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Two-phase flows for sedimentation of suspensions
Dirk Peschka, Matthias Rosenau

Abstract

We present a two-phase flow model that arises from energetic-variational arguments and
study its implication for the sedimentation of buoyant particles in a viscous fluid inside a Hele-
Shaw cell and also compare corresponding simulation results to experiments. Based on a minimal
dissipation argument, we provide a simplified 1D model applicable to sedimentation and study its
properties and the numerical discretization. We also explore different aspects of its numerical
discretization in 2D. The focus is on different possible stabilization techniques and their impact
on the qualitative behavior of solutions. We use experimental data to verify some first qualitative
model predictions and discuss these experiments for different stages of batch sedimentation.

1 Introduction

Sedimentation and settling processes, i.e., flows where particles are transported in or separated from
a suspending liquid phase, are relevant for geological processes such as sediment transport in rivers,
lakes and oceans but also for technological applications such as water engineering and mineral pro-
cessing, for example. This requires a fundamental understanding of the sediment transport in bodies
of water [1] and of the dewatering processes [2]. A key concept for modeling settling processes is
hindered settling [3, 4], which accounts for the reduction of the settling flux due to particle interactions
as a function of the solid particle volume fraction 0 ≤ φs ≤ 1 and has become an essential ingredient
of most continuum models for suspension flows.

The seminal work of Kynch [5] introduced the mathematical study of sedimentation based on first-
order nonlinear hyperbolic conservation laws ∂tφs + ∂zf(φs) = 0 with φs(t, z) the solid volume
fraction φs : [0, T ]×R→ [0, 1] depending on time t and space z. This approach is widely used and
allows for a systematic inclusion of hindered settling into the particle fluxes f . For a historical account
of sedimentation research related to Kynch’s work we refer to the work by Bürger and Wendland [6].
Many works suggested improvements of the Kynch theory and mathematical methods for the improved
determination from the flux from experiments have been developed, see [7] for an introduction to flux
identification. While batch sedimentation experiments have been performed for over a century, a more
rigorous theoretical understanding has only been developed more recently (and still is) – for a review
of theoretical and experimental findings see [8]. For simulation approaches considering sedimentation
using discretely resolved particles we refer to [9, 10] and in particular [11] for the review on results
for the associated Rayleigh-Taylor instability. Simulation approaches based on two-phase flow models
with volume fractions (Euler-Euler models) are considered in [12–15].

In higher dimensions and for more complex flow geometries, in addition to hindered settling other
effects become relevant. Acrivos and Leighton [16, 17] introduced shear induced migration as a fun-
damental contribution to the particle flux that facilitates transport opposed to gradients of shear rates
and gradients of the viscosity caused by irreversible interparticle interactions. The impact of anisotropic
normal stresses in corresponding continuum mechanical models was discussed by Morris and Boulay
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[18]. Motivated by observations for dense granular flows [19] a similar universal behavior for pressure-
imposed suspension flows was found by Boyer [20]. It is argued that the universality is generated by
the viscoplastic behavior of dense suspensions near the jamming transition. The impact of shear in-
duced migration on suspension flows down inclines was investigated in [21]. There is a large set of
literature on homogenized models for the sedimentation of dilute suspensions, for recent advances we
refer to [22, 23] and references therein.

The outline for this manuscript is as follows. First, we introduce and discuss a two-phase flow model
which incorporates normal pressures necessary to have shear induced migration in a variational
framework [24, 25]. Specifically for sedimentation, we reduce the variational model to a 1D model
including the solid volume fraction and velocity field. We investigate the numerical discretization of this
model and study the qualitative behavior of its solutions. We generalize this model to higher dimen-
sions, where additionally we need to discuss different regularization techniques that are suggested by
the saddle-point structure of the corresponding suspension flow model [26]. These theoretical findings
are compared to sedimentation experiments in a non-Brownian suspension of spherical monodisperse
particles in a viscous Newtonian fluid. We distinguish different regimes in the settling process, where
predictions differ qualitatively and either more accurate material data or higher-dimensional models
are required.

2 Two-phase suspension model

Thermodynamic approaches are well-developed for multiphase flows, e.g. see [25, 27–29], and the
construction of corresponding frameworks is based on conservation laws and thermodynamic rela-
tions. Resulting systems of partial differential equations are thermo-mechanical-consistent models
that reflect certain properties of the microscopic models when taking continuum limits. While ther-
modynamic considerations are clearly relevant for colloidal suspensions, e.g. [30], similar energetic
variational structures should also be relevant for continuum models of noncolloidal suspensions and
granular media [31]. In the following we consider binary suspensions of liquid and solid particles with
respective volume fractions 0 ≤ φ`, φs ≤ 1 and φ` + φs = 1. In particular, when neglecting kinetic
energy and other sources of internal energy, the graviational free energy of an isothermal suspension
in a container Ω ⊂ Rd with x = (x, z) ∈ Ω and x ∈ Rd−1 and z ∈ R depending on φs(t,x) is

Egrav(φs) =

∫
Ω

(
%sφs + %`(1− φs)

)
gz dx dz, (1)

and the energy should not increase in time, i.e., d
dt
Egrav ≤ 0. Note that we write Egrav as a function

of φs alone, since the dependence on φ` can always be included by replacing φ` = 1 − φs. In this
expression g = 9.81 m s−2 is the gravitational acceleration and %s, %` are the constant mass densities
of solid and liquid, where we consider buoyant suspensions with heavier particles %s > %`.

