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Stochastic homogenization on randomly perforated domains

Martin Heida

Abstract

We study the existence of uniformly bounded extension and trace operators for W LP_functions
on randomly perforated domains, where the geometry is assumed to be stationary ergodic. Such
extension and trace operators are important for compactness in stochastic homogenization. In
contrast to former approaches and results, we use very weak assumptions on the geometry which
we call local (d, M )-regularity, isotropic cone mixing and bounded average connectivity. The first
concept measures local Lipschitz regularity of the domain while the second measures the meso-
scopic distribution of void space. The third is the most tricky part and measures the "mesoscopic”
connectivity of the geometry.

In contrast to former approaches we do not require a minimal distance between the inclusions
and we allow for globally unbounded Lipschitz constants and percolating holes. We will illustrate
our method by applying it to the Boolean model based on a Poisson point process and to a

Delaunay pipe process.

We finally introduce suitable Sobolev spaces on R? and €2 in order to construct a stochastic
two-scale convergence method and apply the resulting theory to the homogenization of a p-

Laplace problem on a randomly perforated domain.
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1 Introduction

In 1979 Papanicolaou and Varadhan [31] and Kozlov [24] for the first time independently introduced
concepts for the averaging of random elliptic operators. At that time, the periodic homogenization
theory had already advanced to some extend (as can be seen in the book [32] that had appeared one
year before) dealing also with non-uniformly elliptic operators [26] and domains with periodic holes [7].

Even though the works [24, [31] clearly guide the way to a stochastic homogenization theory, this
theory advanced quite slowly over the past 4 decades. Compared to the stochastic case, periodic ho-
mogenization developed very strong with methods that are now well developed and broadly used. The
most popular methods today seem to be the two-scale convergence method by Allaire and Nguetseng
[2,130] in 1989/1992 and the periodic unfolding method [6] by Cioranescu, Damlamian and Griso in
2002. Both methods are conceptually related to asymptotic expansion and very intuitive to handle. It
is interesting to observe that the stochastic counterpart, the stochastic two-scale convergence, was
developed only in 2006 by Zhikov and Piatnitsky [39], with the stochastic unfolding developed only
recently in [29, [18].

A further work by Bourgeat, Mikelic and Wright [5] introduced two-scale convergence in the mean. This
sense of two-scale convergence is indeed a special case of the stochastic unfolding, which can only
be applied in an averaged sense, too. This leads us to a fundamental difference between the periodic
and the stochastic homogenization. In stochastic homogenization we distinguish between quenched
convergence, i.e. for almost every realization one can prove homogenization, and homogenization in
the mean, which means that homogenization takes place in expectation.

In particular in nonlinear non-convex problems (that is: we cannot rely on weak convergence methods)
the quenched convergence is of uttermost importance, as this sense of convergence allows to use -
for each fixed w - compactness in the spaces H'(Q). On the other hand, convergence in the mean
deals with convergence in L?(2; H*(Q)), which goes in hand with a loss of compactness.

The results presented below are meant for application in quenched convergence. The estimates for the
extension and trace operators which are derived strongly depends on the realization of the geometry
- thus on w. Nevertheless, if the geometry is stationary, a corresponding estimate can be achieved for
almost every w.

The Problem

The discrepancy in the speed of progress between periodic and stochastic homogenization is due to
technical problems that arise from the randomness of parameters. In this work we will consider uniform
extension operators for randomly perforated stationary domains. We use stationarity (see Def.
as this is the standard way to cope with the lack of periodicity. Let us first have a look at a typical
application to illustrate the need of the extension operators that we construct below.

Let})(w) C R? be a stationary random open set and let ¢ > 0 be the smallness parameter and
let P(w) be a connected component of P (w). For a bounded open domain, we consider Q% (w) :=

QN eP(w) and T¢(w) := Q N dP(w) with outer normal vr- (. We study the following problem in
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Section [10.6
—div (a |V P2 Vus) = g on Q5 (w),
u=>0 on 0Q, (1.1)
VU P72 VUl - vpe() = f(uf) on I (w).

Note that for simplicity of illustration, the only randomness that we consider in this problem is due to
P(w), i.e. we assume a = const.

Problem (1.1) can be recast into a variational problem, i.e. solutions of (1.1) are local minimizers of
the energy functional

st = [ (1|wp—gu)+ [ [ Fes,
Qs @) \P ‘() Jo

where I is convex with OF" = f. This problem will be treated in Theorem[10.20|and the final Remark
[0.22

One way to prove homogenization of is to prove I'-convergence of &, ,,. Conceptually, this implies
convergence of the minimizers u° to a minimizer of the limit functional. However, the minimizers are
elements of Wl’p(Q%) and since this space changes with €, we lack compactness in order to pass
to the limit in the nonlinearity. The canonical path to circumvent this issue in periodic homogenization
is via uniformly bounded extension operators 4. : W'?(Qg) — W'P(Q), see [20, [22], combined
with uniformly bounded trace operators, see [12),[13].

The first proof for the existence of periodic extension operators was due to Cioranescu and Paulin
[7] in 1979, while the proof in its full generality was provided only recently by Hépker and Bohm [22]
and Hpker [21]. In this work we will generalize parts of the results of [21] to a stochastic setting. A
modified version of the original proof of [21] is provided in Section [3| It relies on three ingredients:
the local Lipschitz regularity of the surface, the periodicity of the geometry and the connectedness.
Local Lipschitz regularity together with periodicity imply global Lipschitz regularity of the surface. In
particular, one can construct a local extension operator on every cell z + (—d,1 + 5)d, 2 € 74
which might then be glued together using a periodic partition of unity of R%. The connectedness of the
geometry assures that the difference of the average of a function w on two different cells z; and 2z
can be computed from the gradient along a path connecting the two cells and being fully comprised in
Z1 + (—]_, 2)d

In the stochastic case the proof of existence of suitable extension operators is much more involved
and not every geometry will eventually allow us to be successful. In fact, we will not be able - in
general - to even provide extension operators . : WP (Q%(w)) — W1P(Q) but rather obtain
U, : wte (Q%(w)) — WH(Q), where r < p depends (among others) on the dimension and on

the distribution of the Lipschitz constant of 815(w). This is due to the presence of arbitrarily “bad” local
behavior of the geometry.

The theory developed below also allows to provide estimates on the trace operator
T.: CY(P(w)) — C(dP(w))

when seen as an operator 7, : W,-”(P(w)) — L. .(0P(w)), where again 1 < r < p in general.

loc loc

We summarize the above discussion in the following.

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



Stochastic homogenization on perforated domains 5

Problem 1.1. Find (computationally or rigorously) verifiable conditions on stationary random geome-
tries that allow to prove existence of extension operators

U. : WO (QE( )) — W' (Q) st ||Vuau||Lr(Q) <C ||vu||LP(Q%(M)) )
where r > 1and C' > O are independent of € and where

1 . —
Problem 1.2. Find (computat|onally or rigorously) venflable conditions on stationary random geome-
tries that allow to prove an estimate

€ H7;u|’2’"(QﬂsaP) <cC (Hu”zp(QﬁsP(w)) +e HVUHZP(QOEP(AU))> )

where r > 1 and C' > 0 are independent of &.

Let us mention at this place existing results in literature. In recent years, Guillen and Kim [13] have
proved existence of uniformly bounded extension operators U4, : WP (Q%(w)) — WHP(Q) in
the context of minimally smooth surfaces, i.e. uniformly Lipschitz and uniformly bounded inclusions
with uniform minimal distance. A homogenization result of integral functionals on randomly perforated
domains with uniformly bounded inclusions was provided by Piat and Piatnitsky [33]. Concerning un-
bounded inclusions and non-uniformly Lipschitz geometries, the present work seems to be the first
approach. Since Problem[1.2]is easier to handle, we first explain our concept of microscopic regularity
in view of 7, and then go on to extension operators.

(6, M)-Regularity and the Trace Operator

We introduce two concepts which are suited for the current and potentially also for further studies.
The first of these two concepts is inspired by the concept of minimal smoothness [35] and accounts
for the local regularity of OP. Deviating from [35] we will call it local (8, M )-regularity (see Definition
. Although this assumption is very weak, its consequences concerning local coverings of 0P are
powerful. Based on this concept, we introduce the functions ¢, 5 and p on OP as well as M, and
My ra for ) € {0, p, p} in Lemmas 4.4} 4.6} [4.8)and [4.12]and make the following assumptions:

Assumption 1.3. Let P(w) be a random open set such thatfor1 < r < py < pandn € {p,p,d}

it holds either
po ro—( E M(LJrl) pro
Hr,p + L) Rd < 00,
n

1

or/ (nM[TanRd) "dprp < 0.
Q

Having studied the properties of (0, M )-regular sets in detail in Sections |4.1|and[2.5|it is very easy to
prove the following trace theorem (for notations we refer to Section[2)and Section[4.7). Note that via a
simple rescaling, this provides a solution to Problem|[1.1]

Theorem 1.4 (Solution of Problem . Let P(w) be a stationary and ergodic random open set which
is almost surely locally (6, M) regular and /etAssumption hold. For givenw let T, : C! (?( )) —
C(OP(w)) be the trace operator. Then for almost every w the extension T, : WiP(P(w)) —

i..(OP(w)) is continuous and there exists a constant C,, > 0 s.t. it holds for every bounded Lips-

chitz domain Q D B1(0) and everyn € N
HnuHLT(aPﬁnQ) < C,, ||UHW1,p(B,(nQ)nP) :

Proof. This is a consequence of Theorem[5.9] stationarity and ergodicity and the ergodic theorem. [
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M. Heida 6

Construction of Extension Operators

The main results of this work is on extension operators on randomly perforated domains. In order to
construct a suitable extension operator, we use

Step 1: (d, M )-regularity Concerning extension results, the concept of (d, M )-regularity suggests
the naive approach to use a local open covering of OP and to add the local extension operators via
a partition of unity in order to construct a global extension operator. We call this ansatz naive since
one would not chose this approach even in the periodic setting, as it is known to lead to unbounded
gradients. Nevertheless, this ansatz is followed in Section [5.2] for two reasons. The first reason is
illustration of an important principle: The extension operator U = U + U can be split up into a local
part Z/I whose norm can be estimated by local properties of OP, and a global part U whose norm is
determined by connectivity, an issue which has to be resolved afterwards, and corresponds to Step
2 in the proof of Theorem below (periodic case), where one glues together the local extension
operators on the periodic cells. The second reason is that this first estimate, although it cannot be
applied globally, is very well suited for constructing a local extension operator. Lemma hence
provides estimates of a certain extension operator which has the property that the constant in the
estimate tends to +00 as the domain grows.

However, this first ansatz grants some insight into the structure of the extension problem. In particular,
we find the following result which will provide a better understanding of the Sobolev spaces W17 ()
and WP (Q, P) on the probability space (2.

Assumption 1.5. Let P(w) be a random open set such that Assumption hold and let d be the

constant from (5.8).
p(dt1) _ pldta)
E( M. |+E[M> | <o (1.2)
[8 ] [8 ]
2 Assume forr < py < p1 < p that and either

_ P1(d=2)(pg=7) p1P W)
E<M1Ar(p1—p0) > +E(MP Pl) +E<p1*pofr> < 0

1 Assume forr < p that

[57] 0]
or
_TPo
E(M?) +E (pbuﬁi ) < 0,
where
Poulk () := inf {p(f) :2€dPstxe B, (:i)} ,

Theorem 1.6. Let Assumption[1.5 hold and let T be ergodic. Then for almost every w the extension
operator U : WiP(P(w)) — Wi (RY) provided in is well defined and for Q@ C R? a

loc

bounded domain with Lipschitz boundary there exists a constant C'(w) such that for every positive
n > 1andeveryu € W'?(P(w) N B, (nQ))

1 1 ,
—_ Uul" + |VUU|") < C(w (—/ ulf + Vup)
Q) /HQ(' P IVHD) < O (CT @] fowmsing ™ 1V

Proof. This follows from Lemmas|5.6] [5.8|and[4.13|on noting that V¢py < Cpy L. O

Theorem though useful, is not satisfactory for homogenization, as Vi{u is bounded by u and not
solely Vu. Therefore, some more work is needed.

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



Stochastic homogenization on perforated domains 7

Step 2: isotropic cone mixing In order to account for the issue of connectedness in a proper
way on the macroscopic level, we propose our second fundamental concept of isotropic cone mixing
geometries (see Definition, which allow to construct a global Voronoi tessellation of R? with good
local covering properties. This definition, though being rather technical, can be verified rather easily
using Criterion|4.18

In short, isotropic cone mixing allows to distribute balls B; = B ( ;) of a uniform minimal radius St

within P such that the centers z; of the balls B; generate a Voron0| mesh of cells GG; with diameter
d;, distributed according to a function f(d) (see Lemma |4.20) “ These Voronoi cells in general might
be of arbitrary large diameter d;, although they are bounded in the statistical average. Due to this lack
of a uniform bound, we call the distribution of Voronoi cells the mesoscopic regularity of the geometry.

Step 3: gluing The Voronoi cells resulting from an isotropic cone mixing geometry are well suited
for the gluing of local extension operators. We will construct the macroscopic extension operator in
an analogue way to [21], replacing the periodic cells by the Voronoi cells (see Figure [5). In Theorem
[6-3] we provide a first abstract result how the norm of the glued operator can be estimated from the
distribution of M, the geometry of the Voronoi mesh and the connectivity, even though the last two
properties enter rather indirectly. To make this more clear, we note at this points that the extension
operator depends on two types of local averages: To each Voronoi cell (G; we take the average M;u
over B;. Furthermore, to every local microscopic extension operator chosen in Section [5 there corre-
sponds a local average T7;u close to the boundary. We will see that the norm of the extension operator
strongly depends on the differences |M;u — M u| and |[M;u — ul.

In Theorem|[6.7]we will see that the dependence on |M;u — M u| can be eliminated with the price
to increase the cost of “unfortunate distributions” of GG; and of the local (9, M) regularity. The remain-
ing dependence which we leave unresolved is the dependence on | M ;u — T,u|. This dependence is
linked to quantitative connectedness properties of the geometry. By this we mean more than the topo-
Iogical question of connectedness. In particular, we need an estimate of the type i/\/lju — Tkuir <
Je, C(2) [Vu(x)|" da which will finally allow us an estimate of 3, [Mju — 7.u|" in terms of Vu.
Unfortunately, the classical percolation theory, which deals with connectedness of random geometries,
is not developed to answer this question. In this paper, we will use two workarounds which we call “sta-
tistically harmonic” and “statistically connected”. However, further research has to be conducted. We
state our first main theorem.

Theorem 1.7. Let P(w) be a stationary ergodic random open set which is almost surely (0, M)-

regular (Def. and isotropic cone mixing fort > 0 and f(R) (Def. and statistically harmonic

(Def. andletl <r < p < oo. Let Q C R? be bounded open with Lipschitz boundary as well as
€ (r,p) such that

E(Z\Zf%> < 400,

= ) (d+1) (2r+2) 25 4 ( 52 )f(k)<—i—oo

D> (k+1)
k=1
1 P
E sup Rd/ o <Z P(dk)Xm’ka) < 400.
k

Then for almost every w the extension operatorU : Wit”(P(w)) — WiL7 (RY) provided in {6.6) is

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



M. Heida 8

well defined with a constant C'(w) such that for every positive n. > 1

1 ]
Uu —/ up)
nd|Q|/ hul” < <nd|cz| e
1 »
—_ VUu|" < C(w —/ Vup>

Proof. This follows from Theorems and on noting that in the general case we have to
assume « = d = d. Furthermore, we need Lemma4.21 O

In practical applications, one would need to verify whether P is statistically harmonic via numerical
simulations. The problem particularly results in the numerical evaluation of a Laplace operator.

Based on this insight, we develop an alternative approach: The connectedness of P is quantified
by introducing directly a discrete graph on P and a discrete Poisson equation on this graph. The
construction of the graph and the evaluation of the Poisson equation can be done numerically, but
with the advantage that the discrete quantities are now directly connected to the analytical theory.
Additionally to the (d, M )-regularity we have to deal with the average diameter d; of the cells of a the
global Voronoi tessellation and the local stretch factor S;. We impose the following assumptions:

Assumption 1.8. Let P(w) be a random open set such that Assumption hold and let d be the
constant from (5.8). Let and forr < 5 < s < p let either

p1(d—2)(5—r)

r r(s—8) 1—
E<M[;m )+E<p

(i) <o
Furthermore, let P(w) be almost surely isotropic cone mixing fort > 0 and f(R) (Def. -) as well

as locally connected and let the local stretch factor (see Definition Theorem|[7.7 and Definition
satisfy P(S > Sy) < fs(So) such that

#) <o

or

i r(d—1)+drs
S (k+ 1M f(R) < oo,
k=1

STUN 1) (o DIPTSR f5(N) < +oo.

The second main theorem can be formulated as follows:

Theorem 1.9. Let P(w) be a stationary ergodic random open set which is almost surely (5, M )-
regular (Def.[4.2) and isotropic cone mixing fort > 0 and f (R) (De. as well as locally connected
and satisfy P(S > Sy) < f,(So) such that Assumption[1.8 holds. For1 < r < § < s < p < co and
Q c R? a bounded domain with Lipschitz boundary. Then for almost every w the extension operator
U: WoP(Pw)) — Wi (RY) provided in is well defined with a constant C'(w) such that for

every positiven > 1 and every u € W()l”gQ(P(w) NnQ)

1 1 v
_ - Uu|" < C _/ p)
n ’Q’ /nQ | U| (W) (nd |Q| P(w)NnQ |U|
1 1 p
— VUu|" < C —/ \% ”) : 1.4
nd ‘Q‘ /7;Q ‘ u’ (W) (nd |Q| P(w)NnQ ’ u’ 04
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Stochastic homogenization on perforated domains 9

Proof. We combine Theorem[6.3|with Lemmas|[6.4]and[6.5]as well as Lemmas[4.13and to obtain
the first and second condition. The remaining condition is inferred from Theorem and Lemma

4211 0O

Sobolev Spaces on ¢

Besides the evident benefit of the above extension and trace theorems, let us note that these theorems
are also needed for the construction of the suitable Sobolev spaces on €2. In Section[9we recall some
standard construction of Sobolev spaces on the probability space {2 and provide some links between
two major approaches which seem to be hard to find in one place. We will need this summing up in
order to better illustrate the generalization to perforated domains.

To understand our ansatz, we recall a result from [14] that there exist P C 2 and I" C 2 such that for
almost every w € € xp)(z) = xp(7w) and xrw)(z) = xr(7.w), where I'(w) = OP(w).
The random set P(w) leads to Sobolev spaces WP (P(w)), e.g. by defining WP (P(w)) :=
{XP(W)U u € lep(Rd)}. We will see that we can introduce spaces WW'*(P), but this construction
is more involved than in R¢ and heavily relies on the almost sure extension property guarantied by
Theorem Once we have introduced the spaces 1W!*(P) we can also introduce “trace”-operators
To : WHP(P) — L™(T), where I' C Q with xr()(2) = xr(7w), and L"(T') is to be understood
w.r.t. the Palm measure on I'. This construction will rely on Theorems([1.6/and[1.4} In all our results, we
only provide sufficient conditions for the existence of the respective spaces and operators. Necessary
conditions are left for future studies.

Discussion: Random Geometries and Applicability of the Method

In Section[T0]we will discuss how the present results can be applied in the framework of the stochastic
two-scale convergence method. However, this concerns only the analytic aspect of applicability.

The more important question is the applicability of the presented theory from the point of view of
random geometries. Of course our result can be applied to periodic geometries and hence also to
stochastic geometries which originate from random perturbations of periodic geometries as long as
these perturbations are - in the statistical average - “not to large”. However, it is a well justified question
if the estimates presented here are applicable also for other models.

In Section [8| we discuss three standard models from the theory of stochastic geometries. The first
one is the Boolean model based on a Poisson point process. Here we can show that the micro- and
mesoscopic assumptions are fulfilled, at least in case P is given as the union of balls. If we choose
P as the complement of the balls, we currently seem to run into difficulties. However, this problem
might be overcome using a Matern modification of the Poisson process. We deal with such Matern
modifications in Section What remains challenging in both settings are the proofs of statistical
harmony or statistical connectivity. However, if the Matern process strongly excludes points that are to
close to each other, the connectivity issue can be resolved.

A further class which will be discussed are a system of Delaunay pipes based on a Matern process. In
this case, even though the geometry might locally become very irregular, all properties can be verified.
Hence, we identified at least one non-trivial, non-quasi-periodic geometry to which our approach can
be applied for sure.

The above mentioned construction of Sobolev spaces and the application in the homogenization result
of Theorem[10.20| clearly demonstrate the benefits of the new methodology.

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020
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Notes
Structure of the article

We close the introduction by providing an overview over the article and its main contributions. In
Section [2| we collect some basic concepts and inequalities from the theory of Sobolev spaces, ran-
dom geometries and discrete and continuous ergodic theory. We furthermore establish local regularity
properties for what we call nj-regular sets, as well as a related covering theorem in Section In Sec-
tion [2.11] we will demonstrate that stationary ergodic random open sets induce stationary processes
on Z%, a fact which is used later in the construction of the mesoscopic Voronoi tessellation in Section
4.2

In Section [3| we provide a proof of the periodic extension result in a simplified setting. This is for
completeness and self-containedness of the paper, in order to make a comparison between stochastic
and periodic approach easily accessible to the reader.

In Section [4] we introduce the regularity concepts of this work. More precisely, in Section [4.1] we
introduce the concept of local (¢, M )-regularity and use the theory of Section in order to establish
a local covering result for OP, which will allow us to infer most of our extension and trace results. In
Section |4.2| we show how isotropic cone mixing geometries allow us to construct a stationary Voronoi
tessellation of R? such that all related quantities like “diameter” of the cells are stationary variables
whose expectation can be expressed in terms of the isotropic cone mixing function f. Moreover we
prove the important integration Lemma[.21]

In Sections we finally provide the aforementioned extension operators and prove estimates for
these extension operators and for the trace operator.

In Section |8 we study some sample geometries and in Section we discuss the homogenization
problem.

A Remark on Notation

This article uses concepts from partial differential equations, measure theory, probability theory and
random geometry. Additionally, we introduce concepts which we believe have not been introduced
before. This makes it difficult to introduce readable self contained notation (the most important aspect
being symbols used with different meaning) and enforces the use of various different mathematical
fonts. Therefore, we provide an index of notation at the end of this work. As a rough orientation, the
reader may keep the following in mind:

We use the standard notation N, Q, R, Z for natural (> 0), rational, real and integer numbers. P
denotes a probability measure, [E the expectation. Furthermore, we use special notation for some
geometrical objects, i.e. T¢ = [0, 1) for the torus (T equipped with the topology of the torus), I¢ =
(0, 1)d the open interval as a subset of R? (we often omit the index d), B a ball, C a cone and X a set
of points. In the context of finite sets A, we write # A for the number of elements.

Bold large symbols (U, Q, P.,. . .) refer to open subsets of R? or to closed subsets with 0P = op.
The Greek letter I refers to a d — 1 dimensional manifold (aside from the notion of I'-convergence).

Calligraphic symbols (A, U, ...) usually refer to operators and large Gothic symbols (28, ¢, . ..)
indicate topological spaces, except for 2.
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Stochastic homogenization on perforated domains 11

2 Preliminaries

We first collect some notation and mathematical concepts which will be frequently used throughout
this paper. We first start with the standard geometric objects, which will be labeled by bold letters.

2.1 Fundamental Geometric Objects

Unitcube Thetorus T = [0, 1) has the topology of the metric d(z, y) = min,cza |r — y + 2. In
contrast, the open interval I := (0, 1)? is considered as a subset of R%. We often omit the index d if
this does not provoke confusion.

Balls Given a metric space (M, d) we denote B, (z) the open ball around = € M with radius
r > 0. The surface of the unit ball in R? is S¢~!.

Points A sequence of points will be labeled by X := (z;), -
A cone inR%is usually labeled by C. In particular, we define for a vector v of unit length, 0 < a < 5
and R > (0 the cone

Cranr(x)={2€Bgr(z) : z-v>|zlcosa} and C,,(z):=C,,(z).
Inner and outer hull We use balls of radius 7 > 0 to define for a closed set P C R the sets

Pr = ET(P) = {IL’ € Rd : dist (I’,P> < T} )

P_. =R [B,(R\P)] := {z e R : dist (z,R*\P) >r} . @1

One can consider these sets as inner and outer hulls of P. The last definition resembles a concept of
“negative distance” of x € P to P and “positive distance” of z & P to JP. For A C R? we denote
conv(A) the closed convex hull of A.

The natural geometric measures we use in this work are the Lebesgue measure on RY, written | A| for
A C R?, and the k-dimensional Hausdorff measure, denoted by #* on k-dimensional submanifolds
of R? (for k < d).

2.2 Local Extensions and Traces

Let P C R? be an open set and let p € OP and § > 0 be a constant such that B;(p) N JP is graph
of a Lipschitz function. We denote

M(p,8) :=inf{M: 3p: U CR"" R
¢ Lipschitz, with constant M s.t. Bs(p) N OP is graph of ¢} . (2.2)

Remark 2.1. For every p, the function M (p, -) is monotone increasing in ¢.

In the following, we formulate some extension and trace results. Although it is well known how such
results are proved and the proofs are standard, we include them for completeness.

Lemma 2.2 (Uniform Extension for Balls). Let P C R? be an open set, 0 € OP and assume there
exists § > 0, M > 0 and an open domain U C Bs(0) C R~ such that OP N Bs(0) is graph of
a Lipschitz function ¢ : U C RY1 — R? of the form o() = (%, $(%)) in B5(0) with Lipschitz

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



M. Heida 12

constant M and ©(0) = 0. Writing x = (&, x4) and defining p = 0v/4M? + 2" there exist an
extension operator

u(x ifrg < ¢(x
) () = { ") oy 5 ) M=ol g
du (2, —% + 3¢(2)) — 3u (T, —xq + 20(T))  ifzq > H(Z)
such that for
A0, P, p) = {(Z, =24+ 26(2)) : (¥, 74) € B,(0)\P}, (2.4)
and for every p € [1, 0o| the operator
U: WHA0,P, p)) — WH(B,(0)),
is continuous with
||UUHLP(B/,(0)\13) <7 ||UHLP(,4(0,P,,))) ) “VUUHLP(IB,,(O)\P) < 14M ||VU||LP(,4(0,P,,))) - (2.5)

Remark 2.3. It is well known ([10, chapter 5]) that for every bounded domain U C R¢ with C'%!-
boundary there exists a continuous extension operator i : W1?(U) — W1P(R?),

Proof of Lemmal22 The extended function ¢ : U x R — U X R, ¢(z) = (Z,d(Z) + z4) is
bijective with o~ 1(z) = (2,24 — #(Z)). In particular, both ¢ and ! are Lipschitz continuous with
Lipschitz constant M + 1.

W.l.o.g. we assume that
0 (U x (—00,0)) NBs(0) = P NB,s(0) N (U x R)

implying ¢ (U x (0,00)) NP = 0.

Step 1: We consider the extension operator U, : W1P(R~! x (—00,0)) — WHP(R?) having the
form [10, chapter 5], [1]

u(z) ifzg <0

du (2, %) — 3u (%, —xq) ifazqg>0

(Usu) (z) = {
We make use of this operator and define

Uu(x) = Uy (uo @)oo ().

Note that all three operators u +— u o ¢, Uy and v — v o ! map W!P-functions to WW1P-
functions. By the definition of U/} we may explicitly calculate (2.3). In particular, Uu(x) is well defined
for x € Bs(0)\P whenever

(T, —zq + 20(Z)) € Bs(0). (2.6)

Step 2: We seek for p > 0 such that is satisfied for every x € B,(0)\P and such that
A(0,P,p) C Bs(0). For p < d and z = (Z,24) € B,(0), we find with ¢(0) = 0 and |z4| <

V/ p? — |Z|? that
—Tg + Z(b(i’) € (.1'd — 2M‘i’| , Tg + 2M‘i")

C (~VP2 = TiP —2Mla|, /2 — 2P +2M|3]) .
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Stochastic homogenization on perforated domains 13

In particular,
max |-z +20(%)| < pv4AM?2 +1
(%2a)€B, (0)\P
and holds if
[~ +20(F)]" + |7 < p* (4AM* + 1) + p* < 6.

~1
Hence we require p = §v/4M? + 2 . It is now easy to verify 1| from the definition of ¢/ and the
chain rule. m

Lemma 2.4. LetP C R? be an open set, 0 € OP and assume there exists § > 0, M > 0 and an
open domain U C B;(0) C R such that OP N B;(0) is graph of a Lipschitz function ¢ : U C
R¥! — R9 of the form (&) = (7, ¢(T)) inBs(0) with Lipschitz constant M and p(0) = 0. Writing
x = (Z,x4) we consider the trace operator T : C' (P NBys(0)) — C (0P NB;(0)). For every

p € [1,00] and every rr < p(gol__j)) the operator T can be continuously extended to

T W (B 0Bs(0) L (OP N Ba(0)).

such that
d(p—r) 1

T+1
[T ullpr oprzgoy < Crpd ™ " VAM2 + 27 lullyroprpy; o)) - (2.7)

Proof. We proceed similar to the proof of Lemma/[2.2]

Step 1: Writing Bs = B;(0) togetherwith By = {z € Bs: x4 < 0}and X5 := {z € B; : x4 =0}
we recall the standard estimate

(/Ellup)igcnp </BI|V“);+</BIM>; |

which leads to

() s ([ ) (1)
P By By

Step 2: Using the transformation rule and the fact that 1 < |det Dy| < v/4M?2 + 2 we infer (2.7)
similar to Step 2 in the proof of Lemma[2.2]

1
(/ |u!’“) < VAM? +27 (/ Iuw!")
OPNB;(0) s

p—r) _1 1
<G s ar T2 (/

hSA
3=

é

W(uw”p) ; </|uoso|p>

é

d(p—r) 1
<08 VaE T2
1

(/ |(Vu) o ¢|” det Dgo) + </ lu o p|f det D(p)
By By

8

and from this we conclude the Lemma. O
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2.3 Poincaré Inequalities

We denote
Wer (B.(0)) := {u e WY (B,(0)) : 3z : B.(z) C B,(0) V ][ ( )u _ 0} .

Note that this is not a linear vector space.

Lemma 2.5. Forevery p € (1,00) there exists C,, > 0 such that the following holds: Letr < 1 and
x € B;(0) such that B.(x) C B;(0) then for every u € WP (B,(0))

1
[lEoe, 00 < o (170l + 5 Nl ) 28
and for every u € W(lo’f’ (B1(0)) it holds
—d
HUH]ZP(&(O)) <Gy (147777 Hqu[ip(Bl(O)) : (2.9)
Remark. In case p > d we find that holds iff u(x) = 0 for some z € B, (0).

