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Abstract 

There is a lack of appropriate replication of the asymptotical behaviour of 
stationary stochastic differential equations solved by numerical methods. 
The paper illustrates this fact with the stationary Ornstein-Uhlenbeck pro-
cess and family of implicit Euler methods. For description of occuring bias, 
notions of asymptotical p-th mean, mean, mean square and equilibrium 
preservation are introduced, due to stochasticity of stationary law. Only 
the trapezoidal formula among these methods is optimal in the sense of 
replication of exact asymptotical behaviour. We also discuss the general 
probabilistic law of linear Euler methods. The results can be useful for 
implementation of stochastic-numerical algorithms (e.g. for linear-implicit 
methods) in several disciplines of Natural and Environmental Sciences. 
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In numerous fields models with additive noise are used to express uncertainty, envi-
ronmental fluctuations or parameter excitations. They also serve as a possible basis 
for investigation of qualitative behaviour of dynamical systems, e.g. how systems 
behave under random perturbations which are state-independent. The stationary 
Ornstein-Uhlenbeck process is often met as system-component in statistical 
modelling and seems to be very useful for the purposes mentioned above. For exam-
ple, in modelling of oscillation phenomena of physical and technical systems. There 
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its 'formal derivative' is also titled as coloured noise. The dynamical behaviour of 
this object {Xt, t ~ O} E JRd can be described by stochastic differential equation 
(SDE) 

m 

dXt = A(t) Xt dt + L lJ(t) dW/ (1.1) 
i=l 

with an initial value X(O) = Xo E Rd (deterministic or Gaussian distributed). 
System (1.1) is driven by Brownian motion Wt = (W/, ... , Wtm) which represents 
m independent, identically distributed Gaussian random variables ( E N(O, t)). De-
tails about this stochastic object and corresponding calculus can be found, e.g. in 
Karatzas and Shreve (13]. We suppose that throughout this paper E llXall 2 < +oo 
and X 0 is independent of F/ = a{Wj, 0 :::; s :::; t} (j = 1, 2, ... , m), the a-algebra 
generated by the underlying Wiener process. Matrix A as a real-valued d x d ma-
trix in (1.1) may or may not depend on time t, however its eigenvalues have only 
nonpositive real parts. For the sake of simplicity, assume that vectors bi(t) E Rd 

and matrices A(t) are deterministic. In passing, it may be noted that the case of 
their stochastic independence of :F/ i~ reducable to the moment-approach presented 
here. However it generally leads to examination of NonGaussian distributions! 
An analytic expression for the solution of (1.1) is known. Let <l>(t) denote the 
fundamental matrix of solution of homogeneous, random initial value problem 
(RIVP) 

dx = A(t) x dt, x = X0 , t 2:: 0. (1.2) 

Particularly, if A( t) and Jt A( s )ds commute at all permissible times t, t, i.e. 

A(t) (l A(s)ds) = (l A(s)ds) A(t) Vt, i '2: 0, (1.3) 

then (1.4) 

This turns out to be very restrictive for nonautonomous systems! The general 
solution of multi-dimensional Ornstein-Uhlenbeck process (1.1) is 

Xt = <I>(t) ( Xo + E l q,-1(s) /,i(s) dWj) . (1.5) 
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However, there are two major problems in computational generation of these 
expressions. One arises from computation of matrix-valued ·fundamental solution 
(e.g. matrix integration, inversion and exponential operation, which mostly leads to 
series expansion), and the other, from generation of (multi-dimensional) stochastic 
integrals in (1.5). In general, one is tending to use stochastic-numerical methods. 
We shall follow this approach. One is even capable of stating its corresponding 
probability distribution. More precisely, with Qt := <P- 1(t)Xt - X 0 , it holds 

N(µ, a 2 ) denotes the law of Gaussian distribution with meanµ E Rd and covariance 
a 2 ~ JRdxd. (.?is the transpose of the inscribed vectors or matrices throughout this 
paper. Furthermore, for existence of asymptotical probabilistic law, we impose on 
diffusion vectors bi E 1R d and matrices A that 

is finite. 

:t lim ft <}? ( t) <}? - l ( s) !Ji ( s) !Ji T ( s) <}? - l T ( s) <P T ( t) ds 
. t-Hoo Jo 
J=l 

The generation of autonomous systems (1.1) also shows computational difficulties. 
For illustration of this fact, assume that drift matrix A is time-independently diag-
onalizable. Then it exists an invertible matrix L =f:. L(t) 

(1.6) 

where D is a d x d diagonal matrix with complex-valued elements di. Exploiting 
this fact we can transform Xt -+ Zt = L Xt and obtain the new SDE 

m 

d Zt = D Zt dt + 2: Lb' dW/ (1. 7) 
i=l 

starting in Z0 = LX0 • Obviously system (1. 7) consists of d separated components, 
hence for the analytical solution of this system we can separately consider its single 
components and find 

m 

d z: = di z: dt + 2: [ L b']i dW/ (1.8) 
j=l 
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with di E (D (space of complex numbers). The solution expression of (1.8) for au-
tonomous systems (i.e. systems with the time-independent drift di and diffusion 
components [ L bi]i) is very simple and found to be 

z; = exp( dit) (z~ + f: [ L b1]; j exp( -d;s) dWj) . 
J=l 0 

(1.9) 