While the densities are binary φs + φ` = 1, the evolution in time t ∈ [0, T ] and space x ∈ Ω ⊂ Rd

of both phases φs, φ` : [0, T ] × Ω → [0, 1] are goverened by a corresponding set of continuity
equations

∂tφs +∇ · (φsus) = 0, (2a)

∂tφ` +∇ · (φ`u`) = 0, (2b)

with the velocities us,u` : [0, T ] × Ω → Rd of solid and liquid phase. While the two velocities are
independent variables, they need to satisfy the additional constraint

∇ ·
(
φsus + φ`u`

)
= 0, (2c)
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so that the suspension remains binary. With gravitational energyEgrav generating the driving force, the
velocities obey the quasistatic momentum balances

−∇ · τs(us) +M(us − u`) = φs∇
(
p− fs

)
,

−∇ · τ`(u`)−M(us − u`) = φ`∇p,
(2d)

where fs = δEgrav

δφs
= (%s−%`)gz and p : QT → R is the Lagrange multiplier for the constraint (2c). For

this work we assume homogeneous Dirichlet boundary conditions for the velocities at (0, T ) × ∂Ω.
The stress tensors for solid and liquid stress τs and τ` are related to a possibly nonsmooth convex
dissipation potential R = Rs + R` + Rinteract via τs = ∂usRs(us;φs) and τ` = ∂u`

R`(u`;φs),
where for smooth potentials ∂u is to be understood as the usual first variation and for nonsmooth
convex potentials as the subdifferential with respect to u. Using the symmetric gradient e(ui) =
1
2
(∇ui +∇u>i ) we have

Ri(ui;φs) =

∫
Ω

Ri(e(ui);φs) dx dz, (2e)

Rinteract(us,u`;φs) =

∫
Ω

M(φs)|us − u`|2 dx dz, (2f)

with a viscosity function Ri : Rd×d
sym × R → R implying the necessary convexity for Ri and an

interphase friction M : R→ R with Ri,M ≥ 0 for i ∈ {s, `}.
For compressible flows one often finds quadratic dissipation potentials such as

R`(e, φ) = µ`(φ)[dev(e)]2 + λ`(φ)[trace(e)]2, (3)

where µ` denotes the shear viscosity and λ` is the volume viscosity and both are increasing functions
of the liquid concentration. The operator dev e = e − d−1(trace e)Id is the deviatoric part of e. For
the solid phase stress we allow also for nonsmooth convex potentials here, which in addition to terms
already present in the liquid viscosity could include terms of the form (e : e)1/2|trace(e)| or similar. The
term Rinteract generates an interaction between solid and fluid flow. With smooth quadratic potentials
we have

d

dt
Egrav(φs) = −R(us,u`;φs) ≤ 0. (4)

The analytical treatment of such models is difficult due to the loss of coercivity in the viscosity, since
Rs → 0 as φs → 0. It is an interesting question for which type of dissipation R and free energy E
one can guarantee what the densities stay nonnegative (or even positive) for nonnegative (or positive)
initial data. While we do not attempt to prove this property here, we generally observe that even for
moderately small time steps the numerical approximations of the volume fractions satisfy −C ≤
φs, φ` ≤ 1 + C with C ∼ 10−4.

3 Sedimentation model

Now we discuss the simplification of the two-phase flow model (2) to a model for sedimentation.
Therefore, let Ω = R×(0, L) and assume translational symmetry in in the first coordinate of (x, z) =
x ∈ Ω. Therefore, the constraint (2c) reduces to ∂z(φsus +φ`u`) = 0 and using the no-slip boundary
conditions it can be directly integrated in z and becomes φsus + φ`u` = 0. For a binary mixture with
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a maximal packing 0 < φcrit < 1 we have φs ≤ φcrit and thereby the liquid volume fraction is strictly
positive φ` ≥ (1− φcrit) > 0. Hence, we can divide by φ` and can replace the liquid velocity by

u`(t, z) = −φs

φ`
us(t, z), (5)

with φ` = 1 − φs. In one dimension, we assume a smooth quadratic dissipation of the form R` =
µ̂`(φs)(u

′
s)

2 and Rs = µ̂s(φs)(u
′
`)

2, where we use the abbreviations u′s = ∂zus and u′` = ∂zu`. For
the total dissipation using the expression (5) we obtain

R(us;φs) =

∫ L

0

[
µ̂`
(
(φs
φ`
us)
′)2

+ µ̂s

(
u′s
)2

+M
(
1 + φs

φ`

)2
u2
s

]
dz

=

∫ L

0

[
µ̂s +

(
φs
φ`

)2
µ̂`

]
(u′s)

2 +

[
µ̂`

(
( φs
φ`

)′
)2

+M
(
1 + φs

φ`

)2
]
u2

s dz

=

∫ L

0

µ̄(φs)(u
′
s)

2 + M̄(φs, φ
′
s)u

2
s dz,

with µ̄ = µ̂s +
(
φs
φ`

)2
µ̂` and M̄ = µ̂`

(
( φs
φ`

)′
)2

+ M
(
1 + φs

φ`

)2
. For φi → 0 one typically has

µ̂i = φi(ηi + o(1)) and M = m+ o(1) with constant ηi,m > 0. Hence we have the uniform lower
bound M̄ ≥ m but a linear degeneracy µ̄ = ηsφs → 0 as φs → 0.

The corresponding derivative of the gravitational energy is

d

dt
Egrav =

∫ L

0

zg(%s − %`)∂tφs dz = −
∫ L

0

zg(%s − %`)∂z(φsus) dz

=

∫ L

0

φsus∂z(zg(%s − %`)) dz = 〈DEgrav(φs), us〉.