Proof. In a first step, we assume x = 0. The underlying idea of the proof is to compare every u(y),
y € B1(0)\B,(0) with u(rz). In particular, we obtain for y € B,(0)\B,(0) that

1
u(y) = u(ry) —I—/ Vu(lry +t(1—r)y) - (1 —r)ydt
0
and hence by Jensen'’s inequality
1
) <0 ([ 19utry (0= )P (1= 12 o dt 4 )
0

We integrate the last expression over B, (0)\B,.(0) and find

1
/ y)|P dy < / / (/ |Vu(rsv +t(1 —r)sv)[” (1 —r)Ps? dt) s dsdy
B1(0)\B/(0 ga-t 0

/ Py

/ / </ IVu(tv)[P (1 —r)P~tsP™ 1dt) 1ds
Gd—1

/ fu(ry)l? dy
B1(0)\B(0)

1
< CHVUHLP (B1(0 + “uHLp (B (0
) -

For general x € B, (0), use the extension operatoru : WHP(B1(0)) — WHP(B4(0)) (see Remark

such that ||uu||W1vP(B4(0)) <C ||UHW17P(]B1(O)) and ||VUU||W1,p(B4(O)) <C ||VU’||WLP(]Bl(O))'
Since B1(0) C Bs(x) C B4(0) we infer

HUH]EP B (0)) < HUUHLP (Ba(z HVUUHLP Ba(a HuuHLp (By(z)) | -
(B1(0) ) (Ba(a)) T

and hence ( b Furthermore, since there holds [ul|7,, ) < C HVu||L,, ) for every u €
WLP(IB (0)), a scaling argument shows |[u|[75 5, (o)) < CT7 [[Vull 1o, (o) for every

W(O’f’ (B1(0)) and hence . O
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Lemma 2.6. Let0) < r < R < ocoandp € (1,00) andq < pd/(d — p) (ifp < d) orq =
(if p > d). Then there exists C,, , such that for every convex set P with polytope boundary OP C

Br(0)\B,(0)

b R p+1 Ri+1
ey < ot ([ (o () o ) ) e

and for every u € W(lo’i . (Br(0))

HUHLq (Br(0) = < &q(R,7) ||VUHLP (Br(0)) (2.11)

p+1 d+1
Cpo(R,7) = Cp,qR‘d(l‘g)“’ ((g) + (?) ) (2.12)

Remark 2.7. For the critical Sobolev index ¢ = pd we infer d (1 - §> =p.

where

Proof. First note that by a simple scaling argument based on the integral transformation rule the
equations (2.8) yields for every u € W17 (B,.(0))

d
el oo o) < CraR 00 (Rp [Vl s 0 + = Il M))) 213)
and yields for every u € Wé’{r(BT(O))
<, RR-0) (14 (% v
HUHLQ (Br(0)) P + R I u”LP (Br(0)) * (2.14)
Now, for v € Sd*1 we denote P (v) as the unique p € OP N (0,00)v and for z € R¥\{0} we
denote v, : ” Tl and consider the bijective Lipschitz map
X
op: P B (0), x> R
1P (v) |

Then we infer from (2.13)

HuOgoplﬂLq (Br(0 )SC’R d(1- (RPHV uo gp! HLP ®ro) ¥ a d HUO"OPlan(BT(o)))

or, after transformation of integrals,

(/ |u|q|detD¢P|)q
P
—d(1-%) p 2 yap, B P 5
<CR A R |(Vu) (Dgp) |+FX¢;1ET(O)|U| |det Dpp| )

It remains to estimate the derivatives of @p. In polar coordinates, the radial derivative is 8rgpp(:v) =
HP( ik while the tangential derivative is more complicated to calculate. However, in case VJ_TP(V)
we obtain Jsa-1¢p(x) = Iga-1, which is by the same time the minimal absolute value for each
tangential derivative, and Osa—1p () becomes maximal in edges where 2tan o = r~ '/ R2 — r2

and ||0pp|| (x¢) = Hﬁid ”f;xl(l’g ® xH < 2% (see Figure ...... ).Now we make use of the fact

that @ p increases the volume locally with a rate smaller than ||O¢p||and hence |det Dgp| > 1. On
the other hand, we have |(Dg5p)_1’ < & and hence 1) In a similar way we infer 1) from

(2.14). O
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2.4 Voronoi Tessellations and Delaunay Triangulation

Definition 2.8 (Voronoi Tessellation). Let X = (xi)ieN be a sequence of points in R< with x; # xy if
i # k. Foreach z € X let

G(x) ={yeR!: vieX\{z}: [z —y| <|Z—y|}.

Then (G(;)),.y is called the Voronoi tessellation of R? w.r.t. X. For each z € X we define d(z) :=
diamG(z).

We will need the following result on Voronoi tessellation of a minimal diameter.

Lemma 2.9. Lett > 0 and let X = (x;),. be a sequence of points in R® with |z; — | > 2t if
i#k Forr € XletZ(z):={y € X : G(y) NB(G(x)) # 0}. Then

#7(z) < (MY : (2.15)

T

Proof. LetX;, = {z; € X : H¥ (G, NOG;) > 0} the neighbors of zj, and dj, := d(x). Then
all x; € X satisfy |z, — ;| < 2dj. Moreover, every & € X with |Z — x| > 4d}, has the property
that dist( 0G (Z), x ) > 2dy, > di + vand T & Zj. Since every Voronoi cell contains a ball of

radius t, this implies that #Z;, < [Bug, (21)|/ [B:(0)| = (%)d. O

T
Definition 2.10 (Delaunay Triangulation). Let X = (z;),. be a sequence of points in R? with z; #
xy if © # k. The Delaunay triangulation is the dual graph of the Voronoi tessellation, i.e. we say
D(X) := {(x,y) : HATLOG (2) N OG(y)) # O}.
2.5 Local n-Regularity
We say that a function F' : A — {0, 1} holds “true”ina € Aif F'(a) = 1 and “false” if F'(a) = 0.
Definition 2.11 (r)-regularity). A set P C R is called locally n-regular with f : P x (0,r] — {0,1}

andt > 0if f(p, -) is decreasing and

flp,n)=1 = Vee (0,%),256183577(19)WP,77€(07 (I—e)n) : f(p,7)=1. (2.16)

For p € P we write (p) :=sup{n € (0,v) : f(p,n) =1}
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Lemma 2.12. Let P be a locally n-regular set with f and v and n(p). Thenn : P — R is locally
Lipschitz continuous with Lipschitz constant 4 and for every e € (0, 3) and p € B.,(p) N P it holds

1 —
——n(p) > () > n(p) — p— 5l > (1= 2)n(p). 217)
Furthermore,
p—pl <emax{n(p).n()} = Ip—pl < ——min{ylu@)}  @18)

Proof. We infer from for every ¢ € (0, 1) and p such that [p — p| < en(p) let 77 < n(p) such
that also |p — p| < e7. It then holds f(p, (1 —¢)7) = 1 and hence 1(p) > (1 — ) 7). Taking the

supremum over sup {7 : 7 < n(p)} we find n(p) > (1 — ) n(p) i.e.

n(p) =z sup {(1 —¢e)n(p) : [p—pl <en(p)}

>n(p) —lp—p| > (1 —¢)n(p)

which implies |p — p| < £=-n(p). This in turn leads to n(p) > (1 — =) n(p) or
1—¢ 1 1 1
— —_ — D _ D <
np) = 1) < 7 ) = lp=pl) < 7—_np) < T—5n(p),

implying (2.17) and continuity of 7.

Let |[p — p| = en(p) < 2en(p), the last inequality particularly implies also 7(p) > (1 — 2¢) n(p).
Together with [p — p| < 2en(p) < 4en(p) = 4 |p — p| we have

4lp — pl > 2en(p) = n(p) —n(p) > —en(p) = — Ip — 7| -

Finally, in order to prove (2.18), w.lL.o.g. let (p) < n(p). Then

£
1—

lp—p| <en(p) < En(p) :

We make use of the latter Lemmas in order to prove the following covering-regularity of OP.

Theorem 2.13. LetI' C R? be a closed set and let (-) € C(T") be bounded and satisfy for every
e € (0,2) andfor [p — p| < en(p)

1—¢
1—2¢

n(p) >n(p) >n(p) —p—pl > (1 —¢)n(p). (2.19)

and define 7j(p) = 27X n(p), K > 2. Then for every C' € (0, 1) there exists a locally finite covering
of I' with balls By, (px) for a countable number of points (py),.y C I' such that for every i # k
with Bﬁ(pi)(pi) N Bﬁ(pk)(pk) # () it holds

2K—1 -1 ~ ~ 2K—1 ~
— W) <0pk) < se—71(p:)
2 2 —1
and oy min {7 (pi), ()} 2 [pi — pil = Cmax {7(pi), 7(pw) }
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Proof. W.o.l.g. assume 7j < (1 — §&). Consider Q := [0, ﬂd, let ¢, ,a denote the n elements of
[0,1)%N % andlet Q.; = Q + z + ¢;. We set By =0Ty =T, n, = (1— 5)* and for k > 1
we construct the covering using inductively defined open sets B;) and closed set I, as follows:

1 Define ['y; = I'y. Fori = 1,...,n? do the following:

1.1 Forevery z € Z% do

if Ip € <77sz,1‘> Ny, 7(p) € (N, me—1] thensetb,; = By, (p), X.; = {p}

otherwise setb,, =0, X.,=0.

1.2 Define B(k),z = UzEZd bzﬂ' and Fk,i+1 = Fk\B(k),z and X(k)ﬂ = UzEZd Xz,i-
Observe: p1,ps € X, implies |p1 — pa| > (1 — %) e and p3 € Xy, J < @
implies p1 € B,, (p3) and hence |p; — ps| > n. Similar, p3 € X, I < k, implies
Ip1 — D3| > m > i

2 Define I'pyq := Fmdﬂ, Xy 1= UZ X(k),i-

The above covering of I' is complete in the sense that every x € I lies into one of the balls (by
contradiction). We denote X := |J, X = (ps);cy the family of centers of the above constructed
covering of I' and find the following properties: Let p1, po € X be such that B,y (p1) N Bii(p,) (D2) #
(0. W.l.o.g. let 77(p1) > 7(p2). Then the following two properties are satisfied due to

1 It holds ’pl —p2| < 277(]?1) < 2x_1_177(P1) and hence Bﬁ(pg)(pQ) - B22—Kn(pl)(p1> and

N(p2) > Zo=rin(p1). Furthermore 7i(p1) > 7i(p2) > La=r2ii(p1)-

2 Let k such that 77(p1) € (M, Mkv1]- If also 77(p2) € (Mk, Mr+1] then observation 1.(b) implies

pr—p2l > (L=2)me > (1= 1) (1= 08)7(p1)- Wii(p2) & [y M) then 7(p2) < i

and hence pa & Bjp,) (1), implying [p1 — pa| > 7(p1).

Choosing n and ¢ appropriately, this concludes the proof. O

2.6 Dynamical Systems

Assumption 2.14. Throughout this work we assume that (<2, .7 , IP) is a probability space with count-
ably generated o -algebra .% .

Due to the insight in [14], shortly sketched in the next two subsections, after a measurable transfor-
mation the probability space {2 can be assumed to be metric and separable, which always ensures

Assumption[2.14]

Definition 2.15 (Dynamical system). A dynamical system on €2 is a family (7,),cra of measurable
bijective mappings 7, : {2 —> {2 satisfying (i)-(iii):

(i) T2 © Ty = Tuyy , To = id (Group property)
(i) P(r_.B) =P(B) Vz € RY B € .7 (Measure preserving)

(i) A: RYxQ—=Q (7,w)— T,wis measurable (Measurability of evaluation)
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Aset A C Q2is almost invariant if P ((AU 7, A) \ (AN 7,A)) = 0. The family
I ={AeF : VxeR'P((AUTA)\ (ANT,A)) =0} (2.21)
of almost invariant sets is o-algebra and
E (f|-#) denotes the expectation of f : 2 — Rw.r.t. .. (2.22)
A concept linked to dynamical systems is the concept of stationarity.

Definition 2.16 (Stationary). Let X be a measurable space and let f : 2 x R? — X. Then f is
called (weakly) stationary if f(w,z) = f(7,w,0) for (almost) every z.

Definition 2.17. A family <A”)n6N C R%is called convex averaging sequence if

(i) each A, is convex
(i) foreveryn € N holds A,, C A1

(iii) there exists a sequence r,, with r, — 00 as n — oo such that B,, (0) C A,,.

We sometimes may take the following stronger assumption.

Definition 2.18. A convex averaging sequence A, is called regular if

A # {2 €2 (2 4+T)NOA, #£0} — 0.

The latter condition is evidently fulfilled for sequences of cones or balls. Convex averaging sequences
are important in the context of ergodic theorems.

Theorem 2.19 (Ergodic Theorem [8] Theorems 10.2.11 and also [36]). Let (A,,), .y C R? be a convex
averaging sequence, let (T,),cre be a dynamical system on ) with invariant o-algebra .# and let
f: © — R be measurable with |E(f)| < oo. Then for almost all w € 2

|An|_1/A F(rw) dz — B(f.7) . (2.23)

We observe that E (f|.#) is of particular importance. For the calculations in this work, we will partic-
ularly focus on the case of trivial .. This is called ergodicity, as we will explain in the following.

Definition 2.20 (Ergodicity and Mixing). A dynamical system (7,.),,cre Which is given on a probability
space (£2,.7,P) is called mixing if for every measurable A, B C €2 it holds

lim P(ANT,B)=P(A)P(B). (2.24)

[[]| =00

A dynamical system is called ergodic if

lim

/ P(AN7,B)dz = P(A)P(B). (2.25)
[_nvn}d
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Remark 2.21. a) Let Q = {w = 0} with the trivial o-algebra and 7,wg = wp. Then T is evidently
mixing. However, the realizations are constant functions f,,(z) = c on R¢ for some constant c.

b) A typical ergodic system is given by {2 = T with the Lebesgue o-algebra and P = L the Lebesgue
measure. The dynamical system is given by 7,5 := (x +y) mod T.

c) It is known that (7, ),cra is ergodic if and only if every almost invariant set A € .# has probability
P(A) € {0, 1} (see [8] Proposition 10.3.1ll) i.e.

[VeP((r,AUA)\ (1 ANA)=0] = P(A) €{0,1}. (2.26)
d) It is sufficient to show (2.24) or (2.25) for A and B in a ring that generates the o-algebra .%. We
refer to [8], Section 10.2, for the later results.
A further useful property of ergodic dynamical systems, which we will use below, is the following:

Lemma 2.22 (Ergodic times mixing is ergodic). Let (2, Z, P) and (Q, Z, I@’) be probability spaces
with dynamical systems (7),cre and (7,),cra respectively. Let ) := Q) x () be the usual product
measure space with the notation w = (W, w) € Q for® € Q and & € Q. If 7 is ergodic and 7 is
mixing, then 7, (W, w) = (T,w, T,W) is ergodic.

Proof. Relying on Remark|2.21|c) we verify (2 - 5) by proving it for sets A = AxAand B=BxB
which generate .# = . ® .%. We make use of AN B = (fl N B) X (fl N B) and observe that

IP’(AﬂTxB):]P’((flﬂ%zB’>x(Aﬂ%xB>>:I@<A %B’)]@(A n% )

—P(ANB)B(An%B) + [P(An#B) -P(AnB)| P(An7B).

Using ergodicity, we find that

lim (2711)0[ /[_M]d IP’(A N B) I@([l N %xé)dx = I@’((A N B)) I@([l N B)
—P(ANB). (2.27)

D:Jz

>

Since 7 is mixing, we find for every ¢ > 0 some R > 0 such that ||| > R implies

@(Amé) —P(Amé)( <e

For n > R we find

1 / 5
(2n)* i

The last two limits (2.27) and (2.28) imply (2.25). O

Remark 2.23. The above proof heavily relies on the mixing property of 7. Note that for 7 being only
ergodic, the statement is wrong, as can be seen from the product of two periodic processes in T x T
(see Remark [2.21). Here, the invariant sets are given by I4 := {((y +2) mod T, z) : y € A}
for arbitrary measurable A C T.
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2.7 Random Measures and Palm Theory

We recall some facts from random measure theory (see [8]) which will be needed for homogeniza-
tion. Let Dﬁ(Rd) denote the space of locally bounded Borel measures on R? (i.e. bounded on every
bounded Borel-measurable set) equipped with the Vague topology, which is generated by the sets

{,u : /fdu € A} for every open A C R%and f € Cc(Rd) i

This topology is metrizable, complete and countably generated. However, note that it is not locally
compact, which implies that the Alexandroff compactification cannot be applied. A random measure is
a measurable mapping

te: Q= MMRY),  wr

which is equivalent to both of the following conditions

1 For every bounded Borel set A C R? the map w + ju,,(A) is measurable

2 Foreveryw — [ fdu, themapw — [ fdpu, is measurable.

A random measure is stationary if the distribution of f,(A) is invariant under translations of A

that is y1,(A) and p,(A + z) share the same distribution. From stationarity of i, one concludes

the existence ([14} 31] and references therein) of a dynamical system (Tx)xeRd on €2 such that
w (A+ ) = .. (A). By a deep theorem due to Mecke (see [28] [8]) the measure

_ / / 9(5) Xa(7w) dyau(s) dP(w)

can be defined on (2 for every positive g € Ll(Rd) with compact support. pp is independent from
g and in case 1, = L we find ip = IP. Furthermore, for every B(R?) x B()-measurable non
negative or up X L- integrable functions f the Campbell formula

/Rdf:c% w) dp () dP(w /Rd/fxwdup w) dr

holds. The measure (i, has finite intensity if up(€2) < +o0.

We denote by
E,.(f|.7) := / f the expectation of f w.r.t. the o-algebra . and up . (2.29)
Q

For random measures we find a more general version of Theorem|2.19

Theorem 2.24 (Ergodic Theorem [8] 12.2.VIIl). Let (<2,.%, P) be a probability space, (A;,),,cn C R¢
be a convex averaging sequence, let (T,),cra be a dynamical system on ) with invariant o -algebra
S andlet f : Q0 — R be measurable with [, | f| dpip < co. Then for P-almost all w €

|An|1/A f(rew) dpw(z) = E, . (f]F) - (2.30)

Given a bounded open (and convex) set Q C (2, it is not hard to see that the following generalization
holds:
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Theorem 2.25 (General Ergodic Theorem). Let (§2,.%,IP) be a probability space, Q C R? be a
convex bounded open set with 0 € Q, let (7,.),cra be a dynamical system on §) with invariant o -
algebra .# and let f : Q) — IR be measurable with [, | f|dup < oo. Then for P-almost allw € ) it
holds

e C@: 1 [ o)) 5 Ba19) [ o s

Sketch of proof. Chose a countable family of characteristic functions that spans L!(Q). Use a Cantor
argument and Theorem to prove the statement for a countable dense family of C'(Q). From here,
we conclude by density.

The last result can be used to prove the most general ergodic theorem which we will use in this
work: O

Theorem 2.26 (General Ergodic Theorem for the Lebesgue measure). Let (2, .7, P) be a probability
space, Q C RY be a convex bounded open set with 0 € Q, let (T2 )zere be a dynamical system
on ) with invariant o-algebra .% and let f € LP(S); up) and ¢ € L9(Q), where 1 < p,q < o0,
Zl) + % = 1. Then for P-almost all w € §Q it holds

wt [ et B [ o

Proof. Let ps € C(Q) with | — @5l La(qy < 0- Then

ot [ et —a(n [

< lle = @sll Laq) (nd /Q | f (o) [? dx)p
- rw)de —E
O OCTCEEES T

+

+Eup(f|f)/Q\so— o5l

which implies the claim. O

2.8 Random Sets

The theory of random measures and the theory of random geometry are closely related. In what
follows, we recapitulate those results that are important in the context of the theory developed below
and shed some light on the correlations between random sets and random measures.

Let §(RY) denote the set of all closed sets in R%. We write

Fvi= {FeFRY) : FNV £0} ifV C R? is an open set, (2.32)
= {FeFRY) : FNK =0} ifK CR” isacompactset. (2.33)

The Fell-topology 7 is created by all sets §y and F* and the topological space (F(RY), 7y ) is
compact, Hausdorff and separable[27].

Remark 2.27. We find for closed sets F},, F' in R¢ that F,, — F if and only if [27]

1 for every x € F there exists x,, € I}, such that z = lim,,_,, z,, and
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2 if F),, is a subsequence, then every convergent sequence xz,, with z,, € I, satisfies
limy o0 T, € F.

If we restrict the Fell-topology to the compact sets R(Rd) it is equivalent with the Hausdorff topology
given by the Hausdorff distance

d(A, B) = max < sup inf |z — y| , supinf |x — .
(5 =yt = st 12—

Remark 2.28. For A C RY closed, the set
F(A) :={FeFRY) : FCA}
is a closed subspace of F(IR?). This holds since

FRINF(A) ={BeF(R?) : BN(RNA) #0} =Fraya s open.

Lemma 2.29 (Continuity of geometric operations). The maps 7, : A — A+x andbs : A — Bs(A)
are continuous in § (R?).

Proof. We show that preimages of open sets are open. For open sets V' we find

. @) ={FeI®RY) : FNV #0} ={FeFR) : FN7,V#0} =3, v,
b (Fv) = {F € 3RY : B(F)NV £ 0} = {F € FRY) : FABs(V) # 0} = Fvye

The calculations for 7, (%) = ™+ and b; ' (F*) = F»* are analogue. O

Remark 2.30. The Matheron-o -field o is the Borel-o-algebra of the Fell-topology and is fully charac-
terized either by the class Fy of FX.

Definition 2.31 (Random closed / open set according to Choquet (see [27] for more details)).

a) Let (2,0,P) be a probability space. Then a Random Closed Set (RACS) is a measurable
mapping
A:(Q,0,P) — (F,05)

b) Let 7, be a dynamical system on (2. A random closed set is called stationary if its characteristic
functions x a(.) are stationary, i.e. they satisfy X 4(.)(Z) = Xa(r,w)(0) for almost every w €
for almost all 2 € R?. Two random sets are jointly stationary if they can be parameterized by
the same probability space such that they are both stationary.

c) A random closed set I' : (2,0, P) — (§,035) w — I'(w) is called a Random closed
C*-Manifold i ['(w) is a piece-wise C*-manifold for P almost every w.

d) A measurable mapping
A:(Q0,P) — (§,03)

is called Random Open Set (RAOS) if w — R¥\ A(w) is a RACS.
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The importance of the concept of random geometries for stochastic homogenization stems from the
following Lemma by Z&hle. It states that every random closed set induces a random measure. Thus,
every stationary RACS induces a stationary random measure.

Lemma 2.32 ([38] Theorem 2.1.3 resp. Corollary 2.1.5). Let §,, C & be the space of closed m-
dimensional sub manifolds of R¢ such that the corresponding Hausdorff measure is locally finite.
Then, the o-algebra oz N §,, is the smallest such that

Mg :Fm >R M H"(MNB)

is measurable for every measurable and bounded B C R?.

This means that
Mga : G — MR M — H™(MN>)

is measurable with respect to the o-algebra created by the Vague topology on Dﬁ(Rd). Hence a
random closed set always induces a random measure. Based on Lemma and on Palm-theory,
the following useful result was obtained in [14] (See Lemma 2.14 and Section 3.1 therein).

Theorem 2.33. Let (2, 0, P) be a probability space with an ergodic dynamical system 7. Let A :
(2,0, P) — (F, 03) be a stationary random closed m-dimensional C* -Manifold.

a) There exists a separable metric space QC Em(Rd) with an ergodic dynamical system T and a

mapping A : (Q, Bg,P) — (3, 05) such that A and A have the same law and such that A still is
stationary. Furthermore, (x,w) — T,w is continuous. We identify Q0 = Q, A = Aand T = 7.

b) The mapping
e : Q= MMRY), wis pu,(-) :=H™(MN-)

is a stationary random measure on R? and there exists a corresponding Palm-measure wp if and only
if e has finite intensity.

c) There exists a measurable set A C €, called the prototype of A, such that XAw)(®) = X 4i(Taw)

~

for L + p,-almost every x and P-almost surely. The Palm-measure pip of y,, concentrates on A, i.e.
pp(\A) = 0.
d) If A is a random closed m-dimensional C*-manifold, then P(A) = 0.

Also the following result will be useful below.

Lemma 2.34. Let ;1 be a Radon measure on R? and let Q C R? be a bounded open set. Let
S0CF (Q) be such that §o — R, A — u(A) is continuous. Then

m: § x o — M(RY) (P,B)»—){AHM(AQB) bel
0 else

is measurable.
Proof. For f € C.(R?) we introduce m f through

s fdu BCP

my . (P,B)'—) {0 olse

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



Stochastic homogenization on perforated domains 25

and observe that m is measurable if and only if for every f € C. (Rd) the map my is measurable
(see Section[2.7). Hence, if we prove the latter property, the lemma is proved.

We assume f > 0 and we show that the mapping m is even upper continuous. In particular, let
(P,,B,) — (P,B)in§ x §, and assume that B, C P, for all n. > Nj. Since Q is compact,
Remark 2. implies that B C P N Q Furthermore, since f has compact support, we find
‘an fdp— [, fdu‘ < £l |(Br) — p(B)| — 0. On the other hand, if there exists a subse-
quence such that B,, ¢ P, for all n, then either B ¢ P and m¢(P,, B,) =0 — my(P,B) =0
or B C Pand0 = lim, oo mys(Py, By) < [ fdp = myg(P,B). For f < 0 we obtain lower
semicontinuity and for general f the map my is the sum of an upper and a lower semicontinuous
map, hence measurable. O

2.9 Point Processes

Definition 2.35 ((Simple) point processes). A Z-valued random measure /i, is called point process.
In what follows, we consider the particular case that for almost every w there exist points (xk(w))keN
and values (aj (w)),cy in Z such that

Mo = Z akérk(w) .

keN
The point process i, is called simple if almost surely for all £ € N it holds a;, € {0, 1}.

Example 2.36 (Poisson process). A particular example for a stationary point process is the Poisson
point process 1, = X, with intensity A. Here, the probability P(X(A) = n) to find n points in a
Borel-set A with finite measure is given by a Poisson distribution

N Ar
—e -
n!

P(X(A) =n) (2.34)

with expectation E(X(A)) = A |A|. The last formula implies that the Poisson point process is station-
ary.

We can use a given random point process to construct further processes.

Example 2.37 (Hard core Matern process). The hard core Matern process is constructed from a given
point process X, by mutually erasing all points with the distance to the nearest neighbor smaller than
a given constant r. If the original process X,, is stationary (ergodic), the resulting hard core process
is stationary (ergodic) respectively.

Example 2.38 (Hard core Poisson—Matern process). If a Matern process is constructed from a Pois-
son point process, we call it a Poisson—Matern point process.

Lemma 2.39. Let i, be a simple point process with a, = 1 almost surely for all k € N. Then
Xy = (zx(w))4ey Is a random closed set. On the other hand, if X, = (x1(w)),cy IS @ random
closed set that almost surely has no limit points then i, is a point process.

Proof. Let 1, be a point process. For open V' C R¢ and compact K C R let

fvr(z) =dist(z, RN\ (VNBR(0)), ff(z)= max{ 1-— %dist(:c, K),0 } :
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Then fy,g is Lipschitz with constant 1 and f£ is Lipschitz with constant ; and support in B;s(K).
Moreover, since /i, is locally bounded, the number of points z, that lie within B, (K') is bounded. In
particular, we obtain

x3v) =Y {w : /R fordp > 0} :

R>0

XE) =) {w S du > 0} :

d
5>0 R

are measurable. Since Fy and FX generate the o-algebra on § (Rd), it follows that w — X, is
measurable.

In order to prove the opposite direction, let X,, = (z(w)) oy be a random closed set of points. Since
X has almost surely no limit points the measure i, is locally bounded almost surely. We prove that
[ 18 @ random measure by showing that

Vf e C.(RY) : F:uwe f dyu,, is measurable.
R4

For & > 0let pd(A) :== (|S| 0%) " L(ANB,(X,,)). By Lemmas 2.29 and [2.34 we obtain that
Fs © w — [o. fdud are measurable. Moreover, for almost every w we find Fj (w) — F (w)
uniformly and hence F’ is measurable. O

Corollary 2.40. A random simple point process |1, is stationary iff X, is stationary.

Hence we can provide the following definition based on Definition [2.31

Definition 2.41. A point process /., and a random set P are jointly stationary if P and X are jointly
stationary.

Lemma 2.42. LetX,, = (;),.y be a Matern point process from Example with distance r and
letfor 6 < & be B(w) := |J; Bdx;. Then B(w) is a random closed set.

Proof. This follows from Lemma : X, is measurable and X +— B;(X) is continuous. Hence
B (w) is measurable. O

2.10 Unoriented Graphs on Point Processes

Definition 2.43 ((Unoriented) Graph). Let X = (xi)ieN C R? be a countable set of points. A graph
(G, X) on X (or simply G on X) is a subset G C X?. The graph G is unoriented if (x, y) € G implies
(y,x) € G. For (z,y) € G we write z ~ y.

Elements of G are usually referred to as edges. Classically, a graph consists of vertices X and edges
G, so the graph is given through (G, X). However, in this work the set of points X will usually be given
and we will mostly discuss the properties of G. This is why we adopt standard notations.

Definition 2.44 (Paths and connected graphs). Let X = (:vi)ieN C R? be a countable set of points
with a graph G C X2. A path in X is a sorted family of points (i1, ..., yny) € X, N € N, such that
forevery k € {1,..., N — 1} it holds y ~ yx,1. The family of all paths in X is hence a subset of
Uyen XV. The graph G is said to be connected if for every z,y € G, z # y, there exists N > 2
and apath (y,...,yn) € X¥ such that y; = z and yy = v.
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Remark 2.45. Let (y1, . .., yx) with be a path from 3, to ¥y, . A path from y; to ¥ is given by reversing
the order, i.e. by (Y, ..., Y1)

Definition 2.46 (Local extrema on graphs). Let X C R? be a countable set of points with a graph G.
Afunctionu : A C X — R has a local maximum resp. minimuminy € Aifforally € Awithy ~ y

it holds (1) > u(7) resp. u(y) < u(%)

2.11 Dynamical Systems on Z

Definition 2.47. Let <Q, f, IP)) be a probability space. A discrete dynamical system on Qisa family

(72):erz¢ of measurable bijective mappings 7, : Q) —  satisfying (i)-(iii) of Definition A set
A C Qis almost invariant if for every z € 7Z% it holds P (AU 7,4)\ (AN 7,4)) = 0 and 7 is
called ergodic w.r.t. 7Z¢ if every almost invariant set has measure 0 or 1.

Similar to the continuous dynamical systems, also in this discrete setting an ergodic theorem can be
proved.

Theorem 2.48 (See Krengel and Tempel'man [25] [36]). Let (An)neN C R? be a convex averaging

sequence, let (7,),c,z4 be a dynamical system on Q with invariant o-algebra . and let f : O—>R
be measurable with |E( )| < oc. Then for almost all & € )

AT > f(RL) = T RB(fl). (2.35)

2€EA,NrZd

In the following, we restrict to r = 1 for simplicity of notation.

Let 2y C R? We consider an enumeration (&)ien of Z% such that Q := QZ' = QN and write
& = (Qeyy Deyy - - ) = (1, Qa, ... ) forall & € . We define a metric on €2 through

A6, i 1 Jwrg, — Dol
1 2 1 ~ ~ .
7 2]+ g, — Wl

We write §2,, :== Qf and N,, := {k € N: k > n + 1}. The topology of () is generated by the open
sets A x Q?”, where for some n > 0, A C ,, is an open set. In case () is compact, the space {2
is compact. Further, QOis separable in any case since () is separable (see [23]).

We consider the ring
R=|J{AxQ" : AcCQ,is measurable}

neN

and suppose for every n € N that there exists a probability measure IP,, on €2,, such that for every
measurable 4, C , it holds P,, 1, (A, x QF) = P,(A,). Then we define

P(4, x Q") =P, (4,).