Thus we know explicit solutions of (1.1) and (1.7) as well. Despite of this fact, in 
expressions both (1.5) and (1.9) we have to calculate the value of stochastic integrals 
for pathwise evolution of processes Xt and Zt along given Wiener paths. Note that 
the probability distribution of these stochastic integrals is known under complete 
information on underlying Wiener process. 
An objective of this paper is to provide a further concept and some results for 
assessment of probabilistic behaviour of discrete time approximations for SDEs with~ 
additive noise. The related analysis should be done in addition to well-known 
convergence analysis. For example, the investigation of asymptotical behaviour of 
numerical solutions as integration time tends to infinity. Therein multi-dimensional 
Ornstein-Uhlenbeck process ( 1.1) also serves as test system for approximations of 
nonlinear SDEs with additive noise to some extent. This can be motivated by 
linearization of drift parts around equilibria and stochastic perturbation theory. 
Moreover, there are several ways to approximate SDEs and stochastic integrals over 
functionals of their solutions on finite time intervals (in fact a large variety!). In-
stead of proceeding on with description of different generation possibilities, we want 
to examine the following task in particular. Given the information on the underly-
ing Wiener path at discrete time points (tn)nEIN,i.e. ~W~ = Wi(tn+i) - Wi(tn) is 
known and fixed. Now we are interested in adequate replication of the long-term be-
haviour of Ornstein-Uhlenbeck process (1.1) by corresponding approximations along 
that fixed Wiener path. This interest is naturally given. If one has interest in path-
wise properties like exit times (in general path-dependent functionals ), computes 
Lyapunov exponents (see (34]), estimates parameters in drift and diffusion part of 
(1.1) (see [7], (17]), constructs discrete time filters (see (15]) or models stochastic 
oscillation phenomena (see (37]) then accurate and stable long-term integration is 
required. Only then one receives reasonable and reliable results. 
The computation along one and the same Wiener path is particularly important 
when one compares stochastic integration techniques with respect to one and the 
same Wiener path, and one is aiming at crystallizing out an appropriate technique. 
For example, for parametric estimation under discretely observed diffusions while 
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approximating continuous time models one needs some guarantee for correct repli-
cation of asymptotical behaviour of the exact solution of SDEs. There this problem 
mainly arises during stochastic integration which is necessary for computation of 
likelihood estimators under discret.e observation, cf. [7] or (17]. One uses substitu-
tions of continuous time estimators by corresponding discrete versions and supposes 
that these discretizations correctly provide the behaviour of continuous time esti-
mates as integration time t tends to infinity. A general justification and proof of 
this approach seems to be very complicated, due to nonlinear structure of likelihood 
quotients. A similar effect can be observed in estimation of Lyapunov exponents. It 
should be clarified whether one estimates the top Lyapunov exponent of discrete or 
continuous time solution. Clearly, as integration time tends to zero one would the-
oretically obtain the correct Lyapunov exponent (of continuous time system) under 
sufficient smoothness conditions, cf. [34]. However, the usage of 'almost vanishing' 
(very small) step sizes contradicts to the requirement of 'finiteness and efficiency' 

·on practical algorithms. 
The paper is organized as follows. In section 2 we recall aspects of numerical solution 
of SDEs. Then notions of asymptotical preservation of probabilistic characteristics 
are introduced, related to stationary SDEs with additive noise. Although one ex-
actly knows probability distribution of linear systems (1.5) and (1.9), one already 
arrives into troubles in order to replicate the asymptotical behaviour of exact solu-
tion process under discrete time observation of underlying Wiener path. This fact 
will be verified while using family of implicit Euler methods (for introduction see 
[16]) in section 3. Section 4 presents the general expansion and probabilistic law 
of these implicit Euler methods applied to multi-dimensional Ornstein-Uhlenbeck 
processes, supplemented by a theorem on asymptotics of nonautonomous systems 
in section 5. Section 6 illustrates some basic facts from presented theory with two 
examples, a stochastic rotation process and oscillators as often met in Mechanical 
Engineering. The paper is finished with some summarizing remarks and conclusions. 

