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An enumerative formula for the spherical cap discrepancy
Holger Heitsch, René Henrion

Abstract

The spherical cap discrepancy is a widely used measure for how uniformly a sample of points
on the sphere is distributed. Being hard to compute, this discrepancy measure is typically re-
placed by some lower or upper estimates when designing optimal sampling schemes for the
uniform distribution on the sphere. In this paper, we provide a fully explicit, easy to implement
enumerative formula for the spherical cap discrepancy. Not surprisingly, this formula is of combi-
natorial nature and, thus, its application is limited to spheres of small dimension and moderate
sample sizes. Nonetheless, it may serve as a useful calibrating tool for testing the efficiency of
sampling schemes and its explicit character might be useful also to establish necessary optimality
conditions when minimizing the discrepancy with respect to a sample of given size.

1 Introduction

A discrepancy measure ∆(µ, ν) quantifies the deviation between two given measures µ and ν. On a
local scale, one may compare the two measures with respect to a given set B to obtain the so-called
local discrepancy

∆(B;µ, ν) := |µ(B)− ν(B)|.

In order to arrive at a global deviation measure, one extends the comparison of the two measures to
a collection B of sets and chooses an appropriate Lp norm:

∆p(µ, ν) :=

(∫
B

∆(B;µ, ν)pdω(B)

)1/p

(p <∞),

∆∞(µ, ν) := sup
B∈B

∆(B;µ, ν) .
(1)

For surveys on discrepancies, we refer to, e.g., [2, 4, 10]. Discrepancies play a fundamental role
in many mathematical disciplines. For instance, in stochastic programming, the stability of optimal
solutions and optimal values with respect to perturbations of the underlying probability measure can
be expected only for a problem-adapted choice of a discrepancy [11].

The focus of the present paper will be on the so-called spherical cap discrepancy. Our interest in
this quantity comes from the algorithmic solution of optimization problems subject to probabilistic con-
straints. One approach here relies on the so-called spheric-radial decomposition of random vectors
having elliptically symmetric distribution (e.g., Gaussian). This approach allows for a representation
of the decision-dependent probability of some random inequality system as well as of its gradient as
integrals with respect to the uniform distribution on a sphere [12]. Hence, for an efficient numerical
approximation of these integrals by finite sums, one has to make use of low discrepancy samples for
that distribution. It is well known (see, e.g. [1, p. 991]), that the resulting integration error tends to
zero (for samples of increasing size) if and only if the spherical cap discrepancy associated with these
samples tends to zero. This special discrepancy is obtained from our general setting (1) by defining
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H. Heitsch, R. Henrion 2

p :=∞, µ as the uniform measure on the sphere, ν as the empirical measure induced by the sample
and B as the collection of all closed half spaces intersected with the sphere (caps). To be more pre-
cise, we define the closed halfspaceH(w, t) parameterized by (w, t), its empirical and cap measures
µemp (w, t) and µcap (w, t), respectively, and the spherical cap discrepancy ∆ associated with the
sample

{
x1, . . . , xN

}
by

H(w, t) := {x ∈ Rn| 〈w, x〉 ≥ t}
(
w ∈ Sn−1, t ∈ [−1, 1]

)
,

µemp (w, t) := N−1 ·#
{
i ∈ {1, . . . , N} |xi ∈ H(w, t)

}
,

µcap (w, t) := µ
(
Sn−1 ∩H(w, t)

) (
µ = law of uniform distribution on Sn−1

)
,

∆(w, t) := |µemp (w, t)− µcap (w, t)| ,
∆ := sup

w∈Sn−1, t∈[−1,1]

∆(w, t).

The following explicit formula for the cap measure - not depending on w ∈ Sn−1 - is well known

µcap (w, t) = Cn ·


∫ arccos(t)

0

sinn−2(τ)dτ, if 0 ≤ t ≤ 1,

1−
∫ arccos(−t)

0

sinn−2(τ)dτ, if −1 ≤ t < 0,

(2)

where

Cn :=
1∫ π

0
sinn−2(τ)dτ

is the normalizing constant.

Figure 1: Examples for spherical caps

Figure 1 illustrates different spherical caps on S2 for a set of three points located in the x/y plane. This
plane itself induces an upper and a lower closed halfspace each of them containing all three points
(left picture). Hence, the associated upper and lower caps both have empirical measure 1 and cap
measure 1/2. Therefore, the local discrepancies ∆(w, t) of these caps equal 1/2. Another hyperplane
passes just through two of the three points (right picture) and the associated left and right halfspaces
induce a big and a small cap. The measure of the small cap tends to zero when the two points converge
to −x1. Therefore, the local discrepancy related with this small cap tends to 2/3.

To the best of our knowledge, no explicit formula for calculating the spherical cap discrepancy has
been known so far. Rather the emphasis in the literature has been laid on suitable estimates with
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An enumerative formula for the spherical cap discrepancy 3

respect to more manageable quantities allowing for asymptotic derivations and constructions of ef-
ficient low discrepancy designs (see, e.g., [1, 7]). On the other hand, beyond the asymptotic ‘large
sample’ viewpoint it might be of some interest even for fixed moderate sample sizes to establish an
easy enumerative formula enabling one to precisely compute the discrepancy and to compare different
sampling schemes.

As a rule,Lp discrepancies (p <∞) are easier to compute thanL∞ discrepancies as a consequence
of the collection B of test sets typically having infinite cardinality [3]. As far as explicit formulae for L∞
discrepancies are available (e.g., for rectangular or general polyhedral sets, see [3, 8, 9]), they are of
combinatorial nature which limits their application with respect to the dimension and the size of the
sample. More precisely, it has been shown in [6], that computing the star discrepancy is an NP-hard
problem. Moreover, the result is improved by [5] who proved that it is indeed W[1]-hard. Therefore,
it is not surprising that a similar combinatorial aspect shows up in the enumerative formula for the
spherical cap discrepancy we present in Theorem 1 below. In our numerical experiments, we apply
the formula to spheres of dimension starting from 2 (2000 samples) up to 5 (100 samples). Even in
this rather modest setting, the formula may prove useful for calibration purposes with respect to some
given sampling scheme. For instance, in [1, p. 1005] an easy to compute lower bound for the spherical
cap discrepancy is used in numerical experiments in order to confirm empirically a certain asymptotic
order for a digital net based on a two-dimensional Sobol’ point set on S2. Strictly speaking, the order
obtained with respect to the lower bound transfers to the discrepancy only when the ratio between the
true value and the lower estimate is approximately constant for increasing sample size. This is what we
may confirm indeed in our numerical experiments. We also use the proven formula in order to directly
compare discrepancies of a few sampling schemes on S2 for sample sizes of up to 1000. The results
verify the good quality of a sampling scheme via Lambert’s equal-area transform proposed in [1, p.
995]. Finally, we mention that the explicit character of the obtained formula might be of some interest
for the derivation of necessary optimality conditions when minimizing the discrepancy as a function of
a sample of fixed size.