We make the observation that IP is additive and positive on R and P((}) = 0. Next, let (4;) ., be an
increasing sequence of sets in R such that A := U A; € R.Then, there exists 1211 C 2 such that

Al = {11 X QON” and since A; C Ay C --- C A, forevery j > 1, we conclude A; = A X QN" for
some A; C Q,. Therefore, P(4;) = IP’n(A ) = P, (A) = P(A) where A = A X QN" We have
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thus proved that P : R — [0, 1] can be extended to a measure on the Borel-c-Algebra on § (See [3,
Theorem 6-2)).

We define for z € Z% the mapping
72: 050, W T,w, where (%Zdj)fi = We,+, component wise .

Remark 2.49. In this paper, we consider particularly 2y = {0, 1}. Then Q= Q%d is equivalent to
the power set of Z% and every & € (2 is a sequence of 0 and 1 corresponding to a subset of Z.
Shifting the set & C Z? by z € Z? corresponds to an application of 7, to @ € €.

Now, let P(w) be a stationary ergodic random open set and let » > 0. Recalling the map
w +— P_,(w) is measurable due to Lemmaand we can define X,.(P(w)) := 2rZ* NP _z(w).

Lemma 2.50. If P is a stationary ergodic random open set then the set
X =X, () := X, (P(w)) := 2rZ* N P_,(w) (2.36)

is a stationary random point process w.r.t. 2rZ°.

Proof. By a simple scaling we can w.l.o.g. assume 2r = 1 and write X = X,.. Evidently, X corre-
sponds to a process on Z? with values in g = {0, 1} writing X(z) = 1if 2 € X and X(2) = 0
if z & X. In particular, we write (w, z) — X(w, z). This process is stationary as the shift invariance
of P induces a shift-invariance of I with respect to 7,. It remains to observe that the probabilities
P(X(z) = 1) and P(X(z) = 0) induce a random measure on €2 in the way described in Remark
2.49 O

Remark 2.51. If P is mixing one can follow the lines of the proof of Lemma to find that X,.(P(w))
is ergodic. However, in the general case X,.(P(w)) is not ergodic. This is due to the fact that by nature
(72),ez4 On €2 has more invariant sets than(7, ), ga. For sufficiently complex geometries the map

Q) — Qis onto.

Definition 2.52 (Jointly stationary). We call a point process X with values in 2rZ? to be strongly
jointly stationary with a random set P if the functions X p(.,), Xx(.) are strongly jointly stationary w.r.t.
the dynamical system (72,4) <74 ON 2.

3 Periodic Extension Theorem

We study extension theorems on periodic geometries. In what follows, we assume that the torus is split
into T = T, U T, and we denote T'; and T'5 the periodic extensions of T; and T5 respectively. In
order to get familiar with our approach, we first prove the following standard result, which was already
obtained in [7] and generalized to R? and W?(T}) in [20] (see also [22]).

Theorem 3.1 (Extension Theorem). Let T = T, U Ty with Ty CC (0, 1)¢ compactly and such that
0Ty is Lipschitz. Then, for every p € [1,00) there exists C' depending only on Ty, p and d such that
for every u € WP (Y}):

.

v (uu> ‘p < C/ (V| . (3.2)
Y;

1

~ |P
Z/{u‘ <C [ |uff, (3.1)
Yy

I
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Figure 2: Left: The periodic geometry T'; and T5. Middle: The boarder 9T is covered by balls of
a uniform size such that on each center x; there exists an extension operator from T'; N Bg(l‘i) to
Ty N IB%p(xi). Right: The microscopically glued extension operator maps functions with support T';
onto functions with support in the black and gray domain.

Proof. Since Ty CC (0, 1)d one proves by contradiction the existence of C' > 0 such that

][ QOD . (3.3)
Ty

In what follows we write © = le . Since JT, is Lipschitz, there exists a continuous operator U
WP((0,1)\Ty) — WP((0,1)%). Due to it holds

/ﬁuu—m+ﬂvsc/MMA
T Ty

voew (AT - [ e ([ wers
Ty T

VU u—-a)+a)" = [ |VUu-a)f
TQ T2
<C’(/ lu —al” + |V(u—ﬂ)|p>
Tl Tl
<C | |Vuff
T1

For u € WP(T,) and k € Z¢, we define U on R? by applying it locally on every cell I; :=

k + [0, 1)%. Hence U satisfies (3.1)—(3.2). O

The last proof heavily relied on the disconnectedness of T's. In case T is connected, the “gluing” of
the local extensions is more delicate.

Theorem 3.2. Let T = Ty U Ty such that ,0T is locally Lipschitz. Then there exist an extension

operator
U: WH(T) — WP (RY)

such that for some C' > 0 depending only on 6 and p it holds

/ [Uu|P < C’/ lul? | (3.4)
R T,

IV (U] < C / Vul” . (3.5)
R4 T,

Idea of Proof: In order to highlight the structure of the following proof, let us explain how the extension
operator is constructed. In Figurewe see on the left a Lipschitz surface 9T'; with maximal Lipschitz
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constant M, which can be locally covered by balls of radius p = dv/4M?2 + 5! (middle). Using the
extension operators given by Lemma we can extend u to the red balls that intersect T'5. The
extension operators on the various red balls are then glued together using a suitable partition of unity.
However, this leads to steep gradients in the black region on the right hand side, while Yu = 0 in
the white region. In particular, if u(x) = c is locally constant, these gradients are of order i. Hence,

proceeding globally in this way, the gradient V <Z/~lu> cannot be bounded by Vu.
To avoid this problem, in Step 2 we use a mesoscopic correction: Writing K, := (—a, 1 + a)d, and

Ko(2) = 2z + K, for z € Z% with a partition of unity 7, and the local extension operator I/, on
K, (z), we define the global extension operator through:

Uu = Z i (Z/N{z(u — Tu) + TZU> (3.6)

z€Z4

where T,u = fB(z) u for some suitable ball B(z). By this, we assign to the void space an averaged
value of the surrounding matrix. In Step 2 we heavily rely on the periodicity, which allows to apply a
T-periodic partitioning to R,

Proof. Step 1 (Local extension operator on (0, 1)%): W.l.o.g. we can assume that § < 1. Writing
K, :=(—a,1+ a)d the set 0T N K5 is precompact and can be covered by a finite number of balls

B,j2(xr), where p = 6v/4M? + 5" and (xk)kle c 0T N K.

In what follows, let n € C§°(—1,1) be a positive symmetric smooth function with 0 < n(z) < 1
on (—1,1), n(0) = 1 and monotone on (0, 1). We denote 7y := 1 o dist(-,9T; ) and nx(z) :=
n(p~! |z — xx|) for k > 1. In what follows we identify 7;, with their periodized versions. For every

—1
k>0letn, = (Zjio 77j> M. and note that 77, defines a partition of unity on 9T N K. Writing

U; for the corresponding extension operator from Lemmaon Bp(xi), we extend u by 0 to Rd\Tl
and consider

U: W (K N'Ty) — WHP(KG)

Uu = Z niUu + nou . (3.7)
ieN

For the following calculation, we further note that

o] -1 [e] —2 [e]

Vil = (Z m) Vi — (Z 77;-) m Y Vi
j=0 Jj=0 Jj=0

Z Vn;

Jj=0

and 1 < an < N as well as <N IVl

J=0

for some N depending only on the dimension d. Let B := {B,(x})}. Forevery i € {1,...,k}, the
number # {Bj €B | Bj N B; # Q)} of balls in B intersecting with B; is bounded by N. On each
ball we infer from Lemma[2.2]

[t <7 [l

B; Bs(xi)NT1

[ IV @uar <Tival, [ jupian vl
B;

Bs(x;)NP Bs(z;)NT1
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Similar estimates also hold for 77pu and summing over %, we obtain
~ p A~
I/{u‘ <7N lul” (3.8)

/1(5 KosNT1

~ ~ 1 ~
v (tu) ‘,, <TN— [uf? + 14M N IVl (3.9)

pp K25mT1 K25QT1

J.

Now let B C (24,1 — 25)d N T} be a ball with positive radius. By a contradiction argument, we obtain

p
/ lul’ < C (/ |Vul” + ][ u ) (3.10)
KosNT1 KoNTy B

and hence defining 7u := f, u we find
\% (Z;l (u— Tu)) ’p < 28MN |Vul? . (3.11)

/I‘((; KoNTq

Step 2 (gluing together the local extension operators): In what follows, for every z € Z¢ let
(Z;{zu> (-) := U(u(- + 2))(- — 2) the operator I{ shifted onto the cell z + K,s. Given some positive

7 € Co(K5) with 77] 9.1y« = 1 and symmetric w.r.t. the center of (0, 1)? we write 7, := 7j(- — z) such

that 7)., (0,1« = 1 and introduce 77, = 7./ (3, .7 72) which provide a (0, 1)%periodic partition
of unity. Note that at each z € R at most 2¢ functions 7, are different from 0. We now define the
operator U according to (3.6) with 7, : fB+Z u and U, from Step 1 to find

/Rd\Tl ]VZ/lu|p - /Rd\Tl \Y Z 12 (ZZZ(U - TZU) + TzU)
_ /R o |2 (Vi (G~ o) + 7o) + 2.9 (U wﬂ

p

p

2€74
p
< C V~ p uz — T, ‘ / z v z
< IVl (u—7u) LP+KATY) 2 Vi
2€74 e
+cY / \Y% (Zflz(u - Tzu)> " (3.12)
ez z+Ks

In order to derive an estimate on [, |Zz€Zd TquﬁZ‘p, note that for z;, 2, € Z% and z € R for all
i=1,...,ditholds 0;1,, = —0;7,, by symmetry and hence (writing K5(z) = z + K

/ ZTZanZ < Z Z/ IV P | Ty u — Topul”

2€2¢ 21 €79 zo€74 Ks(z1)NKs(22)
Thus, let 21, 25 € Z¢ such that (21 + Kas) N (22 + Kas) # 0. Since T is open and connected, one
can prove

[Tou — Topul” <O [Vaul” (3.13)
T1N[(214+K2)U(z2+K2)]

where C' depends on d, p and T';. Together with (3.9)—(3.11) we infer (3.5). Estimate (3.4) can be
proved in an analogue way. O
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4 Quantifying Nonlocal Regularity Properties of the Geometry

We have to account for three types of randomness. One is local, namely the local Lipschitz regularity.
The other is of global nature: We have to find a partition of R¢ such that on each partition cell the
extension can be explicitly constructed in a well defined way. In the case of periodicity this is evidently
trivial. However, since we lack periodicity, we have to replace the periodic construction of the extension
operator in Section [3| by something similar, but of stochastic nature. The key to this will be the local
(0, M )-regularity

The second problem will be overcome using a random distribution of balls within P(w) and a Voronoi
tessellation which is such that every Ball is contained in exactly one Voronoi cell. This construction is
based on the following observation.

Lemma 4.1. Let P(w) be a stationary and ergodic random open set such that
PPNI=0)<1.

Then there exists t > 0 such that with positive probability p, > 0 the set (0, 1)d N P contains a ball
with radius 4v/d.

Proof. Assume that the lemma was wrong. Then for every r > 0 the set (0, 1)? N P almost surely
does not contain an open ball with radius 7. In particular with probability 1 the set (0, 1)¢ N P does
not contain any ball. Hence (0, 1)d N P = () almost surely, contradicting the assumptions. O

The numbers t and p, from Lemma will finally lead to the concept of mesoscopic regularity of
the geometry P (w), see Definition Particularly the number t is important, as it affects also the
construction of the extension operator on the very microscopic level.

The third problem is the hardest: It is the necessity to quantify connectedness of a domain geometri-
cally and analytically.

4.1 Microscopic Regularity
Definition 4.2 ((§, M )-Regularity). Let P C R? be an open set.

1 Pis called (3, M)-regularin py € OP if M (p,d) < coand M > M (p, ), i.e. there exists an
open set U C R?! and a Lipschitz continuous function ¢ : U — R with Lipschitz constant
M such that 9P N B;(py) is graph of the function ¢ : U — R 7 — (7, $(T)) in some
suitable coordinate system.

2 P is called locally (0, M)-regular if for every py € OP there exists d(po) > 0 and M (po) > 0
such that P is (0(po), M (po))-regular in po.

3 P is called (globally) (3, M )-regular or minimally smooth if there exist constants §, M > 0 s.t.
P is (6, M)-regular in every py € OP.

The concept of (global) (&, M )-regularity or minimally smoothness can be found in the book [35]. The
theory of [35] was recently used in [13] to derive extension theorems for minimally smooth stochastic
geometries. A first application of the concept of (J, M )-regularity is the following Lemma, which is
important for the application of the PoincarA(C) inequalities proved in Section during the construction
of the local extension operators in Section
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Figure 3: How to fit a ball into a cone.

Lemma 4.3. Let P be locally (6, M )-regular. Then for every p, € OP with 6(py) > 0 the following
holds: For every § < 0 (po) let M := M (py,d) > 0 such that OP N Bs(po) is a M (po, d) Lipschitz

manifold. Then there exists y € P with [py —y| = ¢ such that with r (py) = it holds

5
4 A(1 M)
B, (5o)(¥) C Bs/2(po)-

Proof. We can assume that OP is locally a cone as in Figure With regard to Figure for pg € OP
with 6 and M as in the statement we can place a right circular cone with vertex (apex) py and axis

v and an aperture § = m — 2arctan M inside Bs(po), where av = arctan M (py). In other words,
it holds tan (o) = tan (Z52) = M. Along the axis we may select y with [py — y| = $. Then the

distance R of y to the cone is given through

2 2 2, o (7m0 ly — pol
— = R*+ R“tan (—) = R=——.
|y — pol 9 ENE
In particular 7 (pg) as defined above satisfies the claim. O

Continuity properties of 6, M/ and o

Our main extension and trace theorems will be proved for locally (&, M )-regular sets P and is based
on some simple properties of such sets which we summarize in this section. Additionally we introduce
the quantity p.

Lemma 4.4. Lett > 0, P be alocally (6, M )-regular open set and let My € (0, +oc] such that for
every p € OP there exists 0 > 0, M < M such that OP is (§, M )-regular in p. Define for every
p € OP

A(p) :=sup{3IM € (0, My) : Pis (6, M) -regularinp} , Oa(p):= —
o<t

Then OP is ) -regular in the sense of Definition|2.1 1| with
f(p,0):=(3IM € (0, My) : Pis (6, M) -regularinp) .

In particular, 65 : OP — R is locally Lipschitz continuous with Lipschitz constant 4 and for every
e € (0,3) andp € B.s(p) N OP it holds
1 —
1—

0(p) > 8a(5) > 6a(p) — Ip — Bl > (1 =) da(p). (@.1)

Remark 4.5. The latter lemma does not imply global Lipschitz regularity of da. It could be that
20a(p) < |p — p| < 3da(p) and p and p are connected by a path inside OP with the shortest path
of length 1004 (p). Then Lemma would have to be applied successively along this path yielding
an estimate of |0a(p) — 0a(p)| < 40 |p — p|.
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Proof of Lemmal4.4. 1t is straight forward to verify that f and Ja satisfy the conditions of Lemma
2.12 O

With regard to Lemma[2.2] the relevant quantity for local extension operators is related to the variable
8(p)/1/4AM (p)* + 2, where M (p) is the related Lipschitz constant. While we can quantify d(p) in
terms of §() and |p — 7|, this does not work for M (p). Hence we cannot quantify 3(p)/+/4M (p)® + 2

in terms of its neighbors. This drawback is compensated by a variational trick in the following state-
ment.

Lemma 4.6. Let P be locally (0, M )-regular and let § < 0 satisfy such that OP is §-regular.
Forp € OP andr < 0(p) let M,.(p) be the Lipschitz constant of OP inB,.(p) and define

~1
p(p) == sup 7”\/4]\@(10)2 +2 (4.2)

r<d(p)

p(p) := inf {5 < 8(p) : supry/4M,(p)* + 2_ = p(p)} . (4.3)

r<d

Then, p and p are positive and locally Lipschitz continuous on OP with Lipschitz constant 4 and OP is
p and p-regular in the sense of Definition In particular, for |p — p| < ep(p) or|p — p| < ep(p)
it holds respectively

L7 00> p(9) > o)~ Ip— Bl > (1—<) (o).
1—¢

T —5:P0) > p(B) > p(p) — Ip =Bl > (1 =€) p(p).

Remark 4.7. For the same reason as in Remark[4.5] The latter lemma does not imply global Lipschitz
regularity of p or p.

-1
Proof. Positivity is given by p(p) > d(p)\/4M(p)> +2 .Lete > 0and |p—p| < j(p). For
r < p(p) sufficiently large it holds |p — p| < er implying pis ((1 — &)r, M, (p))-regular. From here
we conclude that OP is p-regular and the above chain of inequalities follows from Lemma(2.12

Now let [p — p| < ep(p) < €(p) implying 6(p) > (1 — e) d(p) by Lemmal4.4] For every > 0 let

ry < 6(p) such that p(p) < (1+n)ry1/4M, (p)> +2 . Sincer, > p(p) and |p — p| < ep(p)
we find B, (p) D B(1—), (P) and hence M1 _.), (p) < M, (p). This implies at the same time that
OP is p-regular and that

> 1—5) > (1—5)7”,, Z(1—5)
\/4M(1 o (B2 +2 A, P v2 ()

Since 1) was arbitrary, we conclude p(p) > (1 — &) p(p). Moreover, we find [p — p| < ;=-p(p). From
here, we conclude with Lemma O

Lemma 4.8. Lett > 0, P C RY be a locally (5, M)-regular open set and let My € (0,+0o0]
such that for every p € OP there exists 6 > 0, M < M, such that OP is (0, M )-regular in p. For
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a € (0,1] fetn(p) = ad(p) from Lemma[4.4 or n(p) = ap(p) orn(p) = ap(p) from Lemmal[4.§
and define

My (p) = 55771{ i 1nf {Pis (0, M) -regularin p} . (4.4)

mp, (p, §) = 5>m111?§(p) o 1]r\14f {Pis (0, M) -regularin p} , (4.5)

Then, for fixed £, M, (), mp(p, &) : OP — R are upper semicontinuous and on each bounded
measurable set A C R? the quantity

Mpa = sup Mp(p) (4.6)

with M 4 = 0 if A N OP = () is well defined. The functions
M[’ZLA - R — R, M[U]7A<x) = M[ULA'HC with M[ﬂ]yA(O) = M[ULA
are upper semicontinuous.

Remark 4.9. In order to prevent confusion, let us note at this point that M/, defined in (4.9) is different
from Mj,;. In particular, M, is a quantity on R?, while My, is a quantity on OP. Furthermore, as the
last lemma shows, M|, is upper semi continuous, while ), is only measurable.

Notation 4.10. The infimum in is a lim inf for § N\, 7(p). We sometimes use the special notation

My () == My po(0) () -

£

Proof of Lemmal4.8 Let p,p € OP with |p —p| < en(p). Writing £ := = and 7 (p,e) =
(25 +¢) n(p) and

M(p,e) = ij\n4f {Br(pyg) (p) N OP is M-Lipschitz graph}

as well as we observe from 7)-regularity that B, 5 (9) C B,(.)(p) and B,y (p) C B,(5.6 (D). Hence
we find
My (p) < M(p;e).

Observing that M (p,g) ~\ My, (p) as € — 0 we find limsup;_,, M(p) < M, (p) and M is
u.s.C.

Let v — 0. First observe that M) 4 = max, .z M, (y). The set A'is compact and hence A+ 1 —

A in the Hausdorff metric as # — 0. Let y, € A + x such that M, (y,) = M4 (). Since
A+ 2z — Awlo.g. wefindy, — y converges and y € A. Hence

M, (y) > limsup My (y,) = limsup Mp; a(2) .
z—0 x—0

In particular, M, 4(-) is u.s.c. The u.s.c of mp;(p, £) can be proved similarly. O

Corollary 4.11. Lett > 0 and let P C RY be a locally (5, M )-regular open set, where we restrict
d by 6 (-) < . Then there exists a countable number of points (py),cy C OP such that OP is
completely covered by balls B, (pi) where f (p) := 27°p (p). Writing

pr = pPr), Ok = 0(pk)-
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For two such balls with B;, (px.) N B, (p;) # 0 it holds

15 _ <5 < 16 _
—Pi > Pk > TP

31 1 55
and 15 min {0i, ok} > |pi — Pl > 5 max {pi pi} -

, b _
Furthermore, there exists ty > — (rmpy (/D) and y;, such that By, (yr) C B, /s(pr) NP and

Bor, (yr) N Bar, (y;) = 0 fork # j.

Proof. The existence of the points and Balls satisfying (4.7) follows from Theorem [2.13] in particular

(2.20). It holds for B, (px) N B, (p;) # 0

- 16 5
lpi — Pl < i+ pr < (E+1> Di .

Lemmal4.3]yields existence of y;, such that B, (yx) C By, /s(pr) N P. The latter implies B, () N
B, (y;) = 0 for k # j. O

Measurability and Integrability of Extended Variables

Lemma 4.12. Lett > 0, P C R be a locally (5, M)-regular open set and let My € (0, +0o0]
such that for every p € OP there exists 6 > 0, M < M, such that OP is (6, M )-regular in p. For

a € (0,1] fetn(p) = ad(p) from Lemmal[4.4 or n(p) = ap(p) orn(p) = ap(p) from Lemmal4.
and define

@) = inf {n(#) : 7€ OPstw By (@)}, (4.8)

M[n],Rd(:c) = sup {M[n] () : T € OPstxe B,y (i)} , (4.9)

where inf () = sup () := 0 for notational convenience. Furthermore, write A := F~'((0, 3t)) for

F = inf f,,

pedP

fo) = {n(p) ifz € Bup (p) ‘

2t else

then 1) is measurable and M, is upper semicontinuous.

Proof. Step 1: Let (p;),cy C OP be a dense subset. If © € B, (p) for some p € OP then
alsox € By, (p) for |p — p| sufficiently small, by continuity of 7). For every p € 0P consider the

function fp(x) as introduced above. Then every f, is upper semicontinuous and ' := inf;cy fp, is
measurable. In particular, the set A is measurable and thus 77 = x 4 F' is measurable.

Step 2: We show that for every a € R the preimage M[;}%Rd([a, +00)) is closed. Let (), be a
sequence with M, ra(71) € [a,+00). Let (pr) C OP be a sequence with |z — pi| < 1(pk).
W.l.0.g. assume p;, — p € OP and x;, — = € R?. Since 7 is continuous, it follows |z — p| < n(p).
On the other hand M, (p) > lim sup,,_,, My (px) and thus M, ga(x) > My, (p) > a. O
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Lemma 4.13. Under the assumptions of Lemmal4.13 there exists a constant C' > 0 only depending
on the dimension d such that for every bounded open domain Q it holds

/ X0l < C / N MG (4.10)
ANQ ANB ¢ (Q)NOP
/ My < C/ n'~ “MﬁfRf. (4.11)
ANQ AMB ¢ (Q)NoP
Finally, it holds
N 3
z € B, = ) >n) > ). (4.12)

Remark 4.14. Estimates (4.10)—(4.11) are only rough estimates and better results could be obtained
via more sophisticated calculations that make use of particular features of given geometries.

Proof. Step 1: Given x € R? with 7j(z) > 0 let
P, € argmin {n(f) 2 €0Pstx e ]B%%n(j)(it)} . (4.13)

Such p,. exists because OP is locally compact. We observe with help of the definition of p,., the triangle
inequality and (2.19)

n(p) 3

z€B1,p) = nb)<ul) = lp-pl<=7 = a0l) > nb).

The last line particularly implies (4.12) and
VpE@PVmEB%(p) o) > ——.

Step 2: By Theorem we can chose a countable number of points (m)kEN C OP such that
I’ = 9P is completely covered by balls By, := By, (px) where £(p) := 27*n(p). For simplicity of
notation we write 7, := 1(px) and & := £(px). Assume = € A with p, € T given by . Since
the balls By, cover T, there exists py, with |p, — pr| < & = 27, implying n(p.,) < nk and

hence |z — pi| < (2 +

24 I > e < 1677k Hence we find

Ve e A dpg - xEIB%l%nk(pk).

Step 3: For p € I' with x € Bln(p)( )N By, )(px) we can distinguish two cases:

1 1(p) > 0(pa): Then p; € Bs,yi,) (p) and hence 1(pz) > gn(p) by [@-19).

1-3
2 1(p) < n(ps): Then p € By,yi,,) (p:) and hencen(p.) > 1=n(p) = 3n(p) by 2-19j>-

and hence

> gn(p)'

Step 4: Let k € N be fixed and define B), = Bink (pk), My, := M (py, ink). By construction, every
B; with B; N By, # () satisfies n; > inx and hence if B; N By, # 0 and B; N B; # () we find
lpj — pi| > 1k and |p; — pi| < 3n. This implies that

T € Bin(p) (p) = i(x) = 1(pz)

3C>0: Vk #{j: BjNB,#0}<C.
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We further observe that the minimal surface of B, N JP is given in case when B;, N OP is a cone
with opening angle 2 — arctan M (py). The surface area of By N 0P in this case is bounded by

Sé- 2| un Mk + 1)2 “ This particularly implies up to a constant independent from k:

AT SR
ANQNP ANBiNP

k: B;JWQ#@

< ¥ / WM
k: B,NQ£0 ANBNOP

< l—a g sd—2
S /A m M
MBy (Q)noP

The second integral formula follows in a similar way. O

|

4.2 Mesoscopic Regularity and Isotropic Cone Mixing

In what follows, we built upon Lemma[4.1]to motivate our definition of mesoscopic regularity (Definition
by the following two Lemmas.

Lemma 4.15. Recall X, (P(w)) := 2rZ* N P_,(w) = {x € 2rZ* : B;(x) C P} from Lemma
[2.50 and assume t < . Let

el ) = £ NBy(X(P)))

then there exists a constant Ao > 0 such that for almost every w € 1 it holds for all reqular convex
averaging sequences A,

lim inf |An|71 Pwe(An) > Ao (4.14)
n—oo

Remark. Note that 1, . is stationary with respect to shifts in 2¢Z< but not ergodic in general. It cor-

responds to the function [S?*| (%)dXt(P(w)) on 2tZ¢ and by stationarity, Theorem [2.48| yields
convergence

A Y (3) K(PW) = i)

2€ApNXy (P(w))

Inequality implies E(1,,.|-7) > Ao a.s.

Proof of Lemmal4.15 Due to Lemma [4.1] with probability p, > 0 the set I N P contains a ball
B, /z () and thus the set (I N P)—3\/3t contains a ball B, ;;.(x). In particular, the stationary ergodic

51 (Vi) | Lo

fio (I_5./g.) > 0. Then there exists « € (INP)_, . and thus there exists 2 € X (P(w)) N I with
B:(x) C L It follows

random measure fi,,(-) := L(- NP_; s (w)) has positive intensity Ao > De

»

_ _ 24 24
fo(l_syg) < fio (@) < 1= m )) < Wuw(ﬂ)-
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Since /i, is stationary ergodic and A,, is regular we find

d ~
71 (Vi) | < o (Lyya) < %o < B( (D) = liminf |4, ™ (4,)

d

P

lim inf | A, ™" pee(An) -

P —
- td |Sd*1’ n—00

O

Lemma [4.1] suggests that starting at the origin and walking into an arbitrary direction, it is almost
impossible to not meet a ball of radius t that fully lies within P (w). However, this is in general wrong,
as for a given fixed direction one may already find periodic counter examples. In what follows, we
will therefore use the weaker concept of isotropic cone mixing (Definition which is based on the
following observation:

Lemma 4.16. Let ((v5,;)), oy C S*' x (0,75) be countable. Then for every x € R” and each
j € N there holds
lim P(X, (P)NC,, a0, r(x) #0)=1.

R—o00

Proof. By stationarity, we can assume z = 0 and by Lemma the random measure (i, . has
strictly positive intensity.
We write Cp := (C,,].’aj’eR(O) and denote by Cy the cone with the same base as Cp but with apex

—v;R. Then Cp is a regular convex averaging sequence. Furthermore, it holds £ (@R) J/L((CR)) =

eiﬁR — 1 implying E(@R\(CR> E(CR>_1 — 0as R — oco. Thus
o < pinf £(Ca) s (Cr)
— ngi(gfc(@R)l (Mw,t(cR) e <@R\CR>> —lim gf£<@3>luw,t(63) .

where we use 0 < i, . <CR\CR> < E(@R\CR> — 0as R — oo. We infer that /1, .((Cr)) =

O(R?) and hence the statement (C, has to contain infinitely many balls B (;)). O

The following definition is a quantification of Lemma

Definition 4.17 (Isotropic cone mixing). A random set P(w) is isotropic cone mixing if there ex-
ists a jointly stationary point process X in R? or 2tZ%, v > 0, such that almost surely two points
z,y € X have mutual minimal distance 2t and such that B: (X(w)) C P(w). Further there exists
a function f(R) with f(R) — 0as R — coand a € (0, %) such that with E := {e1,...¢e4} U
{—e1, -+ —eq} ({e1, ... eq} being the canonical basis of RY)

P(Vee E: XNC.ar(0)#0)>1- f(R). (4.15)

Criterion 4.18 (A simple sufficient criterion for (4.15)). Let P be a stationary ergodic random open
set, let f be a positive, monotonically decreasing function with f(R) — 0 as R — oc and lett > 0
S.t.

P(3z € BR(0) : B, 5(z) CBr(0)NP) >1— f(R). (4.16)
Then P is isotropic cone mixing with f(R) = 2df((a + 1) R) and with X = X,(P). Vice versa,
if P is isotropic cone mixing for f then P satisfies . with f = f.
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Definition 4.19 (Mesoscopic regularity). A random set P satisfying Criterion is also called meso-
scopically regular and f is the regularity. P is called polynomially (exponentially) regular if 1/ f grows
polynomially (exponentially).

Proof of Criterion[4.18. Because of P(A U B) < P(A) 4+ P(B) it holds fora > 1
P(3e € E : Fz € Br(aRe) : B, . (z) C Br(aRe) NP) < 2df(R) .

The existence of B, /;.(z) C Br(aRe) NP (w) implies that there exists at least one = € X, (P (w))
such that B: (z) C Br(aRe) N P(w) and we find

P(ae €E : #z € X,(P): B:(z) C Bp(aRe) N P) < 2df(R).

In particular, for « = arccos a and R large enough we discover

P(Je € E : Xe(P)NCepainr (0) =0) <2df(R).

The relation holds with f(R) = 2df((a +1)"" R).

The other direction is evident. O

Note that Criterion |4.18|is much easier to verify than Definition However, Definition is for-
mulated more generally and is easier to handle in the proofs below, that are all built on properties of
Voronoi meshes.

The formulation of Definition[4.17|is particularly useful for the following statement.

