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Analysis of a thermodynamically consistent Navier-Stokes—Cahn—Hilliard
model

Robert Lasarzik

Abstract

In this paper, existence of generalized solutions to a thermodynamically consistent Navier—Stokes—
Cahn-Hilliard model introduced in [19] is proven in any space dimension. The generalized solvability con-
cepts are measure-valued and dissipative solutions. The measure-valued formulation incorporates an en-
tropy inequality and an energy inequality instead of an energy balance in a nowadays standard way, the
Gradient flow of the internal variable is fulfilled in a weak and the momentum balance in a measure-valued
sense. In the dissipative formulation, the distributional relations of the momentum balance and the energy as
well as entropy inequality are replaced by a relative energy inequality. Additionally, we prove the weak-strong
uniqueness of the proposed solution concepts and that all generalized solutions with additional regularity
are indeed strong solutions.
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R. Lasarzik 2

1 Introduction

This paper is concerned with the analysis of the initial boundary-value problem for the following PDE system

ou+ wu-Viu+Vp—V-(v(0)Vu) = —eV- (Voo Vo), (1a)

Vu=0, (1b)

cu(0)(30+ (u-V)0)+0(d@+ (u-V)p)—V-(k(0)V0) = v(0)|Vu|* +|Vul|?, (1c)
1 !

Ao+ m-V)p=Au, u=—6A<p+gF(<p)—9, (1d)

which describes phase transition phenomena in incompressible fluids. We consider a bounded domain Q C R?
or d > 2 with sufficiently smooth boundary and fix a time interval [0, T']. The state variables are the velocity
field u, the temperature 6, and the order parameter ¢ describing the locally attained phase. The pressure is
denoted by p, the chemical potential UL is mainly an auxiliary variable. The variable F' denotes some energy
density for the order parameter, k(6) > 0 the heat conductivity, and v(6) > 0 the viscosity. The parameter €
is related to the interface thickness, which should be small. The variable cy stands for the specific heat, which
is going to be made precise later. For the fluid flow, we choose homogeneous Dirichlet boundary conditions and
the other variables are equipped with homogeneous Neumann boundary conditions, i.e.,

u=0, n-x(0)Ve=0, n-Vo=0, n-Vu=0, ondQx(0,T) (1e)
and initial conditions

u0)=up, 6(0)=60, ¢0)=¢ iInQ. (1f)

The system under consideration couples a Navier—Stokes-like equation and with a Cahn—Hilliard sys-
tem and an internal energy balance (Tc). On the one hand, this system is interesting in terms of its ap-
plications, which reach from modeling of cancer evolution and treatment [26] over fluid flow for mixtures [4, [7]
and for instance modelling of industrial processes like 3d printing [8]. On the other hand, it serves as an inter-
esting prototype of a thermodynamical consistent model of a complex fluid. The energy balance is coupled to
Navier—Stokes-like equations and this in addition to a Gradient Flow for the internal variable. Such systems are
omnipresent in applications as well as analysis in the form of two fluid flow, anisotropic fluids like liquid crystals
or polymers and additionally, it can be seen as a special form of the so-called GENERIC modeling approach
(see [27]).

The aim of the article at hand is thus also twofold. On the one hand, we will provide a sound mathematical
treatment of this special system, but on the other hand, we see this system as a prototype of GENERIC systems
and want to infer knowledge on how to define a reasonable solutions concepts for such system.

1.1 Review of known results

The Cahn-Hilliard system originally proposed in [11] received a lot of interest in recent years (see for in-
stance [41]). There are lots of works concerning the constant temperature case of (see e.g. [2, 112, 46] and
references therein) and also a recent work on the case of vanishing velocity field (see [30]). Even though there
are many publications on the coupled Navier—Stokes Cahn—Hilliard model in the constant temperature case,
there are very few publications on the non-isothermal case. The considered model (1) was introduced in [19],
where also the existence of weak solutions (fulfilling an additional energy balance) was shown under additional
growth conditions for the heat capacity and the heat conductivity (the assumption are precisely 6 € [1/2,1) and
B > 2, check Hypothesisbelow for the definition of these parameters). In [20] the same authors where able
to show existence of weak solutions in the two dimensional case under milder assumptions. In [36] a simpler
model was considered, an Allen—Cahn type equation with energy balance. But the techniques there are similar
to the ones used in this article, namely relying on the relative energy approach. So far, there is no solution
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Analysis of a thermodynamically consistent Navier—Stokes—Cahn—Hilliard model 3

concept available for the relevant case, where k(60) and ¢y (0) in are constant. In the article at hand, we
provide a remedy by considering measure-valued and dissipative solutions especially for this case.