Minimal dissipation gives the solution of the gradient system as the minimizer of

J(us;φs) =
1

2
R(us;φs) + 〈DEgrav(φs), us〉 (6)

with respect to admissible solid velocity fields us. The Euler-Lagrange equations associated to this
minimization problem are the following PDEs for the sedimentation problem

∂tφs + ∂z(φsus) = 0, (7a)

−∂z(µ̄∂zus) + M̄us = −φs∂zfs, (7b)

with fs = zg(%s − %`) and homogeneous Dirichlet boundary conditions us(0) = us(L) = 0 with
the coefficient functions µ̄, M̄ given above. In the dilute limit φs → 0 these coefficients simplify to
M̄ ∼ m + o(1) and µ̄ = φs(ηs + o(1)) where ηs = 5η`

2
according to Einstein [32]. Note that in this

model we completely eliminated any explicit dependence on φ` and u`. When the solid volume fraction
approaches the maximal packing φs → φcrit, then the solid viscosity approaches infinty µ̄ → ∞
following the Krieger-Dougherty model

µ̄ ∼ (1− φs/φcrit)
−p, (8)

with different values of the exponent p, see [33, 34]. In the following we discuss several strategies to
solve this 1D partial differential equation numerically in order to apply these concepts to the compress-
ible Stokes equations in higher spatial dimensions.
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4 Discretization of sedimentation model in 1D

4.1 Weak formulation

For given initial data φs(t = 0, x) = φ0(x) and with boundary conditions us(t, 0) = us(t, L) = 0 we
consider the system of hyperbolic-elliptic partial differential equations

∂tφs + ∂z(φsus) = 0, (9a)

−∂z(µ̄∂zus) + M̄us = −φs∂zfs, (9b)

fs = δE
δφs
, (9c)

for (t, z) ∈ (0, T ) × (0, L) using a given energy E(φs) = Egrav(φs). To simplify the later finite
element discretization we have introduced fs as an additional auxiliary pressure-like variable.

In order to derive a weak formulation, we multiply (9) with appropriate test functionswu, wf , wφ and in
certain places integrate by parts. In the resulting weak formulation of (9) we seek a triple of functions
(u, φ, f) ∈ U × V × V = X such that∫ L

0

(
µ̄∂zus∂zwu + M̄uswu

)
+ φswu∂zfs dz = 0, (10a)∫ L

0

∂tφswf − φsus∂zwf dz = 0, (10b)∫ L

0

fswφ dz = 〈DφsE,wφ〉, (10c)

for all (wu, wf , wφ) ∈ X .1 Based on these spaces, let us define the following bilinear forms

a(u, v;φs) =

∫ L

0

µ̄(φs)∂zu∂zv + M̄(φs)uv dz, (11a)

b(u, q;φs) = −
∫ L

0

φsu∂zq dz, (11b)

together with (q, p) =
∫ L

0
qp dz in V . Then this generates the following sligtly more compact weak

formulation: Seek ξ = (us, fs, ∂tφs) ∈ X such that

a(us, wu)− b(wu, fs) + b(us, wf ) + (∂tφs, wf ) + (fs, wφ) = 〈DE,wφ〉, (12)

where will omit the parametric dependence of a, b on φs for clarity. If, for given φs, we define the
associated operators A : U → U∗, B : U → V ∗, M : V → V ∗ as a(u, v) = 〈Au, v〉U ,
b(u, f) = 〈Bu, f〉V , and (q, p) = 〈Mq, p〉V , then we can write this system also in the typical form
of a nested saddle point problem

L(φs)ξ =

A −B> 0
B 0 M
0 M 0

 us
fs
∂tφs

 =

 0
0

DφsE

 in X∗. (13)

The weak formulation in the standard form (10) using bilinear forms (12) and using operators in (13)
are formally equivalent.

1U denotes the Hilbert space for the velocities and V for the density and the pressure. If µ̄ and M̄ was bounded away
from zero and infinity, then one would expect U = H1(Ω,Rd) and V = L2(Ω). However, since we are specifically
interested in this degeneracy of µ̄ and M̄ we are only going to specify their discrete subspaces Uh and Vh. For a more
detailed analysis of this model and the underlying function spaces we refer to [26] and references therein.
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4.2 Time-discretization, regularization and stabilization

First of all, note that the operators A,B,DφsE in (13) generally depend on φs and thus the cor-
responding PDE system is nonlinear. Instead, when constructing a time-discretization we use finite
differences to replace ∂tφs = τ−1(φn+1

s − φns ) and can use an explicit dependence A = A(φns ),
B = B(φns ), DφsE(φns ), so that the resulting discretized equation is linear. The discretization in space
is done using finite elements by choosing approriate subspaces Uh ⊂ U and Vh ⊂ V . Alternatively
one can also assume an implicit dependence of L on φn+1

s and solve the resulting discrete system
Lξ = (0, 0,DE)> using a Newton iteration.

Upon close inspection of (13) note that the saddle point structure of the linearized system might require
a Ladyzhenskaya-Babuška-Brezzi condition in order to ensure its well-posedness. This would need to
be proven and the discretization would also have to use corresponding inf-sup stable finite element
pairs Uh, Vh to construct Xh = Uh × Vh × Vh2. Alternatively, for the incompressible Navier-Stokes
equation a similar mixed problem can also be stabilized by making the material slightly compressible.
Similarly, here we introduce a stabilized operator Lstab of the form

Lstab(φs) =

A B> 0
B 0 M + τεφK

φ

0 M 0

 (14)

where Kφ is an elliptic operator, which generates some extra regularity for φs. The time-discretization
using Lstab reads

Lstab(φs)

 us

fs
φn+1

s

 =

 0
Mφns
DφsE

 . (15)

In the following we discuss further possible ways to stabilize the linearized operatorL and to regularize
the problem. By choosing E(φs) = Egrav(φs) + Ereg(φs) we can insert a regularization term into the
equation. For the moment we consider

Ereg(φs) =

∫ L

0

ε1p
−1|∂zφs|p + ε2|φ|2 dz, (16)

which gives rise to fs = (%s − %`)gz − ε1∂z(|∂zφs|p−2∂zφs) + ε2φs. Terms of this type are very
typical in hydrodynamic models of mixtures and give rise to Korteweg stresses. We are interested
in the structure of the discrete equation and the limiting behavior of solutions as εφ, ε1, ε2 → 0.
Note that due to a semi-implicit treatment of the gradient terms, other stabilizing terms will eventually
appear in Lstab. For the discrete spaces Uh and Vh we are using vectorial and scalar P1 finite element
discretizations, respectively. The importance of inf-sup conditions in compressible flows is discussed,
for example, in [35] and similar viscous regularization approaches in the continuity equation of the
compressible Stokes flows have been discussed already some time ago [36].