Lemma 4.20 (Size distribution of cells). Let P(w) be a stationary and ergodic random open set that
is isotropic cone mixing for X(w), t > 0, f : (0,00) = R anda € (0,%). Then X and its Voronoi
tessellation have the following properties:

1 IfG(x) is the open Voronoi cell of x € X(w) with diameter d(x) then d is jointly stationary with
X and for some constant C',, > 0 depending only on «

P(d(z) > D) < f(C;lg) : (4.17)

2 Forz € X(w) letZ(x) :={y € X : G(y) NB(G(x)) # 0}. Then

#7(x) < (M)d : (4.18)

T

Proof. 1. W.l.o.g. let z; = 0. The first part follows from the definition of isotropic cone mixing: We
take arbitrary points x4, € Ciei,a,R(O) N X. Then the planes given by the respective equations
(x — %xij) - x4; = 0 define a bounded cell around 0, with a maximal diameter D(c, R) = 2C, R
which is proportional to R. The constant C,, depends nonlinearly on v with C, — oo as o —

Estimate (4.17) can now be concluded from the relation between R and D(«, R) and from (4.15).
2. This follows from Lemma[2.15 O

s
5
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Lemma 4.21. Let X, be a stationary and ergodic random random points process with minimal mutual
distance 2t fort > 0 and let f : (0,00) — R be such that the Voronoi tessellation of X has the

property
Vo €tZ? : P(d(x) > D)= f(D).

Furthermore, letn, s : X, — [1, 00) be measurable and i.i.d. among X, and let n, s, d be indepen-
dent from each other. Let
G () =n(z) (G(z) —2) + 2

be the cell G(x) enlarged by the factor n(z), let d(x) = diamG(x) and let

ba(y) = > Xeawd(x)"s(z) n(z)

reXe

wheren, &, ( > 0 is a constant. Then b,, is jointly stationary with X, and for every r > 1 there exists
C € (0, +00) such that

<C ( Z (k + 1)d(p+1)+77p+r(p71) (S + 1)£p+7"(p71) (N + 1)d(p+1)+ép+r(p71) Pd,kPn,NR,S) ‘
k,N=1

where

Py :=P(d(z) € [k,k+ 1)) = f(k) — f(k+1),
P~ :=P(n(z) € [N,N+1)),
Py s :=P(s(z) € [S,S+1)).

Proof. We write X, = (), ., di = d(2;), ni = n(x;), s; :== s(x;). Let

ieN?
Xk,N7s<w) = {JIZ - Xt : dl - [k?,k'+ 1), n; € [N,N+ 1), S; € [S,S+ 1)}

with Ay y g 1= UweXk,N,s G(z) (). We observe that

Vx € R? . # {ZL‘Z S Xk,N,S T r e Gn(xl)(l’z)} < Sé-1 (N + 1)d (k? + 1)dt_d, (4.20)

which follows from the uniform boundedness of cells Gn(m) (a;) T € Xk,N and the minimal distance of
|z; — x| > 2t. Then, writing B := Bg(0) for every y € R? it holds by stationarity and the ergodic
theorem

IP’(y € Gm(l',) DX € ch,N) = P}glc}o |BR|_1 |Ak7]\[ N BR|

< li - (z;
< lim |Bg|™ |Br N U Gu()

:EZ'EX]C’N

< 1 -1 d—1 d d_—d
< lim |Bgl ST+ ) (k+ 1)

wiEXk’NﬂBR

= PypPpy (N + 17 ST (k+ 1)
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In the last inequality we made use of the fact that every cell G, () (), © € X} n, has volume smaller
than S (N + 1)% (k + 1)". We note that for ]lj + é =1

/. (2 X6, (0)s(z >5n<x><)p

zeXe

oo 0 o0

/ ZZZ Z XGriay(@) (k+1)" (N +1)5(S+1)°

=1 N=1 5=1 zeXst

P

/(Z ast)q Z OszS Z XG(a) () k—i—l) (N+1)£(S+1)<

k,N,S=1 k,N,S=1 IEX}C’NS

Due to (4.20) we find

Z XG(z) (@) < X Ap. v (N —+ 1)d (k + 1)d |Sd—1‘

CL‘EXk-VN

D
and obtain for ¢ = 7 and C; := (ZZ?MS:I aZ’MS) IS

|BR| B <ZXG ()5n(x)c>

zeX
1 o B
=G B Z Oék,]lj\/,SXAk,N,s (N + 1)dp+gp (k+ l)dp'H’p (S + 1)510
’ Rl Br \k,N,5=1

o ( D s (b DTN 4 ) T (S 1)§pPs,sPd,kPn,N>
k,N,5=1

Forthesum » °\ o aff y ¢ to converge, itis sufficientthatay y ¢ = (k+1)"" (N +1)7" (S + 1)

for some > 1. Hence, for such 7 it holds cvz v.s = (k + 1) ""/7 (N +1)""/7(S 4+ 1)""/* and thus
(4.19).

O

4.3 Discretizing the Connectedness of (9, M )-Regular Sets

Let P(w) be a stationary ergodic random open set which is isotropic cone mixing for v > 0, f :
(0,00) = Rand a € (0,%). Then X¢(P(w)) = (zx),cy generates a Voronoi tessellation ac-
cording to Lemma with cells G, and balls By, = B./2(xx). While the (6, M )-regularity of P
is a strictly local property with a radius of influence of 9, the isotropic cone mixing is a mesoscopic
property, with the influence ranging from t to oo.

In this part, we close the gap by introducing graphs on P that connect the small local balls covering
OP with X, in P. The resulting family of graphs and paths on these graphs will be essential for the
last step in Section

Definition 4.22 (Admissible and simple graphs). Let X := (p;),cy C OP with corresponding
Yox = (Yk) ey like in Corollary and let Y C P be a countable set of points with 0X U Ygx U
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Stochastic homogenization on perforated domains 43

Figure 4: In order to treat the differences
|7;u — M jul|® appearing in Theorem|[6.3|be-
low, it is necessary to construct a graph that
connects the boundary with the centers of the
Voronoi tessellation.

X C Yand let (Y,G.(P)) be a graph. Then the graph G..(P) on Y is admissible if it is connected
and every p; € 0X has exactly one neighbor y = vy, € Ygx. An admissible graph is called simple if
every yr € Ypsx has - besides py, - only neighbors in Y\ Ygx.

The following concept will become important later in Section . For reasons of self-containedness, we
introduce it already at this point.

Definition 4.23 (Locally connected P and Gg,). Assume that (Y, G(P)) is an admissible graph
on P with the property that for y1,y, € Ygx with corresponding p1,p. € OX it holds y; ~ s
iff Bs, (p1) N By, (p2) # 0. The graph G, (P) consists of all elements of G(P), except those
(y1,y2) € Y2y for which there is no path in Baj, (p1) NP orin Bas, (p2) N P connecting y; with ys.
If Gqat (P) is connected, the set P is called locally connected.

Locally flat geometries will turn out to be particularly useful as they allow to construct tubes around
paths that fully lie within P and connect the local with the mesoscopic balls.

Definition 4.24 (Admissible paths). Let (Y, G(P)) be an admissible graph on P and let AX(y, x)
be a family of paths from y € Ygx to x € X, which are constructed from a deterministic algorithm
that terminates after finitely many steps. Assume that for every Y = (yy,...,yx) € AX(y, z). If
t; = t(y) is the radius of y from Corollaryassume there exists

Yo € C([0,1] x By, (y); P) with  Yo(t, By, (y)) =B (2),
such that Yy (¢, B, (v)) is invertible for every ¢ and Y;(0, z) = x. Then the family AX(y, x) is called

admissible.

A general approach to construct admissible graphs and paths on locally connected P

For a particular family of random geometries, there might be sophisticated ways to construct Y and
the families AX(-, -). However, it is interesting to know that such a graph can be constructed very
generally for every locally connected geometry. In this section, we will thus introduce a concept how
to transform the domain P into such a graph, thereby bridging the gap between the local regularity of
OP and the mesoscopic regularity. The basic Idea is sketched in Figure
The grid Let P C R? be open and t > 0. For x & OP let

n(x) := min {dist(z, OP) , 2t} (4.21)

and 1 = }177. Then we find the following:
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Lemma 4.25. Let P be a connected open set which is locally (6, M )-regular. Fort > 0 let X, =
(7k) weny be a family of points with a mutual distance of at least 2t satisfying dist(zy, OP) > 2t and
let OX := (pi)peny C OP with corresponding (pi) ey » (k) gey € R and Yox := (yi) ey like in
Corollary|4.11| Then there exists a family of points X = (D) ey € P with X, C X such that with

ﬁk = ﬁ(ﬁk)’ Bk = Bfik (ﬁk) and Bk = Bﬁk (pk) the fam//y (Bk>k€N U (Bk> heN covers P and

. _
A 5l < < 21
B.NB; #0 = 1 (4.22)
and 3min {7, Gk} > |pi — Pi| > §max{ﬁiuﬁk} :
Furthermore, Bj, N Bj = () implies
5 <~<1 dn; < |p |<4 (4.23)
14Pk_77 _3 Ny > 1Pj — Pk 3Pk7 :
ie. By, (yx) NB 15, (p;) = 0. Finally, there exists C' > 0 such that for every € P
# {j eEN: ze B%ﬁj(ﬁj)} +#{keN: zeB, (y)} <C. (4.24)
Notation 4.26. Summing up and extending the notation of Lemma[4.25| we write
OY = 0X 1= (pi)ey C OP, X C Xi= (), C P, X:=0XUX, 25

Yox = (Ur)pen Y= (yr)pen UX  Y:=YUOY.
The meaning of introducing the symbol Y will be clarified below.

For p € OX we write 7j(p) := f(p) and for p € X we use the above notation (4.21) and further define

t(y) i=vfory =y; € Yox,  t(y):=<iy) fory € (b)), - (4.26)

We finally introduce the following bijective mappings

OOlH

(y) = {pk ify =yr € Yox 7 y(z) = {yk ifx =p, € 0X . 4.27)

p; ify=p; €X pj itr=p; X

Proof of Lemmal4.25. We recall p := p (py) := 27°p (py) and ty, = m and that holds.
Furthermore, B, (yx) C B, /s(px) NP and hence B,, (yx) N By, (y;) = 0 for k # ;.

If we define P 5 := P\ |, B and observe that P  is 7)-regular (for 1) defined in ). Then Lemma
m and Theorem yield a cover of P g by a locally finite family of balls B, = By, (Px), where
(ﬁk)keN C Pp, and where holds. Looking into the proof of Theorem we can assume
w.l.o.g. that (24) .y C (Pr) ey Y Suitably bounding 7.

Furthermore, we find for B, N B]- #+ ( that

- - . 5 N 1. 4
M+ Pk > 1Dy — prl > 47 = Mj < 5Pk and 1p; — il < 3Pk

Next, for such p;, we consider all B; such that p; € By, (py) and since p; & B; for all such 7, we
infer dist(p;, OP) > p(p;) and hence by Lemmal4.6]

1—21% 3
7T8pk: > — Pk -

NZ‘:2_7Z‘>2_
p pi > 1 T4

| =

nj =
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Finally, B, (yx) N B, (p;) = 0 follows from 2 py, < 47; < |p; — pil-

To see let z € P and let p; such that 7); is maximal among all B; with = € B;. Let p; with
T € BZ N Bj and observe that both |]5¢ — ﬁj| and 7); are bounded from below and above by a multiple
of ;. f v € Ei N Bk N B-, |D: — Pr| is bounded from above and below by 7;, hence by 7);. This
provides a uniform bound on # {j eN: z € By (ﬁj)}. The second part of follows in an
analogue way. O

Definition 4.27 (Neighbors). Under the assumptions and notations of Lemma for two points
y1,y2 € XU Yox let 21 = x(y1), v2 = x(y2). We say that y; and y, are neighbors, written y ~ s,
if Bijz,) (1) N Bij(an)(22) 7# 0. This implies a definition of “neighbor” for x1, 2, € X . For z € 0X
and y € Yox we write x ~ y if £ = x(y). We denote by G (P, X), Go(P) or simply G(P) the
graph on XU Yox U OX generated by ~.

Remark 4.28. a) Every y € Yyx has a neighbor z € 0X.
b) Besides (), points € 9X have no other neighbors.

The admissible paths We will see below that G, (P) is admissible if P is connected. Besides
Go(P) we introduce further (reduced) graphs on X, which are based on continuous paths. For two
points z,y € P we denote

Po(z,y) :={f € C([0,1;P) : f(0) =z, f(1) =y} .

Definition 4.29. Using the notation of Lemma |4.25| the graph

Gsimple(P) = {(1/173/2) € Gﬂat<P) : (ylva) € Y%X}

is the subset of G(P) where all elements (y1, y2) and (2(y1), 2(y2)) are removed for which yy, y» €
Yox. Furthermore, if v, € Yax with p, = 2(yx) € 0X has a neighbor p; € X such that y, and
p; are not connected through a path which lies in B,y (px) N P, then (y(pr), ;). (D;,y(pk)) are
removed.

We write G..(P) for either Go(P), Gaat(P), Gaimpie(P) or any other subset of Go(P) which is
connected.

Lemma 4.30. Assume (X, Gq.t(P)) is connected, assume y € Ygx and y, ~ y. Then there exists
v E C([O, 1] x B (0); P ﬂIB%gﬁ(x(y))(x(y))> such that (-, z) is a path from y + 2t(y)z to

y1 + e (y1)z, for two points x1, x5 € B« (0) it holds either (-, x1) N (+,z2) = 0 ory(-,x1) C
(-, ) ory(-,x1) D (-, x2) and there exist constants cy, ¢y, c3 depending only on the dimension
but not on y ory; such that

Vi € [07 1] Bcl min{t(y),t(yﬂ}(’}/(ta O)) - 7([07 1] X BT%(O))
Vz € B (0) Lengthy(t,2) < c2ly — w1 -
We denote 7y as [y, y1].

Proof. Lety € Po(y,y1). 1ty € Ygx we infer from Lemmaﬁbelow that B 1,5, (1) C Bssa) (@(y))-

We recall that OP MB35, ((y)) is a graph (-, ¢(+)) of a Lipschitz continuous function ¢ : R* —
R and that both B, (, () and B(,,)(y1) as well as ([0, 1]) lie below that graph. We project B, (y)
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and By(,,)(y1) as well as 7([0, 1]) onto the sphere z(y) + 2p(x(y))S?~*, which still do not intersect
with the graph of ¢. From here we may construct v satisfying the claimed estimates. Since B,y (y) C

B 5o (2()) and Beyy) (41) € Bijiaq ) (@(01)) and [y —y1] > 2 min {p(z(y1)), s(z(y))},
we conclude that the constants can be chosen independently from y.

Ify € Y we can proceed analogously. O

Lemma 4.31 (G((P) is admissible). Under the assumptions and notations of Lemma for every
Yo, y1 € Y there exists a discrete path from y to y; in (X, Go(P)).

Proof. Since P is connected, there exists a continuous path v : [0,1] — P with v(0) = yo,
(1) = 3. Since ¥([0, 1]) is compact, it is covered by a finite family of balls By, (y), y € Y. If
7([0,1]) C Bjiyy)(yo) the statement is obvious. Otherwise there exists a maximal interval [0, a),
a < 1, such that v([0,a)) C Bjye)(yo), v(a) & Biiye)(yYo)and there exists y # yo such that for
some e > 0((a—e,a+¢)) C By (yo) N Biy)(y). One may hence iteratively continue with
Y := y on the interval [a, 1]. O

Hence, every two points in Y can be connected by a discrete path. However, the choice of the path is
not unique, there might be even infinitely many with arbitrary large deviation from the “shortest” path.
Luckily, it turns out that it suffices to provide a deterministically constructed finite family of paths.

Definition 4.32 (Admissible paths on G, (P)). Let P C R? be open, connected and locally connected
with G..(P) such that the assumptions of Lemma [4.25| are satisfied. Let 2 € X,. We call any family
of paths which connect y € Y\{z} to x admissible, if it is generated by a deterministic algorithm
that terminates after a finite number of steps. Hence, an admissible path from y to = in G.(P) is a
path (x1,...,x;) with z; = y, 2, = x generated according to this algorithm. We denote the set of
admissible paths from y to x by AX, (y, ).

Notation 4.33. Let z; € X, p; € Yoxand Y = (y1,...,yn) € AX(p;, z;). Recalling (4.26), for
x € B,,(0) we define Yy(z) the set of paths connecting y; + , Yy + %x Yy + 1) g chosen
as straight line if y;, y;41 € Yo and (-, ) from Lemma else and

V(B (0) = | Y.

z€By, (0)

In what follows, we are usually working with the latter expression and hence introduce for simplicity
of notation the identification Y = Y;(B,,(0)). In this way, Y is an open set and the characteristic
function xy € Ll(Rd) is integrable as Lemma the next Lemmawill reveal. Finally, by Lemma
there exists C' > 1 such that independent from z;, p; and = € By, (0) it holds

éLength(Y(@) < Length(Y) := Length(Y'(0)) < CLength(Y (z)). (4.28)

Remark 4.34. 1. Every path admissible in the sense of is admissible in the sense of This
ffo)llows from Lemmaand the fact that for y, § € Yo withy ~ g itholds B1,) (y) C Bag(g) (9) C

2. A particular family of admissible paths is given by the shortest distance. In particular, if r € X,. and
y € Y\{z} we define the shortest paths as

k
AXghort (Y, ) 1= arg min {Z |zic1 — x| o (21,...,2%) pathin G.(P),
i=1

kEN;$1:y7Ik:$}
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Construct a finite family In what follows, we will construct a class of admissible paths on G..(P)
which does not rely on the metric graph distance. We study the discrete Laplacian L, : LQ(Y) —
L*(Y) on an admissible graph G..(P) given by

L) (@) =— S —— (uly) — ulx)) -
(et |~ Yl

It is well known that L is a discrete version of an elliptic second order operator, see [4, [11], [16] and
references therein. This may be quickly verified for the “classical” choice Y = hZ< with z ~ y iff
|z — y| = h (using Taylor expansion and the limit b — 0).

The discrete Laplacian is connected to the following discrete Poincaré inequality.

Lemma 4.35. Let P C R? be open, Dconnected and satisfy the assumptions of Lemma , let
(X, G.(P)) be admissible and let 0 € Y. Writing

Ho(Y) ={u:Y—>R: YyedY: u(y) =0},
Ho(YNBR(0)) := {u € Ho(Y) : Vy € Br(0) : u(y) =0} .

There exists Ry > 0 and C, > 0 such that for every R > R the following discrete PoincarA(C)
estimate holds:

2
Vue Hy(Y): u(0)?<Cr, > (ulyn) = ulyz))” a2
y1,y2€YNB R (0) ’yl - yz\
y1~Y2

Proof. This is straight forward from a contradiction argument (using connectedness of (X, G.(P))).
O

For the following result we introduce the notation:

0 ifx#y

For z € Y define 0, (y) := { . :
1 ife=y

Lemma 4.36 (A discrete maximum principle). Let P C R? be open, ‘connected and satisfy the as-
sumptions of Lemma let (X, G.(P)) be admissible and let x € Y. Then the equation

(Louw)(y) + |y — 2 uly) = gm(w fory € Y (4.30)

u(y) fory € OY

has a unique solution which satisfies u(y) > 0 for ally € Y and attains its unique local (and thus
global) maximum in . Furthermore, u(y) — 0 as |y| — oo and for C, > 0 from Lemmal(4.35 it
holds

1
u(@)+ Y (ulyr) —u(y2)? + >l — ylu(y)® < 5Ck, . (4.31)
(nmes.(p) Y1~ ¥l yey

Proof. W.Lo.g. let z = 0 and write y; ~ ys iff (y1,y2) € G.(P). Using the notation of Lemma [4.35|
and By, := Bx(0) and BY := R? \ B(0) we divide the proof in three parts.

Approximation: We consider the problem

Loup+|lu=0y, ugr(y)=0fryedY, andyeYnB. (4.32)
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Putting v(z) = 0forv € Hy(Y N Bg) and all = ¢ Bpg, we find

> oly) Lauly) =) : 2 (u(y) = u(2)) (v(y) = v(2)) , (4.33)

> —z
yeYNBgr zry ly

which is a strictly positive definite bilinear symmetric form on RY"2%_ Hence, there exists a unique

solution up to (4.32).

Since Y N By, is finite, ui attains a maximum and a minimum. If uy attains a local maximum in v,
it holds L,ur(y) > 0 and if ug attains a local miminum in y it holds L.ug(y) < 0. If ug attains
negative values, it has a negative minimum in 5, € Y and hence (£,u)(yo) + |yo — | u(yo) < 0, a
contradiction. Thus, ug > 0 in every y ¢ OJY. Furthermore, because of ug can attain a local
maximum only in 0.

Passage iR — oo: Using Lemmal4.35] for some large enough Ry € R we find the following estimate,
which holds for every R > R due to (4.32) and (4.29) applied to Ry

S (unly) Cun(y) + | u()?) = 3 LB ZURE)] 5

i zZro |y - Z|2 -
yGXﬂBR y yEXHBR
1
- Z ur(y) do(y) < u(0) < 2Ck, + e ur(0)?
yeXNBp Ry
1 U _u 2
<2p+; Y (ur(y1) nga)) w4
y1,42€YNBER, Y1 — vl
Yyi~y2

Together with (4.33), the latter yields a uniform estimate for all R > Rj. In particular (due to a Cantor
argument), there exists a subsequence u g/ such that ugr (y) — u(y) converges for every y € Y
as R’ — oo. Evidently, u solves (4.30), is non-negative, attains its maximum in 0 and satisfies the

estimate (4.31). The limit u(y) — 0 as y — oo follows from (4.31) and (4.34). u has a unique local
maximum in O for the same reason as for up.

Uniqueness of u: Finally, let 4 and u be two solutions such that v = u — u satisfies

(Lo)(y) +ly —z[v(y) =0 fory € Y\ Yy
v(y) =0 foryeYy

Multiplying the above equation with v and summing over all y, we find

> (v(y) Lovy) + lylo(y)?) =0,

yex
which implies v = 0. O
Definition 4.37. Let x € X, let u, be the solution of (4.30) and y € Y\{xz}. An admissible harmonic
path from y to z in G.(P) is a path (1, ..., x) withx; = y, 2, = x such that u, (;41) > u.(x;).

We denote the set of admissible harmonic paths from y to x by AX, (y, z). If G.(P) = Go(P) =
G(P) we simply write AX(y, x). Note that

AX(y,z) 2 AX.(y, 7).
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Lemma 4.38. Let P C R? be open, cgnnected and satisfy the assumptions of Lemma Let
(Y, G.(P)) be admissible and let z € Y andy € Y. There exists R > 0, depending on P, x and
y such that every admissible harmonic path (1, ..., x) € AX,(y,x) fromy to x lies in Br(x). If
Co, C' > 0 are the natural numbers such that for everyy € Y itholds Co < #{z~y: z€ Y} <
C' (which exist due to Lemmal4.25) then we can choose

VyeY: R<Ry(z,y) = % (4.35)

Proof. Let us recall that u(z) > 0 for every z ¢ JY by Lemma Again we write x ~ vy if
(z,y) € G.(P).
For an admissible path (1, ..., xy) from y = 1 to x = xy, it follows u(x;) > u(y) > 0 for every
j > 1. On the other hand

(Lou)(z;) + |zj — xfu(z;) = 0
Let us further recall, that with Cy and C' independent from . Given u(y) we can therefore conclude
the necessary condition

(Co+ |y — zl)ula;) = Y u(z) <0.
2

On the other hand, it holds u(z) < w(x). This implies that the left hand side of the last inequality is
bounded from below by

(Co + |zj — x]) u(z;) — Culx).
Hence we conclude from

|z; — 2 §CM—C’O.
u(y)

O

The most important and concluding result in this context is the following, which states that the set of
admissible paths is not empty and the G(P) is connected:

Theorem 4.39 (Admissible G, (P) are connected through admissible harmonic paths). Let P C R¢
be open, connected and let P as well as (Y, G.(P)) satisfy the assumptions of Lemmal|4.36, Then for
z €Y let u, be the solution of (4.30) and fory € Y let x1 := y. As long as x; # x select iteratively
Tiy1 € {z€Y: z~my, uy(z ) > u,(x;)}. Then this algorithm terminates after finite steps, i.e.
there exists i € N such that x; = x. In particular G.(P) is connected via admissible paths.

Proof. According to Lemma [4.38] the number of points that can be reached by the iterative process

is finite, i.e. the algorithm will stop when z; is a local maximum of wu,. But this is given by x; = «
according to Lemma|[4.36] O

5 Extension and Trace Properties from (9, M/ )-Regularity

5.1 Preliminaries

For this whole section, let P be a locally (&, M )-regular open set and let § be bounded by t > 0 and
satisfy . In view of Corollary , there exists a complete covering of OP by balls Bﬁ(pk)(pk),

(Pk) gens Where p(p) == 27°p(p). We define with g, := p(px), pr. := p(pk) given in Lemma
A =B (k). Aok i=Bss (pr), Asp = B?k( Dk) (5.1)
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and recall (4.8), which we apply to ¢ in order to obtain the measurable function

6(z) := p(z) = min {ﬁ(y?:) : z€0Pstx € Béﬁ@)(i’)} : (5.2)
Similarly, in view of (4.9), we define the measurable function
M(z) = M[%ﬁmd(x) + 1 = max {M[%ﬁ](f) +1: 2€0Pstze ]Béﬁ(:i)(j>} , (5.3)

Here we have used the convention max () = min () = 0.

Remark 5.1. a) In view of Lemma [4.8) we recall Remark [4.9 on the difference between M|, and M,,
and additionally remark that M, 5, (z) 4+ 1 < M;(x) for every z € IP.
8

b) We could equally work with § replacing p. However, Lemmasuggests that the natural choice is

p.
Additionally introduce (recalling (4.6))

1 N .

. L
my, = My (prs Zp) o My=M(py), M= M(pk; g/)(pk)> (5.4)

We further recall that there exists t;, = and v, such that

Pk
32(1+my)’
By =By, (yx) C PN B, (pr)
Lemma 5.2. For two balls Ay ;, N Ay ; # 0 either Ay, C Asjor Ay j C Asy and

Al,k N AL]' 7é h = B%ﬁk (pk) C AQJ‘ and]B%%ﬁj (pj) C A27k. (5.5)

Furthermore, there exists a constant C' depending only on the dimension d and some de [0, d] such
that

Yk #{j 0 AyNALL A0 +#{) : Ay NAy #0F < C, (5.6)
YV #{jxec At +#{j: ve Ay} <CH+1, (5.7)
YV # {j DX € Eéﬁj(pj)} < CM(:L’)CZ. (5.8)

Finally, there exist non-negative functions ¢ and (¢y,),c such that for k > 1:suppg, C Ay,
dr|B, = 0 for k # j. Further, ¢g = 0 on all By, and on OP and )", , ¢, = 1 and there exists C
depending only on d such that for all j € NU {0}, k € N it holds and

Remark 5.3. We usually can improve dto atleastd = d — 1. To see this assume IP is locally
connected. Then all points p; lie on a d — 1-dimensional plane and we can thus improve the argument
in the following proofto d = d — 1.

Proof. (5.5) follows from (4.7)s.

Let £ € N be fixed. By construction in Corollary |4.11} every A; ; with A, ; N Ay, # () satisfies
pj > %ﬁk and hence if A;; N Ay # 0 and A;; N Ay, # 0 we find [p; — pi| > zllﬁk and

Ip; — pr| < 3pk. This implies (5.6)—(5.7) for A; ; and the statement for A, ; follows analogously.
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For two points p;, p; such that x € As,; N As; it holds due to the triangle inequality |p; — p;| <
max {10, 1p; . Let X(z) := {pi eX:zre W} and choose p(x) = p € X(x) such that
Pm = p(p) is maximal. Then X(z) C B%ﬁm(ﬁ) and every p; € X(z) satisfies pm > p; > 3pm.
Correspondingly, p; > %ﬁm2*5]\~4[1 for all such p;. In view of this lower local bound of p; implies
a lower local bound on the mutual distance of the p;. Since this distance is proportional to ﬁmMi_l,
and since pm > f; > 3 Pm, this implies with d = d. This is by the same time the upper estimate
ond.

Let ¢ : R — R be symmetric, smooth, monotone on (0, c0) with ¢’ < 2and ¢ = 0 on (1, 00).
For each k we consider a radially symmetric smooth function g%k(a:) = gb(%%"z) and an additional
function o (z) = dist(z, OP U J, B, (yx) ). In a similar way we may modify ¢y, such that &k]Bj =
0 for j # k. Then we define ¢y, := ¢/ (QBQ +2; g@) Note that by construction of t; and ¥, we find
¢rlp, =1and ) ;- o = 1on JP.

Estimate (5.9) follows from (5.6). O

5.2 Extension Estimate Through (§, M )-Regularity of OP
By Lemmas[4.6|and [2.2] the local extension operator

U : WP O Agy) — W (B, (9)\P) <> W'(43\P) (5.10)
is linear continuous with bounds

VUl o, 2y < 1AMy [Vl o4, ) (5.11)

[l o1y iy < Tl e - 5.12)

and for constants ¢ we find

R d oy — 1
Definition 5.4. For every Q C R” let 7;u := BN fBri (i) U and

Uq : cl(m) = Cl<Q—\P),

u — XQ\P Zgbk (Uk(u — Tku) + Tku)
k

where U}, are the extension operators on As ;. given by Lemma 2.2} respectively (5.10)—(5.13). Fur-
thermore, we observe

Z/[Q = Z/N[Q -+ Z/A{Q , with Z/N[QU = XQ\P Z O Z/{k(u — Tku) , Z:{QU = XQ\P Z Ok TRl
k k
(5.14)
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For two points p; and p; such that A; ; N A; ; # () we find

o[ ) =)

Y
2

-1 -1
[ 6=l < [ByOf [ u) - mr
Bi(xj) 2 A
2

-1 -1
<[By 0| £ / Vel < [B (0)] o] / VUl . (5.15)
2 COHV(Al iUAq j) 2 A2,i

r

friw = myul” = | By

IN

B0

The latter expression is not symmetric in ¢, j. Hence we can play a bit with the indices in order to
optimize our estimates below. We have seen that t; ~ ij , and hence we expect in view of

|Tiu — Tjul” < CMdﬁ]dﬁ:/ |Vul" . (5.16)
Ag NP

However, this needs not to be the optimal estimate. Instead of the general and restrictive estimate
(5.16), we make the following Assumption:

Assumption 5.5. There exists o € [0, d] and C' > 0 such that for every k it holds ¢, > C'pp M, *.
In particular, for two points p;, p; € OY with p; ~ p; it holds

|Tiu — Tl < C’p]_dMap:/ |Vu|" . (5.17)

Agﬂ‘ﬁp

In order to formulate our main results we define the general sets

Rﬁl = UAl,k? Rg = LJAA?,,]C (518)
k k
and for every bounded set Q C R? we define
Q,:=QNR{, Q;:=QnNRY. (5.19)
Lemma 5.6. LetP C R be a locally (6, M )-regular open set with delta bounded by t > 0 and let
Assumption 5.8 hold and let d be the constant from . Then for every bounded open Q C RY,

1<r<p the operators
Uq,Ua : W' (PNB;(Q)) — W' (Q\P)

are linear, well defined and satisfy

p—r

1 ~ p(d+1) P T
A < Cy —/ M = | Vul|” (5.20)
H Q L"(Q\P) ( Q| By (Q)NP ) Lp (POJ% (Q))
[V, < e / Mp(aj'a) " vl (5.21)
S Py 1Q] 1 (P (Q)) '
. 3¢
+CO\Q\ \ngo\ > o ’| Irul” (5.22)
By j7’5023l¢j31¢0<0
thqul gy < Co | / RIS "l 5.29)
U ” p—r u p .
QYL (Q\P) |Q| % Ly (B%(Q))
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where Dy := 3. 1. 9,6,0,60<0 |019;|. Furthermore, for constant functions x — ¢ € R it holds

le = Uqcll . qupy < | (5.24)

The second term in (5.21) imposes severe problems, as we will see in Sections or even in
Lemma [5.8] below.