2 Preparatory Results

We have the following elementary (semi-) continuity properties of both considered measures:

Lemma 1. µcap is continuous and µemp is upper semicontinuous on Sn−1 × [−1, 1]. Moreover, the
following relations are satisfied for all w ∈ Sn−1 and t ∈ [−1, 1]:

µemp (w, t) + µemp (−w,−t) =

1 +N−1#{i|xi ∈ H(w, t) ∩H(−w,−t)} ≥ 1, (3)

µcap (w, t) + µcap (−w,−t) = 1. (4)

Proof. The continuity of µcap and (4) follow immediately from (2), while (3) is an immediate conse-
quence of the definitions. Let w ∈ Sn−1, t ∈ [−1, 1] and (wk, tk) → (w, t) an arbitrary sequence
with wk ∈ Sn−1, tk ∈ [−1, 1]. Define

I :=
{
i ∈ {1, . . . , N} |xi /∈ H(w, t)

}
,

so that 〈w, xi〉 < t for all i ∈ I . Then, by continuity, there is some k0, such that 〈wk, xi〉 < tk - i.e.,
xi /∈ H(wk, tk) - for all k ≥ k0 and all i ∈ I . It follows that

µemp (wk, tk) ≤ µemp (w, t) ∀k ≥ k0,
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whence
lim sup
k→∞

µemp (wk, tk) ≤ µemp (w, t) .

This proves the upper semicontinuity of µemp on Sn−1 × [−1, 1].

Figure 2 plots the local discrepancy ∆(w, t) for the unit circle S1. As can be seen, it is a highly irreg-
ular, discontinuous (actually neither upper nor lower semicontinuous yet piecewise smooth) function.
Therefore it is not Ãă priori evident that the supremum in the definition of the discrepancy is attained.

Figure 2: Plot of ∆(w, t) for a sample of size N = 1 (left) and N = 5 (right) on S1.

The next proposition shows that the discrepancy ∆ is always realized indeed by a certain cap:

Proposition 1. There are w∗ ∈ Sn−1, t∗ ∈ [−1, 1], such that

∆ = |µemp (w∗, t∗)− µcap (w∗, t∗)| .

Proof. Let (wk, tk) ∈ Sn−1 × [−1, 1] be a sequence realizing the supremum in the definition of ∆:

|µemp (wk, tk)− µcap (wk, tk)| →k ∆ (5)

By the compactness of Sn−1 × [−1, 1] we may assume that

(wk, tk)→ (w̄, t̄) ∈ Sn−1 × [−1, 1] . (6)

According to (5) one may assume one of the following two cases upon passing to a subsequence:

µemp (wk, tk)− µcap (wk, tk) → ∆, (7)

µcap (wk, tk)− µemp (wk, tk) → ∆. (8)

In the case of (7), the continuity of µcap and the upper semicontinuity of µemp on Sn−1 × [−1, 1] (see
Lemma 1) yield along with (6) that:

∆ = lim
k→∞

(µemp (wk, tk)− µcap (wk, tk))

= lim sup
k→∞

(µemp (wk, tk)− µcap (wk, tk))

≤ µemp (w̄, t̄)− µcap (w̄, t̄) ≤ |µemp (w̄, t̄)− µcap (w̄, t̄)| ≤ ∆.
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An enumerative formula for the spherical cap discrepancy 5

Hence, ∆ = |µemp (w̄, t̄)− µcap (w̄, t̄)|. In the case of (8) one may exploit (3), (4) and once more
the upper semicontinuity of µemp in order to derive that:

∆ = lim
k→∞

(µcap (wk, tk)− µemp (wk, tk))

= lim
k→∞

(1− µemp (wk, tk)− (1− µcap (wk, tk))

= lim sup
k→∞

(1− µemp (wk, tk)− (1− µcap (wk, tk))

≤ lim sup
k→∞

(µemp (−wk,−tk)− (1− µcap (wk, tk))

≤ µemp (−w̄,−t̄)− (1− µcap (w̄, t̄)) = µemp (−w̄,−t̄)− µcap (−w̄,−t̄)
≤ |µemp (−w̄,−t̄)− µcap (−w̄,−t̄)| ≤ ∆.

Hence, ∆ = |µemp (−w̄,−t̄)− µcap (−w̄,−t̄)|. Altogether, the assertion follows with (w∗, t∗) :=
(w̄, t̄) in the first case and (w∗, t∗) := (−w̄,−t̄) in the second one.

We may strengthen the previous Proposition in the sense that not only there exists some cap realizing
the discrepancy but that it also has to contain at least one sample point on its relative boundary:

Proposition 2. For (w∗, t∗) realizing the discrepancy in Proposition 1 it holds that there is some
i ∈ {1, . . . , N} such that 〈w∗, xi〉 = t∗.

Proof. Assume that 〈w∗, xj〉 6= t∗ for all j ∈ {1, . . . , N}. Then,

µemp(w∗, t) = µemp(w∗, t∗) (9)

for t close to t∗. If |t∗| < 1, then one may strictly increase (t > t∗) or decrease (t < t∗) µcap(w∗, t),
so that by virtue of (9) the local discrepancy ∆(w∗, t) can be strictly increased in comparison with the
maximal one ∆(w∗, t∗) = ∆. This is a contradiction. If t∗ = 1, then

〈w∗, xj〉 < 1 ∀j ∈ {1, . . . , N},
µcap(w∗, t∗) = µemp(w∗, t∗) = 0.