2. Numerical solution for SDEs (1.1) and (1. 7) 

It would be a natural way to make use of numerical techniques for solving of SDEs 
(1.1) and (1.7). They allow to get a straight forward, pathwise link between the 
current Wiener process increments and the procedure of stochastic integration. Let 
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Yn = Y(tn, .6.n-l) be the value of approximation using time step size·.6.n.:..1 = tn -
tn-l > 0 at time point tn E (0, +oo). Introduce abbreviations An = A(tn) and 
b!i = bi(tn)· From exposition [16] (p. 158) we know the familiy of implicit Euler 
methods following the general scheme 

m 

Yn+l - Yn + (a An+l Yn+l + (1 - a) An Yn).6.n + L ~ 6W~ (2.1) 
i=l 

(n=0,1,2, ... ) 

for system (1.1). a E (0, 1] represents an implicitness parameter to be chosen appro-
priately. For simplicity, consider equidistant approximations, i.e . .6. = .6.n. On finite 
time intervals [O, T] (T < +oo) one is entitled to use them as strong approximations 
of SDE (1.1), i.e. the criterion of strong convergence 

:3 8' > 0 y T/~ ~ (tn)nEIN' .6. ~ 8 : sup lE I IXtn - Yn 11 ~ Kl (T) .6. 'Yl (2.2) 
tnE'7,6. 

is satisfied with order /l = 1.0 and positive constant K = K1 (T). T/~ denotes a 
discretization of the time axis as collection of monotonically increasing time points 
tn from interval [t0 , T]. Moreover one also shows the validity of mean-square 
convergence towards (1.5). This criterion has the form 

:3 8 > 0 'ii T/~ = (tn)nEIN' .6. ~ 8 : sup lE llXtn - Ynll2 ~ Ki(T) .6.2
'Y2 (2.3) 

tnE11-Ll 

with order 12 = 1.0. In fact, schemes (2.1) provide us with the simplest class of nu-
merical methods for approximation of (1.1) at discrete points tn. Note that schemes 
(2.1) are identical with the family of implicit Mil'shtein schemes for systems 
with additive noise, e.g. such as (1.1), cf. [16] (p. 161). There is a large variety of 
further numerical methods. For references and some aspects, e.g. see [2], [16], [21], 
(23],(24] or [36]. In particular, Shkurko [32) and Torok [35) have already dealt with 
linear numerical methods. An alternative to these references is given by Kushner 
and Dupuis (20] via constructing Markov chain approximations for solving problems 
in stochastic control (Time and space are discretized for computation of control 
functionals). Here we follow the direct approach of references above. However, most 
of the suggested schemes require more smoothness on drift and diffusion functions 
or more information on the a-algebra generated by the underlying Wiener process 
in order to achieve higher order of strong or mean square convergence. Clark and 
Cameron [4] showed that the highest possi?le order of mean square convergence 
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is one, provided that only the Wiener increments are used for models with additive 
noise. Thus, we naturally confine to 'lower order methods'. 

3. The preservation of asymptotical properties 

For the purpose of classification and comparison, we introduce the not!ons of asymp-
totical p-th mean, mean, mean square and equilibrium preservation. Each 
of these notions reflects an asymptotical property of numerical solutions compared 
with the asymptotical behaviour of the exact solution. It also gives some information 
on the replication of possible equilibria of the considered stochastic systems. 

Definition 3.1. Let {Xt, t ~ O} ~ JRd be a stationary, ergodic stochastic process 
governed by SDE (1.1). Then the numerical solution (Yn)nEIN is said to be (asymp-
totical) p-th mean preserving (p E lR 1) for SDE (1.1) if 

Furthermore, it is called (asymptotical) mean preserving for SDE (1.1) if 

(asymptotical) mean square preserving for SDE (1.1) if 

and (asymptotical) equilibrium preserving for SDE (1.1) if 

£ ( lim Yn) = £ (xoo) := £ ( lim Xt) 
n~+oo t~+oo 

where £(.) denotes the probability law of the corresponding random variable. 

The involved norm can be any chosen vector norm. For the sake of simplicity, we 
take the Euclidean vector norm, i.e. I Ix 112 = ~t=1 Xl for all x E lR d. 

Remark. The conditions of the definition above ensure probabilistic convergence of 
the process (Yn)nElN towards the stationary solution X 00 (equilibrium) of SDE (1.1) 
as time tn tends to infinity. In contrast to deterministic analysis and to stochastic 
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bilinear models with purely multiplicative noise, the corresponding stationary so-
lution for nondegenerate differential systems (1.1) is a random variable which has 
Gaussian distribution with mean zero, hence not a simple, deterministic number. 
In the case of linear, multiplicative noise (i.e. state-dependent diffusion functions 
Oi(x) = Bix with d x d matrices Bi) the concept of asymptotical p-th mean preser-
vation would be identical with the appearance of asymptotical p-th mean stability of 
null solution of both discretized and umderlying continuous time stochastic systems, 
cf. Khas'minskij [14] or Kozin [18]. The notion of mean preservation represents the 
weakest notion among the presented ones. Moreover, in case of systems with linear 
drift and mean square integrable diffusion parts, the concept of mean preserva-
tion reduces to the stability problem as known in deterministic numerical analysis. 
Thereby we may consider the concept of asymptotical preservation as an extension 
of stability concepts being common so far in probabilistic situation. 