The concept of Young measure-valued solutions was first introduced by Tartar [47]. Later on, the concept of
generalized Young measures was used by DiPerna and Majda [17] to define generalized solutions to the Eu-
ler equations. These generalized Young measures capture oscillation and concentration effects for sequences
bounded in L'. Such generalized Young measures have been applied to the complete Euler system [9] or the
Ericksen—Leslie system equipped with the Oseen—Frank energy [35].

The concept of a dissipative solution was first introduced by P.-L. Lions in the context of the Euler equations [39]
Sec. 4.4], with ideas originating from the Boltzmann equation [38]. It is also applied in the context of incompress-
ible viscous electro-magneto-hydrodynamics (see [5]) and equations of viscoelastic diffusion in polymers [48]
as well as liquid cystals [32]. A dissipative solution relies on an appropriate relative energy inequality, which
may be interpreted as a variation of the energy-dissipation mechanism of the system. In this solution concept,
the momentum conservation is not fulfilled in some distributional sense, but rather in terms of a variation of the
underlying energy dissipation principle.

Beside the fact, that this solution concept complies with the minimum assumptions to a solution concept of
existence and weak-strong uniqueness, it appears naturally when considering singular limits [44] and in com-
parisson to measure-valued solutions, it is numerically traceable. In case of anisotropic complex fluids, in [33]
the convergence of a semi-discretization was shown and an associated optimal control problem was solved via
the dissipative solution concept, whereas in [6] it was proven for the more-involved system describing nematic
electrolytes that the solutions to a fully discrete finite element discretization converge to a dissipative solution in
the limit. In these works, it was observed that natural discretizations complying with the properties of the system,
like energetic or entropic principles, as well as algebraic restrictions converge naturally to a dissipative solution
instead of a measure valued solution (see [6] and [33] for details). In the article at hand, we additionally show
that a dissipative solution enjoying additional regularity is in fact a strong solution. Thus, it can be argued that the
presented generalized solution concepts are qualitatively the same in terms of existence, stability, weak-strong
uniqueness, and regularity implying uniqueness. While dissipative solutions do not fulfill the equation, they have
less degrees of freedom compared to measure-valued solutions. Since dissipative solutions appear natural as
a singular limit, it may be worth considering the singular sharp interface limit of € — 0 in the relative energy in-
equality (see below). Especially since there exists a formulation of a relative energy for the sharp interface
case (see [23]) and even a convergence proof for vanishing interface thickness using this technique (see [24]).

In this article, we want to consider the system (1) as a prototype system for a more general GENERIC system,
i.e., it is a thermodynamical consistent system coupling the incompressible Navier—Stokes system to an energy
balance and an additional Gradient-Flow-like equation for the evolution of an internal variable. In the sequel,
the existence of weak and measure-valued solutions is proven, as well as the weak-strong (or rather measure-
valued-strong) uniqueness of theses solutions. Weak solutions only emerge under additional (possibly unnatu-
ral) regularizing terms appearing in heat-capacity or heat conduction. The measure-valued formulation consists
of an entropy production rate in a distributional sense (see below), an energy inequality (see below),
and an entropy inequality (see below), in a nowadays standard way (compare for instance to [22][36]) as well
as the weak formulation of the Cahn—Hilliard equation (see and below). The Navier—Stokes-like equa-
tion is fulfilled in a measure-valued sense (see below) unless additional regularity is available (compare to
Theorem below). Additionally, the existence of dissipative solutions is shown, which inherit the weak-strong
uniqueness property by construction. In comparison to the measure-valued formulation, in the definition of dis-
sipative solutions the momentum balance as well as the energy and the entropy inequality are replaced by a
relative energy inequality (see below). This deprives us from establishing strong convergence of an approx-
imate sequence of the velocity field u, but the formulation is weakly sequential stable with respect to the weak
topology for the velocity fields. The dissipative formulation has the advantage that it does not rely on a measure
in the elastic stress tensor. This makes the formulation more attainable for structure inheriting discretizations
(compare [6}133])). The formulation still relies on a measure-valued formulation of the entropy balance, but this is
mainly to have some control of the time derivative of the entropy in order to deduce some strong convergence
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(compare Remark [2.4).