Since µcap(w∗, t) is strictly increased for t < t∗ = 1 while µemp(w∗, t) = 0 for t close to t∗ (see
(9)), one may strictly increase the local discrepancy again, so that the same contradiction results. The
case t∗ = −1 follows analogously.

An interesting consequence of the previous Proposition is that a cap realizing the discrepancy has
always empirical measure not smaller than cap measure:

Corollary 1. For (w∗, t∗) realizing the discrepancy in Proposition 1 it holds that µemp(w∗, t∗) ≥
µcap(w∗, t∗).

Proof. Suppose to the contrary, that µemp(w∗, t∗) < µcap(w∗, t∗). Then, using (3) and (4), we arrive
at the contradiction

∆ = µcap(w∗, t∗)− µemp(w∗, t∗)
= 1− µcap(−w∗,−t∗)−

(1 +N−1#{i|xi ∈ H(w∗, t∗) ∩H(−w∗,−t∗)} − µemp(−w∗,−t∗))
< µemp(−w∗,−t∗)− µcap(−w∗,−t∗) ≤ ∆.

Here, the strict inequality follows from the fact that H(w∗, t∗) ∩H(−w∗,−t∗) contains at least one
sample point by Proposition 2.
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Lemma 2. Let
{
x1, . . . , xk

}
⊆ Sn−1 for some k ∈ N and let

S :=
{

(w, t)
∣∣ 〈w, xi〉 = t (i = 1, . . . , k)

}
(10)

Let

p := rank

{(
xi

−1

)}
i=1,...,k

.

Then, assuming without loss of generality that

rank

{(
xi

−1

)}
i=1,...,p

= p

(i.e., the first p points xi are affinely independent), the set S defined in (10) has a reduced represen-
tation

S =
{

(w, t)
∣∣ 〈w, xi〉 = t (i = 1, . . . , p)

}
. (11)

Proof. By p ≤ k it is sufficient to show that the right-hand side of (11) is contained in S as defined in
(10). It is therefore enough to show the implication〈

w, xj
〉

= t (j = 1, . . . , p) =⇒
〈
w, xi

〉
= t (i = p+ 1, . . . , k) . (12)

By definition of p, the vectors

(
xi

−1

)
(i = p+ 1, . . . , k) are linear combinations of the vectors(

xj

−1

)
(j = 1, . . . , p). Hence, for an arbitrarily fixed i ∈ {p+ 1, . . . , k} there exists some λ ∈ Rp

such that (
xi

−1

)
=

p∑
j=1

λj

(
xj

−1

)
.

Along with the assumption in (12), both components of this last identity yield that

〈
w, xi

〉
=

p∑
j=1

λj
〈
w, xj

〉
= t

p∑
j=1

λj = t

which is the conclusion of (12).

The proof of Proposition 2 might suggest the idea that a discrepancy realizing cap has to contain not
just one but a maximum possible number of sample points on its relative boundary. This intuition is
wrong as can be seen from Figure 1. Here, any of the two caps in the left picture contains three points
on its relative boundary but realizes a strictly smaller local discrepancy ∆(w, t) than the small cap
in the right picture which contains just two of the three sample points on its relative boundary. As a
consequence, the evaluation of the discrepancy ∆ cannot be based just on a simple enumeration of
local discrepancies ∆(w, t) associated with affinely independent subsets of the sample points. One
has also to consider smaller subsets of sample points for which the hyperplane associated with the
cap is not yet fixed. In order to get rid of the remaining degree of freedom, one has to maximize the
local discrepancy conditionally to this small subset belonging to the relative boundary of the cap. In the
right picture of Figure 1, among all caps having x2, x3 on its boundary, the one defined by a vertical
hyperplane turned out to maximize the local discrepancy. The crucial argument in order to incorporate
this maximization aspect, is provided in the following result:
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Lemma 3. Let
{
x1, . . . , xk

}
⊆ Sn−1 be such that

rank

{(
xi

−1

)}
i=1,...,k

= k.

Denote by X∗ the matrix whose columns are generated by xi for i = 1, . . . , k and define

X̃∗ :=

(
X∗
−1T

)
; γ := 1T

(
X̃T
∗ X̃∗

)−1

1; 1 := ( 1, . . . , 1)T .

Let (w∗, t∗) be a local solution of the optimization problem

max
w,t

{
t
∣∣ 〈w, xi〉 = t (i = 1, . . . , k) , 〈w,w〉 = 1

}
. (13)

Then, it holds that 0 < γ ≤ 1. If γ < 1, then

t∗ ∈

{
±
(

1− γ
γ

)1/2
}
, w∗ =

1 + (t∗)2

t∗
X∗

(
X̃T
∗ X̃∗

)−1

1.

Moreover, γ = 1 is equivalent to t∗ = 0 and we then have rankX∗ = k − 1.

Proof. In order to identify (w∗, t∗) via necessary optimality conditions we have first to check if the
gradients {(

x1

−1

)
, . . . ,

(
xk

−1

)
,

(
2w

0

)}
with respect to (w, t) of the equality constraints in (13) are linearly independent. We assume a linear
combination (

0

0

)
=

k∑
i=1

λi

(
xi

−1

)
+ µ

(
2w

0

)
.

Multiplication of the first component with w yields - taking into account the equality constraints in (13)
and comparing the second component - that

0 =
k∑
i=1

λi
〈
w, xi

〉
+ 2µ 〈w,w〉 = t

k∑
i=1

λi + 2µ = 2µ.

Hence,
k∑
i=1

λi

(
xi

−1

)
=

(
0

0

)
.

By assumption of the Lemma, the vectors
{(

xi

−1

)}
i=1,...,k

are linearly independent, whence λi = 0 for

i = 1, . . . , k. Furthermore, µ = 0, which altogether proves the linear independence of the gradients
of equality constraints in (13).