Lemma 5.7. Let «;, u;, © = 1...n, be a family of real numbers such that Zz a; = 0 and let
Uy =) 050 Qi Then

Zaul— Z Z Oél|aj| — uj) .

i:a; >0 j: ;<0

Proof.

E ;U = E a;U; + E Oéj’LLj
%

it a; >0 j'aj<0
= > 3 Pt 3o 3t
(07
2o >0 jira;<0 + Jra;<0 11 >0

_ Z Z 041‘04]‘ Uj).

12 >0 j:a;<0

Proof of Lemmal5.6 For shortness of notation (and by abuse of notation) we write

1 ][ 1
g = — g, 9 =15 g
]imq Q[ Jpnq Q\P Q[ Jqp
and similar for integrals over B: (Q) N P and B: (Q)\P.

Step 1: We note that p, < %&f as well as 4M,§ +2< 2Mk. The integral over V <L~{Qu> can be
VY ol (u—mu)| <O (I + ) (5.25)

estimated via
]{Q\P 1#£0
y [2 = ][
Q\P

i s

(5.9) together with Jensen'’s yields

]{Q\P Zu — 7u) Vg

> 6 VU (u — Tiu)

i#0

<CZ][ u_TZ )’T(Si_rXAu
<CZ][XA21|VU u— 1u)|"

1#£0
<O |Vl
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where we used Lemmawith % = 3 and inequality 1; In a similar way, we conclude

VU; (u—T;
fQ\P Zgb (u — Tu)

T

i#0
< YolVUh—rl < f 3 v VU= )
Q\P i#0 Q\P i£0
<C Z][ X4z, |[VU; (u —u)|” < C Z]\Z][ X4, |Vul|"
i#0 i#0 By (QNP
It only remains to estimate >, x 4., (). Inequality yields
St Val < f S v A [V’
i#0 QNP B (QNP iz
. p=r .
= ][ (Z X4s, ) M <][ |Vu|p>
% i£0 B: (Q)NP

CIRER

p—r
~ p(d+1) P
][ M ][ VulP ] . (5.26)
5 (QnP By (Q)NP

Step2: We now study ZJQ and use Lemmawhich yields

Zal¢1—0 = Dy = Z ag; = — Z ooy (5.27)

j 8[(25]>0 j:8;¢j<0

IN

T d T
<C ][ A¢;T;iu
; - EJ: 7
0,¢; 1010,
SCZ][ Z Z %fmhu—ﬁﬂ + I3, (5.28)

=1 Y Q\P 17#0: 01 >0 j#£0: 01¢; <0

where

Oi¢ol [0 |
I = CZ][ D ITul| (5.29)

Q\P |54 al¢gal¢o<o

Since in 2]7&0 8l¢jal¢0<0 |al¢]| — Dl+ we Obtaln

Iy = CZ][ |Oi0|" Z |%¢j| [mjul”

J#0: 019010 <0 b+

We will now derive an estimate on ]Tiu — Tju]. For this reason, denote lij the line from z; to x; and
by B%(Zij) the set of all points with distance less than 3 to /;;. We exploit the fact that every term in
the sum on the right hand side of (5.28) appears only once and introduce

El(l’) = {(l,j) : algbi@mj <0Oandt; < t; or (ti =1y and i < ])} .
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We make use of 1) and successively apply Jensen'’s inequality,
—1 -
and ‘IB%LJ(O)) < M| Ay ;)" to obtain

V| < Cpit, Epi < pj < Cp;

010; |019, 010i| |019;
Z Z l¢|l¢||7_z T]u| _ Z |l¢l’)| l¢||

I+

i: 0, >0 j: ;<0 (1.9)EE
519
< > e [ vl
(4,9)EE M Az NP

Hence we find

fos

VZQSJT]U <CZ Z pz |al¢3 C«~_—dMoz~r/ |vu|r

I=1 7] EE AgyiﬂP

M¢ Vul|" 5.30
mé: AWJ“‘ (530

Similar to (5.26) we may conclude (5.21).

Step 3: We observe with Jensen’s inequality and the fact that 4; are linear with U{;c = ¢ for constants

c that
]{Q\P

Z¢z U_Tz >+¢z7—zu

< s (U _][ . (U
]{Q\PZ¢ ¥ Q\PZ¢ u
< 1,4 ul "
_iw;m,«w
27][%@)@;“3”

From here we may proceed as in (5.26) to conclude . O

Lemma 5.8. LetP C R be a locally (6, M )-regular open set with delta bounded by t > 0 and let
Assumption 5.5 hold and let d be the constant from . Then for every bounded open Q C R¢,
L<r<po<pi<p

0194
|Q|/ ’v¢0 Z —L ’J ’
J#0:01¢;0;$0<0 Du
po—r ,P1=P0

1 rpg  ~ Po 1 ~ p1(d—2)(pg—7) P1P0
<o = / (Vo707 11> — / yaeen
Q[ /e, @\p Q[ /e, @\p

pP—p1 z
o PP P
Q&/ Mﬂ) (@/ W@
and
1 . 0165
Q Vol 2 D
Be (Q\P §70: 8,010 <0 Dt

po—T pP—P0

1 rpo bo 1 ~ apgp "opy 1
<C —/ [V o| 0= —/ M#=vo —/ [ul”
<|Q| 5 (@Q)\P Q| 5 (@) Q| B (Q)
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Proof. We observe with Hélder and Jensens inequality on R and in the sum Z#& 0, 19ig]

01$0<0 Dl+
1 respectively that

po—T

1 / ' [ 1 LTI T
€L Vo0l ral < (i [ Vel L
Q| By (Q)\P Z Dy Q| B (Q\P

J7#0: 01901 p0o<0

T

Po

1 ~ 107 o)\(e_ |al¢"

o Z\fr(d 2)(s—r) E J | PO

’Q’/IB%:(Q)\P D 7yl
2

J£0: 06, 0160<0 T

Applying the same trick again we find

1 OGSy 09l | o
Q By (Q\P §#0:91¢;9,¢0<0 Dy
pP1—P0O pf(lj
_ —r P1 .
. (L [ M> ol > Ol
Q[ /e, @p Q| B (Q\P .1 hr00<0 D0+
From the definition of 7; and we find
L |al¢]| ’T‘u’pl
J
Q125 @\P 205,000 it
1 R qul
<q X A [
pekg@ 1 By
_L Mapl |u‘p1
Q| By (Q)
Q P1
(L / Ve S / W)
Q] B (Q) Q| By (Q)
O

5.3 Traces on (§, M )-Regular Sets

Theorem 5.9. Let P C RY be a locally (5, M)-regular open set, é >t > 0andletQ C R?
be a bounded open set and let 1 < r < py < p. Then the trace operator T satisfies for every
u € WP (P)

loc
1 r 1 p p '
— Tul" <C | = lul? + |Vul
Q| Jarop Q] By (QrP
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where for some constant Cy depending only on po, p and r and d and forn € {p, p,0} one may
chose between

20—t P—pQ
]. 1 0 1 5 (i-‘,-l) P popP
C = CO = 77_11077- _/ M \Po p—p0 , (5.31)
Q| B, (QnoP Q| J5, (@ [1n),Rd
p—T
_ 1 P
C = / ) ) .
|Q‘ % ﬂBP

Proof. Using Theorem , we cover OP by balls B, = Bin(pk)(pk) with (pk)peny € OP and
define B, = IB1 (pk) and M, = M[ L) (p)- Like for (5.7) we can show that the covering with
both Bj, and Bk is IocaIIy uniformly bounded by a constant C'. Due to Lemmawe find locally

1

_ 1 P0+1
HTUHLPO(aPmBk) < Cpmpon ro \/ 4Ml? +2 ||U||W1,p0 (Bk) : (5.33)

If ¢y, is a partition of 1 on P with respective support B we obtain

T

1

L T
Q| Jqnor g@g K

po—"T

PO
1
< XB Tl — / X B, Mk | Treul™
|Q|/1 2 xon! |Q|§ By (Q)noP "

PO

4

which yields by the uniform local bound of the covering, 7} defined in Lemma4.13] twice the application

of (4.12) and (5.33)

1
1Ql Jqnop

po—T

' 1 / L ) .
< | AT n ror
(lQl QnoP
1 7
: (@/ ZXBk\/ 4M2+2 (|Vu|p0+|u|po)> :
Q

> énThu
k

With Holders inequality, the last estimate leads to (5.31). The second estimate goes analogue since
the local covering by A, i is finite. O

6 Construction of Macroscopic Extension Operators I: General
Considerations

In this section, we provide the extension results which answer the question of the existence of such
uniformly bounded families of operators up to the issue of quantifying connectedness. We will discuss
what we mean by that in Section In Section we provide a first attempt to from the point of
view of continuous PDE, which is - in some sense - a tautology. However, verifying the conditions
of Theorem [6.10]in a computer based approach (for real life geometries) leads to a discretization of
an elliptic second order operator. Therefore, in Section [7] we use the construction of Section [4.3]to
introduce a quantity which can be directly calculated from a numerical algorithm.
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Figure 5: Gray: a Poisson ball process. Black
balls: balls of radius v > (. Red Balls: radius
%. The Voronoi tessellation is generated from
the centers of the red balls. The existence
of such tessellations is discussed in Section
Blue region: 2l;  according to Assump-
tion Red region: 2, ;.. Green region: an
alternative choice of 23 .

6.1 Extension for Voronoi Tessellations

Assumption 6.1. Let P be an open set and let X, = (x;),_.y have mutual distance |x; — x| > 2t
ifi # k and with B (z;) C P forevery i € N (e.g. X¢(P), see ). We construct from X, a
Voronoi tessellation and denote by G; := G(x;) the Voronoi cell corresponding to x; with diameter
d;. We denote 2, ; := IB%%(G,») and
—1
/ u. (6.1)
B (@)

Let &y € C*(R; [0, 1]) be monotone decreasing with &}, > —1, do(x) = Lifx < 0and Dy(z) =
0 forx > §. We define on R? the functions

M = ‘BL(O)

16

d;(z) = D (dist (x,G;))  and P;(z) := O;(x) (Z@(@) . (6.2)

Lemma[4.20]2) implies

4d;\“
YV EB%(GZ) . #{]{ T X e Qfll,k} S ( . ) (63)

and thus yields for some C' depending only on éo that
|Vd;| < Cd? and VEk: |V Xa, < Cd? . (6.4)

Definition 6.2 (Weak Neighbors). Under the Assumption two points x; and z; are called to be
weakly connected (or weak neighbors), written i ~~ j or z; ~~ z; it Bt (G;) N B: (G;) # 0. For
Q C R%openwe say 2, ; ~~ Qif B: (A ;) N Q # (). We then define

Xe(Q)i={a; €Xe: Ay v Q#A0F, Q= | iy (6.5)

Q[lyjNNQ

Let P be locally (&, M )-regular and satisfy Assumption Then we can construct continuous local
extension operators U, : WP (B(G;)) — W7 (B%(Gi)) from Lemma These can be glued
together via

Uqu = Z P, (Ua, (u — Mju) + Mju) .

J
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However, using the partition of unity from Lemmaand the definition of U, from (5.14) we obtain

Z/IQu:Z@j (Zqﬁl (u—Mju—1; (u —Mju))+T,;(u—Mju)]+/\/lju) .

Using 73 M ju = M ;u the latter yields

Z/{QUZZ(I)j (Zgﬁz U—TZ )+Tiu—/\/lju]+./\/lju>
_ZZCD sz U_Tz )—i—Tz‘u—./\/lju)—i—./\/lju),

where we used that {/; maps constants onto constants via the identity. Note that

Uqu # Z o; [Us (u — Tyu) + T3u]

as ) ;o ®i # 1 in most points.

Theorem 6.3 (Extensions for locally regular, isotropic cone mixing geometries). Let t/]e open setP be
locally (0, M)-regular, § bounded by 5 > 0, and satisfy Assumptions and d be the constant

from@),.Letl<r<s<t<p<+ooands<p0 gpwith1—§2§.
Recalling and defining Q, := B.(Q) as well as

L{u = Z Z CI)j (gbz (UZ(U — Tiu) + U — /\/lju) + /\/lju) (6.6)
the following estimates hold:
1 1 - plir)\ 7 -
— IVUu|" < < / Mw) [Vul|?
Ql Ja Q| v (Pri; @)
+ 157 | f(u)] (6.7)
|Q! Q~~
1 1 AN A | »
o< ) (G L)
’Q’ Q\P ‘Q‘ Q.nP ‘Q‘ PNQ,
1 ) 1 v
vl e [ 6, 12| '(— / |urp) ,
|Q‘ QNP ijXZt(Q) ’ |Q| PNQ,
(6.8)
where
d
0,Py. |0,
-y S 200 o o) My — My
_ .. ) I+
=1 k@l@k >0 j: 61@ <0

0190 |010;
- Z > Z¢E)’l+l¢ ®; (riu — Mju) .

=1 i#0: 8;¢;0;00<0 j

D= > logl, Di= Y |a2.

J#0: 090,00 <0 Jj#0: 0;®;<0

with functions
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Proof. Let us note that on Q it holds

ZM:zEj@Mu—n ) Bibi(u—Mu)+ Y o Mu (69)

z;€Xe(Q) @ z;€X:(Q)

_E:@ i(u—mw) + )+ > PideMju. (6.10)

z;€Xe(Q)

We first observe in (6.10) that

Qg 2w Sﬁ/ > wsMul < [ 3 s WM

z;€Xe(Q) mJEXt(Q z;€Xe(Q

o Plls(E)

2;€X(Q) By (i)

1 . 8 d
@/ |U| Z XG,;nP ’Q[l,j’ }Sd 1’ (%)

z;€X:(Q)

IN

IN

From the last inequality and Lemma 5.6 we obtain (6.8). Furthermore, the first term on the right hand
side of with Lemma[5.6| provides the first line of (6.7).

In what follows, we write for simplicity Z:cjext(Q) = Zj but have in mind the respective meaning.
The same holds for » 0, 5 4, ~.-

Concerning the second term in (6.9), we observe

\Y Z Z Q;¢; (T;u — Mju)

z;€X(Q) €N
= Z Z ¢z (Tiu — MJU) V(I)] + Z Z (bj (Tiu — M]U> V(bz 5

j ieN j ieN

and obtain with help of Lemmal5.7jand 3_; V®;(z) = O forz € Q

Z Z ¢z (TZ'U — MJU) V(I)j
d
5 X:@%QQ%XF”W—MW 6 Mw)

=1 k:0;®>0 j: 8[‘13 <0 ieN ieN
d

01y |00,
=1 k: 8;04>0 j: 8@, <0 I+
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Similarly, we use Lemmal5.7together with Y, V¢; = —V ¢, and find

>N @ (i — Myu) Ve,

j €N

Z >y al¢’“‘al¢’ (ZCD T — Mu) — ZCD (T7u ))

k: 0195 >014: 0;¢; <0

- Z Z al¢;))|al¢z| ( — M., u)
1

I=1 i£0: 8,810 <0 4

alkalz
3 ¥ ¥ A

d
d
=1 k: 01 >0 j: 0;¢;<0

0190 |010;
_Z Z lgbODI l¢| ( MU),

I=1 i£0: 9,600 <0 I+

where the first term on the right hand side can be estimated like in Lemma/5.6] Finally, from a similar
calculation using Lemma5.7]it is now obvious for the third term in that

S, Y Y alq’k‘al@'wu_/wu).

=1 k: 0,9, >0 j: al(I’ <0

6.2 The Issue of Connectedness

. . r . 1 r
In Theorem we discovered the integral fQ |f(u)|" as part of the estimate for Ql fQ\P \VUu|",
where we recall that f was given through

Y Yy A (2 00) (M= My

=1 k:0;P, >0 j: 61@ <0

0190 |010;
— Z Z Z l¢%|l+l¢ (Tiu _ MJU) .

=1 i#0: 9;¢;0;00<0 j

We seek for an interpretation of the two sums appearing on the right hand side. The first one is related
to the difference of mean values around x;, and x; in case they are weak neighbors, i.e. 1}, ~~ ;.
In Theorem below we provide a rough estimate on this part in terms of 7;u — M u but on a
larger area. In the present section, we first want to “isolate” |7;u — M u| and | Myu — M;u| from
the other geometric properties of P. In Section [7] we will see how these quantities are related to the
connectivity of P.

Lemma 6.4. Under Assumption F and using the notation of Theorem. /et fJ n be non-
negative and have supportsuppf; O B« x] ) and let deN fi=1
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Writing X(Q) := {x; : suppf; N Q # 0}, foreveryl =1,...d andr < § < s < p it holds

/ Z Z al¢;)|l?_l¢l|f ( u— M. u)

Q: i£0: 0,0 0,00<0  j

w3

s—r

z) e X2 B e M

1 s
< (@1 g
PNQ.NR3 v i£0: 000 <0 z;€X(Q)

and

190 |01
al, T S e M

v i£0: 001 po<0  j

. 1 G-\
< L/ |Oypo| 5 M>¢ —/ Y e
’Q’ PNQ.NR¢ ‘Q| s (Q\P

1 Iacbz
@/qu Z Z f] l || _MJ|

v 4£0: 0100, 0 <0 Tj EX

w3

Proof. We find from Hoélder’s and Jensen’s inequality

1 0, 01¢;
Qe Z T - M
POQ [i£0: 9,6,0160<0 o+
1 r ‘8l¢1
< — )10} f Tu — Mju
|Q| PﬂQ| l 0| Z Z ! |

i#0: 0;¢:0, ¢o <0 j

r ’ 1 Cb@ s g
7-> (@/p Z ij l u—./\/lju|> )

1 s
< <@/ , |Oupol =~
PNQMRY MQ i20:9,4:0,00<0 j

The other inequality can be derived similarly, see also the proof of Lemma/5.8] O

Lemma 6.5. Under Assumptions[5.5,[6.1|for everyl = 1, ...d it holds

r

1 0, Py 0,2,
a1y oy 2B ) - )
POQ 1. 9,8,,>0 j: 9,8, <0 I+
1 / Z r(d—1)+drs o ’ Z ’M M ‘
< | = d; "7 Xve;#0 ey ru — Mjul®
|Q| PNQ j:31<13j<0 ! |Q| T~ !

x,x €X (Q)
Proof. For this we observe with help of and with Lemma[4.20]2)
Vo sup|0Pg| () < sup {\V@k(:c)] s ]B%g(Gk)}
k

< Csup{d} : v €Gy}, (6.11)

sup |0,®,] (z) < C’d?. (6.12)
IGB%(GJ‘)
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We write
1 o,P (9@
Fe g | 2 AR e ) (M- A
POQ 1. 9,8,,>0 5: 9,8, <0
and find
0P|" 01D
r<ol DS M%#W ~ Myl
Q| POQ . 9,0,>0 j: 0,8, <0 I+
47 0D |0®y] |

1
C—
Q| Jpnq Z Z qul

k: 0;®1>0 j:0;P,;<0

@[3

](91 J’

> o

k: 0P >0 j: 8l<1> <0

|Mku - M: u|

Now we make use of (6.11) and once more of Lemma 2) to obtain for the first bracket on the right
hand side an estimate of the form

|0l¢k s—r |6Z(I> | < |8l<I>k| |81(I>k|7r71 |81® | < C|Bl¢k|d 5 T dd < C|8l(I>k|d ST

which implies
dsr

d T |8l(I>k|7 10,9, | d o ’"dg "0,y

Z Z D, =C Z Z Dlﬁ

k: 0;®1>0j:0;P;<0 k: 0y ®1,>0 j: 0;®;<0
dsr
<C Z d . Tds "XV®,£0 5
Jj:01®;<0

where we used Y |0,®,| = D;.. We make use of @ = rs~!(d — 1) in the above estimates and
Holder’s inequality to find

1 0Py |0,
Ql > > D—<1>] (2 = ¢o) (Myu — M;u)
POQ |k 9,®),>0 j: ,8,<0 I+
1 'r(dfli);l»drs o
<Clig D 4 T xvam
PNQ j:81<1>]-<0

@[3

;=10
il Y Y S M

Q| POQ 1. 9,0,>0 j: 9, <0 b+
1—d .
Since anQ 4 Dg_%' < C for some C' > 0 independent from j, we obtain
1 d;="0,®;
who > > R
Q| POQ 1. 9,040 j: 0,8, <0 +
1
< LS e
‘Q‘ TR
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6.3 Estimates Related to Mesoscopic Regularity of the Geometry

Assumption 6.6 (Mesoscopic Regularity). Under the Assumption and introducing the notation
T = {z; € X, : H™(0G; N OG;) > 0} we construct Az ; and As ; from Ay ; by

Ao ;= Bog, (Asr) , Az i = Bog 4+ (Aazy) - (6.13)

We infer from Lemmal5.6 that U : W'#(s;) — W' (y,) is continuous with the estimate and
constants given by Lemmal5.6

Theorem 6.7 (Extensions for mesoscopic regular, isotropic cone mixing geometries). Let P(w) be
an open connected set and let Assumption hold. Let P be locally (5, M )-regular and satisfy
Assumptions and d be the constant from . Then for almost every w it holds: for every
I=1,...,dand1 <r <s,§ <p:

1 8ZCI>k|8l<I>]|
L GO ) ) Mu— Myl
Ql Ja k;al;pw:%w Dit. ’
1 »
< C(P(w)) (@/Q P|vu|p> 6.14)
N

1 3,k 5 0 J 3
+CP) Y /Q MDY 90 s — My
k

l J#0: 0101 po<0 I+

where with P(z) = gD+ (gm+ 4 291) a := 3", xa,, and it holds

p—s
p s—=r

(@ ha™™)

P

e - (G /. . (Z P<dk>><m3,k)

s—r

Remark 6.8. A combination with Lemma[6.4]is possible.

Proof. We make use of (6.3) as well as the following observation: foreach k = 1, ... K let a, > K.

Then
K r K K
<Z fk) <KDY <Y ot
k=1 k=1

k=1
Hence

T

Sy 2R M- Myl
D

k: 0y ®1>0j:0,P,;<0

d(r—1) r )
< > (%) e ‘8l¢]_|2|MjU—MkU|T

3
v D
k: 9,®5,>0 j: 9,9, <0 I+
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d
Given [V®;| < xa, , ()" we hence find an estimate by

Ady \ 7Y 8P,
Z Z ( k) Xm1k|ll)q>|2|MU_MkU|

k: 019 >0 j5: 8[@ <0

Next, we obtain

|Mju—./\/lku|r S |‘Cde_1’_1/ |u—./\/lku|r
B (z

(%)
and thus

T

0Py |0,P;
S 2o ) M- M

k:8;<1>k>0j:81<1>]-<0 I+
- Ady\ Y P, .
<ol Y Y (_k) X%’k!lz)q)yl [ My
E j:9,®;<0 t I+ JBy(z;)
o Ad d(2r—1) i
< 2[e’s*| Z(—’“) Xa / fu— Myl
3 t Az
B Ad d(2r—1)
<2[e’s| 12(7‘“) X, Ci / 2
k 2z,

4d,\ 42D A 1 B
< CZ <T) X2, CkClirs | 7o |Vl

|Ql37k| ng,kﬁP

4d,,\ = Co . Oy, .
+cZ( N o [ el Y B

s
| k| A3 1 \P J#0: 0,601 $0<0 +

where according to Lemmas|[2.6|and[5.6|for some C' depending only on r and t:

Ck Cdr (dr+1 dllf:+1)

)
~ ~ 2sd °
Ck,r,s = ][ M <=
Q[gykﬂp

We integrate with respect to Q and obtain with P(z) = g2 =D+7(gm+1 4 pd+1)

/Z(4dk) T Gl [ val )
Ql B DIPTSR
4dk d(2r—1) R 1 ) s
< Z 121 4] CoCrims | =—— IVl (6.15)

|Q[37k| ng’kﬁp

P(d 2414 Vul* — N P(dy) = / M=
<|Q| Z |913 k| 913 NP | | |Q| zk.: ( k) |Ql37k| Q‘g’kﬂP
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For the measurable function g = M% on R? we find for every % +

Q|
I
—_

C 1241 x|
— P(d : g(xr)dx
Q2 PR e )
C
< — gz P(di)xa, , () dx
Al Jooa ()zk: (di) X215, (%)

C N7 [ C q
— D ~ d , | |
= <|Q| /Png ) |Q| /PﬁQ (; P( k)Xle,k) (6.16)

For the remaining expression note that

Q=

Ady \ " Y Co . O, .
|Q’/Z( k) XQHka ’v¢0| Z m’Tju_Mkul

A D
| 3k| A3 1 \P J#0: 019010 <0 +

O¢; -
/ ZP dk XQ[3k ]V¢0| Z |DZ¢J| ’Tju — ./\/lku\ (6.17)
Q

\P J#0: iy Op0<0 F

We denote the right hand side of (6.17) by /;. Using a we obtain from Hélder’s inequality together with
Jensen’s inequality

w3

Xmsk |al¢|
I <Cp |Q|/Q PRl AT Dljuu—Mk\ . (8.18)

\P g J#0: 019010 <0

where C'p and a are defined in the statement and where we used ) |, Xma”“ =1land ) % =1

. , 2A
Taking together (16.15 —(16.18 we conclude for p = f and with boundedness 0 < ¢ < |mlk| <C<

[2a.1]

Q.

6.4 Extension for Statistically Harmonic Domains

Definition 6.9. A random geometry P (w) is statistically s-harmonic if there exist constants Cj, > 0,
k € N and sets 24, D %3 1, such that for every z;, € X,

/ lu — Myul|” < / Cy |Vul®
A3 ,NRINP Ay xNP

Theorem 6.10. Let P(w) be a stationary ergodic random open set which is (6, M )-regular, isotropic
cone mixing fort > 0 and f(R), statistically s-harmonic and let Assumption|6.6 hold. Then for every
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[=1,...,dand1 <r <s<pandeveryl < a,p < o0 it holds

1 O, ,
@/ ZP dk XQ[Sk ’v¢0| Z |IS¢]| ’Tju—./\/lkld
Q

\P J#0: 1y Op0<0 F
ps 1

C 7 C e
= @/POQORg (;Puk)xm&k) <@ /ame
C ~ o \PSE ~ (d-2) at e 1 »
(@ g ()57 ) 7 (o)
|—é|/Q (Zp(dk)Xm,ka> 7
k

ps
Proof. We make use of |V¢y| < Cp; on A, ; as well as the definition of 7;u to obtain that the latter
expression is bounded by (compare also with the calculation leading to (5.16))

|al¢j| o r

\P #0:010;060<0 T

P(di)xa p; Py Mix A / lu — Myu|"
!QI/Q 2 P ) 070 B ()%

P J#0

1
< =S Py :p-TMd/ lu — My’
’Q| ! ! Be; (y5)NAs,

J7#0

|Q|/ZP ()3 205 M s = Mol

P dk 74]\4(1)ﬁ XBe. (y;)NA
<|Q| /(;Z ];é() J 5 \Yj 3,k
(|Ql /QZP d) ZXIB% ()t U — Myul® )

J#0

(s=1) (-1

| |»
5
SN—
Q
3

s—r
s

w3

We use that B, (y;) are mutually disjoint and B, (y;) C R$ to find

|Q|/ZP (dr) ZXI& (), U — Myul®
‘Q| /(QZP dk Xm3kad|u_Mku’

|Q|/ZPdk XQl4kOk|vu|

where we have used the statistical s-connectedness. Similar to the proof of Theorem we observe
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that

(\Q\/szd"’ 2.

C e % C q
< | — ~—7’M§l P ~ Pld
- <|Q’ /P”Q”Rg % ]> > Q| /PQORg (; | k)XQlS’k)

—TrAfd =
Py M; ) XB., (yj)ﬂﬂs,kdx>

1
q

and

p—s
L P

1 v
<= P(di)xa,,C / vup)
|Q|/Q<; (P ) AL
Finally, Lemmal4.13|yields with 5 > €4 /M

C L~ NP
. (ﬁ_7 Md>
Q| PNQNR¢

(& [ g ) (O () )
Q| oPNQ Q| PNQNR¢

7 Construction of Macroscopic Extension Operators Il: Admissi-
ble Paths

In this section, we will use admissible paths on connected sets in order to estimate the (so far uncon-
trolled) terms |7;u — M u| in Theorems [6.3)and [6.7]in terms of Vu.

Knowing there exists an admissible path (by Theorem|[4.39), it remains to deal with the non-uniqueness
of the path. Note there is no clear distinction which puts one path in favor of others. While this could
be seen as a drawback, it can also be considered as an opportunity, since it allows to distribute the
“weight” of integration along the paths more uniformly among the total volume. This is the basic idea
of this section.

7.1 Preliminaries

Given an open connected set P and a countable family of points X, satisfying Assumption we
extend the covering A, ; resp. A; ; of P from Section|5.1](e.g. (6.1)) to the inner of P using Lemma
In this context, we remind the reader of (4.25) and Definition and introduce the notation

A ify = X¢ A ify=p, €X
o :{ B {B% te¥
Biy(y) ifyeY 3Lii(y) (y) ifye

We find the following
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Lemma 7.1. There exists C' > 0 independent from P such that for every v € P
#{yeﬁ?: xEAg(y)} <C.

Proof. For two points p;, p; € OX such that z € Ay ; N A, ; it holds due to the triangle inequality

pi = pjl < o —pyl + Ipi — 2| <3(pi + p;) < max{6p;,6p;} - (7.1)

Let Xy(x) := {pi € 0X: z € By, (pl)} and choose p € Xy(x) such that g, := p(p) is maximal.

Then Xp(z) C B, (P) by and every p; € Xy() satisfies jn > p; > 3/m (Lemma . In
view of this lower local bound of p; implies a lower local bound on the mutual distance of the p;.
Since this distance is proportional to p,,, and since p, > p; > %ﬁm, this implies for some constant
C > 0 independent of = or P that

#{yedX: z e A(y)} <C.
Now let yy € Y\@X andx € As(y) = ]B%%n(y), We show

8n(x) < 16n(y) -

<
For the first inequality, observe that 77(z) < £7(y) is equivalent with dist(z, 9P) < fdist(y, IP)
and hence

n(y)

dist(y, 0P) < dist(x,OP) + |z — y|

—_

< gdist(y, OP) + |z — 9

= v —yl > gdist(y, opP).

~J

For the second inequality, assume 7(y) < 7(x). Then y lies closer to the boundary than x and
x € As(y) implies

() = dist (z, 0P) < dist(y, OP) + |z — y| < n(y) + 5ii(y) < 20(y).

The mutual minimal distance of neighboring points in terms of 77 now implies for some C' independent
from x and P

#{yexﬁz\ax; xEAg(y)} <C.
O

Definition 7.2. Let G.(P) be a connected sub-graph of G(P). Let x; € X, and u; := u,, be
the solution of the discrete Laplace equation 1; for x = x; on the graph G, (P). For every z €

Y\{z;} let

0.i(2) = {7 €V (@) > ui(2)}
the neighbors corresponding the outgoing branches of admissible paths through y, and we assign to
each g € O, ;(2) the weight w, (2, ) = w.12(%, §) of the branch (z, ) where either

wea(2,9) = (w(@) —w(=) /| Y (wly) — =) |

y€0.,i(2)

wyeo(z,9) = #0,,:(2) "
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ForY = (v1,...yn) € AX,(p;, ;) we define the weight of the path Y by

N-1

W (Y) =Wy, .yn) = H W (Yis Yig1) -

Remark 7.3. We observe

Y eAX, (pj ,:L‘Z')

This holds by induction along the path and different branches since in every 2z & Y\{a:z} it holds
2ayeo., () ez, y) = 1

7.2 Extension for Connected Domains

In this section, we discuss how the graphs built in Section can be used to derive estimates on
f(u) given in Theorem The remaining constant on the right hand side is given in terms of the
balls B,,(p;) and length of the paths between p; and x; or x; and xy respectively. Although one
could go even more into details and try to generally decouple these effects, this is not helpful for our
examples in Section [8| below. Hence we leave the results of this section as they are but encourage
further investigation in the future.