Up to the best knowledge of the author, this is the first time that these different solution concepts are considered
for such a thermodynamical consistent systems.

The paper is organized as follows: In the remaining part of this section it is shown formally that the considered
model fits into the GENERIC modeling concept. In Section [2, notation, assumptions, and main results are
collected. Additionally, some useful lemmata are provided. Section[3] executes the existence proof for measure-
valued solutions, which also lies at the core of the existence proof for the dissipative solution concept. Finally,
in Section |4} the relative energy inequality is proven and thus, the weak-strong uniqueness for measure-valued
solutions and the existence of dissipative solutions.

1.2 Modeling

In this subsection, we comment on the modeling of the considered system (). The calculations presented in
this section are purely formal. The system may be modeled via Fremond’s approach see [25] and [19]. It
may also be derived by following the GENERIC modeling approach. GENERIC stands for General Equation for
Non-Equilibrium Reversible-Irreversible Coupling and was proposed by M. Grmela and H.C Ottinger see [27] It
states that the evolution of a thermodynamical consistent system may be expressed on a state space .4 via

dq= 7 (q)D&(q)+ % (q)D-7(q), 2

where & : A4 — R and . : 4 — R are the energy and entropy of the system, respectively, and / an anti-
symmetric Poisson structure (_# (q) = — _# (g)*) fulfilling the Jacobi-identity and .%2” the symmetric dissipative
structure (¥ (q) = ¥ (q)*), which is positive semi-definite, i.e., (§,.#(q)&) > 0 on a underlying manifold
with the non-interaction conditions

J (@)D (q) =0= 2 (q)D&(q)- (3)

The free energy density Y of the system is given by

€ 1
w@#ﬁ=§W¢V+EH¢H4M@—H¢ such that TW4ﬂ=lﬂ4&¢Nm

where fs represents the purely caloric heat part of the free energy and is given by

—9(nB-1) §=0
f5(8) == L g5l §ug (4)

5(+D)

For convenience, we define O5(8) = f5(0) — 0 f5(0). The specific heat is given by cy (0) = O5(6). We may
derive the entropy density by
ov ,
s(G,q)):—%:—fs(G)%—q) such that ﬂ(q):/gs(x)dx. (5)

Setting ./ := H'(R) x H'(R) x V (see the subsequent section for the definition of V), the energy may be
expressed as the sum of internal and kinetic energy

1 1 1
5(@) = [ 05(0)+ 5[0l +F(p)+ 3 luf dx=¥(6,9) + [ 6sax+ [ uPox.
Q 2 2 Q 2 Jo

where g = (s, @,u) and 6 has to be interpreted as 6 (s, ) = (f§) (¢ —s). The form _# may be expressed
via
0 O —Vs

<m/@®=/n-o 0 Vo Cdx.
2 \Vs Vo u-V)—V-(u)
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The skew-symmetry of _¢# follows from the fact that u is divergence free and an integration-by-parts. The
symmetric form %" has to be chosen to guarantee

1 K(Q)Wm9|2+v(9)\(zu)sym\2+ IVg\2 +V-(k(6)VIno)
H(q) (0] = Au
0 V-(v(6)(Vit)oym)

and the additional conditions on the dissipative form, i.e., symmetry and non-interaction condition (3). This
implies the following form of %', i.e.,

K (@) = ./chl <K‘(9)]V1n9|2+ V(9)|(Zu)sym|2 . IVg|2>
+Kk(0) (VM -V& —Vn-VIneg —mVine - V)
=V Vul —-mvu-Vo+Vmp- v
—v(0) (VN1 (Vit)sym - &3+ M1 (Vit)sym : (VE3)sym — V1 @1 2 (VE5)sym)
=V VUl —mVu-VE +Vnpu -V
-~V -VOL+mVOe -V +Vna0-VE,
= v(0) (VN3)sym = (Vit)sym 1 + (Vit)sym : N3 @ VE — (V1 3)eym : (@@ V)
—v(0) ((VN3)sym : (VO E3) = (VO@N3+0(VN3)sym) 1 (VE3)sym) dx,

where the occurrences of 6 again have to be expressed via s and ¢ using (5).

From D.¥ = (1,0,0)7 and D& = (0, u,u”)” we observe the system(d) by the standard GENERIC ap-
proach (2).

2 Preliminaries and main results

In this section, the assumptions and notations are given, as well as the main results. Additionally some prelimi-
nary lemmata are provided, which may be interesting in their own right.