This allows us to derive the following necessary optimality condition for a local solution (w∗, t∗) of
problem (13). Here the gradient of the objective function t appears on the left-hand side:

∃λ1, . . . , λk, µ ∈ R :

(
0

1

)
=

k∑
i=1

λi

(
xi

−1

)
+ µ

(
2w∗

0

)
. (14)
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The second component implies that
∑k

i=1 λi = −1. Multiplication of the first component by w∗ and
exploiting the equality constraints in (13) yields that

0 =
k∑
i=1

λi
〈
w∗, xi

〉
+ 2µ 〈w∗, w∗〉 = t∗

k∑
i=1

λi + 2µ,

in particular, t∗ = 2µ. With λ := (λ1, . . . , λk)
T , the equation in (14) reads as(

0

1

)
= X̃∗λ+ t∗

(
w∗

0

)
. (15)

Multiplication of both sides from the left by X̃T
∗ and using the first feasibility constraint XT

∗ w
∗ = t∗1

in (13) results in
−1 = X̃T

∗ X̃∗λ+ t∗21.

By the assumption of this Lemma, the matrix X̃T
∗ X̃∗ is regular and we can solve the last equation for

λ:

λ = −(1 + t∗2)
(
X̃T
∗ X̃∗

)−1

1. (16)

Recalling that 1Tλ = −1 we arrive at

(1 + t∗2)1T
(
X̃T
∗ X̃∗

)−1

1 = 1 . (17)

By definition of γ, the latter equation implies that we necessarily have 0 < γ ≤ 1, and γ = 1 if and
only if t∗ = 0. In the case γ = 1 we have that w∗ ∈ KerXT

∗ ∩ Sn−1 by feasibility of w∗ in (13).
Moreover, from (15) we see that X∗λ = 0 for some λ 6= 0 which then implies that rankX∗ = k − 1
due to

k − 1 = rank X̃∗ − 1 ≤ rankX∗ = k − dim KerX∗ ≤ k − 1.

If, in contrast, 0 < γ < 1, then, by (17),

t∗ = ±
(

1− γ
γ

)1/2

. (18)

The first component of (15) reads
0 = X∗λ+ t∗w∗.

Using the representation (16) for λ we obtain that

w∗ =
1 + t∗2

t∗
X∗

(
X̃T
∗ X̃∗

)−1

1

which completes the proof.

Note, the fact that (w∗, t∗) is a local maximum in (13) does not imply t∗ ≥ 0 in case of k = n. We
proceed with the following purely technical Lemma which will be needed to cope with a degenerate
subcase in our main result later on.

Lemma 4. Let
{
x1, . . . , xN

}
⊆ Sn−1. For any I ⊆ {1, . . . , N} letXI be the matrix whose columns

are xi, i ∈ I . Define X̃I :=
(
XI

−1T

)
and let be X̃ := X̃{1,...,N}. Let w0 ∈ Sn−1 be given such that

I0 :=
{
i ∈ {1, . . . , N} | 〈w0, x

i〉 = 0
}
6= ∅
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An enumerative formula for the spherical cap discrepancy 9

and such that it holds

w0 ∈ arg max
w∈KerXT

I0
∩Sn−1

µemp(w, 0) , (19)

rank X̃I0 < min
{
n, rank X̃

}
, rankXI0 = rank X̃I0 − 1 . (20)

Then there exist w1 ∈ Sn−1 and I1 with I0 ⊆ I1 ⊆ {1, . . . , N} such that

w1 ∈ KerXT
I1
∩ Sn−1, µemp(w1, 0) = µemp(w0, 0), (21)

rankXI1 = rankXI0 + z, rank X̃I1 = rank X̃I0 + z (22)

for some natural number z ≥ 1.

Proof. We claim that assumptions (19) and (20) imply that the index set

J0 :=
{
j ∈ {1, . . . , N} | 〈w0, x

j〉 > 0
}

is nonempty. Indeed, in case that J0 = ∅, we would have that µemp(w0, 0) = N−1#I0 and that
〈w0, x

i〉 ≤ 0 for all i ∈ {1, . . . , N}, which amounts to µemp(−w0, 0) = 1. Then, since −w0 ∈
KerXT

I0
∩ Sn−1, it would follow that

1 = µemp(−w0, 0) ≤ µemp(w0, 0) = N−1#I0 ≤ 1.

Consequently, N = #I0, hence X̃ = X̃I0 and we arrive at the contradiction

rank X̃ = rank X̃I0 < min
{
n, rank X̃

}
≤ rank X̃.

Therefore, J0 6= ∅.
From the assumption w0 ∈ KerXT

I0
∩ Sn−1 and from the definitions of I0, J0 we observe that

µemp(w0, 0) = N−1 (#I0 + #J0). (23)

In order to show the existence of some suitable w1 let us consider the following optimization problem:

min
w

{
ϕ(w)

∣∣w ∈ KerXT
I0
∩ Sn−1, ϕ(w) ≥ 0

}
, ϕ(w) := min

j∈J0
〈w, xj〉. (24)

Observe that the feasible set of this problem is nonempty (it contains w0) and compact by continuity of
ϕ. Hence, once more by continuity of ϕ, the problem admits a solution w1. Select j1 ∈ J0 satisfying
〈w1, x

j1〉 = ϕ(w1) and put K := I0 ∪ {j1}.
Next, we prove thatϕ(w1) = 0. Assume to the contrary thatϕ(w1) > 0. Because xj1 /∈ span {xi}i∈I0
by w1 ∈ KerXT

I0
and 〈w1, x

j1〉 > 0, we observe that

rankXK = rankXI0 + 1. (25)

Assumption (20) and property (25) imply that

dim KerXT
K = n− rankXK = n− rankXI0 − 1 > 0,

whence KerXT
K ∩ Sn−1 6= ∅. Select some w̄ ∈ KerXT

K ∩ Sn−1 moreover satisfying 〈w1, w̄〉 ≥ 0
and define

w̄t := tw̄ + (1− t)w1 ∀t ∈ [0, 1] .