The idea

We first consider the case of a general graph (Y, G(P)) on P and do not claim that paths in the
classes AX are fully embedded into P. In particular, we drop for a moment the concept of local con-
nectivity and we allow paths to intersect with R!\P. Let z; € X, p; € YxpandY = (y1,...,yn) €
AX(p;, x;). In the following short calculation, one may think of Vu as a function related to V (Lu),

though the following calculations will reveal that it is not exactly what we mean. Nevertheless, recalling
Notation for Y(z) andY = J, Y (2) it holds

1 1
lTu — Mjul® = | —= u(x +p;) —
’ B, (0)] /5., (0)

i ‘B”—I(O)’ /Brw) (u<?q($ i pi)) ulet xj))

< ¥ W(Y)‘]Béi(())’ 1/ / V|| de
Y eAX(p;,x;) B, (0) 1/Y (z)
‘ -1 —~ | s—1
<C Z W(Y) ‘B%(o) /‘Vu Length(Y) = . (7.2)
Y €AX(piss) Y

Since Vu is related to VU u, the latter formula reveals that the terms |7;u — M u|® may lead to an
“entanglement” of M; and the properties of the paths AX. In what follows, we will resolve the latter
calculation in more details to prepare this discussion.
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In what follows, we will make use of Y = (y; = p;,...yn = ;) and

u (1—t6ti(x + pi)) —u(x +z;) = Nz_:l u (?t(yk)x + yk) —u (?t(ﬁylﬁ—l)x + yk+1> ;

k=1
and we write Y (yy,, yj1, ©) for the straight line segment connecting 2t (yy,)z-+yj, with £2v(yy41 )2+

Yk+1- We distinguish 4 cases:

Case Yi, Yp+1 € Yox: According to Lemma it holds By(y,, ) (Yk1) C As(yx) and if Uy,
WhP(As ) — W (Asy) is the corresponding local extension operator it holds

16 16
u (_t(yk)$ + yk) —u (_t(yk+1>x + yk+1> < / VUu.
T v Y (Yk Yk+1,%)

Case yp, € Yox, Yps1 € Y: According to Lemma it holds Be(y, . ,)(Yx+1) C Az(yx) and if
Uy, : WIP(Az,) — WET(Ay ) is the corresponding local extension operator it holds

16 16
U (—t(yk)x + yk> —u (—t(yk+1)x + yk+1> < / VU .
T T Y (Yk Yk+1-%)

Case yp11 € Yox, Yr € Y: According to Lemma it holds B.(y,)(yx) C Aa(yr+1) and if
Upr1: WEP(Az 1) — W (Agk11) is the corresponding local extension operator it holds

16 16
U (—t(yk):v + yk) —u (_t(yk+1)x + yk+1) < / VU u.
T T Y (yk,Yk+1,%)

Case Yi, Yrs1 € Y: According to Lemma it holds By, ) (%) C A2(yr+1) C P and

16 16
U(_t(yk)x + yk> - U(_t(?/kﬂ)x + yk+1) < / Vu.
t t Y (Yr Yr+1,T)

However, in case of local connectivity, we face a simpler situation. In case yx, yx+1 € Y we can use
the above estimates while in the other cases, we can use the Lemma

Locally connected P

In what follows, we consider G (P) = G, (P) (see Definition [4.29) with a suitable family of admis-
sible paths AXg,;, and we also recall Y (z) from Notation [4.33] We repeat the calculations of
in view of Lemma In particular, if § ~ y are connected via a path 7 in Bsj(,(,)) (2(y)), which
additionally has the property that the corresponding tube exists, then the length of ~ is bounded by
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— 9|, where C'is determined by the dimension. Hence we have

. 1 1
ITiu — Mjul’ = | =——= wz+p) — — u(x + z;)
B..(0)]
(O /s, 0 B2 ()] 250

[ )1

s

< Z W(Y)— / / |Vul dx
Y €M ot (pira;) ‘B% (0)) ; (0) 1Y ()
1 s—1
<C Z W(Y)—/ |Vu|® Length(Y) = . (7.3)
Y €AXat (pirxs) ’BTG (O> ‘ Y

The last calculation is at the heart of the results in this section. In what follows, we adopt the situation
of Lemmal6.4}

Lemma 7.4. Let P be locally connected. Under Assumptions (5.5, [6.1] and using the notation of The-

orem ﬁ let ( fj) ..y be non-negative and have support suppf; D B: (xj) and let > . jenfi = 1.
Let G, ) Gﬂat( ) (see Def/n/t/on with a suitable family of admlSSIb/e paths AXq,;. Writing

X(Q) :={x; : suppf; N Q # 0}

v @@= U U U

z;€X(Q) pi€suppfiNYox Y EAX gt (ps,x5)

Xy, (7) := (z € suppf;) and foreveryl = 1,...d it holds

gk X 5 M

1#0: 914010 <0 z;€X(Q)

1 v
<C / VulP
(‘Q‘ ylocal ) | | )

allpaths
1 5 s=1
@/d Z Zij(Pi)P? Z Xy W(Y) Length(Y) =
R ijX(Q) i YGAXﬂat(pi,Ij)
Proof. We find
1 8l¢z
A X T i M
POQ: 220 9,6:0,60<0 2,€X(Q)
C
< oD s Y, Wy /IVUI Length(Y) "+
i#0: 019:01¢0<0 z;€X(Q) Y €A qat (pirx;)
which leads to the result. O

And finally, we provide an estimate for the remaining term in Lemma The proof is similar to the
last Lemma.
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Lemma 7.5. Let P be locally connected. Under Assumptions|[5.5, [6.1] it holds for

Vi@ = U J v

TeT) Y eMXgar (Tg,2))
zp,2;€X:(Q) * ’

that

1 1 »
— IMpu — Mju|” < C —/ |Vul?
Q| ; ’ QI Jygors @)

Tk, X5 EXV(Q)

p

{ s=1
wll T v
‘Q| Rd T~ Y eMXat (Tr,25)

Tk, L5 GXt(Q)

7.3 Statistical Stretch Factor for Locally Connected Geometries

Definition 7.6. Let P C R“ be an open set with X, satisfying Assumption Generalizing the
notation of Lemma and recalling the Notation let for v € X, andy € Y and a family of
admissible paths AX(y, x)

Ro(x,y) :==infS R>0: (] Y CBgx)

Y eMX(y,x)

For an open set 2 with = € 2 we denote

RO(‘I7Q[) ‘= Ssup RO(xvy)

yeYNA

Theorem 7.7. Let the Assumptions of Theorem|[6.3 hold and let P be locally connected. . For every
Z; € Xt let

S; :=S(x;) :==d;' sup sup  Length(Y).
piE\Yﬂng,]- Y eAXgat (pi,xj)

Defining Ro(z;) := Ro(x,2s ;) and

Q) = |J Broy(z)) (7.4)
IjEQNN
it holds
1 . »
1 1f(w)]" < Cy(Cy + Cy) (/ \Vu‘p> |
Q| Jo~~ AX(Q)
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where for some s € (r,p)

1 s—1

1 ps=1
G = _/ XB T d ° S’
1 ‘Q‘ AX(Q) Z Ro(z 5,22 J)( J) J

z,;€X:(Q

s—1 s—1

1 / S
S T XB T; © S
1Ql Jaxq) Z 3 (49) !

x;€Xe(

s—r

1 sT ?
Cy = —/ o el
’ <|Q| PmthRg| 190l >

1 Z r(d—1)+drs
Cs = —/ d; 7 Xvae,+0
Q| Jprq \ . ! i7

3:81©j<0

Definition 7.8. We call S; the statistical stretch factor.
Corollary 7.9. It holds Ry(x;) < d;S;.

Corollary 7.10. /fu € WP (P) satisfies u = 0 on R\ Q then U has support on AX(Q).

Proof. This follows since

U 2,

J~~Q

Proof of Theorem[ZZ With regard to Lemma [7.4] we observe that f; = ®; with X(Q) = X.(Q)
and x,(p;) = 1 only if p; € 2y ;. Furthermore, W (Y') < 1 and we define

Lj:= sup sup Length(Yiat) -
pi€EYNMRAy ; Y EAXqat (pi,x;)

Hence we find for given ; using Corollary [7.9;
(pi) ¢ W(Y) Length(Yia) > < A yL :
Xf] pl pl XYﬂat g ﬂat XBRO(”" Qll ).’E]) 1,]
i Y €AXqar (piszj)
s—1
< XBs;a; (z;) ‘Q[Lj’ Lj °

Also with regard to Lemma(7.4]we find for given

> > W(Y)Length(Yau) = "< XBro(e, 20 (@) |912,]|L :
reex(@) " SR )

s—1
< XBs;a; (z;) ‘m2,j’ Lj °
The statement now follows from the definition of S;, Lemmas [6.4]and O

Finally, the following result allows us to estimate the difference of Q and AX(Q).
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Theorem 7.11. Let the Assumptions of Theorem|6.3 hold, let Q have a C"* -boundary and let AX(Q)
be given by (7.4). Furthermore, let Ry be ergodic such that for every e > 0

lim > (1+e) E(Ro(z;) > (1+¢)*n) =0. (7.5)
k=1
Then | Q|
n
lim ——— 1.
nSoo [AX (nQ)]

Remark 7.12. Condition is satisfied if e.9. E(Ro(z;) > r¢) < 1, for some a > 1 as then

fo'e) 1 [e'e] k
1—|—5 R T 1—|—€ S— .
> (Roly) > ( az(HS )

Proof. Since nQ C AX(nQ) we have to estimate the excess mass of AX(nQ) over [nQ)|. If we
define

Xnq = {25 € Xx N Q1 Brywy)(25)\ (nQ) # 0}
X,ot = {7; € X\Q: Be(™%1;) N (nQ) # 0},

we find

AXQ\ Q) < Y [Brow,(@)]

T EXHQUX.,LQC
and we thus derive an estimate on the contribution from X,,q and Xch respectively.

Lete > 0. Thenfor Q;, , := ((1+¢)*nQ) \ ((1 4 ¢)" 'nQ)

Z |BR0($,j79l2,j)(xj)| < Z |BR0 (z5) x] ‘ + Z Z ‘BRO(QTJ')(Ij)l

ijXnQE $j€XrﬁQ; 1 = T EXrﬂQn &
d(z;)>(1+e)Fn

< Y [Br, x]\+z > [Broy(@))]

z; €X:NQY, ¢ = z;€XeNQy, 4
Ro(z;)>(1+¢)*~1n

< Z |BR0 () ‘ + Z Z |BR°($J)(%>‘

7;€X:NQ7, ¢ k=2 x;€X:NQ;
Ro(z;)>(1+e)n

Due to the ergodic theorem, we obtain for every ng € N

1
m Z }BR()(&UJ (.I'])’ = |nQ| Z ‘BRO(%)(IB])’

:E]'GXJWQZJC Tj EerQiyk
Ro(z;)>(14¢)F"1n Ro(z;)>(1+¢)*no
= ((1 + o) — (14 ) ) E(Ro(a;) > (1+ ) ng)

<e(l+ e)k_l]E(Ro(xj) > (14¢2)* 'ng)

N——

and similarly
. 1
lim —— Z ’IB%RO(I].)(xj)} = cE(Ry) .
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Since the above estimates hold for every € and every ng, we find

1

|n—Q] Z |BR0(xj7912,j)(37j)|—>0.

T eXnQC

In a similar way, we prove

1
nQJ Z |Broe; 20, (25)| = 0
|nQ| o= 0 2 J

8 Sample Geometries

8.1 Boolean Model for the Poisson Ball Process

Recalling Example we consider a Poisson point process Xpeis(w) = (24(w)),cy With intensity
A (recall Example [2.36). To each point x; a random ball B; = B;(z;) is assigned and the family
B := (B;),y is called the Poisson ball process. We then denote P (w) := R¥\|J, B; and seek for a
corresponding uniform extension operator. The following argumentation will be strongly based on the
so called void probability. This is the probability Po(A) to not find any point of the point process in a
given open set A and is given by ie. Py(A) := eI,

The void probability for the ball process is given accordingly by

Po(A) == e B ; Bi(A) = {z € R? . dist(z, A) < 1},
which is the probability that no ball intersects with A C R<.

Theorem 8.1. LetP (w) := |, Bi(w) and define

S

(z) := min {5(@) . FcOPstac Béé(i)(fé)} ,

o

() := min {ﬁ(:i) :x€0Pstae B%ﬁ(j)(:i‘)} :

where min () := 0 for convenience. Then OP is almost surely locally (5, M ) regular and for every

7<1,B<d+2and1§r<2and2m§d+2itholds

E(677) +E(5*H> +E(M/3) +E(5‘s%> < 00.

Furthermore, it holds d < d — 1 and o = 0 in inequalities @) and . The same holds if
P (w) := RN\, Bi(w) with o replaced by d.

Remark 8.2. We observe that the union of balls has better properties than the complement.

Proof. We study only P (w) := J, Bi(w) since R4\ J, B;(w) is the complement sharing the same

boundary. Hence, in case P(w) = R%\|J, B;(w), all calculations remain basically the same. How-
1

ever, in the first case, we assume that t(y;) = Zﬁ(yk) , Which we cannot assume in the other case,

where t(yy ) is proportional to j; M, . This is the reason for the different c in the two cases.
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In what follows, we use that the distribution of balls is mutually independent. That means, given a ball
around x; € X, the set Xpois\ {xl} is also a Poisson process. W.l.o.g. , we assume x; = 29 = 0
with By := B4(0). First we note that p € 0By N P if and only if p € 9B\ P, which holds with
probability Py (B4 (p)) = Po(By). This is a fixed quantity, independent from p.

Now assuming p € 0B\ P, the distance to the closest ball besides B is denoted
r(p) = dist(p, 0P\0B)

with a probability distribution

Paist (1) := Po(B14+(p)) /Po(B1(p)) -

It is important to observe that 0 By is r-regular in the sense of Lemma Another important feature
in view of Lemmais r(p) < A(p). In particular, 6(p) > 3r(p) and OBy is (4, 1)-regular in case

0 < % Hence, in what follows, we will derive estimates on 7~ 7, which immediately imply estimates
ond 7.
Estimate on : A lower estimate for the distribution of r(p) is given by

Paist (1) := Po(B1sr(p))/Po(Bi(p)) = 1 — A [S* | r. (8.1)

This implies that almost surely for v < 1

;
e (2n)

/ r(p)""dH" (p) < o0,
(—n,n)¢NoP

ie. E(077) < oc.

Intersecting balls: Now assume there exists z;, ¢ # 0 such that p € dB; N 0By. W.l.o.g. assume
xr; =x1 := (22,0,...,0)and p = (\/1 —xQ,O,...,O).Then

d(p) < do(p) :=2vV1— 22

and p is at least M (p) = ﬁ-regular. Again, a lower estimate for the probability of r is given by

(8.1) on the interval (0, dy). Above this value, the probability is approximately given by A }Sd_l‘ g (for
small dpi.e. z ~ 1). We introduce as a new variable £ = 1 — x and obtain from 1 — 22 = £(1 + z)
that

5 < CE2 and M(p) < ce e (8.2)

No touching: At this point, we observe that M is almost surely locally finite. Otherwise, we would
have x = 1 and for every ¢ > 0 we had x; € Bo,.(20)\B2—_. (). But

Po(Baie(20)\Ba—c(0)) ® 1= A2[S¥ e = 1  ase —0.
Therefore, the probability that two balls “touch” (i.e. that z = 1) is zero. The almost sure local bound-

edness of M now follows from the countable number of balls.

Extension to J: We again study each ball separately. Let p € 830\? with tangent space 7}, and
normal space NN,. Letx € N, and p € 0B, such that z € IB%W) (p), then also p € Béé(ﬁ) (p) and

6(p) € (£,0)6(p) and 6(p) € (L, 2)d(p) by Lemma Defining

3,(x) := min {5(55) . T€0B\Pstu € By, (:z)} ,
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we find

07 <) Xm0

Studying &y on 0B, we can assume M < M, in (4.10) and we find
- -
[ <[ 5
P 0Bo\P

Hence we find
JRREED OY RENCARED Sl Bl
P — JP . )

B;\P

Estimate on /3: For two points x;,z; € X,us let Circ;; = 0B; N 0B; and ]B%ég(Circij) =
Usecire,, B4 (P)- For the fixed ball B; = B, we write Circo; and obtain [Circy;| < C63 with
0o from (8.2). Therefore, we find

/ (1+ M) < 681 + M(p))® < O35~
Circoj

We now derive an estimate for E<f1531+ 0) Mﬁ‘) .

To this aim, let ¢ € (0,1). Then z € By 1+1(0)\By_,x (0) implies ¢ > ¢"* and

/ MP<C+ > / (1+ M(p))®
Bi4:(0) Circo;

zi€B, k41 (0\B,_ k(0)
C+

Z C (qk+1)*%(6fd)

L 2;€By  k+1(0)\By_k(0)

IN

IN

Me T

i

The only random quantity in the latter expression is # {xj € By g1 (0)\B2_qk(0)}. Therefore, we
obtain with E(X(A)) = A\ | A| that

E(/ Mﬁ) <C (1 +> (" =) (q’““)‘éw_d))
B14.(0)

k=1

<C (1 + i (qk)—%(ﬁ—d—m) ‘

k=1

Since the point process has finite intensity, this property carries over to the whole ball process and we
obtain the condition 3 < d + 2 in order for the right hand side to remain bounded.

Estimate on 7: We realize that 5 > % > ﬁ Hence we obtain from Hbélder’s inequality

s(i-#0) <5(i~) 2

where § = 2 and % + % = 1. From the right hand side of the last inequality, we infer boundedness

of the first expectation value for s < 2 implying ¢ < @ Since we have to require ¢ > 1, this
2

implies 7 < 2 and s > 5=+ On the other hand, we know that the second expectation is finite if
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ﬁp <d+2.Forq= 2(55—;1) we obtain the lower bound for p = q%l and hence we conclude the
sufficient condition
! <d
e g =0t

ST
which implies our claim.

Estimate on d: We have to estimate the local maximum number of As i, overlapping in a single point in
terms of M. We first recall that p(p) =~ SM(p)ﬁ(p). Thus large discrepancy between p and p occurs
in points where M is large. This is at the intersection of at least two balls. Despite these “cusps”, the
set OP consists locally on the order of p of almost flat parts. Arguing like in Lemma5.2|resp. Remark
[5.3this yields d < d — 1.

Estimate on a: Given two points y1,y» with radii t(y1), t(y2), By, = By, (v:) and Myu =
—1 .
B, | fol u we find

ly1 — yo| + ’(ngg - 1) t(y1)
|IMy,u— My,u| < B, | / |Vul .
Y1 conv (Byl UBy, )

By our initial assumptions on t(y;) we prove our claim on cv. O

It remains to verify bounded average connectivity of the Boolean set P (w) := J, B;(w) or its com-
plement. In what follows we restrict to the Boolean set and use the following result.

Theorem 8.3. [37]Let P have a connected component and let G(X,.is) be the graph on X
constructed from = ~ y iff By(x) N By(y) # 0. Let P be the connected component of P and
Xpois = Xpois N P.Forz,y € Xpois let d(z,y) be the graph distance. Then for every e > 0 there
exists p > 1, v > 0 such that

]P’(M Z(1—e1+ s)) < eVl

plz =yl

The latter result enables us to prove the following.

Lemma 8.4. Using the notation of Theorem letx,y € Xpois anda > 2. Then
P(d(z,y) > 4pa|z —y| (14 ¢)) < 229l

In other words, the probability that the distance between x and y on the grid is stretched by more than
dua is decreasing exponentially in a.

Proof. Let x,y € Xpois. Leta > 2 and let n € N such that a € [27,2""1). With probability
1 —exp (—/\ |S21 (2dntd — 24) |2 — y|d> > 1 there exists z € Bon+1),_y((2) \Banjs—y (2). For
such z it holds
"o —y| <[ —a| < 2"z —y]
e -yl <[z -yl < (2 +1) [z —y
In particular, we obtain for @, := 2" + 1
dz.y) _ _ d@y) _  dzz) d(z,y)
dpale —yl 7 2pani |l —y| T 2pani |z -yl 2pa04 |z -y
d(z, z) d(2,y)
T 2ulr -z 2ufz—yl

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



M. Heida 80

d(z,z)
ple—=z|

we find that at least one of the conditions

Hence, assuming 1 + ¢ < d(z.y) >14c¢cor

—  4palz—y|
4zv) > 1 4 ¢ has to hold, which implies

pulz—y| —
P(1+€§M) SP<MZH5WMZH€).
dpalr —y| plz — 2| 1z =yl

Now it holds under the condition that z exists
]P( d(xyz) >14+cor d(Z,y) > 1+ 5) < e—l/|z—z|_|_e—u|y—z\ < 2e—y2n|z—y\ < 26—%a\m—y| :
e — 2| wlz =yl

which implies the statement. O

We construct a suitable graph (Y, G(P)). For this we choose X, := X,(P) according to Lemma
and define
Ypois = Yox UOX U X, U Xpois -

For Yygx and OX we choose the standard neighborhood relation. Furthermore, we say for y € Ygx
and z € X, that y ~ x iff there exists T € Xo;s With z,y € B;(Z) and for x € X, T € X055 We
say x ~ T iff € B, (Z). This graph is called Gpois.

Theorem 8.5. Let P be the connected component of | J, B;(w). Then P is locally connected and for
(Y pois; Gpois) we find for every v > 0 that E(S)) < oc.

Proof. We write a = t~!. Let z; € X, with diameter d; of the Voronoi cell and let Xe1 =X N
B34, (). We can chose Xjois1 C Xpois N Bsaytar (@) With #X i1 = #X, 1 such that X, ; C
B (Xpois,1)- Note in particular, that #X,0is1 < Cdf. Now let y € Yax N Byg(z) and let Y =
(y1, - yk) € AX(z,y). fy1 = y, then yo € X, 1 and, w.l.o.g., ¥3, Ys—1 € Xpois,1- For the graph
distances it holds
d(z,y) < d(@, yp-1) + d(yr-1,ys) + d(y2, y3) + d(y1, 32)
< at+ d(yp_1,ys) + av + 4Vdr.

In case d(yx—1,y3) < 1 we conclude with d(z,y) < <3a+ 4\/E> t < <3a +4\/E) dy. If
d(yp—1,y3) > 4v/d we obtain d(z, y) < 4d(yx_1, ys).
Hence, because #X,ois1 < C’d‘f, it only remains to observe that Lemma yields an exponential

decrease for the probability of large stretch factors for d(yx_1, y3). O
8.2 Delaunay Pipes for a Matern Process

For two points =,y € R%, we denote

T —y
|z — y|

P.(x,y) := {y—l—zeRd: 0<z-(z—y)<l|z—y], [z—2-(z—7)

<r},

the cylinder (or pipe) around the straight line segment connecting x and y with radius > 0.

Recalling Example we consider a Poisson point process Xpeis(w) = (24(w)),cy With intensity
A (recall Example [2.36) and construct a hard core Matern process X,,,.; by deleting all points with a
mutual distance smaller than dt for some t > 0 (refer to Example [2.37). From the remaining point
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process X4 We construct the Delaunay triangulation D(w) := D(X.¢(w)) and assign to each
(z,y) € D arandom number §(z,y) in (0,t) in an i.i.d. manner from some probability distribution
d(w). We finally define

Pw:= U Peny) U Bil)
(z,y)ED(w) 2€Xmat
the family of all pipes generated by the Delaunay grid “smoothed” by balls with the fix radius v around
each point of the generating Matern process.

Since the Matern process is mixing and ¢ is mixing, Lemma yields that the whole process is still
ergodic.

Remark 8.6. The family of balls B, (x) can also be dropped from the model. However, this would imply
we had to remove some of the points from X,,.; for the generation of the Voronoi cells. This would
cause technical difficulties which would not change much in the result, as the probability for the size
of Voronoi cells would still decrease subexponentially.

Lemma 8.7. X,,.; is a point process for P(w) that satisfies Assumption and P is isotropic cone
mixing for X,,., with exponentially decreasing f(R) < Ce~R'. Furthermore, assume there exists

Cs,as > 0 such that P(0(z,y) < &) < 0667%%’ then P(M > M,) < Ce=*Mo for some
C,a>0.

Proof. Isotropic cone mixing: For z,y € 2dvZ* the events (x + [0, 1]*) N Xya¢ and (y + [0, 1]4) N
Xinat are mutually independent. Hence

d
P((k2dr [~1,1]%) N Koy = 0) < P([~1, 1] N Xyt = 0)" .
Hence the open set P is isotropic cone mixing for X = X,,,; with exponentially decaying f(R) <
Ce R,

Estimate on §: There exists C' > 0 such that P is (6(z,y), Cé(z,y) 1)-regular in every x €
0Pz, (,y). Since the distribution of d(x, y) is independent from 2 and ¥, this implies that P(§ <

—as L
50) S C(;G a§50.

Estimate on the distribution of M : By definition of the Delaunay triangulation, two pipes intersect only
if they share one common point z € X 4.

Given three points x,y, 2 € X.¢ With x ~ y and x ~ 2z, the highest local Lipschitz constant on
9 (Pé(:c,y) (7,y) U P(z,)(, z)) is attained in

T =argmax {|z — Z|: T € 0Py y)(x,y) N 0P (2, 2)} .

It is bounded by

max{arctan (%4((x,y),(w,z))) , 5(; 5 5(;’ Z)} ,

where a := < ((x,y), (x, 2)) in the following denotes the angle between (x,y) and (z, z), see
Figure @ If d,. is the diameter of the Voronoi cell of z, we show that a necessary (but not sufficient)
condition that the angle o can be smaller than some « is given by

1

sinag

d, > C (8.3)
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h’;r,::

. Figure 6: Sketch of the proof of
N hay Lemma([8.7]and estimate (8.3).

where C' > 0 is a constant depending only on the dimension d. Since for small o we find M =
L_ and since the distribution for d, decays subexponentially, also the distribution for M decays

sina’

subexponentially.

Proof of : Given an angle & > 0 and = € X,,,,; we derive a lower bound for the diameter of G ()
such that for two neighbors y, z of 2 it can hold <t ((z, y), (z, z)) < a. With regard to Figure 6] we
assume |z —y| > |z — z|.

Writing d,, := d(z) the diameter of G(z) and @ = < ((z,2),(z,y)), wloglety = (dy +
dy,0,...,0), where d; + dy < d, and d; = |y — z| cos & Hence we can assume that z takes
the form z = (ds, — |y — 2| sin @, 0...0) and in what follows, we focus on the first two coordinates
only. The boundaries between the cells z and z and = and y lie on the planes

1 — z|sina 1 0
hmz(t):§z+t(|y dL ), hzy<s):§y+3(1)

respectively. The intersection of these planes has the first two coordinates

, dy + do 1’ Isi ~_i_l dyds
lyyz = ,—= |y —z|slna + ———F+7—=
v 2 2 1Y 2|y — z|sina

. Using the explicit form of d», the latter point has the distance
1 1 1d2%cos? &
.2 2 2 2
i =—|ly—z2|"+-ds + ——=—5—
liwel” = gl =21+ g+ =57

to the origin z = 0. Using |y — z|sin & = |z|sina and dy = |y| — | 2| cos o we obtain

o1 2 (ly| = |2] cos @)* cos® & 2
|Zzyz| :Z |y—Z‘ 1+ 5 —|—(|y‘—|Z|COSCY) .

|2)? sin® &

Given y, the latter expression becomes small for |y — z| small, with the smallest value being |y — z| =

dt. But then ,
(|z|sin «)

ly — 2

2

cos’@ = 1 — sin®

a=1-

and hence the distance becomes

|¢xyz|2=1(<dt>2 (1+ (= Floos) ({09 o ol in O‘)) +<|y|—rz|cosa>2) .

4 (dv)*|z|? sin® «

We finally use |y| = |z| cos o — \/(dt)2 — || sin® a and obtain

liaye|2 = }1 ((dt)2 <1+ ((de)” — |21 sin O‘)> + ((dv)? — |2 sin? @)> .

(dv)? |z sin® o
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The latter expression now needs to be smaller than d,. We observe that the expression on the right
hand side decreases for fixed « if |z| increases.

On the other hand, we can resolve |z| (y) = |y| cos o — \/|y|2 sin? a + (dt)”. From the conditions
ly| < dy and |igy.| < d,, we then infer (8.3). O

Lemma 8.8. Let Y be constructed from Lemmal[4.25 for X, = X,,at with the corresponding standard
graph Ggmple(P) (see Definition[4.29). Let the admissible paths AX(y, x), x € X, y € Y, be the
set of shortest paths on the graph between x and y. Then there exists C' > (0 such that for every
x; € Xy it holds Ro(x;,202;)/d; +S; < C. In particular, for every 1 < s < p it holds

p
p—s

' d"r s:l s;l
lim —— Z XERO(xj,Q[QJ)(Ij)dj ‘ Sj < 0.
€X:(Q)

Proof. Since the admissible paths are the shortest paths, there exists C' > 0 such that for every
Y € X(y,zj), z; € Xi, y € YN B (A ;) it holds LengthY < C'|x; — y|. Furthermore, for
zy, € X, with 2, ~~ x; we find |z, — x;| < 2d; and since x;, and x; are connected through a path
lying inside Boq, (;) possibly crossing other z; € Ay ; N By, () we can assume for the same C
that for every Y € AX(xy, x;), i ~~ x; it holds LengthY < C'|z, — x;|. This provides a uniform
bound on Ry(z;,%2;) + S;d; < Cd;. The lemma now follows from Lemma and Theorem
11l O

9 Sobolev Spaces on the Probability Space (2, P)

Based on Assumption we want to achieve a better understanding of the mapping f + f,,. For
this we make the following basic assumption throughout this section.

Assumption 9.1. Let (X2, 0,P) be a probability space satisfying Assumption and let T be a
dynamical system on ) in the sense of Definition

For the introduction of traces of W1 (§2)-functions below we will need the following (uncommon)
stronger assumption. It is motivated by Theorem [2.33] which states that we can assume €2 to be a
separable metric space.

Assumption 9.2. Let (2, 0,P) be a probability space satisfying Assumption and let T be a
dynamical system on €2 in the sense of Definition Furthermore, let () be a separable metric
space such that o is the completion of the Borel algebra 3(§2) under the construction of the Lebesgue
space L' (Q; P).

Assumption will pay of due to the second part of the following lemma, which is a fundamental
property of separable o-algebras.

Lemma 9.3. Let (A, X, 1) be a measure space with a countably generated o -algebra Y.. Then for
every 1 < p < oo the space LP(A; ) is separable. If A is a separable metric space and ¥ the
completion of the Borel algebra with respect to i then Cy,(A) — LP(£2; i) densely and continuously,
where Cy,(£2) are the bounded continuous functions on ).