In the following we will investigate to extend these ideas to compressible flows for sedimentation
and partially combine those ideas with the underlying energetic-variational structure to discretize the
generalized Stokes problem using a Galerkin method.

2Note: For the moment we assume the space for wf and wφ to be the same. Using a mixed finite element formulation
with different discrete spaces is possible in a straightforward manner.
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5 Sedimentation experiments

In order to calibrate and validate the model, we perform sedimentation experiments in a Hele-Shaw cell
of dimensions Lwidth = 460 mm, Lheight = 310 mm and Ldepth = 3 mm, see Figure 1. For the sus-
pending liquid we use a silicon oil (PDMS, polydimethyl-siloxanes Korasilon fluid M1.000 by Kurt Ober-
meier GmbH, Germany) with a viscosity of µ` = 100 Pa s and a mass density of %` = 998 kg m−3.
Molecular weight and siloxane chain length of this polymer is 26.500 and 358, respectively. As the
suspended solid we use quartz glass beads (microspheres) with a radius of R = 300 − 400µm so
that R/Ldepth ∼ 10−1. The particle mass density is %s = 2500 kg m−3. The experiment is prepared
by letting particles settle so that they form a dense layer of φs ≈ φcrit of uniform height. Then, the Hele-
Shaw cell is turned quasi-instantaneously (within < 1 s), so that particles start to sediment towards
the bottom of the cell. We record optical images of one side of the cell at a resolution of 13 px/mm
and at a frequency of 1 Hz using a digital 12-bit monochrome CCD camera with 29 megapixels (LaV-
ision Imager X-Lite 29M). To minimize reflections we use a set of polarizers. Based on the images
we perform particle image velocimetry (PIV) in order to reconstruct the particle velocity field us from
differences of consecutive images. We use the commercial PIV software Davis 10 (LaVision GmbH,
Germany) employing a FFT-based digital image correlation technique. The resulting velocity field has
a high spatial resolution (3.75 mm spacing between vectors), precision and accuracy (micrometer per
second).

Figure 1: Hele-Shaw cell setup for sedimentation.

In Figure 3 snapshots of the experiments with reconstructed velocity vectors overlayed are shown at
times t = {1, 2, 3, 4, 5, 6, 7, 8} × 103 s. In the first stages of the experiment 0 < t < 103 s we
observe the development of a characteristic Rayleigh-Taylor-like short-wavelength instability inducing
a convective flow. While the particle Reynolds number is small Re ∼ 10−3, we observe a spatially
nonuniform/unstratified flow and particle density. In the absence of any higher-order stabilizing effects,
i.e., forces due to gradients of the density or surface tension, this instability is only resolved at the
length-scale of the experimental setup, i.e., by particle radii and Hele-Shaw cell depth, and the effective
dispersion viscosity. This granular Rayleigh-Taylor instability is well known and we refer to [11, 37,
38] and references therein for an overview of its relevance, modeling, and numerical treatment with
discrete particle models. In these early stages the flow is not one-dimensional but has certain intrinsic
higher-dimensional features. Furthermore, due to the small extension Ldepth of the geometry in the
y-direction, the flow field should have a distinct dependence on y. However, we assume that one can

DOI 10.20347/WIAS.PREPRINT.2743 Berlin 2020



D. Peschka, M. Rosenau 8

derive an effectively two-dimensional model, where the finite-size of the Hele-Shaw cell is encoded in
an effective dissipationR = Rs +R` +Rinteract +RHele-Shaw depending on us and u` with

RHele-Shaw =

∫
Ω

Ms(φs)|us|2 +M`(φs)|u`|2 dx dz,

where for a clear fluid we have the standard gap-avergaged M`(0) = 12µL−2
depth. Such a model

should certainly containR` with a singular viscosity µ` to prevent φ` from exceeding φcrit. The values
of M`,Ms are certainly finite, since the particle matrix still has a finite permeability k and thereby
results in a flow rate given by Darcy’s law. In this limit, our model becomes a system of Brinkman
equations, which are commonly used to describe flow through a porous medium for a certain range of
volume fractions, e.g. see [39].

At later times t > 103 s, the flow is almost unidirectional and mainly points in the z-direction. At
this point in time, the volume fraction φs is decreasing in increasing z-direction, which renders the
flow stable with respect to the Rayleigh-Taylor instability. In this stratified flow we observe three main
regions of the concentration: a growing compact sediment layer at the bottom 0 < z < s(t), where
φs ≈ φcrit with us = u` ≈ 0, a layer where particles are actively sedimenting s(t) < z < h(t) where
0 < φs < φcrit and u` > 0 and us < 0, and a top layer of clear fluid φs ≈ 0 for h(t) < z < h∞.
While s(t) is an increasing function of time, h(t) decreases in time until the stationary solution s ≈ h
is reached. In Figure 2 the x-averaged intensities of Figure 3 are shown and clearly indicate the
progression of the settling process in time and the development of different spatial regions with high
and low densities. In Figure 2 the function s(t) is indicated using the red arrow, and the function h(t)
is indicated using the green arrow. Both curves s(t) and h(t) come together in the stationary state at
time t ≈ 8000 s, as indicated using the cyan arrow.

Figure 2: Average of intensity distribution in x-direction, which is proportional to density φs of the snapshots.