For the sake of simplicity, we only consider autonomous systems (1.1) in the remain-
ing part of this section. That is, systems with time-independent drift and diffusion 
components. Assume that IE [llXall 2 + llYoll 2] < +oo. Let (Xo, Yo) be independent of 
:F/ = a{Wj: 0 ~ s ~ t} (J' = 1,2, ... ,m). Suppose that all real parts of eigenvalues 
of matrix A are negative, and A, lJ.i are deterministic. 

Theorem 3.1. There is only one numerical method {2.1) which exactly replicates 
the asymptotical behaviour of stationary Ornstein-Uhlenbeck processes governed by 
SDE {1.1). More precisely, (Yn)neIN generated by {2.1) with any equidistant step 
size l::l. and implicitness degree a = 0.5 is asymptotical mean, p-th mean, mean 
square and equilibrium preserving for the model class of stationary SDEs {1.1) with 
diagonalizable drift matrices A. 

Proof. In analogous manner to deterministic analysis, for a ~ 0.5 we easily verify 
the property of asymptotical mean preservation by (2.i) for all possible step sizes 
·f::l. > 0. Now we continue with investigating the mean square evolution (variance) 
of implicit Euler schemes. Consider Vn = L Yn where A = L- 1 D L with real d x d 
matrices Land D (D =!(di) is the diagonal Jordan form of A, di E OJ, I unit matrix 
of JRdxd). Then the transformed Euler scheme has the form 

. m 

Vn+l = Vn +(a D Vn+l + (1 - a) D Vn)l::l. +I: L lJ 6W~. (3.1) 
j=l 
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where A= L-1 DL. Because of stationarity of SDE (1.1), drift matrix A must have 
only eigenvalues with non.positive r~al parts, hence matrix D too. Thus matrix 
I - aD ~ is invertible for all a~ ~ 0. This allows to rewrite ( 3 .1) to 

Vn+i =(I-a D ~t1 ((I +(1-a)D ~) V..+ ~ L/) 6W~) 
This system has completely separated components, hence we are able to treat it 
componentwisely. Let V~ denote the i - th component of the approximationVn(i = 
1, 2, ... , d). Then one encounters with 

V~ (1 + (1 - a)di~) + f a{ 6W~ 
tri _: j=l 
Vn:+l - 1 - adi~ 

where Vai = [LXo]i and af = [Lbi]i. After introducing abbreviation 

Ui,k , ·- lU' lri V:k n+l ·- .IJ::J Vn+l n+l 

for all i, k = 1, 2, ... , d; n = 0, 1, 2, ... , a computation leads to the series 

n 

Ui,k ui,k + /3 /3 " ( )l + ( )n+l rri,k n+l = lli,k n i,k = i,k L...J lli,k lli,k Vo 
l=O 

where 

If one of real parts of di or dk E CC\ {O} is negative, we find that (Vi kr+l --+ 0 for ' n-t+oo 
all step sizes ~ > 0 under the assumption a ~ 0.5. Just as well the series L:z=o (Vi,k)l 
must converge to limit 1/(1 - lli,k)· Consequently, it holds 

ui,k --+ /3i,k =: ui,k. 
n+l 1 oo n-t+oo - lli,k 

Now, we analyze U~k = Uf! ( ~) and receive 

- (1 - adi~)(l - adk~) - (1 + (1 - a)di~)(l + (1 - a)dk~) 



10 H. Schurz: Preservation of probabilistic laws through Euler methods 

Calculating second n:ioment evolution of the exact solution one encounters with 

m j j 
1E z~z!c, = - :E aiak . 

j=l di+ dk 

After comparison of latter expressions that is for all i, k E {1, 2, ... , d}, for all step 
sizes ~ > 0 u:;,k(~) = 1E Zfx,Z!c, i:ff a= 0.5. Thus, in another words, asymptotical 
mean square preservation (variance) through family of implcit Euler methods applied 
to class of stationary Ornstein-Uhlenbeck processes is observed iff a = 0.5. After 
those steps above one transforms numerical solution (Vn)nEIN back to (Yn)nEIN via 
relation Yn = L-1 Vn. Besides one uses relations 

in order to obtain the validity of 

for a = 0.5 under diagonalizability of matrix A. Thus asymptotical mean square 
preservation (variance) can be verified for the original system ( 1.1). Furthermore, we 
know that the limit distribution of (2.1) is Gaussian ( cf. section 4) and Gaussian dis-
tributions are uniquely characterized by its first and second moments. Consequently, 
the limit distributions of exact and numerical solution are identical (preservation of 
the equilibrium law), i.e. the distance between the asymptotical behaviour of nu-
merical solution (2.1) with arbitrary step sizes ~ > 0 and exact solution of class 
(1.1) only vanishes for a= 0.5, as claimed in the theorem. Asymptotical p-th mean 
preservation is obvious from the equality of limit distributions. Thereby the proof 
has been completed. D 