DOI 10.20347/WIAS.PREPRINT.2744 Berlin, August 4, 2020/rev. December 10, 2020



H. Heitsch, R. Henrion 10

Then, with ‖ · ‖ referring to the Euclidean norm, we derive that

‖w̄t‖ > 1− t > 0 ∀t ∈ (0, 1). (26)

In particular, recalling that w1 ∈ KerXT
I0
∩ Sn−1 is a solution of (24) and that

w̄ ∈ KerXT
K ∩ Sn−1 ⊆ KerXT

I0
∩ Sn−1,

we may define
w̃t := w̄t/ ‖w̄t‖ ∈ KerXT

I0
∩ Sn−1 ∀t ∈ (0, 1).

Now, since lim
t↓0
‖w̄t‖ = ‖w1‖ = 1, we infer that for all j ∈ J0,

lim
t↓0

〈
w̃t, x

j
〉

= lim
t↓0

(
t
〈
w̄, xj

〉
+ (1− t)

〈
w1, x

j
〉)
/ ‖w̄t‖ =

〈
w1, x

j
〉
≥ ϕ(w1) > 0.

Consequently, ϕ(w̃t) ≥ 0 for small enough t > 0 which entails that w̃t is feasible in problem (24)
forsmall enough t > 0. On the other hand, since w̄ ∈ KerXT

K , we may exploit the relation 〈w̄, xj1〉 =
0, in order to derive from (26) and ϕ(w1) > 0 that

ϕ(w̃t) ≤
〈
w̃t, x

j1
〉

=
(
t
〈
w̄, xj1

〉
+ (1− t)

〈
w1, x

j1
〉)
/ ‖w̄t‖

= (1− t)ϕ(w1)/ ‖w̄t‖ < ϕ(w1)

for all t ∈ (0, 1), whence the contradiction that for small enough t > 0 w̃t is feasible in problem
(24) and realizes a strictly smaller objective value than the solution w1. Hence, we have shown that
ϕ(w1) = 0.

From 〈w1, x
j1〉 = 0 it follows that w1 ∈ KerXT

K ∩ Sn−1. Put

I1 :=
{
i ∈ {1, . . . , N} | 〈w1, x

i〉 = 0
}

and obtain that
I0 ⊂ K ⊆ I1. (27)

Since KerXT
K ⊆ KerXT

I0
, the relation

〈w1, x
j〉 ≥ ϕ(w1) = 0 ∀j ∈ J0

implies together with equation (23) and assumption (19) that

µemp(w1, 0) ≥ N−1 (#I0 + #J0) = µemp(w0, 0) ≥ µemp(w1, 0).

Hence, µemp(w1, 0) = µemp(w0, 0). This, along with the definition of I1 shows the two relations
claimed in (21).

In order to verify (22), let finally I1 \ I0 = {k1, . . . , ks} and put K0 := I0, K` := I0 ∪ {k1, . . . , k`}
for ` = 1, . . . , s. Obviously,

rank X̃K`
− rank X̃K`−1

≥ rankXK`
− rankXK`−1

for all ` = 1, . . . , s, whence

rank X̃I1 − rank X̃I0 ≥ rankXI1 − rankXI0 =: z . (28)

By (25) and (27), we have that z ≥ 1. On the other hand, assumption (20) implies that

rank X̃I1 − rank X̃I0 ≤ rankXI1 + 1− rank X̃I0

= z + rankXI0 + 1− (rankXI0 + 1) = z . (29)

Estimations (28) and (29) show the relations claimed in (22) and we are done.
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We finish this section by a simple implication which will be needed several times in the proof of the
main result below and which uses the notation introduced in Lemma 4:

KerXT
I ∩ Sn−1 6= ∅ =⇒ dim KerXT

I ≥ 1

=⇒ rank X̃I ≤ rankXI + 1 ≤ n

=⇒ rank X̃I ≤ min{n, rank X̃}. (30)

3 Main Result

After the preparations of the previous section, we are in a position to derive a formula allowing for the
computation of the cap discrepancy ∆ of any sample on the sphere by enumeration of finitely many
easy to calculate local discrepancies ∆(w, t). The Theorem divides into a simpler part for the case
that the half space realizing the discrepancy does not contain the origin on its boundary (i.e., t∗ 6= 0
for the couple (w∗, t∗) in Proposition 1) and a technically more delicate part in case that the origin
does belong to that boundary (i.e., t∗ = 0).

Theorem 1. Let
{
x1, . . . , xN

}
⊆ Sn−1. For any I ⊆ {1, . . . , N} with I 6= ∅, let XI be the matrix

whose columns are xi (i ∈ I) and define X̃I :=
(
XI

−1T

)
as well as X̃ := X̃{1,...,N}. Consider the

following finite families of index sets:

Φ1 : =
{
I ⊆ {1, . . . , N}

∣∣∣ 1 ≤ rank X̃I = #I ≤ min
{
n, rank X̃

}
; γI < 1

}
,

Φ0 : =
{
I ⊆ {1, . . . , N}

∣∣∣ 1 ≤ rank X̃I = #I = min
{
n, rank X̃

}
; γI = 1

}
,

where γI := 1T
(
X̃T
I X̃I

)−1

1. For I ∈ Φ1 ∪ Φ0 put

tI :=

{ (
1−γI
γI

)1/2

I ∈ Φ1

0 I ∈ Φ0

, wI :=

{
1+tI

2

tI
XI

(
X̃T
I X̃I

)−1

1 I ∈ Φ1

∈ KerXT
I ∩ Sn−1 I ∈ Φ0

,

where the selection of wI in case of I ∈ Φ0 is arbitrary. Then, for the cap discrepancy it holds that
∆ = max {∆1,∆0}, where

∆1 :=

{
max
I∈Φ1

max {∆(wI , tI),∆(−wI ,−tI)} if Φ1 6= ∅
0 else

,

∆0 :=

{
max
I∈Φ0

max {∆(wI , 0),∆(−wI , 0)} if Φ0 6= ∅
0 else

.

Proof. Let (w∗, t∗) ∈ Sn−1 × [−1, 1] be such that (see Prop. 1)

∆ = ∆(w∗, t∗) = |µemp (w∗, t∗)− µcap (w∗, t∗)| .