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



M. Heida 84

The following lemma is a fundamental observation which will be frequently used throughout the rest of
this work. It relies on the following notation. For f : 2 — X, X a metric space, and w € {2 we define
the realization f,, of f as

fo R*— X, x— f(rw).

Then we find the following behavior.

Lemma 9.4. Let Assumption (9.1 hold and let f € LF(2) for 1 < p < oo. Then for almost every
w € 2 and for every bounded domain Q it holds f,, € L*(Q).

Proof. For1 < p < oo observe that

£(Q) [ 1) d2(e) - /Q | 1P dB(w)ds = /Q | s dp)ds

-/ /Q [ F(ra) P dz dP(w).

From Fubini’s theorem it follows that fQ |f (Tow)|? dx exists for a.e. w € ). For p = oo the statement
follows since fQ | f(m2w)|” dx exists for every p < oc. O

9.1 The Semigroup T on L”({)) and its Generators

For every x € R? we define the mapping

T(z): fr=T(x)f,

through T'(z) f(w) := f(7,w). This mapping is well defined for every measurable function f :  —
RR. Moreover, we have the following properties.

Lemma 9.5. Let Assumption hold. For every 1 < p < oo, the family (T (x)),cra s a strongly
continuous unitary group on L”(€2).

Proof. Every T(x) is linear on L”(2) and the group property follows from (T'(z)T(y)f) (w) =
f(ramyw) = T(z + y) f(w). Since 7, is measure preserving, we find || f|| 1) = [T(2) [l 150
and hence T'(z) is unitary.

In order to prove the strong continuity, observe
IT(&)f = Ay = | 17(r) = £ dB)
— [ [ 1) = ) dy ap(e)
QJy
— [ [ 15+ 9) - L)l dyapio).
QJy

where we used that 7, preserves measure and Fubini’s theorem. By Lemma fo, € L (Rd) for

loc

almost every w € €2 and for such w it holds limy, o || fo — fu (- + )| 14y = 0. Furthermore, for
2| < % we have

/Y fule +9) — fuly)ldy < 2p /Wlfw(y)!”dy.
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Thus, the Lebesgue dominated convergence theorem yields

sup || T(2)f — fllip =0 ast—0.

lz|<t

O

Fori=1,...,d, lete; be the i-th canonical basis vector in R%. Since T (z) define a strongly contin-
uous group we can draw the conclusion that the operators T, () f := T(te;) f, define d independent
one-parameter strongly continuous semigroups on LP(£2) that commute with each other and jointly
generate (T(z)), s On LP(£2). Each of these one-parameter groups has a generator D; defined by

D;f(w) = lim Ti(t) f(w) = f(w) — lim f(Tte,w) — f(w) .

t—0 t t—0 t

The expression D; f is called i-th derivative of f and is skew adjoint:

/ gD, fdP = — / FDigdP.
Q Q

The joint domain of all D; in LP(€2) is denote
WP(Q) = {f € LP(Q)|Vi=1,...,d : Dif € LP(Q)},
with the natural norm

d
Hf”WLP(Q) = ||f||Lp(Q) + Z ||Dif||LP(Q) :
i=1

In case p = 2, this is a Hilbert space with scalar product

d
9 oy = /Q fgdP+ 3 /Q D, /Dy P
=1

We finally denote D, f := (D f,. .., Ddf)T the gradient with respect to w and by —div,, the adjoint
of D,,. Sometimes we write V,,f := D, f to underline the gradient aspect. Similar to distributional
derivatives in RY, we may define DF f through iterated application of D,, and

Whe(Q) = {f cLPQ)|Vj=1,....k:Dife LP(Q)C”} .
In case Assumption 9.2 holds, we denote
CH(Q) = {f € Ch(): Vfe Cb(Q;Rd)} .

Lemma 9.6. For every f € W'P(Q) for almost every w € Q it holds f,, € W,-"(R?). In particular,
for every bounded domain Q C R? it holds

v e C(Q) - /Q Jod = — /Q & (D.f),, 0.1)
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Proof. Letvy € C>°(RY) and let g € LI(0),
theorem it follows:

% + % = 1. Using Lebesgue’s dominated convergence

o) [ rowacare) = [ o) [ gt "= qugp)
Q R4 Q Rd
Ctim [ o) [ fo(e) LB =YW 4 api

t—0 Q R t

fo(2) — fu(x + tey)
t

=lim [ g(w) [ ¥(x+te) dzdP(w) .

t—0 Q R4

Since 7, preserves measure, we obtain

1 flw) = Tif(w)
/Q » fuOipd LAP(w) = hm /Rd / g(T_w)(x + te;) ; dzdP(w)

= lim / fle W) /R d9(uw)¢(:c+tei)dxdp(w)

/R d / ")) f () dzdP(w)

—— [ gle) [ (D), vaLap).

Using a countable dense subset (¢;),cy C LI(R?), ¢; € C°(R?) and a suitable family of testfunc-
tions (gj)jGN C L9(2), we obtain that for almost every w € {2 equation 1i holds for every ;.
Hence, by density, it holds for all 1 € C'}(Q). O

Lemma 9.7. Let 1 < p < oo and letn € C°(RY). Forevery f € LP(Q) let

(0% f) (W) = /R @) ()

Then for every k € N it holds n * f € W&P(Q) with D;(n* f) = (9n) * f and almost every
realization of .75 f is an element of C°°(RY). Furthermore, the estimates

% F L) < Mll ey 1oy > D% Aoy < 10l aeay 1 £l oy (92)

hold and we have D; (n x f) =n* D, f.

Proof. Let k € N and observe
% ey = [0 [ e 0) () dydPle)
Q (—k,k)d
< / (2k) / (@) f (7 120)|P dar dy dP(w)
Q (—k,k)d JRA
Due to the convolution inequality we have

7% £ 1oy < Moty G | 1ol AP

< 19l e (%) JNEIRE®
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and since k is arbitrary, the we obtain |77 * f{|7, gy < 191l 11 gay | F1] 1 the first part of .
In order to show %5 f € W"P?(Q)) observe
1 1
£ s J(e) = f@) = [ 1o+ te) = (o) F ).
R

Taking the limit £ — 0 in LP(£2) on both sides using Lebesgue’s dominated convergence theorem
implies

Di(n+f)= [ On(z)f(raw), (9.3)

R4
and hence D; (Zsf) € LP(QQ) with D;(n * f) = (9;n) = f and the second part of follows.
Equation also shows that

(5 P ) = [ 0@)f ()t = [ e =0)f () da

and hence almost every realization of 1) * f has C'*°-regularity. Furthermore, implies
1
Di (F5f) = lim - (7 f) (rie,w) — (1 f) (w))
1
— el (o) — (&)

t—0
where we used continuity of f — 1 f and strong convergence of 1 (f(Tie,w) — f(w)) = D;f. O

Similar to Lp(Rd)- and Sobolev spaces on R?, we can introduce a family of smoothing operators. Let
(n5)5>0 be a standard sequence of mollifiers which are symmetric w.r.t. 0 and define

S L) 5 Q). Sf(w) = / (o) f () 0.4

Lemma 9.8. Foreveryd > 0,1 < p < oo, the operator %5 is unitary and selfadjoint. For every
f € LP(Q), k € N it holds Z5f € WkP(Q), Zsf — [ strongly in LP(2), and almost every
realization of %5 f is an element of C*(IRY). Finally, for f € WP (Q) it holds

(lsi_{% ”féf - fHWLP(Q) =0 (9.5)
andD; 75 f = ZsD; f.

Proof. The selfadjointness follows from the definition of .%5, symmetry of 75 and invariance of IP w.r.t.
7. All other parts except for (9.5) follow from Lemma (9.7

Finally, observe that the the convolution inequality and the strong continuity of T'(x) yield

[ 1= 1=

p

dP(w)

[ o) () = F () da
/ ||m||L1(Rd |, G = fp de (o)

7

< [ 10 = e e a
— 0

Since D; %5 f = 5D, f, italso holds D;.%s f — D, f strongly in LP(£2). O
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9.2 Gradients and Solenoidals

We denote by LP (R%R?) the set of measurable functions f : R? — R? such that f|y €
LP(U; R?) for every bounded domain U and we define

LP o 1oe(RY) == {u € L (R RY) | YU bounded domain, 3p € H'(U) : u =V}
Lgol loc(Rd) {u € Lloc(Rd; Rd) | R u- VQD =0 VQO € C’cl (Rd)} :

Remark 9.9. The space Lpot 1OC(Rd) is invariant under convolution. This follows immediately from the
fact that if u = Vi locally, then ns * u = V (ns * ©).

Recalling the notation for a realization u,,(z) := u(r,w) for u € LP()), we can then define corre-
sponding spaces on {2 through

Lyt () := {u € LP(GRY) : u, € P, (RT) for P —ae.w e Q} ,
L) = {ue LP(4RY) : u, € L2 (RY) for P —ae.w € Q} | (9.6)

V() = {uELpot(Q) ; /Qud]P’:O} |

The spaces L} (2) and W'*(Q) are connected as the following theorem shows.

Theorem 9.10. For1 < p,q < oo With% + é = 1 the spaces V},(2) and L,

P () are closed and
it holds

(Vpot(Q>) = Lgol(Q) ) (LSOI(Q))J_ - Vgot(Q) (97)
in the sense of duality. Furthermore, W1?(Q) lies densely in LP(§) and
VP (Q) = closurer, {Du| u e WHP(Q)} . (9.8)

Proof. The density of W1P(2) in LP(Q)) follows from Lemma We furthermore observe that
Vp

pot(Q) is invariant with respect to . In fact, let u € V}(€2) and consider w € 2 such that

uy € L7 1oo(RY). Then

(Fi) @) = [ m)u () dy

and hence (Su),, € LY, . (R?) due to Remark Furthermore, the space L. (€2) is closed as
can be seen from the continuity of the expression

LP(OGRY) - R, uws / /( L u(rw) - V() de dP(w),

where ¢ € WH4(R?) and g € L%(Q) are arbitrary.
It remains to show , 9.8) and closedness of Vp(€2).

Step 1: We first show that V7 (€2) and L (€2) are mutually orthogonal in the sense of duality. Let
v € Vo (©2) and p € L, () and chose w € € such that for v°(z) = v(Tzw), p°(7) = p(Tzw)
and v° - p° the ergodic theorem ?? holds. Thus, we get v° - p* — E(v - p|.#) weakly in L (R?). It
remains to show that v° - p* —* 0. Since v € L7 (2), we find for every & > 0 some u* € W'?(Q)

such that Vu® = v° and fQ = 0. By the ergodic theorem Vu® = v* —=* E(v|.#) = 0 and
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u® — u has average 0. Due to the PoincarA(C) inequality and the compact embedding W'#(Q) —
LP(Q), we find u — 0 strongly in LP(Q). Therefore, for all ¢p € C°(Q), we find

/@Z)’Ua'pad%:/?ﬂpa'vuad:t:—/uap‘f-vwdx—)O fore = 0.
Q Q Q

Therefore, we obtain

Lq

sol

(Q) € (VE,()" and VA,(Q) C (LL ()" . (9.9)

p

Step 2: We prove and closedness of ijot(Q) in case p = 2. From Step 1 we know that
L2,(Q) c (V2 (Q))l and it remains to show that (12 (Q))L C L2,(Q). Letu € L*(Q;RY)

sol pot pot sol
(Q)and @ € (V2 (Q))L Since .75 is

and use the decomposition © = upe + U Where Uy, € V? ot

pot
symmetric and V2 _ (2) is invariant with respect to ., we observe that
pot

Yo € V?

pot

Q)+ (Hu, v) = (a, Fs5v) =0

and hence %51 € (V2 (Q))l In particular, for every € > 0 and every ¢ € L*() it holds

pot
0= <j511, Dwfsgﬁ) = — <divwf5ﬁ, eﬂs¢>

and as € — 0 it holds
0 = — (div,Zsu, ¢) .

Since ¢ € L?(£2) was arbitrary, this implies Y, D;.#5t = 0 almost everywhere, i.e. Z5u € L2 ().

sol

Since J5u — was & — 0, the closedness of L2 (Q) implies & € L2 (). Hence L2,(Q2) D
VQ

2,.(Q2)" and Step 1 implies L2 () = V2., (€2)* and closedness of V2, ().

sol

Step 3: For p € [1, 2] we deduce from Step 2

(Vo ()" C LU RY N (V2,() = LUBRY) N L2,(Q) S LL,(Q).  (9.10)
Interchanging the role of V,,; and Ly, yields
(L))" CVE(Q). (9.11)

Inclusions (9.9), (9.10) and (9.11) imply (9.7).
Step 4: For 1 < p < oo we denote

V:={D¢| ¢ WP(Q)} C LV, (Q).

Let u € L9(Q; R?) satisfy
Vo e WHP(Q) = (u, D,¢) =0.

According to Lemmal9.8 D; and .5 commute for ¢ € W'P(Q). Furthermore, .%5¢ € W'?(Q) and
hence
0= (u, Dwf5¢> = <’LL, f(ng¢> = — <dinf5u, ¢> .

Since ¢ € WLP(Q)) was arbitrary and TV 17(§2) is dense in LP(€2), it follows div,,.Z5u = 0, which im-
pliesu € LI (Q) by closedness of L? (€2). To conclude, we have shown L! () = (Vpot(Q))L -

sol sol sol p

v+ C L2 (), and hence (9.8). O

sol
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9.3 Stampaccia’s Lemma

Lemma 9.11 (Stampaccia). Let G : R — R be Lipschitz continuous and let u € W1?(Q). Then
Goue Whr(Q).

Proof. Letu € WP(Q). It holds

The G(u) — G (The, G
lim sup he G (1) (1) = limsupH hett) — Gi(u)
h—0 h Lp( ) h—0 h LP(Q)
(The The t —
<hmsupH heit) = ( ) heitt 7 U
h—0 Thelu 0o h LP(Q)

< NGl D]l 1o

Hence, we find that there exists w; € LP(Q) such that + (The,G(u) — G(u)) — w; weakly along a
further subsequence. Testing this limit with a function ¢ € W14(Q), we obtain that w = (w;)i=1. 4
is the weak derivative of G(u) as

/ w;pdP = lim/ = (The,G(u) — G(u)) pdP

= —lim %(Theiso — ) G(u)dP = —/ G (u)DipdP.
Q

O

Remark 9.12. Lemma is well known in Sobolev theory in R and is due to Stampaccia. It can be
found for example in the book by Evans [10]. Stampaccia [34] also showed for functions u & Wl’p(Rd)
that V (G o u) = G'(u)Vu. However, to proof such a result in the case of general {2 goes beyond
the scope of this chapter.

Theorem 9.13. Forevery 1 < p < oo the embedding W 1> (Q)) — WLP(Q) is dense. In particular,

v

p

P +(€) = closurer, {Du|u e WH*(Q)} .

Proof. Let u € W'P(Q) and let k € N. By Lemma we obtain that the function uy, :=
max {—k, min {k,u}} satisfies uy € W'P(Q) and |lug||,, < k. Since uy — u as k — oo, it
remains to show that u; can be approximated by functions in WLOO(Q). To see this, note that for
u := Fsuy it holds

1 ) 1
fim & (Sie(re2) = Fjua)) =lim [ (sl + 1) — () ()

_ /R () Oma(x)

and since 17; € C°(R?) we find u{ € W1*°(Q). Since uf, — wuy, in W1P(Q) as § — 0 by Lemma
[9.8] the theorem is proved. O

The last Theorem has an important implication for the existence of suitable countable and dense family
of functions.
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Theorem 9.14. Let Assumption[9.1| hold. For every 1 < p < oo there exists a countable dense family
of functions (ur) ey C WP (Q) such that (uy,) oy € WH™(Q) and (uy),.oy is stable under addi-
tion and scalar multiplication with ¢ € Q. Furthermore, every u,;, has almost surely bounded and con-
tinuously diifferentiable realizations with |||y 1.0 gay < [Unllyy1.00 (o) If additionally Assumption
holds, then (uy,),. can be chosen such that for every k it holds u;, € CHQ), Vouy € Cyp(Q).

Proof. Let (vg),.cy C W'?(Q) be dense. Then for every k consider vy, ,, := max {—n, min {n, v, }}

okl
Moreover, for every £ > () and every ¢ € WP(Q) there exists k with ||vy, — Ollwrny < 5 nwith
l|log — vk7n||W1,p(Q) < § and m with [|vgn — Vknmllyisq) < §- Based on the countable family

(Vkn.m) ey We find that

and for m € N define vgpm = F1Vpn = N1 * Vpp. Then ||Divgnm|l . < ‘ oin ‘

N
(uk>keN = { Z MNenmUknm @ Menom € Q, N € N}

k,n,m=1
satisfies all demanded properties.

If Assumption 9.2/ holds we find (c;),cy C Cy(€2) N LP(€2) dense in LP(€2). For every v, like above
and every § > () we observe by Lemma[9.7]that

175 % (o6 = )l o) < e = ctll oy

1D (5 * (0 = ) ooy < 1106l 11 gy [0k = il Lo -

Hence the family (¢, ;),; ;o = <17;_ * Cl> is countable and dense TW1?((2). From here we can
’ j 1jeN

proceed similarly with the modification that ¢; ; are already in Whe(()). Based on the countable
family (c1,7), ;> we find that

N
(k) peny == {Z Ajcyt N €Q, N e N}

lj=1
satisfies all demanded properties.

The bound [t || yy1.00 ay < |kl 31,00 () @nd continuous differentiability of realizations are a direct
consequence of the construction of uy. O

9.4 Traces and Extensions

For the remainder of this section, we make the following assumption.

Assumption 9.15. Under the Assumption|9.1let P (w) be a random open set with boundary I'(w) :=
OP(w) such that T'(w) is a random closed set. The corresponding prototypes P, T" C €2 in the sense
of Theorem|2.33 have Palm measures xpP and jirp respectively.
We then introduce the following function spaces.
Definition 9.16. Under the Assumption we introduce for 1 < p < oo the space
WP (P) := {u € LP(P;P) : fora.e.w holds u, € W;,;”(P(w)) and
there exists Du € L”(P)?st. fora.e.w : Vu, = (Du),} ,

HUHWLP(P) = HUHLP(P) + HDUHLP(P) :
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Based on Definition [9.16}, we also introduce the following properties of P and I".

Definition 9.17. We say for the corresponding prototypes P, I" C € in the sense of Theorem [2.33]
that

1 P has the weak (r, p)-extension property for 1 < r < p if Assumption holds and there
exists a continuous linear operator Uq : WP (P) — W' () such that (Uqu)|p = wu. In this
context, we define

WP (Q,P) i= {u e W (Q) : ulp € LP(P), Dyu € LP(P;RY)} |
VP (P) := closurerr {Du|u € W (P)} |
Vih(P) == {Du € VI, (Q)| Du e Vo, (P)} .

p

2 P has the strong (7, p)-extension property for 1 < r < p if Assumption holds and there
exists a continuous linear operator Uq : WP(P) — W (Q) such that (Unu)|p = u and
such that

IDothaul| o) < Cl[Duul| gy -

3 I has the strong (7, p)-trace property for 1 < r < p if Assumption holds and there exists
a continuous linear operator Tq, : WhHP(Q) — L"(T; ur p) such that for every u € Cj(£2) it
holds Tou = u|r in the sense of ur p.

We already mention at this point a very important property which holds for P = €2, but which we are
not able to reproduce for general P in this work. Hence we formulate it as a conjecture, and will avoid
to use it in the remainder of this work. Fortunately, it turns out to be non-essential up to uniqueness
properties of the homogenized problem in Section|10.6

Conjecture 9.18. If P has the strong extension property it holds
RN V2 (P) = 0.

Theorem 9.19. Let Assumptions[9.4 and(1.3 hold for the random open set P(w) with 1 < r < p and
let T be ergodic. ThenT" has the strong (r, p)-trace property.

In order to prove Theorem [9.19| we first need the following lemma.

Lemma 9.20. Let Assumption (9.1 hold and let 1 < r < p, then there exists a family (uy),.y C
W22 (§2) which is dense in WP (), P). If Assumption|9.3 holds then we can additionally assume
() ey € WH2(2) N Cy(2). In both cases (u),.cy is stable under addition and scalar multipli-
cation with ¢ € Q. Furthermore, every uy, has almost surely bounded and continuously differentiable
realizations with Huk,wHwLOO(Rd) < lukllproe

Proof. By Theorem w there exists (ug).cy C Wh™(£2) which is at the same time dense in
Whr(Q) and WP(Q2). The statement now follows from W17 (Q2) D Whr?(Q,P) D WP(Q). If
Assumption 9.2] holds Theorem|[9.14]yields (u),cy € W(Q) N C} (). O

Proof of Theorem[@19 Let (uy), .y € WH(Q) N C; () be dense in W12 (Q, P) according to
Theorem For each u € (uy),y the function u|p is well defined. Writing Q,, := [—n, n]* and
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using Theorem[5.9|as well as the Ergodic Theorems we find

d d Tug,l|"
/\U| Hr,p = //\U| Hr,p = !Q!/map|u|

(w)
]' p p ’
<E|C, |1 uw|” + V|
1Q, | Q, 4 1NP(w)

. p,%r 1 P
SE(CJJ”) E —/ g ? + [V |?
|Qn‘ Q,1NP(w)
%E(OF)T (/ |uyp+|ku|pdﬂ»)p
Q

as n — 00. Using the definition of C, in Theorem [5.9|we conclude. O

A generalization of Theorem to the general case of Assumption is difficult, since the trace
property does not apply for general L>-functions, even in R?. However, for the sake of homogeniza-
tion, there exists a workaround.

Definition 9.21. We say for the corresponding prototypes P, I" C (2 in the sense of Theorem [2.33
that I" has the weak (7, p)-trace property for 1 < r < p if Assumption [9.1| holds and for every family
of functions (), C W(Q2) according to Lemma9.20| which is dense in W"1*(Q, P) there
exists a continuous linear operator 7, : Wh'?(Q, P) — L"(T'; urp) such that for aimost every
w €  and every uy it holds (Touy),, = Tty on I'(w).

Theorem 9.22. Let Assumption[9.1|hold, let T be ergodic and letT'(w) be almost surely locally (5, M )-
regular satisfying Assumption Then T has the weak (r, p)-trace property.

Proof. We define Tquy, pointwise in w through (Touy),, = 7T uk,. and observe that 7T, is bounded by
the argument in the proof of Theorem It thus remains to show that 7quy, is measurable, because
then, we can simply extend Tq, to WhH12(Q P).

We use Lemma and obtain that I's(w) := Bs(I'(w)) is a RACS with prototype I's due to Theo-
rem We observe that I' = (1), I's as well as (by definition) Touy, = infs xr,uk, hence Touy, is
measurable. O

We will now turn our focus to the extension properties. We start with an important implication by the
strong extension property.

Theorem 9.23. Let Assumptionm hold let T be ergodic and let P have the strong (r, p)-extension
property. Then the operator U, can be extended to a continuous operatorUy, : Vi, (P) — Vi3 (€2, P).
More precisely we can identify V% (P) with

Vpot( ) = closureprsiap) {UoDou : u€ WHP(Q)}
= closurezr»(op) {MQDwu cu € WHP(Q; P)} ,

€] iy T 1€l o) -

Lrp(QP) — €]

This means that for ¢ € V2., (P) and ¢ € V2, (P) it holds ¢l = ¢ iff ¢ = Uq .
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Proof. The first part follows immediately from the definition of the spaces and of the strong extension
property.

For the second part, remark that UoW1?(P) Cc W1"P(Q, P) and (Ung)|p = ¢. Furthermore,
WP(€Q) is dense in W'?(Q, P) by Lemmal9.20] Finally, Uolod = Ua¢ and for ¢ € Vi, (P)
and ¢ € V2, (P) itholds ¢lp = ¢ iff ¢ = Un . O

Theorem 9.24. Let Assumption|9.1| hold, let T be ergodic and letT'(w) be almost surely locally (5, M )-
regular satisfying Assumption[1.8for1 < r < py < p1 < p. ThenT' has the weak (r, p)-extension

property.

Theorem 9.25. Let Assumption|9.1| hold, let T be ergodic and letT'(w) be almost surely locally (5, M )-
regular satisfying Assumption forl1 < r < pg < p1 < p. ThenT has the strong (r, p)-extension

property.

We will prove Theorems and in Section using homogenization theory.

9.5 The Outer Normal Field of P
Theorem 9.26. Let Assumptions and hold and let T" have the strong (r, p)-trace property for
1 < r < p. Let T be ergodic, let I'(w) be almost surely locally (0, M )-regular and let vr () be the

outer normal of P(w) on I'(w). Then there exists a measurable function vy : ' — S%1 such that
almost surely vr(.)(z) = vr(T,w). Furthermore, for f € CL(€;R?) and ¢ € C(Q) it holds

/divw(fgzﬁ) dP:/qsf.ypdum. (9.12)
P I

If T satisfies the weak (1, p)-extension property, the equation extends to ¢ € WhHP(Q, P)
and f € CL(Q;RY) orto f € WHLP(Q, P)4 and ¢ € CL(Q).

Proof. For é > 0 define ys(w) := (1s * xp) (w). We observe that

DuXs] (7o) = D5 * Xxp)| (o) = |05 % (Duxe)(rw)| (2) = |15 * VXpw)| (z), (9.13)

and hence for almost every w we have [D,,xs| = |Vxp)| = ’Hd YT (w) N ) weakly. Then for
¢ € C*(R%) and f € Cy(£) it holds by the Palm formula and (9

/I%d /f|DWX6|_// fo |DwX6‘(7'x )da:dIP’(w)
= /Q 7 (raw)() |05 * VXp()| (2) dz dP(w)
< [ [ 5000 (Vo] (Balsuppe))) dedp(e).

where |Vxp ()| = 14 (- NT'(w)) = pir (). From the ergodic theorem, the IP-almost sure pointwise
weak convergence and the Lebesgue dominated convergence theorem, we conclude

/ /f!DwX5!—>// f(maw)p() dpr ) () dP(w)
Z/Rdsf)/ﬂfdur,p,
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which implies Jo f |DwX5| — [, fdprp. In a similar way, we show [, fDuxs — [, fdurp,
where upp is a R%-valued measure on I'. Furthermore, for every e; in the canonical basis of R?,

unp < pr,p, which implies by the Radon-Nikodym theorem the existence of a measurable v
with values in S*~! such that uur p = vrur p. The property vr . (z) = vr(7,w) follows from the fact
thatﬁ}? is the Palm measure of Vxp(.)-

For f € CHQ;RY) and ¢ € CL(Q, P) and p € C(RY) it holds

/]Rd /dlvw fo)= //Rd x)div(fo).,
L s
/Rd/ z)of - vedurp,

which implies (9.12) by a density argument. O

Definition 9.27. Let I have the strong (r, p)-Trace property for 1 < r < p and the weak (1, p)-
extension property. We say that f € LP(P;R?) has the weak normal trace f, € L"(I") and weak
divergence div,, f € L'(P)ifforall ¢ € C}(Q)

[ (divag + 7 Vo0 @ = [ o, durp.
P T

Theorem 9.28. Let Assumptions[9.4 and|[9.18 hold and for some r € (1,2) let ' have the strong
(r,2)-Trace property and the weak (r, 2)-extension property and let I'*(w) have the strong uniform
trace property (see Definition[10.10|below). Let T be ergodic, let ' (w) be almost surely locally (8, M )-
regular and let vr(,) be the outer normal of P(w) on I'(w). Then there exists uq € W' (2) N
Wh2(P; RY), such that V ,uq has a weak normal trace f, € L'(I") and weak divergence ug, i.e.

Vo € Cf (w) : [P (pug + Vug - V,0) dP = /ngfl, dprp .

The last theorem is less trivial than one might think. In particular, we lack a PoincarA(C)-type inequality
on 2, which is typically used to prove corresponding results in R%. We shift the proof to Section

10 Two-Scale Convergence and Application

As we have already explained in the introduction, there have been several approaches to the introduc-
tion of two-scale convergence in stochastic homogenization. In this work, we chose a modification of
[15] because it does not rely on compactness of the underlying probability space.

10.1 General Setting

For the rest of this work, we consider a stationary random measure w — i, with Palm measure pp
and we define

s (A) o= elp, (e71A). (10.1)
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For the corresponding Lebesgue spaces we write LP(€; pip) or LP(Q; 1i5)), where Q C Rl is a
convex domain with C'*-boundary. If 1, = L, i.e. up = P, or ju,, = XP(w)L We omit the notion of /i,
and pp.

In our applications, du., = Xp(.)dL for the characteristic function of the prototype P C (2 of the
random set P (w) with Palm measure xpP or du, = dpre) == xr w)de 1 with Palm measure
located on I" C €2, the prototype of I'(w) := OP(w). If we epricitIy study the latter case, we write
pr p for the Palm measure.

Moreover, in view of (10.1), we write /15, ) (A) := erq)(e7'A) = eH (AN el (w)). In case of
o = XP(w)L, we drop the notation .

Assumption 10.1. Let (2, o, P) be a probability space with ergodic dynamical system (T,) cpa in the
sense of Def/n/tlon Letl < q,p < > W/th + = =1and

be a countable dense subset, which is stable under_scalar multiplication and linear combination. Fi-
nally, let Qg be such that (2.31) holds for all o € C(Q), w € Qq, f € Dp,.

Remark. In some proofs below we will assume w.l.o.g. that some particular, essentially bounded
functions are elements of ®p .. These will always be countably many and hence {24 has to be changed
only by a set of measure 0.

Definition 10.2. Let Assumption hold. Let w € Qg and let u® € LP(Q;u) for all ¢ > 0.

We say that (u®) converges (weakly) in two scales to u € LP(Q; LP(€2; ip)) and write u* )
if sup_.o [|[ull 1r(que) < 00 and if for every ¢ € Pp g, ¢ € C(Q) there holds with ¢, -(2) =

p(x)ih(rew)
lim | u(2)p,(x)du (x // u(z, w)e(x)Y(@) dup(@) dz .

e—0 Q
We note that the definition of two-scale convergence in [15] is formulated more generally, in particular
for a more general class of test-functions.

Lemma 10.3 ([15] Lemma 4.4-1.). Let Assumption|10.1 hold. Let w € Q2 andu® € LP(Q; i) be a
sequence of functions such that ||| ., q) < C' for some C > 0 independent of =. Then there exists

a subsequence of (uf )._,o and u € LP(Q; LP(S2; uip)) such that u® 2w and

(10.2)

lellzoquerumy < HmipEflu o

Sketch of proof. The proof is standard and has been carried out in various publications under various
assumptions [2, 14}, (15,18, 39]. The important point is the separability of C’(Q) which allows to pass
to the limit for a countable number of test functions (‘Pk’)keN S C(Q) first, and then apply a density
argument. O

Furthermore, we will need the following result on the lower estimate in homogenization of convex
functionals using two-scale convergence, which was obtained in [17].

Lemma 10.4. Let Assumption|10.1hold and let 1., be a random measure. Let f : Qx QxRN — R
be a convex functional in R®. For almost all w € Qg the following holds: Let v € L(Q; 15,

be a sequence such that ||u®|| Lo(Qus) < C for some 0 < C' < oo and such that u° X u €
L1(Q x Q; L ® up). Then, it holds

//fa:wua:w))dup( )dx<hm1nf/fx7zwu( ) di (z).
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10.2 The “Right” Choice of Oscillating Test Functions

In what follows, we will have to deal with two-scale limits of functions on R¢, but also on P(w) or
I'(w). Hence we deal with two-scale convergence w.r.t. to P, xpP and pir p. In order to keep notation
of the set(s) of testfunctions short and concise, we make the following choice:

¢, =Pp, = (uk)keN

is the set countable set of functions (uy),cy C W'P(Q) N W2°(Q) from Theorem W Hence
(ur)pe is dense in LP(2) and (Vuy) oy is dense in V) () (see Theorem|9.10).