4. The gener_al law of linear Euler methods (2.1) 

Moreover one can find the general probabilistic law of the family of Euler methods 
applied to linear, nonautonomous systems (1.1), also called linear Euler methods. 
Let Ai(t) = >.i(A(t)) be the eigenvalues of matrix A= A(t) E Rdxd with correspond-
ing eigenvectors ei(t) = ei(A(t)), II· 11 2 the spectral norm of the inscribed matrix and 
Re(>.i) the real part of eigenvalue Ai. TI(-) denotes the forward product of matrices 
and xo(·) the indicator function of subscribed set. l(t) ~dis the maximum num-
ber of lin~arly independent eigenvectors ei( t). Lin{ e1, .. ., ez} represents the set of 
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linear combinations spanned by vectors e1 , ... , ez. Without loss of generality, suppose 
that eigenvectors ei are orthonormalized throughout this section. One obtains the 
following representation. 

Theorem 4.1. Assume that 

(Al) ( a.n)nElN with O.n E. (0, 1] and ( .6.n)nElN with b.n > 0, 

(A2) IE llYoll 2 < +oo, 
(A3) Ya independent of F/ = a{Wj: 0 ~ s ~ t} (j = 1, 2, ... , m), 

(A4) (llA(t)ll2.6.n < 1 or Re(;\i(A(tn))) ~ 0 (Vi= 1, 2, ... , d)) (Vn E IN). 

Then (Yn)nEIN governed by {2.1} with implicitness (a.n)nEIN and step sizes (b.n)nEIN 
has the explicit expansion Yn+l = 

( 4.1) 

Proof. Use induction on n E IN. For n = 0 one receives 

m 

Yi Mo( a.o, b.o, to) Ya + L Mi ( a.o, b.o, to) b~ .6. wg' 
i=l 

hence representation ( 4.1) holds. Suppose validity of ( 4.1) for fixed n-1 E IN. Now, 
the induction step follows. After rewriting scheme (2.1) applied to (1.1) one gets 
the explicit representation 

m 

Yn+l Mo(a.n, .6.n, tn) Yn + L Mi(a.n, b.n, tn) ~ .6.W~ · 
i=l 
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This leads to Yn+I = 

Mo( a,,, .6.n, q Ut Mo( a;, .6.;, t;)) Yo+ Mi( an, .6.n, tn) (E. I?,.!:;, w~) 

+ Mo( a,,, .6.n, in)~ C*-1 Mo+X{i}(kj( % .6.k, tk)) (E. b{ !:;, w/) 

(fI Mo( a;, .6.;, t;)) Yo+~ (g Mo+iqi}(k)( ak, .6.k; tk)) ( f;_ b{ /:;, w/). 

Consequently, the proof has been completed. D 

For simplicity, matrix A and vectors bi are supposed to be deterministic in further 
considerations. As simple conclusion of Theorem 4.1 and due to mutual indepen-
dence of Wiener process increments, the probabilistic law of the discrete time evolu-
tion of (2.1) is found to be Gaussian as well, under appropriate conditions for non-
degeneracy of distribution. Set M0 (i) = M0 (ai, .6.i, ti) and M1(i) = M 1 (ai, .6.i, ti)· 

Theorem 4.2. Assume (Al) - (A4) and that 

( A5) Yo has deterministic or Gaussian distributed 

components, 

(A6) 
m . ·T 

3k E {O, 1, 2, ... , n} : Lb~ b~ is positive definite. 
j=l 

Then Yn+I (n E IN) governed by {2.1} with deterministic implicitness ( an)nEIN and 
deterministic step sizes ( .6.n)ne!N is Gaussian distributed with 

m p=min(n1 ,n2) 
IE (Yn1 +1 - IE Yn1 +i)(Yn2 +i - IE Yn2+i)T = L L c(i,p,j) c(i,p,j)T 

j=l i=O 

for all ni, n2 E JN. 
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Proof. Note that (deterministic) linear transformations of Gaussian random vari-
ables preserve the property to be Gaussian distributed. Using expansion ( 4.1), the 
remaining proof is obvious under regularity conditions (A5) and (A6) (for nonde-
generacy of distribution) and mutual independence of 6 W/. D 

Remark. If one of the diagonal components of variance on right side of ( 4.2) turns 
out to be zero at any time step, then the corresponding solution component is deter-
ministic, hence not random. Therefore we require ( A6). Generalizations to random 
step sizes and random implicitness can be made, but only under independence of 
:F/ they are easier to handle. 

Theorem 4.3. Assume commutativity {1.3), (Al) - (A4) and that 

(A7) 

(A8) 

(A9) 

(AlO) 

ei ( i E { 1, 2, ... , l}) and index l do not depend on time, 

lE Yo E Lin{ei: i = 1, 2, ... , l}, lE Yo = lE Xo, 

+00 1+(1-ai)Lli,\k(ti) (fn+oo ) 
Vk E {1, 2, ... , l}: II _ ·Ll·.-\ ( ·) =exp Ak(s)ds , 

i=O 1 a, i k t, 0 

VT> 0 : f, { ll!Ji(t)ll2 dt < +oo 
j=l 0 

Then (Yn)nElN governed by {2.1) with deterministic implicitness ( an)nElN and de-
terministic step sizes (Lln)nelN (where I:!~ Lln = +oo) is asymptotical mean pre-
serving for SDE {1.1). 