Since, by Corollary 1
µemp (w∗, t∗) ≥ µcap (w∗, t∗) (31)

it follows that
∆ = µemp (w∗, t∗)− µcap (w∗, t∗) . (32)
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We define the (disjoint) index sets

I∗ := {i ∈ {1, . . . , N} |
〈
w∗, xi

〉
= t∗} , J∗ := {i ∈ {1, . . . , N} |

〈
w∗, xi

〉
> t∗}.

From Proposition 2, we infer that I∗ 6= ∅. Let

S :=

(w, t) ∈ Sn−1 × [−1, 1]

∣∣∣∣∣∣
〈w, xi〉 = t i ∈ I∗
〈w, xi〉 > t i ∈ J∗
〈w, xi〉 < t i ∈ {1, . . . , N} \(I∗ ∪ J∗)

 .

The definitions of ∆ and (w∗, t∗) imply along with (31) that

(w∗, t∗) ∈ arg max
(w,t)∈Sn−1×[−1,1]

µemp(w, t)− µcap(w, t). (33)

Since (w∗, t∗) ∈ S it follows that even

(w∗, t∗) ∈ arg max
(w,t)∈S

µemp(w, t)− µcap(w, t).

We observe that µemp(w, t) = N−1(#I∗ + #J∗) = const for all (w, t) ∈ S. Hence,

(w∗, t∗) ∈ arg min
(w,t)∈S

µcap(w, t) .

Because, µcap(w, t) depends on t only and is monotonically decreasing with t (see(2)), (w∗, t∗) is a
solution of the optimization problem

max
w,t

t
∣∣∣∣∣∣∣∣
〈w, xi〉 = t i ∈ I∗
〈w, xi〉 > t i ∈ J∗
〈w, xi〉 < t i ∈ {1, . . . , N} \ (I∗ ∪ J∗)
〈w,w〉 = 1

 .

Note, that the constraint t ∈ [−1, 1] is implicitly contained in the equality constraints above. Next,
choose a subset Ī∗ ⊆ I∗ such that

#Ī∗ = rank X̃Ī∗ = rank X̃I∗ (34)

(using the notation introduced in the statement of the Theorem). By Lemma 2, the optimization problem
above can be reformulated as

max
w,t

t
∣∣∣∣∣∣∣∣
〈w, xi〉 = t i ∈ Ī∗
〈w, xi〉 > t i ∈ J∗
〈w, xi〉 < t i ∈ {1, . . . , N} \ (I∗ ∪ J∗)
〈w,w〉 = 1

 . (35)

Since 〈w∗, xi〉 > t∗ for i ∈ J∗ and 〈w∗, xi〉 < t∗ for i ∈ {1, . . . , N} \ (I∗ ∪ J∗) and (w∗, t∗)
is a solution of the optimization problem (35), it follows that (w∗, t∗) must be a local solution of the
optimization problem

max
w,t

{
t
∣∣ 〈w, xi〉 = t

(
i ∈ Ī∗

)
; 〈w,w〉 = 1

}
. (36)

By (34), this problem satisfies the assumption of Lemma 3 withX∗ := XĪ∗ and k := #Ī∗. According
to that Lemma we have that 0 < γĪ∗ ≤ 1 with γI as introduced in the statement of this Theorem.
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In the case of γĪ∗ < 1 it follows from Lemma 3 (last statement), that t∗ 6= 0. Then, by feasibility of
(w∗, t∗) in (36), we have that

(t∗)−1X̃T
Ī∗w

∗ = 1 (= (1, . . . , 1) ∈ R#Ī∗).

Consequently, −1 ∈ rangeXT
Ī∗

, and thus,

rank X̃Ī∗ = rank

(
XĪ∗

−1T

)
= rank (XT

Ī∗ | −1) = rankXT
Ī∗ ≤ n.

Since also rank X̃Ī∗ ≤ rank X̃ , we have shown that Ī∗ ∈ Φ1. Therefore, with the definitions of
tI , wI in the statement of this Theorem, we infer from Lemma 3 that (w∗, t∗) ∈ {(wĪ∗ , tĪ∗) , (−wĪ∗ ,−tĪ∗)}.
Thus,

∆ = ∆(w∗, t∗) ≤ max {∆(wĪ∗ , tĪ∗),∆(−wĪ∗ ,−tĪ∗)} ≤ ∆1 (37)

with ∆1 as introduced in the statement of this Theorem.

The remaining part of this proof is devoted to the case γĪ∗ = 1. From Lemma 3 we observe that
t∗ = 0, and, rankXĪ∗ = #Ī∗ − 1. The second equality in (34) along with Ī∗ ⊆ I∗ yields that
rankXI∗ = rankXĪ∗ . Hence, the first equality in (34) provides the relation

rankXI∗ = rank X̃I∗ − 1. (38)

Moreover, by definition of I∗, one has that w∗ ∈ KerXT
I∗ ∩ Sn−1, so that

w∗ ∈ arg max
w∈KerXT

I∗∩S
n−1

µemp(w, 0)− µcap(w, 0) = arg max
w∈KerXT

I∗∩S
n−1

µemp(w, 0)− 1
2

(39)

as a consequence of (33). Therefore,

w∗ ∈ A := arg max
w∈KerXT

I∗∩S
n−1

µemp(w, 0). (40)

Since µemp(w∗, 0) ≥ 1
2
, it holds that

µemp(w, 0) ≥ 1
2
∀w ∈ A. (41)

By (30), w∗ ∈ KerXT
I∗ ∩ Sn−1 implies that rank X̃I∗ ≤ min

{
n, rank X̃

}
. We claim the existence

of some index set Î and of some vector ŵ such that

I∗ ⊆ Î ⊆ {1, . . . , N} , rank X̃Î = min
{
n, rank X̃

}
,

ŵ ∈ KerXT
Î
∩ Sn−1, µemp(ŵ, 0) = µemp(w∗, 0).