2.1 Assumptions and notation

We introduce some notation. Let @ C RY be a bounded sufficiently smooth domain and d > 2. As usual,
R, := {r € R,r > 0}. We denote by ¥ := {v € €=(Q;R?)|V-v = 0} the space of smooth solenoidal
functions with compact support. By H, V, and Wg’f,(Q) we denote the closure of ¥ with respect to the norm

of L*(Q), H'(Q), and WXP(Q), respectively (for k € N, p € (1,00)). Note that H can be characterized by
H={veL?’V-v=0inQ,n-v=00n dQ}, where the first condition has to be understood in the distributional
sense and the second condition in the sense of the trace in H‘1/2(8Q). The dual space of a Banach space
X is always denoted by X* and is equipped with the standard norm; the duality pairing is denoted by (-, ).
For O C Rd, the Radon measures are denoted by .# (Q). We recall that the Radon measures equipped with
the total variation are a Banach space and for compact sets Q , it can be characterized by . (Q) = (¢'(Q))*
(see [18, Theorem 4.10.1]). The integration of a function f € € (Q) with respect to a measure u € . (Q) is
denoted by [, f(h)u(dh). In case of the Lebesgue measure we just write [, f(h)dh.

By Rg%ﬂ, we denote symmetric positive semi-definite matrices. For a matrix A € Rd”, we denote the negative
symmetric part by (A)sym.—, which is given by (A )sym — 1= infy, g 41} @-Aa. Associated to f; defined in (@),
we define the thermal energy by Q5(0) = f5(8) — 6 f5(0). The specific heat is given by cy (0) = Q'(6). To
abbreviate, we define A5(6|0) = f5(0) — f5(0) — f5(6)(6 — 0) . Note that f5 is concave such that A is

positive. By ¢, we denote a generic constant, which may changes from line to line.

We will need a number of assumptions on F, k, and fs, namely
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R. Lasarzik 6

Hypothesis 2.1. (A) We let F € €%(R,R)NEE (R, R).

(B) We assume F to be A-convex, i.e., convex up to a quadratic perturbation. Namely there exists a constant
A >0 suchthat F”(y) > —A for all y € R. We can then define a convex modification of F, subsequently named
G, as

G(y)=F(y)+Ay* yeR. (6)

By construction, G is “strongly convex”, i.e., G”(y) > A > O for all y € R. Moreover, it is not restrictive to assume
G to be nonnegative and so normalized that G'(0) = 0.

(C) Next, we assume a coercivity assumption at co, namely

F
imint £ )
M=o [y

= +oo. (7)

As a consequence of (7), we can first observe that F(y) > —c for some constant ¢ > 0 and every y € R.
Moreover, it is easy to verify that the physical energy controls the H'-norm of ¢ from above. Namely, there exist
Y > 0 and ¢ > 0 such that

SIV01E: @+ [ F(9) 02 YIlna) —c. ®
for every @ € H'(Q) such that F (@) € L (Q).
(D) Finally, a growth condition is assumed to hold, i.e., there exists a constant ¢ > 0 such that
[F'(y)[In(e+|F'(y)]) <c(1+[F(y)]) forally€R. )

Possibly modifying the value of ¢ one can see that the analogue of (9) holds also for the convex modification G,
i.e., we have
|G'(y)[In(e+|G'(y)]) <c(1+G(y)) forally eR. (10)

To check that (©) implies (10), a number of straightforward but somehow technical computations would be
required. We leave them to the reader because no real difficulty is involved.

For simplicity, we assume for kg > 0 and k; > 0 that

—6(In6—1) 5=0

051§ 0 ford €[0,1).

K(0) =Ko+ Kk 6P with B €[0,2] and f5(6) ;:{ |
T 5(8+1)

For 0 = 3/2, we may also allow k = 0. Additionally, we assume 0 < v < v(s) < ¢ for all s € R ;. Moreover,
we define k(r) = [{ k(s)/sds.

We define the set X via: (u,0,¢) € X if
ueL=(0,T;L*(Q))NL*(0,T;V),
05(0) € L=(0,T;L'(Q)) with O(x,7) >0a.e.inQx (0,7)and 0In6 € L'(Q x (0,T)),
f5(8) € L=(0,T;L'(Q)) with &(0) € L*(0,T;H'(Q)) and d,£5(0) € .4 ([0,T]; (WP (Q))*),
@€ L™(0,T;H (Q)) with d,¢ € L'(0,T;(W"P(Q))*).