Proof. Because of (A8), there exists an ex~ansion 

l 

lE Yo = L Yk ek ( = lE Xo) , 
k=l 

with deterministic Yk E JR. 1, as linear combination of eigenvectors ek of A. Then 

Under conditions (A9) and (AlO), it finally follows the equality 

lim lE Yn+l = lim lE Xt. n-++oo t-++oo 

D 
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Remark. This theorem only deals with results for a subspace which corresponds to 
deterministic and diagonalizable part of underlying stochastic dynamics. There are 
simple examples where requirements (A7) and (A8) are satisfied. However, they are 
already fairly restrictive. The evaluation of condition (A9) turns out to be rather 
complicated for nonautonomous systems. Even, when one confines the analysis to 
the case of trapezoidal rule in drift part (i.e. ai == 0.5), due to general time-
variation of products ~i.Ak(ti)· For example, (~i.Ak(ti))ieIN might tend too fast to 
zero. Condition (AlO) does not have to hold uniformly in t. It only guarantees the 
existence of finite moments at any finite time t. Besides one is entitled to take first 
mean operation then. For asymptotical mean preservation, one might decisively 
relax conditions of Theorem 4.3 under existence of second moments at finite times. 
For example, in general (A9) can be replaced. It suffices to show that 

(4.3) 

However, the practical verification of identity ( 4.3) seems to be a very hard task, 
unless (1.3), (A7) and (A8) are valid. 

Under further restrictions we eventually observe equilibrium preservation which is 
expressed in the following theorem. Define 

Theorem 4.4. Assume commutativity {1.3), (Al) - (AlO) and that 

(All) 

(A12) 

(A13) 

lJ E Lin{ei: i == 1,2, ... ,l}(j E {1,2, ... ,m}), 

lJ (j E {1, 2, ... , m}) do not depend on time, 

Vk1, k2 E {1, 2, ... , l} : 
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Then (Yn)nEIN governed by {2.1) with deterministic implicitness ( et.n)nEIN and deter-: 
ministic step sizes (!:ln)nEIN (where E~~ !:in = +oo) is asymptotical mean square, 
p-th mean and equilibrium preserving for SDE {1.1), provided that 

(A8)' Yo= Xo E Lin{ei: i = 1, 2, ... , l} (a.s.). 

Proof. We only sketch the proof, as it. is very laborious in detail. First, it is easy 
to see that Gaussian distribution is preserved under discretization using family of 
implicit Euler methods (2.1) and assumptions (A5), (A6). Second, Theorem 4.3 has 
already indicated the property of asymptotical mean preservation for these methods. 
Finally, it remains to show asymptotical mean square preservation. Recall that 
fundamental matrix <i>(t) =exp (J~ A(s)ds) when (1.3). One notices that 

(g Mo(i)) E [YoYaT] ([! Ml(i)) ( 4.4) 

+ ~ ~ .6., C:t!. Mo+J<{<}(kJ(k)) bf bf T c~ Mo~;q<}(k)(k)) . 

. . l 
Let b1 =bi= Lr=l Wrer, cf. (All), (A12). Thanks to (A8'), the initial value Yo has 
expansion 

l 

Yo(=Xo)=l:yrer (a.s.). 
r=l 

The remaining part is carried out by putting this linear combination in both ex-
pressions ( 4.4) for continuous and discrete time evolutions. After simplification, 
resummation and componentwise comparison one confirms the assertion, what we 
leave to the reader. D 

Remark. The conditions of Theorem 4.4 all together are too restrictive from prac-
tical point of view. For instance, it remains to check condition (A13) in practice. 
The solution of this task seems to be hardly possible for nonautonomous systems. 
Note, for autonomous systems, requirement (A13) can be fulfilled by trapezoidal 
rule, cf. main result in section 3. Thus, the quality of assertion of Theorem 4.4 
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mainly reduces to that of Theorem 3.1 by consideration of stochastic dynamics on 
the subspace spanned by corresponding non.trivial eigenvectors of matrix A. 