(42)

If rank X̃I∗ = min
{
n, rank X̃

}
, then we may choose Î := I∗ and ŵ := w∗ in (42). Otherwise,

rank X̃I∗ < min
{
n, rank X̃

}
and we make use of Lemma 4 starting with the data I0 := I∗ and

w0 := w∗. Observe that by virtue of (38) and (40), I0 and w0 satisfy the assumptions (19) and (20)
of that Lemma. Accordingly, we derive the existence of some index set I1 ⊇ I0 and w1 satisfying the
relations (21) and (22). In particular, KerXT

I1
⊆ KerXT

I0
, whence both relations in (21) yield that

w1 ∈ arg max
w∈KerXT

I1
∩Sn−1

µemp(w, 0).
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Moreover, we infer from (20) and (22) that rankXI1 = rank X̃I1−1 and from the first relation in (21)
and (30) that rank X̃I1 ≤ min

{
n, rank X̃

}
.

Now, if rank X̃I1 = min
{
n, rank X̃

}
, then we may choose Î := I1 and ŵ := w1 in (42) due to

(21) and w0 = w∗. Otherwise, rank X̃I1 < min
{
n, rank X̃

}
and so the assumptions (19) and (20)

of Lemma 4 are also satisfied for I1 and w1 instead of I0 and w0. This allows us to apply Lemma 4
again. In this way, a sequence of index sets Ik and of points wk (k = 1, 2, . . .) is obtained for which
I∗ = I0 ⊆ Ik and by (21) and (22)

wk ∈ KerXT
Ik
∩ Sn−1, µemp(wk, 0) = µemp(w0, 0), rank X̃Ik = rank X̃Ik−1

+ zk,

where zk ∈ N and zk ≥ 1. Since rank X̃Ik ≤ min
{
n, rank X̃

}
by (30), the last relation implies

that, after finitely many steps, we arrive at the situation rank X̃Ik = min
{
n, rank X̃

}
, so that we

may define Î := Ik and ŵ := wk in (42). This finishes the proof of (42).

Next, from (32) and (42) we know that

∆ = µemp(w∗, 0)− 1
2

= µemp(ŵ, 0)− 1
2
. (43)

This relation shows that (ŵ, 0) realizes the discrepancy ∆ as much as (w∗, 0). Therefore, we may
assume that (w∗, t∗) is (ŵ, 0) in the beginning of our proof until (36). In particular, analogously to the
index set I∗ introduced there, we define

I∗ := {i ∈ {1, . . . , N} | 〈ŵ, xi〉 = 0}

Following the previous arguments from (34) to (36), we may find an index set Ī∗ ⊆ I∗ such that

#Ī∗ = rank X̃Ī∗ = rank X̃I∗ . (44)

In particular,
ŵ ∈ KerXT

Ī∗
∩ Sn−1. (45)

Moreover, (ŵ, 0) is a local solution of the optimization problem

max
w,t

{
t
∣∣ 〈w, xi〉 = t

(
i ∈ Ī∗

)
; 〈w,w〉 = 1

}
. (46)

By (44), this problem satisfies the assumption of Lemma 3 with X∗ := XĪ∗ and k := #Ī∗. According
to that Lemma (last statement) we have that γĪ∗ = 1 with γI as introduced in the statement of this
Theorem. Applying (30) to ŵ ∈ KerXT

I∗ ∩ Sn−1, we observe that

rank X̃I∗ ≤ min
{
n, rank X̃

}
.

On the other hand, since Î ⊆ I∗ by (42) and by definition of I∗, the rank relation in (42) leads to

rank X̃I∗ ≥ rank X̃Î = min
{
n, rank X̃

}
,

whence, along with (44)
#Ī∗ = rank X̃Ī∗ = min

{
n, rank X̃

}
. (47)

Summarizing, we have shown that Ī∗ ∈ Φ0.

If in (47) rank X̃Ī∗ = rank X̃ , then there exist coefficients λij such that(
xi

−1

)
=
∑
j∈Ī∗

λij

(
xj

−1

)
∀i = 1, . . . , N.
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Therefore, we have for all i = 1, . . . , N and all w ∈ KerXT
Ī∗

that

〈xi, w〉 =

〈(
xi

−1

)
,

(
w

0

)〉
=
∑
j∈Ī∗

λij

〈(
xj

−1

)
,

(
w

0

)〉
=
∑
j∈Ī∗

λij 〈xj, w〉 = 0.

This amounts to saying that µemp(w, 0) = 1 for all these w and, so,

∆(w, 0) = |µemp(w, 0)− µcap(w, 0)| = 1/2 ∀w ∈ KerXT
Ī∗
∩ Sn−1.

We conclude from (45) and (43) that

∆ =
∣∣µemp(ŵ, 0)− 1

2

∣∣ = ∆(ŵ, 0) = 1/2 = ∆(w, 0) ∀w ∈ KerXT
Ī∗
∩ Sn−1.

Therefore, the value of ∆(wĪ∗ , 0) in the definition of ∆0 (see statement of this Theorem) does not
depend on the choice of wĪ∗ ∈ KerXT

Ī∗
∩ Sn−1. It follows from Ī∗ ∈ Φ0 that ∆ ≤ ∆0.

Otherwise, if in (47) rank X̃Ī∗ = n, then dim Ker X̃T
Ī∗

= 1 and so there exists some (w̃, t̃) ∈ Sn

with Ker X̃T
Ī∗

= span{(w̃, t̃)}. Let w ∈ KerXT
Ī∗
∩ Sn−1 be arbitrary. Then, (w, 0) ∈ Ker X̃T

Ī∗
and,

hence, there is some λ ∈ R with (w, 0) = λ(w̃, t̃). Clearly, λ 6= 0 byw ∈ Sn−1. It follows that t̃ = 0,
whence w̃ ∈ Sn−1 and |λ| = 1. Therefore, w = ±w̃. Thus, we have shown that w ∈ {w̃,−w̃} for
all w ∈ KerXT

Ī∗
∩ Sn−1. On the other hand, ŵ ∈ {w̃,−w̃} by (45). Therefore,

∆ =
∣∣µemp(ŵ, 0)− 1

2

∣∣ = ∆(ŵ, 0) ≤ max {∆(w̃, 0),∆(−w̃, 0)}
= max {∆(w, 0),∆(−w, 0)} ∀w ∈ KerXT

Ī∗
∩ Sn−1.