The slopes of these curves s′(t) and h′(t) correspond to shock speeds in the Kynch theory, related to
the sedimentation flux by a Rankine-Hugoniot condition. Thereby, in general, experimental results as
shown in Figure 2 can be used to construct the fluxes as discussed in [7]. In the following we discuss
several numerical solutions obtained using the discretization in (14) and discuss different regularization
approaches.
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Two-phase flows for sedimentation of suspensions 9

Figure 3: Sedimentation experiment in a Hele-Shaw cell starting at t = 0 from a compact φs ≈ φcrit layer at z ≥ 250 mm
presented at times t = {1, 2, 3, 4, 5, 6, 7, 8}× 103 s increasing times from left to right and top to bottom, where the color
intensity indicates the density from black (low) to white (high) and the red vectors shows the velocity field reconstructed
using particle image velocimetry (PIV).

DOI 10.20347/WIAS.PREPRINT.2743 Berlin 2020



D. Peschka, M. Rosenau 10

6 Numerical experiments in 1D

For the numerical experiments using the sedimentation we let L = 4 and are using the materials laws

M̄(φ) =
(

1 + φ
(1−φ)

)2

, µ̄(φ) = ε+ µ|φ|
(

1 + ν
(1−φ)2

)
, (17)

in analogy to the Krieger-Dougherty law and the expression for M̄ from the model reduction. When
used in d = 1, the energy stabilization Ereg in (16) will have p = 2. For this set of simulations we
never change the value of ε = 10−4 but discuss the effect of the other regularizations. We consider
two types of initial conditions φs(t = 0, z) = φ0

s (z) with

φ0
s (z) = φ0 +

1− 2φ0

2
[1 + tanh(100(z − z0))] , (18a)

which for φ0 � 1 features a clear layer with φs ≈ φ0 for 0 < z < z0 and a dense layer with
φs ≈ 1− φ0 for z0 < z < L. Alternatively we use

φ0
s (z) = 1

2
, (18b)

to start from a uniform/stratified well-mixed layer. We will investigate the impact of different values of
µ, ν, εφ, ε1, ε2 on the numerical solution φs(t, z).

6.1 Densely packed initial data

Firstly, we discuss the sedimentation according to densely packed initial data as in (18a), where use
φ0 = 10−3 and z0 = 16

15
. For large viscosity or φ0 → 0 the sedimentation is rather slow because

the particles need to be resuspended before they settle. This dependence of the time-scale on vis-
cosity is shown in Figure 4, where with larger values of the viscosity coefficients ν the time-scale of
sedimentation can be drastically increased. Note that increasing the viscosity ν also appears to have
a regularizing effect, as can be seen in the increasing smoothness of the density profiles in Figure 4
going from panel (a) to (c).

Figure 4: Sedimentation as a function of time with different ν. The parameters are ε1 = ε2 = 0, εφ = 2 · 10−5,
φ0 = 10−3, µ = 1/5 and (a) ν = 0.1 (b) ν = 1 and (c) ν = 10.

Similarly, in Figure 5 we can also observe that the value of the regularization εφ in (14) has a strong
influence on the time-scale for sedimentation. Stronger regularizations, i.e., larger values of εφ, en-
hance the resuspension and thereby accelerate the sedimentation process. Furthermore, as expected,
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larger regularization parameters also lead to smoother concentration profiles in panel (a) compared
to panel (c). While such a dependence on εφ is generally unwanted, this can be clearly related to the
small value of φ0 and corresponding zones of high concentration φs ≈ 1. Due to the high viscosity
in these regions of high concentration, the time scale for the resuspension crucially depends on the
regularization enhancing the resuspension.

Figure 5: Sedimentation as a function of time with different εφ. The parameters are ε1 = ε2 = 0, φ0 = 10−3, µ = 1/5,
ν = 0.02 with (a) εφ = 10−2 (b) εφ = 10−3 and (c) εφ = 10−4.

In Figure 6 on can observe that the impact of different regularization parameters εφ is much less pro-
nounced compared to the influence it shows in Figure 5. This clearly suggests that for sedimentation
we can expect a certain level of dependence on the regularization parameter due to the fact that the
regularization can enhance the resuspension of particles. Clearly, a very precise understanding of ma-
terial laws and possible regularization mechanisms is necessary to be able to achieve any quantitative
agreement with experimental measurements for densely packed initial data.

Figure 6: Sedimentation as a function of time with different εφ. The parameters are ε1 = ε2 = 0, φ0 = 0.05, µ = 1/5,
ν = 0.02 with (a) εφ = 10−2 (b) εφ = 10−3 (c) εφ = 10−4 (d) εφ = 10−5.

6.2 Uniform initial data

Secondly, we discuss the sedimentation with uniform initial data as in (18b). With this stratefied initial
data the granular Rayleigh-Taylor type instability is not present. This might even in one dimension imply
stability for smaller regularization parameters. In Figure 7 one can see that all regularization schemes
yield consistent results and only result in somewhat smoothened density profiles for (c) and (d) and
a slight capillary overshoot in (d). The simulation without any regularization show slight instabilities
where φs ≈ 0 visible in oscillations in the dark/gray areas for time 15 < t < 30 and 2 < z < 3.
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Figure 7: Sedimentation as a function of time with different regularizations. We use µ = 1/5, ν = 1 and (a) no regular-
ization (b) εφ = 10−4 (c) ε2 = 5 · 10−5 and (d) ε1 = 10−6.

Figure 8 shows the effect of using different viscosities without any other sources of regularization. One
can see that, as expected, µ has a direct impact on the settling time but also affects the smoothness of
the solution profiles φs, leaving the interpretation that the viscosity regularizes the hyperbolic evolution
of the density, that would dominate the evolution with µ = 0. A similar behavior can be observed
when the parameter ν is changed for the solutions shown in Figure 9, which appears to also influence
the final compactification of the sediment layer. Obviously, larger values the viscosity also lead to
longer sedimentation times. In the limit of small regularization and small viscosity, the sedimentation is
basically dominated by the interphase friction encoded in M̄ . Experimentally, one expects clear shock
fronts in the z − t density plots, which is quite similar to the experimental results shown in Figure 2.
In such a situation the entire theory of hindered settling is encoded in M̄ = M̄(φs), which one would
need to determine from the experimental data.