We define the set Y of regular solutions via: (i, 8, @) € Y if (i1,0,$) € X and additionally

acL(0,17;¢'(Q)NnE€"([0,T):V),
6 L'(0,T;W>>(Q))NL*0,T;W'=(Q))NL=(Q x (0,T))
with >0 >0ae inQx(0,7) andn-k(0)VO=00ndQx (0,T),
¢ e Wh(0,7;L(Q))NLY (0, T;W*P(Q)) forp>d withn-V$=00ndQ x (0,T).
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2.2 Main results

In the following, we collect the main results of the paper.

Definition 2.2. An element (1,0, ) € X, a chemical potential u € L>(0,T;W"!(Q)), and a defect measure

me L=0,T; . #(Q; Rfyﬁﬂ)) is called a measure-valued solution to (), if

[(Viym| |VEI
Ve Ve

the incompressibility condition V-u = 0 is fulfilled a.e. in Q x (0, T'), the weak momentum balance

e L*(0,T;L*(Q)),

_/Qu.gdx‘t—i—/t/u&,&—i-(u@u):V&dxdt
- / / )(Vit)oym = (VE)eym — E(VO @V Q) : (VE )gymdx — /Q;we:)sym  m(dx)dr (1)

forall§ € €7 (Q % [0,T)) with V-&E =0in Q x (0,T) and for a.e. t € 0,T), the entropy inequality

/st(fg dx‘ +// ( )|VIn6|* + (9)‘(V"SV’“‘2+W“’2>dxds

6 )
S/O/Q(K(e)vme-V0+(19t+(u-V)19)(fé(9)—(p))dxds (12)

for all 9 € L=(0,T;L=(Q))NW1(0,T;L=(Q))NL*(0,T;W"4(Q)) and for a.e. € (0,T), and the weak
formulation of the Cahn—Hilliard part

1
[ (09.60)~ [ (ou-¥)¢~Vu-Voxds=0 (13)
Jo Q
with
,LH—SA(p—%F’((p)—I—O:O, a.e.inQx (0,7) (14)

for all ¢ € L2(0,T;WH4(Q))NL=(0,T;W'=(Q)) and with n- V¢ = 0 a.e. on dQ x (0,T). Note that the
trace n- V@ is well defined in L! (0Q) (see [16] Prop. 3.80]). Additionally, the energy inequality holds:

1 1 1
3, (OP+elV o + LF(00) + 05(6() ) ox+ 5 0m.1)
1 1
<5 (ol + eV + Lr (o) + 0500 ) ax 19
and a weak form of the entropy balance, i.e. there exists a measure 1) € . (Q x [0,T]) such that

(9(f5(6) x>//z 071w @)z o.rwie@) T X0 a@xor) e @xo)
_// 0)VO +ufs(0))-Vydxdr (16a)

for all y € €([0,T];W'*(Q) for p > d, where the measure 1 may be bounded from below by

Vul>  |Vul?
(M%) @xjo.1)) .4 @x[0.1) / / ( )[VIn6|*+ (9)9| u +| g' )dde (16b)

forall y € €' (Q x [0,T]) with x > 0in Q x (0,T).
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Remark 2.1. As a defect measure we understand a measure, which has Lebesgue-part zero, i.e., is concen-
trated on a set of Lebesgue measure zero. Sometimes such a measure is also referred to as concentration
measure, since it captures concentrations of the approximating sequence. This has to be understood in contrast
to the usual Young measure, or oscillation measure that captures oscillations of an approximate sequence. We
can exclude concentrations here, due to point-wise a.e. convergence of the approximate sequences (compare
to [35]).

Theorem 2.3. Let Q C R? be sufficiency smooth and Hypothesis be fulfilled with 26 < B. To every
05(60) € L'(Q) with f§(6p) € L' (Q) and 6(x) > 0 a.e. in Q as well as @y € H'(Q) with F(¢y) € L' (Q)
and uy € H, there exists at least one measure-valued solution according to Definition 2.2}

If the requirement

d(d
6>2(2—ﬁ> (17)

is fulfilled, the defect measure m vanishes, i.e., m = 0.

Theorem 2.4. Let Hypothesis hold true. Let (u,0,¢) € X be a measure-valued solution according to
Definitionand (,0,Q) €Y a strong solution emanating from the same initial data. Let 8 € [45,2 —26].