As in the previous case, the value of ∆(wĪ∗ , 0) in the definition of ∆0 does not depend on the choice
of wĪ∗ ∈ KerXT

Ī∗
∩ Sn−1. Again, Ī∗ ∈ Φ0 implies that ∆ ≤ ∆0.

Summarizing, our proof has shown by case distinction that necessarily ∆ ≤ ∆1 (see (37)) or ∆ ≤
∆0. Therefore, ∆ ≤ max{∆1,∆0}. On the other hand, each of the quantities ∆1,∆0 is either zero
or corresponds to a concrete value ∆(w, t) for some w ∈ Sn−1 and t ∈ [−1, 1]. Hence, in any case
max{∆1,∆0} ≤ ∆. This finishes the proof.

We want to conclude this section with some algorithmic remarks. The formula provided by the main
theorem is appropriate for easy implementation. To compute the cap discrepancy for a given point
set one has to consider all possible selections I ⊆ {1, . . . , N} with cardinality less than or equal to
min{n, rank X̃} and one has to check whether the selection is included in one of the two sets Φ1 or
Φ0. This check implies first a verification of rank X̃I , and secondly, if applicable, the computation of

γI = 1T
(
X̃T
I X̃I

)−1

1. For these selected I one has to compute the local discrepancy by the given

formulas. Finally, the discrepancy is found as the maximum of the considered local discrepancies. A
Matlab implementation of the enumeration formula for the spherical cap discrepancy provided by the
Theorem is accessible through the link:
https://www.wias-berlin.de/people/heitsch/capdiscrepancy

We observe that the cardinality of index sets to be checked in the proven formula is at most

min{n,rank X̃}∑
i=1

(
N

i

)
.

Whether calculating the spherical cap discrepancy is NP-hard (or W[1]-hard) is left open for future
work. Clearly, this aspect of complexity limits the application of the formula to low-dimensional spheres
and moderate sample sizes. Hence, it will not be suitable for verifying asymptotic aspects of sampling
schemes. On the other hand, it may be used to correctly calibrate the efficiency of sampling schemes
within a certain range of the sample size.
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4 Numerical Illustration

In this section we illustrate the application of the derived formula for the spherical cap discrepancy
to spheres S2 to S5 with sample sizes reaching from 2000 to 100 depending on dimension. Samples
were generated by normalizations of Monte Carlo simulated independent Gaussian distributions which
are approximations of the uniform distribution on the sphere. For the sake of comparison, we oppose
the results to the application of an easily computable lower estimate of the discrepancy as it was used,
e.g., in [1]: Given a sample {x1, . . . , xN}, we clearly have that

∆̃ := max
i=1,...,N

sup
t∈[−1,1]

∣∣µemp (xi, t)− µcap (xi, t)∣∣ ≤ ∆.
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Figure 3: Plot of discrepancy ∆ (thick line), of its lower estimate ∆̃ (thin line) and of the ratio ∆̃/∆
(dashed line) for different dimensions (n = 3, 4, 5, 6) and sample sizes.

Fig. 3 shows the numerical results. We observe the following trends:

� Both, ∆ and ∆̃ are decreasing with increasing sample size.

� The absolute difference between ∆ and ∆̃ decreases with the sample size.

� The absolute difference between ∆ and ∆̃ increases with the dimension of the sphere.

� The ratio between ∆̃ and ∆ is basically constant for variable sample size in each dimension of
the sphere (with different values of the constant).

� The constant itself is decreasing with the dimension of the sphere.
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In particular, it seems that the discrepancy can be replaced by its lower estimate without loss of
information in S2 starting from a sample size of approximately 500. For larger dimension or sample
size, it appears that at least the decay rate with respect to the sample size is well reflected by the
lower estimate (approximately constant ratio with the true discrepancy), while the deviation from the
true discrepancy becomes significant.

N 10 20 40 100 180 400 1000 2000
S2 0 0 0 3 30 499 15924 252313
S3 0 0 2 139 1911 77449 - -
S4 0 0 14 1932 48134 - - -
S5 0 1 92 32658 - - - -

Table 1: CPU time (in seconds) of the enumeration formula for selected instances.

All computations are performed on a standard computer with single CPU (3.2 GHz). Table 1 displays
the CPU time for selected instances of the tested range of N and n.

In order to illustrate even more directly the application of the proven formula, we provide a comparison
of 4 sampling schemes on S2 for small sample sizes (≤ 1000). The first two methods are based on
the already mentioned fact that the normalization to unit length of a standard Gaussian distribution
N (0m, Im) yields a uniform distribution on Sm−1. Therefore, we may simulate the Gaussian distribu-
tion via Monte Carlo (MC) or via Quasi-Monte Carlo (QMC). As an alternative, we follow the proposal
in [1], to use the equal-area Lambert transform from the unit square to S2, again for MC and QMC. For
QMC, we applied in both cases Sobol’ sequences as a special case of low-discrepancy sequences.

 0

 0.1

 0.2

 0.3

 200  400  600  800  1000

D
is

c
re

p
a
n
c
y

Sample size

MC-Normal
MC-Lambert

QMC-Normal
QMC-Lambert

-4

-3

-2

-1

 4  5  6

L
O

G
 (

D
is

c
re

p
a
n
c
y
)

LOG (Sample size)

MC-Normal
MC-Lambert

QMC-Normal
QMC-Lambert

Figure 4: Discrepancy as a function of sample size for 4 different sampling schemes in original form
(left) and Log-Log Plot (right). For details see text.

Figure 4 (left) shows the corresponding plots of the discrepancy as a function of the sample size (20
steps with an increment of sample size by 50 points at a time). Not surprisingly, the QMC-based sam-
ples clearly outperform their MC counterparts. Moreover, in both classes, the Lambert transformation
yields slightly better results than the normalization of Gaussians. The Log-Log plot (right) incorporates
two gray strips with slopes identical to -1/2 (upper strip) and -3/4 (lower strip) with empirically shifted
intercepts. It can be seen that the MC-based methods are closely tied with the expected decay rate of
-1/2, whereas the QMC counterparts get a slope slightly above the optimal rate of -3/4.
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