Figure 8: Sedimentation as a function of time with different viscosities µ. We use no regulariazion and ν = 1 but (a) µ = 2
(b) µ = 0.2 (c) µ = 0.02.

Figure 9: Sedimentation as a function of time with different viscosities ν. We use a regulariazion ε1 = 10−7, µ = 0.02
and (a) ν = 10−2 (b) ν = 10−1 (c) ν = 1 (d) ν = 10 .
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6.3 Discussion of 1D results

Using a standard finite element discretization of the 1D sedimentation problem including diffusive and
energetic regularization approaches, we numerically solve the sedimentation problem and obtain a
good qualitative agreement when comparing the experimental results in Figure 2 with the equivalent
theoretical predictions of this section, e.g. Figures 4,5,6 and Figures 7,8,9. While the discretization
is free of oscillations indicative for the stability of the discretizations for positive densities and in the
stratified regime, i.e. the density is nonincreasing with increasing z coordinate, the handling of the
unstratified regime and of densities close to zero require the use of either diffusive or energetic regu-
larizations using the parameters ε1, ε2, εφ. While the experimental images in Figure 3 clearly show an
initially fully developed two-dimensional flow and a granular Rayleigh-Taylor instability for t < 3000 s,
the late stages t > 3000 s of the settling process feature a unidirectional/stratified 1D flow where
the settling model should be applicable. The general sharpness of the shocks visible in the averaged
experimental profiles in Figure 2 indicate a flow, where regularization due to viscosity or gradient
terms are negligible and M̄ is the main dissipation mechanism controlling the dynamics. In [11] it is
shown that viscosity is regularizing the Rayleigh-Taylor instability. Using similar methods as in [7], in
this regime the PIV and intensity data should be used to identify the hindered settling function for a
Hele-Shaw geometry, which is encoded in the function M̄(φs).

7 Numerical experiments in 2D

The settling model of the previous section can be easily extended to a two-dimensional model, where
it represents an energetic variational formulation of a compressible Stokes problem, which reads

∂tφs +∇ · (φsus)− εφ∆φs = 0, (19a)

−∇ · σ(us) + M̃us = −φs∇fs, (19b)

fs = δE
δφs
, (19c)

with a diffusive regularization εφ, where the stress tensor σ for the compressible Stokes equation is of
the form

σ(us) = 2µ̃(φs)e(us) + λ̃(φs)(∇ · us)I, (19d)

with density-dependent Lamé coefficient functions µ, λ > 0. For the driving energy including an
energetic regularization ε1, ε2 we use

E(φs) =

∫
Ω

(
ε1p
−1|∇φs|p + (%s − %`)gφsz

)
dx dz, (19e)

Note, this model is not an appropriate model for settling, since it does not satisfy the assumptions
that lead to the derivation of the corresponding one-dimensional model. Nevertheless, we can use
this model as a benchmark to discuss the impact of the different regularization approaches that we
introduced before. The model (19) is discretized as before using finite elements with the two bilinear
forms

a(u,v;φs) =

∫
Ω

2µ̃(φs)e(u) : e(v) + λ̃(φs)(∇ · u)(∇ · v) + M̃(φs)u · v dx dz, (20)

b(u, q;φs) = −
∫

Ω

φsu · ∇q dx dz, (21)
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which incorporates the fluid stress tensor σ by a(u,v;φs) =
∫

Ω
σ(u) : ∇v + M̃u · v dx dz. All

other terms in the mixed weak formulation are entirely analogous to the previous weak formulation in
(12). Furthermore, we mentioned ealier that in principle the mixed formulation would have to satisfy
an inf-sup condition, whereas we use stabilization terms to enforce the well-posedness of the discrete
problem. In two spatial dimensions we use the p-Laplace with p = 3 and solve the resulting nonlin-
ear space-time discrete problem using Newton’s method. For the Lamé parameter functions µ̃, λ̃ we
choose

µ̃(φ) = ε+ µ|φ|
(

1 + ν
(1−φ)2

)
, (22a)

λ̃(φ) = ε+ λ|φ|
(

1 + ν
(1−φ)2

)
, (22b)

and use ε = 10−3 throughout all simulations. We are going to study the evolution of the compressible
Stokes flow with φs(t = 0, x, z) = φ0

s (z − 1
40

cos(4πx)), φ0 = 0.1, z0 = 2/3 with the dense
and stratified initial data from (18) on the domain Ω = (0, 1)2. The sedimentation from dense initial
data for energetic and viscous regularization is shown in Figure 10 and 11 respectively. Both simu-
lations give consistent results but show slightly different amount of smoothing applied to the density
profiles. Even with a timestep size of τ = 10−1, the final states of the simulation only violate these
bounds 0 ≤ φs ≤ 1 slightly with −δ ≤ φs ≤ 1 + δ with δ = 10−2. The dependence of these
bounds on time-discretization and regularization needs to be studied separately in the future. This
is an interesting property of the discretization itself and should be studied theoretically, independent
from the sedimentation. While the sedimentation shown in Figure 10 and 11 strongly depends on
x, the short-wavelength pattern of the granular Rayleigh-Taylor instability is absent here, since this
should be studied using the full two-phase model including the incompressibility constraint. It is dis-
cussed in the literature [40] that the Rayleigh-Taylor instability might be suppressed (or enhanced) for
compressible Stokes flow.