Then both solution coincide, i.e., u = ii, 6 = 6, and o=0.

For 0 > 0, the weak-strong uniqueness result also holds for < 49 under the additional assumption that the
solution 6 is bounded pointwise from below, i.e., 8 > 8 > 0a.e.in Q x (0,T).

Theorem [2.4]is a direct consequence of Proposition [4.1

Remark 2.2. By the presented technique, the weak-strong uniqueness result for a solution with ki > 0, i.e., with
the standard part of Fourier’s law, only holds, if § = 0. In a sense, the resulting dissipative logarithmic terms in
the entropy balance (the terms multiplied by k(6)), can only be estimated by associated logarithmic terms
in the entropic part (f5 for § = 0 in ({2)).

In the case that the solution 6 is bounded pointwise from below, i.e., 8 > 0 a.e. in Q x (0,T), this restriction
does not occur since in this case, there exists a C > 0 such that

|f5,(8) — f5,(0)| < C|f5,(0)— f5,(8)| for8 <& andforf,6>min{6,6}.
But it it seems to be out of reach to show that such a lower bound holds for the considered cases.

The proof of Theorem [2.4]relies on the fact that a solution according to Definition [2.2) fulfills a so-called relative
energy inequality. In the following, we restrict ourselves to the case 6 = 0, since this is the important case and
the relative energy inequality holds without an additionally assumed lower bound as in Theorem[2.4] In the case
of a convex energy functional, this idea goes back to Dafermos [13] in the context of thermodynamical systems.
For a strongly convex Gateaux differentiable energy functional & : X — R the relative entropy of two solutions u
and ii is given by (see [14] Sec. 5.3])

R (ulit) = & (u) — & (@) — (&' (1), u—it) > 0 foru #ii. (18)

The strong convexity of & guarantees that % is positive as long as u and i do not coincide. Let us consider
the nonlinearity F'. A function fulfilling Hypothesis is called A-convex, i.e., the function is convex up to an
additive shift by the identity. According to (6), the convex modification of F is called G. The relative energy for
system () is defined via

_ € N 1 - ~ -
#lala)= [ (5190 Vol + 4 (6(0)~G(6) - G'(@)o-9) ) ax (193
+§H“—“”L2(Q)+/QA5 (e‘e)dx—i_EH(p_(pH(W1~°°(Q))*7 (19b)
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Analysis of a thermodynamically consistent Navier—Stokes—Cahn—Hilliard model 9

where we defined g = (u, 0, @) andg = (it, 6, §). Due to the convexity of G, we may conclude by choosing ] =
G u=¢,andii= @ in that the line is nonnegative. Due to definition (6), we find for the convex
function G that

G(9)—G(9) -G (9)(9— ) =F(9)—F(P)—F'(¢)(¢— )
+A(loP 6] —26(¢ - ¢))
=F(0)+F(¢)—(F'(§)(¢— ) +2F(9)) +Alp—¢I.

To handle the last term, which is due to the non-convexity of F', we add another rather weak norm to the relative
energy. For M big enough, we find by an interpolation inequality

- 1 _ M -
7LH§0—<PH§2(Q) < ZHV(P_V(/)HZZ(Q) + EHQD_(P”%WW(Q))

Note that this only holds since [, ¢ — @dx = 0 and the H'-semi norm is equivalent to the full H'-norm for
¢ — @. Indeed, considering the Poisson equation —A® = ¢ — @ in Qwithn- VP =0on dQ and [, Pdx =0,
we find

1o = l720) = (VO — VP, VD) < [[VO — V|12Vl 2 )
d 2+d 2 2+d
< |V - Vol chu Lo 1vez!
< *||‘P - (I3||L2(Q) T3 ”V(P - V@HH(Q) +C||V‘I’”il(g)
The first term can be absorbed on the left-hand side and by Hahn—-Banach’s theorem the last term can be
identified via
[V Li(0) = sup (V,a) .