5. Asymptotic moments of nonautonomous systems 

As a supplement, we state the limit of moments of linear, continuous time, non.au-
tonomous systems in a very general form. The proof follows from expansion of their 
first and second moments (see e.g. (4.4)), hence it is omitted here. Set 

<I>( oo) = lim <I>( t) and X 00 = lim Xt. 
t-++oo t-++oo 

Let Fa = a{ X 0 } denote the o-~algebra generated by initial value X 0 • 

Theorem 5.1. Assume that process X = {Xt : t;;::: O} satisfies {1.1) and 

(Xl) 

(X2) 

(X3) 

(X4) 

(X5) 

(X6) 

lE llXoll2 < +oo, 

X 0 is independent of F/ = a{iyj : 0 ::; s ::; t} (Vt ;;::: 0), 

random initial value problem {1.2) has a solution, 

A(t), lJ(t)(j E {1, 2, ... , m}) are nonrandom or independent ofF/, F 0 , 

lE 11 <I> ( oo) 11 ~ = lim lE 11 <I> ( t) 11 ~ < + oo, 
t-++oo 

f lim II r <I>(t) <I>-1 (s) lJ(s) lJT(s) <I>_ 1T(s) <I>T(t) dsll < +oo. 
. H+oo Jo 2 
J=l 

Then the first two moments of stationary law of X exist and 

where 

lim lE <I>( t) X 0 = lE <I>( oo) Xa, 
t-++oo 

m 

lE <I>( oo) X 0 Xl <I> T( oo) + l:: lim Qi(t) 
. t-++oo 
J=l 

Qi ( t) = E la' <I> ( t) <I> - l ( s) /,i ( s) /,i T ( s) <I> - l T ( s) <I> T ( t) ds . 
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Remark. After detailed comparison one finds conditions for preservation of asymp-
totical probabilistic characteristics of general nonautonomous systems, e.g. 

where 

6. Two examples 

The search for a nontrivial and feasible example turns out to be very laborious in 
the nonautonomous case. It is already illustrative to discuss the ideas presented 
before with very simple, low-dimensional examples. For this purpose, consider the 
following two processes. 

6.1. A stochastically perturbed rotation. A system with drift-matrices pos-
sessing time-independent eigenvectors is given by the example of two-dimensional 
stochastically perturbed rotation. Let (Xt, Yt) E JR. 2 satisfy 

dXt - (11(t) Xt + p(t) Yt) dt + a1(t) dWl 

dyt - (71(t) yt - p(t) Xt) dt + a2(t) dWt2 (6.1) 

where 77, p, ar, ai E L1([0, +oo ), B, µ) are time-dependent, real-valued coefficients, 
and Wl, Wt2 represent two independent standard Wiener processes. Obviously, sys-
tem (6.1) has the form of (1.1) with 

A(t) 
( 

77(t) 

-p(t) 
p(t) ) 'bl(t) 
77( t) ( 

a1

0

(t) ) and b2(t) 

(6.2) 

This system satisfies the condition of commutation (1.3) for explicit expansion of its 
fundamental solution <P(t). Besides, drift matrix A(t) can time-independently be 
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diagonalized by matrix 

when p( t) # 0, where i represents the imaginary unit (i.e. i 2 = -1). It is worth 
noting that, if 77(t) = cos(B) and p(t) = -sin(B) where BE [O, 27r], then one obtains 
a classic rotation matrix A. 
The deterministic system related to (6.1) has asymptotically stable mill solution if 

r+oo r+oo lo Re[A(t)] dt = lo 77(t) dt = -oo (6.3) 

where A(t) = 77(t) ~ p(t)i is an eigenvalue of matrix A. The autonomous case or the 
case 77(t) ~ e < 0 (uniformly in t) easily allows to have (nonvanishing) asymptotical 
laws. For example, in the autonomous case, if 77 < 0 and ai + a~ > 0 then the 
stationary law is Gaussian with mean zero and variance matrix 

M (6.4) 

2772 O"~ + p2 ( ai + an 
4 77 (p2 + 772) 

Let us apply the family of implicit Euler methods to system (6.1). Suppose that 
77, p, a 1 , a 2 do not depend on time t. For this case their scheme is given by 

Xn+i Xn + [a(77Xn+i + pYn+i) + (1 - a)(11Xn + pYn)]~n + a1~W~ 
Yn+1 Yn + [a(77Yn+i - pXn+i) + (1 - a)(11Yn - pXn)]~n + a2~W~ (6.5) 

where ~W~ = W 1(tn+i) - W 1(tn), ~W~ = W 2(tn+i) - W 2(tn)· As noted above, 
matrix A is diagonalizable. Suppose that systems (6.1) and (6.5) start with de-
terministic or Gaussian initial values. Then one knows from Theorem 3.1 that 
asymptotical probabilistic laws of both continuous and discrete time systems coin-
cide when a = 0.5 and 77 < 0. Moreover, provided that ai +a~ > 0, system (6.5) 
has an explicit Gaussian expansion as in Theorem 4.1, and its limit is Gaussian 
( cf. Theorem 4.2) with mean zero and second moment matrix M with entries mi 

satisfying (6.4). In case a > 0.5 and 77 < 0 the limit law of Euler methods exists, 
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but may significantly differ from that of underlying continuous time ones (compare 
stationary second moments). In this case stationary first moments coincide at least. 