Figure 10: Solution of the compressible Stokes problem (19) with dense initial data (18a) at different times in increasing
order (a,b,c,d,e,f,g,h,i). The shading indicates the density (white φs ∼ 1 and black φs ∼ 0) and red arrows indicate the
flow field us. We used µ = λ = 0.2, ν = 0.5, M̃ = 2 and ε1 = 10−4, εφ = 0.
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Figure 11: Solution of the compressible Stokes problem (19) with dense initial data (18a) at different times in increasing
order (a,b,c,d,e,f,g,h,i). The shading indicates the density (white φs ∼ 1 and black φs ∼ 0) and red arrows indicate the
flow field us. We used µ = λ = 0.2, ν = 0.5, M̃ = 2 and εφ = 10−4, ε1 = 0.

Figure 12: Solution of the compressible Stokes problem (19) with uniform initial data (18b) at different times in increasing
order (a,b,c,d,e,f,g,h,i). The shading indicates the density (white φs ∼ 1 and black φs ∼ 0) and red arrows indicate the
flow field us. We used µ = λ = 0.2, ν = 0.5, M̃ = 2 and ε1 = 10−4, εφ = 0.
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Figure 13: Solution of the compressible Stokes problem (19) with uniform initial data (18b) at different times in increasing
order (a,b,c,d,e,f,g,h,i). The shading indicates the density (white φs ∼ 1 and black φs ∼ 0) and red arrows indicate the
flow field us. We used µ = λ = 0.2, ν = 0.5, M̃ = 2 and εφ = 10−4, ε1 = 0.

In Figure 12 and 12 we study the sedimentation from uniform initial data for the energetic and viscous
regularization. Again, both solutions agree independent from the particular choosen regularization.
What needs to be studied separately are the impliciations of the momentum balance in (19) in those
zones, where φs ≈ 0 and the velocity is determined by a Darcy-type force balance M̃(φs)us =
−φs∇fs. Here, the specific dependence of M̃(φs) as φs → 0 is certainly important. Similar to the
experiments, when we use stratified initial data, then the solution also remains stratified with a minor
x-dependence of the density due to the no-slip boundary conditions at the sidewalls x = 0 and x = 1.

8 Summary and conclusion

Using a variational formulation of two-phase flows for binary mixtures, we derive an effectively 1D
model that describes the settling of particles. We discussed the time- and space-discretization of
this model and we discuss the regularization and stabilization of the continuous and discrete model.
The experimental results show the existence of the well-known short-wavelength granular Rayleigh-
Taylor instability. We solve the corresponding compressible Stokes model using a viscous and an
energetic regularization, where the latter generates higher-order Korteweg stresses in the momentum
equation. We solve the sedimentation problem using various regularization parameters and compare
the dynamics of particle densities (from experimentally averaged image intensities) with the theoretical
predictions. For stratified flows, the results agree qualitatively well and are mostly independent of the
choice of regularization, whereas the resuspension of dense suspensions can be greatly enhanced
using a regularization so that it strongly affects the observed dynamics. We also study, to which extent
viscosity has a regularizing character.

This study should help to understand the impact of regularization parameters for two-phase flows.
Since the two-phase flow models used in practice to model suspensions are often prone to certain
ill-posedness. In particular, a better understanding of physically-motivated regularization approaches
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will be important in order to obtain qualitative and quantitative comparisons with experiments in future
studies. Despite the fact that the Hele-Shaw geometry has a major impact on the settling dynamics,
we think this is a good experimental setup to validate material laws µ̄ and M̄ based on particle image
velocimetry data.

References

[1] H.A. Einstein. The bed-load function for sediment transportation in open channel flows. Number
1026. US Government Printing Office, 1950.

[2] K.A. Landman, L.R. White, and M. Eberl. Pressure filtration of flocculated suspensions. AIChE
Journal, 41(7):1687–1700, 1995.

[3] J.F. Richardson and W.N. Zaki. The sedimentation of a suspension of uniform spheres under
conditions of viscous flow. Chemical Engineering Science, 3(2):65–73, 1954.

[4] R.H. Davis and A. Acrivos. Sedimentation of noncolloidal particles at low Reynolds numbers.
Annual Review of Fluid Mechanics, 17(1):91–118, 1985.

[5] G.J. Kynch. A theory of sedimentation. Transactions of the Faraday society, 48:166–176, 1952.

[6] R. Bürger and W.L. Wendland. Sedimentation and suspension flows: Historical perspective and
some recent developments. Journal of Engineering Mathematics, 41(2-3):101–116, 2001.

[7] R. Bürger, J. Careaga, and S. Diehl. A review of flux identification methods for models of sedi-
mentation. Water Science and Technology, 03 2020.

[8] R. Bürger, F. Concha, and F.M. Tiller. Applications of the phenomenological theory to several
published experimental cases of sedimentation processes. Chemical Engineering Journal, 80(1-
3):105–117, 2000.

[9] D. Wan and S. Turek. An efficient multigrid-fem method for the simulation of solid–liquid two
phase flows. Journal of Computational and Applied Mathematics, 203(2):561–580, 2007.

[10] R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph, and J. Périaux. A distributed lagrange mul-
tiplier/fictitious domain method for flows around moving rigid bodies: application to particulate
flow. International Journal for Numerical Methods in Fluids, 30(8):1043–1066, 1999.

[11] T.-W. Pan, D.D. Joseph, and R. Glowinski. Modelling Rayleigh–Taylor instability of a sedimenting
suspension of several thousand circular particles in a direct numerical simulation. Journal of Fluid
Mechanics, 434:23–37, 2001.

[12] P.R. Nott and J.F. Brady. Pressure-driven flow of suspensions: simulation and theory. Journal of
Fluid Mechanics, 275:157–199, 1994.

[13] K. Gustavsson and J. Oppelstrup. Consolidation of concentrated suspensions–numerical sim-
ulations using a two-phase fluid model. Computing and Visualization in Science, 3(1-2):39–45,
2000.

