 (BN, = Ui(X0)) 2 = BIEYiyy, — Ghiir (Xi,2))]2)

~ L2
= 1 — |~ {(1 +7AL)E [‘EZ[Y;%H - Ui—&-l(XtiH)]P] +5(1+ ’}/Ati)f (C’p(‘ﬂ‘”ﬂ

R tiv1 —_— tit1 =
+2/n|EY;, —W%E[/ \Zt—Zti\th] +E[/ Zt—ZtiyzdtD}
ti t;

3 N N
+ ——BU(Xy,) — Vi, |2 (58)
AT [y A Xe) = Vil

Take y = )/(1—|m|) < 1/4for |r| small enough and notice that [(1+y|7|)/(1—

DOI 10.20347/WIAS.PREPRINT.2745 Berlin 2020



Pricing options under rough volatility with backward SPDEs 25

|7|) — 1] = O(|~|). This together with (39), @5), @7), (52), and (56), yields

1 N=D
ZE[Z/ |Z; — Zt| +|Zt Zt )dt]

< eZ(n) +E (m)+C max E|Y,, —U;(X,,)?

(7)) + CE|G(Xr) — G(X7)?

N-1

) =V +Clnl

N-1
+Clr| Y ElY;, -
7,:0

=0

Z(m) +<2(m) + C _max  EIY, ~ (X[ + Cpllm) + Cl

N—-1 tit1 B _
+ Ol Z{ (I7|) |7r|+CE[/ (|zt —Z, >+ 12, —Zti|2)dt}
=0 t

. tisa -
U ClD By ~Gonr (X P+ ClrlE| [ 1P, 26,020 20 Pt |
t;

N-1
+CN > Elth(Xy,) =V, |?

=0

_ N—1 B
< C{az(w) +eZ(m) + p(Iml) + |n| + BIG(Xr) — G(Xr)[2 + S (Nelw 47 ¢ aff’z)}. (59)

Finally, noticing the relations

tit1 N 2 tit1 2
E[/ Zt—Zi(Xti)‘ dt} <9F [/ 7, — Zt‘ dt]+2AtE‘Zt Zx)| .

ti t;

tit1 | _ ~ 2 tit1 | _ =2 = A 2
E [/ 7, — 2, (th.)’ dt] < 9F / Zy— Z4| dt| +2A4E ‘Zti 20X

ti t;

and using @5), (59), we obtain by summing over i = 0, ..., N — 1, the desired error estimate for the (Z, Z)
component, completing the proof. O

Finally, we prove the claim in Lemmal[Ad]

Proof of LemmalAdl Fixi € {0, .. 1} Usmg relation (44) in the expression of the expected quadratic loss

function, and recalling the definitions of Zt and Zt as L?-projection of Zt and Zt, we have for all parameters
0 of the neural networks U; (.; ), Z;(; 0), and Z;(.; 6),

tit1 ~ =
/ 2~ 2,
t;

2

+ 17— 7y,

2
t; ) dt] , (60)

Li(0) = Li(0) + E

with
Li(9) = E| B, - (X050
+ (Fti(eXti7ui(Xti; 9)7 Zi(Xti; 91)7 é:i(Xti; 91)) - Fti (eXti ) 9751‘727 Esz))Atz|2:|

—i—AtE[\Zt Z(Xy; 9)\]+AtiE {|Zti—2i(xti;9i)|2 . (61)
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By using Young inequality: (a + b)? < (1 +~At;)a® + (1 + ﬁ)bQ, together with the Lipschitz condition on
F'in (H1), we see that

Li(0) < (1 + CAL)E|V,, — Ui(Xy,: 0;) |

+ CALE |:|Z\tl — ZZ(tha 91)|2 + |Ztl — Zz(th, 91)|2 . (62)

On the other hand, using Young inequality in the form: (a + b)? > (1 — yAt;)a® + (1 — ﬁ)b2 > (1—

yAti)QQ — ﬁbz, together with the Lipschitz condition on F’, gives

B 3At; L2

Li(6) (1~ yAt) E|Vi, — Us(Xe,: 6:) (EV, = Us(X0300 2 + Bl Zi, — Z:(X1,500)

+ E|Zy, — Zi(Xy,; 9,»)|2) + AGE|Zy, — Zi( Xy, 0:) ] + AGE|Zy, — Zi( Xy, 0:)[%. (63)

Choosing v = 62, this yields

~ ~ Atz = = ~
Li(0) > (1 — CAL)E|V, — Ui(Xe,30:)° + 5 L [|Zti — Zi( X1 001> + | Ze, — Zi( Xy 9z')|2]- (64)

Foreach i € {0,...,N — 1}, take 6 € argminy ﬁ,(@) so that LA{Z = U;(-; 67), Z = Z;(;67), and
Zi= Zi(+0). As the second term of the right hand side of is independent of parameters 6;, it also holds
that 07 € arg ming L;(6). Combining and implies that for all ¢

~

—~ —~ At; — ~ = = ~
(1= CAWE, ~BXe)P + B | (B~ B(G)P + |2~ 2400007 < L00) < o)

< (1 + CAtZ)En/)tZ — Ml(th, 9@)|2 + CALE |:|2t7, — Z,L(th, 01)|2 + |§t1 — Z~1(th, 91)|2:| . (65)

By (43), letting || be sufficiently small gives @5). O
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