If I' has the strong or weak (r, p)-trace property, using Theorem and we define
(I)T,F = 7?2(1);) ) &)T,F )

where &)np is dense in L"(I", urp). In case of Assumption we note that 7o ®, is dense in
L"(T, pur p) because Cy(w) is dense in L"(I', jur p). However, in case of Assumption 9.1t is not
clear that 7o ®,, is dense in L"(T', ur p), which is why @, 1 is needed.

10.3 Homogenization of Gradients

In what follows, we introduce two-scale convergence of gradients. This result has been proven in
various work under various assumptions, see e.g. [2] for the periodic case and [39, 29 [15] in the
stochastic case. We provide the proof here for self-containedness of this outline.

Theorem 10.5. Under Assumption|10.1| for almost every w € §2 the following holds:
Ifus € WhP(Q; R?) for all ¢ and if there exists 0 < C,, < oo with

sup [0l o) + €7 IVl o(q) < Cu
I3

Then there exists u € LP(QLP(2;P)) such that u* 22 . Depending on the choice of 7, the following
holds:

11y = 0, thenu € WH(Q) with v — u weakly in W'P(Q) and there exists v, €
LP(Q; Vo (2)) such that Vu® 22 ¥, u + vy weakly in two scales.

2 Ify € (0,1) then7Vu® 22 v, for some v, € LP(Q; V)0 (92)).
3 Ify=1thenu € LP(Q; W'P(Q)) and eVu® 2 Dyu.
4 Ify > 1thene"Vu® 0.

Lemma 10.6. Under Assumption|10.1|for almost all w € () the following holds: Letp > 1 and (u®)
be a sequence of functions satisfying

e>0
€ . € _
Sgl>110) [l o (q) < +o0, lglg)€ VU] o) = 0- (10.3)

Ifus 2y along a subsequence, then u € LP(Q) is independent of ).
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Proof. We obtain that u° X u € LP(Q; LP(2)) along a subsequence. We show that u does not
depend on the ()-coordinate using ergodicity. We recall that 7, are all measure preserving for PP.
Hence, for any ¢ € C°(Q) and ¢ € ®,, we find for any a € Q7 it holds

/Q/Q(U(l‘ﬂ'aw) — u(z,w)) (@) (w) dP(w) d
- / /U(I,w)@(x) (Y(T—qw) — Y (w)) dP(w) dz
QJQ

=lim [ u®(x)p(x) (1#(7'%”@1) - w(wa)> dx

e—0 Q

— l1_1>1(1) o (u(z +ca)p(x + ea) — u(x)p(v)) Y(T2w) do

— ll_r:% o u(z + ea) (p(r + ea) — p(z)) Y(Tew) do

+ ll_r}(l) o (v (z +ea) — u(z)) p(x)Y(T2w) dx .

The first integral on the right hand side can be easily estimated through

c g \Y —0 — 0.
[y [z, o 1ol 190l = 0 s

The second integral can be estimated through

HSOHOO/Q ‘/0 V' (z + ta) -adt‘ [W(r2w)| de < [[@]l o € VU] g lal H@A(Téw)‘

L9(Q)

Due to (10.3) the right hand side of the above inequality converges to 0. Since  and 1) were arbitrary,
we obtain u(z, T,w) = u(x,w) for every a € RY. Hence w is invariant under all translations 7,, which
implies for almost every = € Q that u(z, ) = const by ergodicity of 7,. O

Based on Lemma([10.6|we can now prove Theorem[10.5

Proof of Theorem[I0A We note that u° = u € LP(Q; LP(2)) and Vu® Rove LP(Q; LP(Q; RY))
along a subsequence.

Proof of 1: We consider a countable set ®5,; C LZ(€2) which is dense in L | (£2). Then, by definition
of LP (92) we find for all b € @, and all p € C°(Q)

sol
/ (Vus +uV) - b(Tew) dL = / V (up) - b(Tew)dL = 0.
Q : Q :
We take the limit ¢ — 0 on the left hand side and obtain
/ (p(z)v(z,0) + uVep(z)) - b(@)dP(0)dx = 0.
Q
After integration by parts, this implies

/ng(x) (Vu(z) —v(z,@)) - b(@) dP(w) dx = 0.
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As p € C°(Q) and b € Py, were arbitrary and since ®,,; C LI () is dense, the last equation

sol

and Lemma(9.10|imply that Vu(z) — v(z,-) € V5,,(2) for almost every = € Q.

pot

Proof of 2: We apply Part 1 to u® := &<"u®. Evidently, u® 22 () and hence there exists v, €

LP(Q; V2o, () such that Vs = Ve 2 vy,
Proof of 3: Let v € L2 () and ¢ € C3(Q). Then we have

sol

/Q£Vu€ -y (T;u)) dL = — /Q us (T;W) - eVapdLl .
As £ — 00 we obtain

/Q/Qv(:c,@).¢(x)¢(@) dP(@) dz = 0

and since this holds for every ¢» € L? |(Q) and ¢ € Cj(Q), we obtain that v(x, w) € LP(Q; V5, (2)).

sol

Furthermore, for a countable dense family ) € W?(Q2) and ¢ € C3(Q) we obtain

€

/ edpuf (2) () (T2w) do = —/ u () (Tiw)-gaigp(x)dx—/ u® (z)Dyy (wa) o(x)dx
Q Q Q
and in the limit

. [oien st abeyar == [ [ uien)D ) o) dpe) de.

This implies v; = D;u.
Proof of 4: Part 3 implies that @° := 7! satisfies u° 2 0and EVwE = eViE 2 D,0=0. O

Important in the context of convergence of gradients is also the following recovery lemma, obtained in
[19, Section 2.3] for the L?-case.

Lemma 10.7. Let Assumption hold. Letv € VI (Q2),1 < p < oo and let Q be a bounded

convex domain. For almost every w there exists C' > (0 such that the following holds: For every ¢ > (
there exists a unique V* € W'P(Q) with VVZ(z) = v(T=w), fQ V¥ = 0and ||V|lwirq) <
Cllvllze, ) foralle > 0. Furthermore,

lim |V oy = 0.

Sketch of Proof, see [19]. By definition of L’l;ot(Q) there exists for almost every w € 2 a function

Ve € WhP(Q) with VIV (z) = v(72w), [o V¥ = 0. By a standard contradiction argument, there
exists a constant C' > 0 such that

VWeW(Q): (Vg <C (HVVH“’(Q) - ‘/QVD '

The last inequality implies that V — V weakly in W'?(Q) and V¥ — V strongly in L?(Q).
Furthermore, the Ergodic Theorem [2.26|yields for every f € C(Q)

/Qf'vvgw:/Qf-U(T:cU)—>/Qf-/vdP:/Qf-0:0.

Hence VV = 0 and since fQ V =0itfollows V = 0. O

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



M. Heida 100

10.4 Uniform Extension- and Trace-Properties

For the rest of this section, we make the following assumptions. Under the Assumptions and
[10.1] and using the notations introduced in Section [10.1]we introduce P*(w) := eP(w), Qi (w) :=
QNP (w)and () := Q Nel(w).
Following we recall the definition
A
HT(w) (A) == e"H4? (E N F(w)) = cH"HANT(w))

Definition 10.8 (Uniform Dirichlet extension property). Let Q be a bounded open convex domain with
Lipschitz boundary. We say for 1 < r < p that P*(w) has the uniform (r, p)-Dirichlet extension
property on Q if for almost every w there exists C, > 0 and a linear extension operator

U: Whe(P(w)) — WP(RY)

loc loc

such that

satisfies the following: For every u € Wol”gQ(Qi (w))

HVUEUHLT(Q) < Cy Hvu”Lp(Qi(w)) ) HUEU”U(Q) < Cu HUHLP(Qf(w))

and
[ Ul arg) — 0 (10.4)

Theorem shows that virtually every random geometry to which the theory of Sections applies
has the (r, p)- extension property on bounded convex (C''-domains Q. In particular, we obtain the
following reformulation of Theorem (1.9

Theorem 10.9. For1 < r < § < s < p < oo let P(w) be almost surely (8, M )-regular (Def.[4.2)
and isotropic cone mixing fort > 0 and f(R) (Def. as well as locally connected and satisfy
P(S > Sy) < f5(So) such that Assumption [1.8 holds. Then for almost every w the set P° has the
uniform (r, p)-Dirichlet extension property on Q.

Proof. This is almost the statement of Theoremexcept for 1) However, for u € Wol”gQ(P(w)ﬂ
nQ) and m,, := |AX(nQ)| we obtain note that estimates (1.3)—(1.4) can be extended to

r

1 ; 1 g nQ| 1 ’
pra / Uu|" < C(w) / ] =C(w) nQ 1 7
n JAX(nQ) M, JP(w)NAX(nQ) mn Q| Jpw)nmnq)

1 1 , 1 ,
) P wv) =c<w><'”Q' |Vup> ,
M JAxX(nQ) M, JP()NaX(nQ) mn Q| Jpw)nmq)

and the statement follows from Theorem and Corollary O

There exists a weaker notion of extension property, which is for some applications sufficient.

Definition 10.10 (Uniform weak extension property). Let Q be a bounded open convex domain with
Lipschitz boundary. We say for 1 < r < p that P*(w) has the uniform weak (7, p)-extension property
on Q if for almost every w there exists C, > 0 and a linear extension operator

U: WEP(P(w)) — WP (RY)
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such that

satisfies the following: For every u € Wol”gQ(Qi (w))

e | VUeul| gy + IUull1r(q) < Cu (5 IVull o s, (@npe () + ||u||LP(IBs(Q)ﬁPE(w))> :

Theorem 10.11. For 1 < r < py < p; < p < oo let P(w) be almost surely (6, M )-regular
(Def.[4.2) such that Assumption 1.5 holds. Then for almost every w the set P has the weak uniform
(r, p)-extension property on Q.

Proof. After rescaling, this is the statement of Theorem|1.6 O

Similarly to the extension property, we may introduce a uniform trace property.

Definition 10.12 (Uniform trace property). Let QQ be a bounded open convex domain with Lipschitz
boundary. We say for 1 < r < pthat ['*(w) has the uniform (7, p)-trace property on Q if for almost
every w there exists C, > 0 such that the trace operators

T. : W (B.(Q) NP (w)) — L"(QNT?)

satisfy the estimate

||7;uHLT(FEOQ) <Cy (HUHLP(IBS(Q)OPa(w)) te ||VUHLP(EE(Q)OPE(w))> :

Theorem 10.13. Let P(w) be a stationary ergodic random open set which is almost surely (6, M )-
regular (Def. such that Assumption holds. For1 < r < py < p < coand Q C R? a
bounded domain with Lipschitz boundary. Then for almost every w the set P° has the uniform (r, p)-
trace property on Q.

Proof. After rescaling, this is the statement of Theorem|1.4 O

10.5 Homogenization on Domains with Holes

In what follows, we will naturally deal with two-scale limits of functions defined solely on Qj. Hence
we introduce the following definition.

Definition 10.14. Let 1 < p < coand u® € LP(Q](w)) for all e > 0. We say that (u®) converges
(weakly) in two scales to u € LP(Q; LP(P)) and write u® =X v if SUP.~q [ Ul 12(qs )y < 00 and if

for every ¢ € @, and ¢ € C(Q) there holds with ¢, (2) := (2)(Tzw)

lim ueqﬁw,g:/ /XpugodeP’dE.
QJa

e—0 Qs

The latter definition coincides with Definition for dp, = Xp()dL, which can be verified using
the ergodic theorem. Hence, we find the following lemma:
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Lemma 10.15. Let1 < p < oo andu® € LP(Qj(w)) be a sequence such thatsup. [|u°[| 1»(qs () <

0. Then there exists u € LP(Q; LP(P)) and a subsequence £’ — 0 such that u’ 2.

Furthermore, if u® € LP(Q) is a sequence such that sup.. [|u|| ., (q) < o0 and u?' 22y along a

subsequence ' — 0 for some u € LP(Q; LP(S2)), then uslxqil(w) 2 ypu.

Proof. This follows immediately from Lemma extending ©° by 0 to Q and on noting that ¢ € ®,,
implies w.l.o.g. xp¥ € ®,. O

Lemma 10.16. Let P(w) be a random open domain such that P¢(w) has the weak uniform (r, p)-
extension property on Q for 1 < r < p < oo. Then for almost every w € () the following holds: If
uf € WIP(B_(Q) N P*(w); RY) for all & with

sup (|14 105, @t + €1 V0 l1r(s, @) < €

for C' independent from £ > ( then there exists a subsequence denoted by u® and a function u €
LP(Q; WL (Q)) N LP(Q x P) such that

Z/Igzufl 22y, and EVZ/IE/uEI 2 Vou (10.5)
as well as ) )
ww Xy oand eVu© =X ypVau (10.6)
ase — 0.

Proof. We find

sup <||u€u€||LT(QﬂPE(w)) + 8I|VUau€IILr<QmPE<w>>>
£

< C'sup (HuEHLP(IBég (QnP(w) T 8HVUEHLP<BE<Q)mPE<w>>> (10.7)

9
Theoremand Definitionimply now for some limit function u € L"(Q; W' (Q)) that
and hold. O

We are now able to provide the:

Proof of Theorem[9.24l Theorem [10.11| shows that P°(w) satisfies the uniform weak extension
property. Hence, if (uy,),.y is @ countable dense subset of W'((2), we find a set of full measure

(2 C Q such that for every k € N and every w € (2 the realizations uy, ,, are well defined elements of
W,LP(P(w)), the extension operator defined in (5.14) is uniformly bounded and hence . defined in

loc

Definition[10.10]is uniformly bounded, too. We can thus use the two-scale convergence method as a
tool.

Given such w, we define u*(x) := uy (Tzw) and by Lemma|10.16|we find @ € LP(Q; W'(£2)) N
LP(Q x P) such that U.u® — wy, and eVU.u® — V. Furthermore, we find

@kl 1 qua) T I Voikll 1rquay < lign_)iglf (HUEUSHLT(Q) t+e HVUaUEHU(Q)>
Pl € €
< Chgl_}glf (HU HLP(IB%g(Q)ﬂPS(w)) +el[Vu HLP(IBE(Q)HPE(LU))>

= C (Jlunll @y + Vet ngeey) -

Since the operator u, — 1y is linear and bounded, it can be extended to the whole of Wl’p(P). O
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Proof of Theorem[9.28] For every ¢ > ( there exists a unique u° that solves

—*Vu' +uf =0 onB.(Q) NP (),
—eVu - vpey = 1 onI*(w)NQ,
u® =0 on 0QQ.

Deriving apriori estimates in the usual way, for some C' > 0 independent from ¢ it holds
€ HVUEHL2(B5(Q)OPE(Q)) + HUEHH(BE(Q)MPE(Q)) <C
and thus according to Lemma|10.16|we find u € LP(Q; W (Q2)) N LP(Q x P) such that
e 2s &/ 25
Usu® = u and VU =V, u

along a subsequence uf which we again denote u° in the following, for simplicity. But then for ¢ €
CH(Q) and ¥ € CH(Q) it follows

€ €

zw )Y (x d=1(p) = g2 T W)D(2)VUE(Z) - Vpo (T2 w -1/,
5/(ers()¢(7‘ J(z) dH (1) = —¢ /erg()ﬁb( V() Vs (z) - v (T2w) dH (2)

— /E( )5Vu€. (Vw(b(T%w)@/)(x) +g¢(7—%w)v¢(x)) de

€

+ c x d
. pretme ar
= /Q /P (V- Vo) + udt)

Since the left hand side of the above calculation converges to fQ fr o dur p and 1 was arbitrary,
we conclude. O

Proof of Theorem Let Q = B,(0) and let ¢ € C'2°(Q) with @[, (0) = 1, ¢ > 0. According to
Theorem[10.9, P¢ has the uniform (r, p)-Dirichlet extension property. The theorem now follows from
part 2 of the foIIowmg Lemma. O

Lemma 10.17. Let P(w) be a random open domain such that P (w) has the uniform (r, p)-Dirichlet
extension property on Q for1 < r < p < oo. Then for almost every w € §2 the following holds:

1 Ifus € Wyko(Q NP (w);RY) for all £ with sup, [|uf]|,, @y T IVe HLP(Qe < C

for C' independent from ¢ > ( then there exists a subsequence denoted by u® " and functions
Wy (Q:RY N LP(Q) andv € L™(Q; Vi, (§2)) such that

us 2 xpu and Vu’ ¢ 2 xpVu + xpv ase — 0, (10.8)
U 2y and VUE/UEI AVu+v ase—0. (10.9)

Furthermore, U.u® — u weakly in W (Q)) N LP(Q).

2 P has the strong (r, p)-extension property withUo ¢ = ts—lim.  U.¢(T=w) forp € W'P(P).
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3 Ifp > 2 and the Assumptions of Theorem are satisfied and I'*(w) additionally has the
uniform (s, p)-trace property for some s > 1 then

/1 2s , s
Touw” =u in L*(I° N Q; ppy)) -

If, even further, I'*(w) has the uniform (s, )-trace property with r from Part 1, then

’
7;/’21,8 — ﬁ/u‘

—0. (10.10)

lim
e—0 LS(FE/QQ;,LL?/(W))

Proof. In what follows, convergences always hold along subsequently chosen subsequences of u°,
which we always relabel by u°.

Proof of 1:Let ;- + . = 1. Then Theorem and the assumption that (w.l.o.g.) xp®, C @, yields
that for some w € W(Q; R%) and v € L"(Q; L”,(Q))

pot
e 2s e 2s
Uu® = u and VU.u* =2 Vu+w ase — 0.

Due to we find u € W, (Q; R%). This yields .

Proof of 2: Foru € W' (P) with u(x) := u(7zw) we find for almost every w that . from Definition
satisfies

€ ||vu6(¢u€)||Lr(Q) <C <5 ||u€v¢|lLP(QmP5(w)) t+e ’|¢VU6||LP(QmPE(w))> (10.11)
||u6(¢u8)||LT(Q) <C ||u6¢||LP(QﬂPE(w))

As e — 0, Lemma [10.16]yields u¢p =X @i, VU.(¢uf) =X D, ii, where @i € LP(Q; WL"?(Q, P)).
Moreover, inequality (10.11) implies in the limit that

||Dwﬂ||L;’§1(Q,P) <C ||Dwu||Lgot(P) :

Hence we can set oD, u := [ D @. By density, this operator extends to V*_ (P).
Q pot

Proof of 3: Now let p > 2 and let the Assumptions of Theorem be satisfied and let I'*(w)
additionally have the uniform (s, p)-trace property for some s > 1. If ug, is the function from Theorem
we observe for ug, () = ug(Tzw) for every 1 € C*(Q) and ¢ € Cj () with ¢°(z) =
ng(Tgw) that

/ utpg® dpp ) = 5/ UG eV, ug - Vre(w) dHe!
QNI'e(w) QNI'e(w)
= / (W Youg + eVug - (U P°eVY + 1pdp°eVu® + YpueV¢©))
QNP*(w)
QJp

zééwwm.

Since v and ¢ were arbitrary and V,,(u1)) = 0 we conclude
i [ vt diy = [ [ uow.
hJQnre(w) QJT
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In order to show (10.10) note that
| Teu® — Tous|

erenQus,) < 10— U@ ey TEIV @ = W)l @opew) -

Since the first term on the right hand side converges to zero and ||V (u® — u)||LT(BE(Q)mPS(w)) is
bounded, the claim follows. O

10.6 Homogenization of p-Laplace Equations

Assumption 10.18. For the rest of this work, let Assumptions and[9.3 hold for some 1 <
r < pandp > 2. This implies that P and I" satisfy the strong (r, p)-extension and the strong (1, p)-
trace property, as well as the weak uniform (r, p)-extension and the uniform (r, p)-Dirichlet extension
property with the uniform (r, p)-trace property. In particular, we can apply all of the above developed
theory.

In what follows, we will consider the homogenization of the following functionals:

1 1
et = [ (GIVaP Sl = gu) + [ Pt (o)
Q*(w) \P p e (w)

where F'is a convex function with OF = f, F'(-) > F, > —oc for some constant F; € R and we
assume that |0F'(A)| is bounded on bounded subsets A C RR. Note that compared to we add
the term |u|” in order to reduce technical difficulties. However, we will discuss how to treat the case of
missing |u|” in Remark[10.22] Minimizers of £. , satisfy the partial differential equation system

—div (a|[VuE P> VUl + [ul T =g on Qp (w),
VU [P Vs - vpe() = f(uf) onI'*(w).

and we will see that homogenization of the latter system is equivalent with a two-scale I'-convergence
of Eng. In particular, we find the following

Theorem 10.19. Let Assumption|10.18 hold. Then, for almost every w € () and

£(u, v) ;:/Q/P%(|vu+v|f“+|u|p)—/Q/Pgu+/Q/FF(u)dur,p

we find &, , 21, € inthe following sense
1 Foru® — w weakly in LP(Q), u® € WOI,’gQ(Qg(w)) with sup, E. ,(u®) < oo, there holds
u € Wy (Q) and there exists v € L"(Q; Voo (€2, P)) such that Vu? 2 yp- (Vu+v) and

E(u,v) < liminf &, (u®).

e—0

2 For each pair (u,v) € W,"(Q) x L7(Q; V], (Q)) with E(u,v) < +oo there exists a
sequence u® € W&’é’Q(QE(w)) such that u® — |P|u weakly in LP(Q), U.u® — u weakly in
Wr(Q) and Vs 2 xp - (Vu + v) weakly in two scales and

E(u,v) = lin[l) Ew(u).
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1 1
/ (]—j Va4 |u5|p) < C8 ()
Q¢ (w)

for C' independent from €. Hence the statement follows from Lemmas[10.17|and on particularly
; e 28 ; s(Te €
noting that u® = win L*(T"*(w); pi(,))-

Proof. 1. Evidently,

2. Step a: Let (uy),cy C C; () be the countable dense family in W'?(£2) according to Theorem
9.14| Furthermore, let (¢;) .y C C2°(Q) be dense in Wy (Q). Then the span of the functions
$;V ,uy, is dense in LT(Q, VIt (82)). Writing S = spang; V,u, we show statement 2. for (u,v) €
(¢5) ;e % S. However, for such (u, v) we find V' € spang;uy, such that v = V,V and V=(z) :=
V(x, T%CL)) is well defined and measurable for every w. For simplicity of notation, we assume V' =
Gy

In particular, we have for u® = u + £V*¢ that u° 2 yand Vuf = Vu + eVo;uy (Tgw) +

¢;Vug (T2w) and hence u® — u weakly in W'7(Q) and Vu* 2V + ¢;V ,uy. Using essential
boundedness of V¢; u (T2w), the ergodic theorem now yields

lim |VuP = eli_r:f(l)/pr (Tgw) ‘Vu + ¢;Vuy (Tgw)|p

e—0 Q¢ (w)
:/ / |Vu+o” .
QJp

Similarly, we show fqg u]” — [q Jp [ul” and st gut = [q Jp gu-

Step b: By Lemma[10.17|we find 7. u° 22 Unfortunately, this is not enough to pass to the limit in
the integral fra(w) F(u(z))dug ) (). However, we can make use of

F(u) 4+ 0F(u)eVe < F(u+¢eV®) < F(u) + OF (u +eV®)eVe.
Since sup, [|V*|| + [Ju|l, < oo we find

|0F (w)]|., + sup [|0F (u+ V)| < C <
and hence
F(u) —eC < Fu+¢eV®) < F(u) +eC.

This implies by the ergodic theorem

/ F(u—i—aVe d/JT —)/ / dupp,
= (w)

and hence 2. for (u,v) € (¢;);oy X S.

Step c: We pick up an idea of [9], Proposition 6.2. For general (u, v) € W, " (Q) x L"(Q; Vi (€2))
with & (u, v) < +00 let (un, V) € (B;) ey X S with

S|

() = (s o) I (@) @i, () < (10.13)

and

1€ (u,v) = E(up, vy)| < (10.14)

S|
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We achieve this in the following way: First we introduce My := sup F~(—oo, M) and cut uy; :=
min {u, Mp}. Furthermore, we set vn/(Z,w) = X(—oo,m) (U(2)) v(Z,Ww), i.e. upy = Mp implies
v = 0. Then uys and v, are still in the same respective spaces. Furthermore, as M — oo we find
E(upr,vy) — E(u,v) by the Lebesgue dominated convergence theorem. Now, by the properties
of I, we can approach (uas,var) by elements (unrs, Uars) € (¢5),oy X S By the Lebesgue
dominated convergence theorem we get convergence in the Hp-terms and using the convexity of F’
and local boundedness of OF' like in Step b we show that £ (w5, Uar,s) — E(unr, Uar). Successively

choosing M and 9, we find (u,, v,) € ((bj)jGN x S satisfying .
We set £9(w) = 1 and for each (un,, vn) € (¢5) ;o X S we find by Steps a and b for almost every w
some &, (w) < 5&,-1(w) such that for e < e, (w) and w5, , = up () + €V, (2, 72w) it holds

‘ga,w(ua ) - g(umvn)‘ S

n,w

S|

The set Q C Q such thatall e,, (w) are well defined has measure 1. For such w we choose u° = us, ,
ife € (€ny1,En)- Then

IE0w(®) — E(u,v)| < fore <e,.

S|

which implies the claim. O

Theorem 10.20. Let Assumption hold. Then for almost every w the following holds: For every
e>0letus, € W()l”gQ(QE(w)) be the unique minimizer of £, ,,. Then

" H“i‘in”W&,ﬁQ(Qf(w» + Eewo(tinpy,) < 00

and for every subsequence such that U.ut ;. — u weakly in LP(Q) and weakly in W (Q) with

v € L"(Q; V], (22, P)) such that Vug;, 22 Y + v. It further holds u € Wy (Q) and (u,v) is a

global minimizer of € in W, (Q) x Vi.,(2).

Remark 10.21. Unfortunately, we are not able to prove uniqueness of homogenized solution due to
a lack of coercivity in the respective case. However, note that in case Conjecture [9.18]holds, one can
immediately prove that both Vu € LP(Q) and v € LP(Q; V25 (€2, P)), which allows to show the
uniqueness of the minimizer by a standard coercivity argument.

Proof. In what follows, we denote
W, =Wy (Q), V= Vi (Q),

and note that every of the following countable steps works for almost every w.

Step 1:Let (u,v) € Woo XV, C W, x V,.. Then £(u, v) < +00 and hence by standard arguments
€ has a at least one local minimizer (ug, vg) on every closed ball of sufficiently large radius R in
W, x V.

=W, xV,

By (0) := {(va) eEW. x V. HUHWT + [Jv]

v, S R}

By Theorem 2 there exists a recovery sequence u® € VVol”gQ((,)6 (w)) such that u® — |P|ug

weakly in LP(Q), U.uf — ur weakly in W17 (Q) and Vu® 2 xp - (Vug + vr) weakly in two
scales and
E(ug,vg) =1lim & ,(u°) .
e—0
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Step 2: We conclude for the minimizers

hrsn_}glf HuminHWOl:gQ(Qa(w)) < 11r€n_>1§1f Eew(Usyy) < llgﬂ_}lglf Ew(u®) < E(upr,vr),

which at the same time implies by Theorem [10.191 that U.u® — u weakly in L?(Q) and W"(Q)
and there exists v € L"(Q; V], (€2, P)) such that Vu® 2 xp - (Vu+ v) and

lullyy, + [Jvlly, <CE(ur,vr),
E(u,v) < E(ug,vR),

with C' independent from (ug, vg). Since also HUEHW&;&(QE(@) < &(ur,vr), we conclude
lurlly, +lvrlly, < CE&(ur,vr),

Step 3: Similarly, if (ug+,vg~) is a further minimizer on any ball EKTXVT(O) with €(up+, vpe) <

E(ur,vgr) we can conclude

ur-|ly. + [[vr[ly, < CE(ur,vr)

from the argument of Step 2 and a suitable recovery sequence.

Step 4: Hence, repeating Step 1 among the local minimizers, there exists a global minimizer (u, ) €
=WprXVp

BCS(UR,UR) (O>
Step 5: Repeating the argument of Step 2 we hence find that every sequence of minimizers of &, ,
satisfies the claim. O

Remark 10.22. If the term |u]p in the above arguments is dropped, we first need to embed U/ u°
uniformly into T/ 1:*(Q). From here, we need s large enough such that P* still has the uniform (7, s)-
trace property. This will not affect the basic structure of the proofs, however it makes the presentation
more complicated and less readable.

Nomenclature

We use the following notations:

x ~ 9, z and y are neighbors, see Definition[2.43

A1k, Ao i, As 1, see Equation (5.7)

A0,P,p) = {(Z,—x4+26(Z)) : (Z,24) € B,(0)\P} (Lemmal2.2)

AX(y, z), the Admissible paths from y € Y \ {z} to = € X, see Definition[4.24]
B, (x) the Ball around x with radius 7 (Section [2)

C,,,r () the Cone with apix z, direction v, opening angle « and hight R (Section [2)
conv A the convex hull of A (Section [2)

Convex averaging sequence, see Definition[2.17

(8, M)-regularity, see Definition[4.2)

5, see Equation (5.2)
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E(f|-#) the Expectation of f wrt. the invariant sets,
E,.(f|-#), the Expectation of f wrt. ;i and the invariant sets,
Ergodic Theorem, see Theorems [2.19] [2.24]

Ergodicity, see Definition [2.20

n-regular (local), see Definition|2.11

n(x), see Equation (#-27)

Sv, 35, (F(RY), Fr), see Equations (2.39),

G/(x) the Voronoi cell with center x (Definition
G(P,X), G(P), the Graph constructed from P, see Definition [4.27]
I = [0, 1) the torus (Section [2)

& the Invariant sets,

Isotropic cone mixing, see Definition(4.17

Length(Y"), the Length of an admissible path Y, see
M (p,0), see Lemma

My, My, 4 (A aset), see Equation (4.6), a quantity on OP
Mn(x) see Equation (@.9), a quantity on R¢

M, see Equation

My, M, seek € N,t >0

mp,(p, £), see Lemma

my, := m(py, pr/4), see Section|5.1]

M (R?), the Measures on R (Section

Matern process, see Example [2.37H2.38]

Mesoscopic regularity, see Definition(4.19

Mixing, see Definition 2.20

P,,P_, Inner and outer hull of P with hight r (Section [2)

Poisson process, see Example [2.36]

Q,, Qs, see (5.19)

-1
2
p(p) = sup, .54 T/ 4M:(p)” +2 (@2
-1
p(p) = inf {5 < d(p) : sup,sry/4M,.(p)° +2 = p} 4.3)
Ro(x,y), see Equation (4.35)
R{, RY, see (5.18)
Random closed sets, see Definition
T = [0, 1)? the torus (Section 2)
.., Dynamical system (Definitions [2.15] [2.47) with respect to = € R? or z € Z¢
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U for local and global extension operators (Lemma|2.2)

X, Y Families of points (Section |2)
X (w) = X, (P(w)) = 2rZI N P_,(w), (2:36)

e

X, see Notation m

Yia:, see Notation [4.33

Ysx, see Notation |4.26

Y, OY, Y, see Notationm
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