[14] R. Rao, L. Mondy, A. Sun, and S. Altobelli. A numerical and experimental study of batch sed-
imentation and viscous resuspension. International Journal for Numerical Methods in Fluids,
39(6):465–483, 2002.

DOI 10.20347/WIAS.PREPRINT.2743 Berlin 2020



D. Peschka, M. Rosenau 18

[15] Y.-J. Chou, F.-C. Wu, and W.-R. Shih. Toward numerical modeling of fine particle suspension
using a two-way coupled Euler–Euler model: Part 2: Simulation of particle-induced Rayleigh–
Taylor instability. International Journal of Multiphase Flow, 64:44–54, 2014.

[16] D. Leighton and A. Acrivos. The shear-induced migration of particles in concentrated suspen-
sions. Journal of Fluid Mechanics, 181:415–439, 1987.

[17] D. Leighton and A. Acrivos. Measurement of shear-induced self-diffusion in concentrated sus-
pensions of spheres. Journal of Fluid Mechanics, 177:109–131, 1987.

[18] J. F Morris and F. Boulay. Curvilinear flows of noncolloidal suspensions: The role of normal
stresses. Journal of rheology, 43(5):1213–1237, 1999.

[19] P. Jop, Y. Forterre, and O. Pouliquen. A constitutive law for dense granular flows. Nature,
441(7094):727–730, 2006.

[20] F. Boyer, E. Guazzelli, and O. Pouliquen. Unifying suspension and granular rheology. Physical
Review Letters, 107(18):188301, 2011.

[21] N. Murisic, B. Pausader, D. Peschka, and A.L. Bertozzi. Dynamics of particle settling and resus-
pension in viscous liquid films. Journal of Fluid Mechanics, 717:203–231, 2013.

[22] R.M. Höfer and J.J.L. Velázquez. The method of reflections, homogenization and screening
for Poisson and Stokes equations in perforated domains. Archive for Rational Mechanics and
Analysis, 227(3):1165–1221, 2018.

[23] B. Niethammer and R. Schubert. A local version of Einstein’s formula for the effective viscosity
of suspensions. SIAM Journal on Mathematical Analysis, 52(3):2561–2591, 2020.

[24] T. Ahnert, A. Münch, and B. Wagner. Models for the two-phase flow of concentrated suspensions.
European Journal of Applied Mathematics, 30(3), 2018.

[25] D. Peschka, M. Thomas, T. Ahnert, A. Münch, and B. Wagner. Gradient structures for flows
of concentrated suspensions. In Topics in Applied Analysis and Optimisation, pages 295–318.
Springer, 2019.

[26] M.H. Farshbaf-Shaker and M. Thomas. Analysis of a compressible Stokes-flow with degenerating
and singular viscosity. WIAS Preprint, 2020.

[27] D.A. Drew and S.L. Passman. Theory of multicomponent fluids, volume 135. Springer Science &
Business Media, 2006.

[28] M. Ishii and T. Hibiki. Thermo-fluid dynamics of two-phase flow. Springer Science & Business
Media, 2010.

[29] H. Abels, H. Garcke, and G. Grün. Thermodynamically consistent, frame indifferent diffuse in-
terface models for incompressible two-phase flows with different densities. Mathematical Models
and Methods in Applied Sciences, 22(03):1150013, 2012.

[30] S.S.L. Peppin, J.A.W. Elliott, and M.G. Worster. Pressure and relative motion in colloidal suspen-
sions. Physics of Fluids, 17(5):053301, 2005.

[31] M.P. Ciamarra, A. Coniglio, and M. Nicodemi. Thermodynamics and statistical mechanics of
dense granular media. Physical Review Letters, 97(15):158001, 2006.

DOI 10.20347/WIAS.PREPRINT.2743 Berlin 2020



Two-phase flows for sedimentation of suspensions 19

[32] A. Einstein. Eine neue Bestimmung der Moleküldimensionen. PhD thesis, Universität Zürich,
1905.

[33] I.M. Krieger and T.J. Dougherty. A mechanism for non-Newtonian flow in suspensions of rigid
spheres. Transactions of the Society of Rheology, 3(1):137–152, 1959.

[34] D. Quemada. Rheology of concentrated disperse systems and minimum energy dissipation prin-
ciple. Rheologica Acta, 16(1):82–94, 1977.

[35] R.B. Kellogg and B. Liu. A finite element method for the compressible Stokes equations. SIAM
Journal on Numerical Analysis, 33(2):780–788, 1996.

[36] O. Pironneau and J. Rappaz. Numerical analysis for compressible viscous isentropic stationary
flows. IMPACT of Computing in Science and Engineering, 1(2):109–137, 1989.

[37] J.L. Vinningland, Ø. Johnsen, E.G. Flekkøy, R. Toussaint, and K.J. Måløy. Granular Rayleigh-
Taylor instability: Experiments and simulations. Physical Review Letters, 99(4):048001, 2007.

[38] C. Völtz, W. Pesch, and I. Rehberg. Rayleigh-Taylor instability in a sedimenting suspension.
Physical Review E, 65(1):011404, 2001.

[39] L. Durlofsky and J.F. Brady. Analysis of the Brinkman equation as a model for flow in porous
media. The Physics of Fluids, 30(11):3329–3341, 1987.

[40] L. Baker. Compressible Rayleigh–Taylor instability. The Physics of Fluids, 26(4):950–952, 1983.

DOI 10.20347/WIAS.PREPRINT.2743 Berlin 2020


	1 Introduction
	2 Two-phase suspension model
	3 Sedimentation model
	4 Discretization of sedimentation model in 1D
	4.1 Weak formulation
	4.2 Time-discretization, regularization and stabilization

	5 Sedimentation experiments
	6 Numerical experiments in 1D
	6.1 Densely packed initial data
	6.2 Uniform initial data
	6.3 Discussion of 1D results

	7 Numerical experiments in 2D
	8 Summary and conclusion