6.2. Stochastically perturbed oscillators'. A more interesting example from 
practical point of view is performed by class of linear oscillators in Mechanical Engi-
neering. For simplicity, we only confine to autonomous case. Let X be displacement 
and Y velocity of a system with one degree of freedom. Such oscillations under 
perturbations with additive white noise can be written as 

dXt = Ytdt 

dYt - -[w2 Xt + 2(w Yt] dt + a dWt (6.6) 

where w E JR+\ {O} is eigenfrequency, ( E JR+\ {O} damping coefficient, a E lR noise 
intensity and Wt one-dimensional standard Wiener process. These restrictions on 
parameters yield an asymptotically stable null solution for related continuous time 
deterministic system as well as existence of stationary Gaussian law. System (6.6) 
has diagonalizable drift matrix A if ( '/= 1. The matrix for diagonalization is found 
to be 

Once again we can easily apply our theoretical approach presented in previous sec-
tions. The family of implicit Euler methods applied to system (6.6) has scheme 

(6.7) 

where ~Wn = W(tn+i) - W(tn)· This scheme possesses asymptotically stable null 
solution under the absence of random perturbations for all possible equidistant step 
sizes, provided that a ~ 0.5. Therefore it is assymptotical mean preserving. The 
whole family has an explicit Gaussian expansion while assuming some mild regularity 
conditions. Furthermore we know that trapezoidal method (i.e. implicit Euler 
method with a= 0.5) applied to linear systems (1.1) provides the correct stationary 
(Gaussian) law with sec~nd moment matrix M satisfying AM+ MAT = - G (i.e. 
equilibrium preservation) where 2 x 2 matrix G = (9ii) has zero elements except for 
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g22 = a 2 • The solution of this matrix equation is found to be 

M= 4(w 
(6.8) 

7. Remarks and conclusions 

In this paper we established several results on the probabilistic law of numerical solu-
tions generated by Euler methods with additive noise. For the law of corresponding 
error processes, see the papers of Kurtz and Protter (1991) or Talay and Tubaro 
(1990). Our investigation was mainly aiming at asymptotical properties of these dis-
crete time systems themselves, as time tends to infinity. A remarkable asymptotical 
bias between the behavioµr of exact and simplest numerical solutions is observed in 
models with additive noise. This distance significantly depends on the step size of 
numerical integration. Only the half drift-implicit Euler scheme ( = trapezoidal rule 
in drift, i.e. implicitness 0.5) could exactly replicate the asymptotical behaviour of 
stationary Ornstein-Uhlenbeck processes for any choice of step sizes. 
We deliberately introduced the new notions of asymptotical preservation of prob-
abilistic characteristics, instead of using well-known stability notions ( cf. Kazin 
[18]); but we are not insisting on these new ones! Mainly, it has been done to 
point out the difference between numerical analysis of models with additive noise 
and commonly examined models with multiplicative (parametric) noise. Note that 
equilibria (stochastic steady states) of SDEs with additive noise are random vari-
ables, in contrast to deterministic equilibria of SDEs with multiplicative noise. With 
the usual stability notions and the herein introduced notions of asymptotical mean, 
mean square, p-th mean and equilibrium preservation one can assess to some extent 
the goodness of stochastic approximations with respect to their replication of the 
stationary behaviour of exact solutions of dynamical systems, at least in the sense 
of the mean, variance and absolute moments. Moreover, because the stationary 
numerical behaviour for the Ornstein-Uhlenbeck process is given as a Gaussian dis-
tributed random variable with corresponding mean vector and covariance matrix, 
we "know numerical solutions providing the same stationary Gaussian probability 
distribution as that of the corresponding stationary, exact solution. Note that the 
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Gaussian distribution is uniquely described by the behaviour of first and second 
moments. Consequently, with the asymptotical mean and mean square preservation 
by the half drift-implicit Euler scheme one only receives the correct limit distri-
bution within the class of numerical methods with lower smoothness requirements. 
This is mathematically clear for stationary Ornstein-Uhlenbeck processes with au-
tonomously diagonalizable drift at least. Note, for nonautonomous or NonGaussian 
systems, this fact may dramatically change. A complete evaluation of conditions 
presented here is still open within non.autonomous framework, hence a problem of 
future research. The conclusion for nonlinear system analysis also remains largely 
unknown. 
A corresponding approach to systems with multiplicative noise (i.e. with state-
dependent diffusion part) is presented in [29]. There some stability analysis of the 
implicit Euler schemes leads to their mean square stability (hence to a preserva-
tion of deterministic equilibria) under appropriate conditions on the corresponding 
continuous time systems and with implicitness degree a ~ 0.5. However, for the 
guarantee of algebraic constraints and other pathwise properties one has to take 
into account 'real' stochastic implicitness. For a contribution in this respect, see 

[31]. 
Summarizing main results of this paper and contributions [29], [31], one obtains 
the superiority of half drift-implicit Euler methods (a = 0.5), i.e. superi-
ority of stochastic trapezoidal rule, at least within mean square calculus and 
asymptotical analysis of linear systems of autonomous Ito SDEs. 
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