acl”,|al;=q)=1

Additionally, we define the relative dissipation by

2
0
/KO/ 6|VIno — Vln@\zdx—i—/ \/7Vu)sym \/g(Vﬁ)sym dxds

) (20)
" KLgveB/2 _viBl2p 0 \/5 T
il v/ —Vu—4/=V .
~I—/O/Qﬁ26|V6 0P771" + 0 u 5 fi| dxds
the regularity measure by
- - e o A U _ ~
K@) =c| 106+ @ V)Pl +||eAd— —F'(9) + /(@ + @ V) n 8| .
£ Wid(Q)
¢ IV @)+ 1 (V@) - ) + %0 40
oy (VP22 gy + 14672 (0 ) + €l Vil 20y
and the solution operator by
Qi+ (it- V)it —V-(v(0)Vit) + V- (VP2 V)
<,sz{(¢?)7°)::< (O + (@ V))(~ 106 — @) + L V-(k(8) V) + v(6) Teml | IVEE -> (21)
%P+ (@-V)p—Afl

where the chemical potential ji is given by I = —€AQ + %F’( )= O withn-Ve = 0.

sl
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With this notation at hand, the relative energy inequality is given by

! T (G ot oay(x
0

1 ’z_u ot oy
+/0 <=97(‘7), 66 >+M\(P—¢\(w1~m(g))* @) |-y | e @5, (22)
-

where 275 denotes the third line of , i.e., the left-hand side of equation (1d); for the test function § € Y. The
idea for the definition of dissipative solutions is to replace the weak formulation of the momentum balance (1),
the energy inequality (75), and entropy inequality by the above relative energy balance for all reasonable
test functions.

Definition 2.5 (dissipative solution). We restrict us to the case 6 = 0. A triple (u,0,¢) € X and a chemical
potential i € L?(0,T;W'1(Q)) is called a dissipative solution to (1), if

|(Vt)sym| [Vi|
Vo Ve
the incompressibility condition V-u = O is fulfilled a.e. in Q x (0, T), as well as the relations (T3), (T4), and (T6).

Additionally, the relative energy inequality is fulfilled for a.e. 7 € (0,T) and for all (it,0, $) € Y, where the
chemical potential fi is given by fi = —€A( + LF'(§) — O such thatn- Vi =00on Q x (0, T).

e L*(0,T;L*(Q)),

Theorem 2.6 (Existence of dissipative solutions). Let Q C R be sufficiency smooth, 6 =0, and Hypothesis
be fulfilled. To every 8y € L' (Q) with In8y € L' (Q) and 6y(x) > 0 a.e. in Q as well as ¢y € H'(Q) with
F(@o) € L'(Q) and ugy € H, there exists at least one dissipative solution according to Definition

Especially, every weak solution according to Definition[2.2is a dissipative solution according to[2.5|by the natural
identification (without the defect measure m).

Remark 2.3 (Dissipative solutions and regularity). We want to argue that dissipative solutions are a reasonable
solution concept. First, they comply with the minimal assumptions on a reasonable solution concept due to
Lions [39, Sec. 4.4], e.g., these solutions exists (as the previous theorem asserts) and they fulfill the so-called
weak-strong uniqueness criterion. This means that, in case that there exists a weak solution g fulfilling the
additional regularity properties, i.e., § € %, then every dissipative solution emanating from the same initial
datum coincides with this solution. This property follows directly from the relative energy inequality (22). Indeed,
inserting the weak solution g = (i, 0, @) into (22), the right-hand side vanishes, if the initial values match. This
implies that also the left-hand side has to be zero, i.e., every dissipative solution coincides with g.

On the other hand, it also holds that if there exists a regular dissipative solution, then this solution is a reg-
ular weak solution, i.e., a strong solution. Indeed, assume that the dissipative solution g is regular, i.e., g =
(@,0,0) € ¥, thenalso g =g+ ar € ¥ forr = (ry,ro,ry)’ € €(Q x [0,T];R?) with o > 0 sufficiently
small. First, we observe that due to the additional regularity, the relations and hold a.e. pointwise. This
implies that the third component of .27 (§) vanishes. Inserting § = g + ar into for the dissipative solution
q = q and dividing by o, we end up with

t e B
o(a) < / (A (@), (r)) el # BODIT0@) g 1 o(ar),
0

where o(a) — 0 for & — 0, since the only linear term in ¢ occurs in the last term on the right-hand side of
and all other appearing terms are super-linear in . Passing to the limit o — 0 implies that

0< /Of (o (q),r)ds = /Of (da+ (@-V)a—V-(v(8)Vaa) +eV- (Ve 2 VP),r,) ds

+/0t (O + (@ V))(—In6 —p)+ V-(k(0)VInb),re)ds
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Analysis of a thermodynamically consistent Navier—Stokes—Cahn—Hilliard model 11

t _ _ B Vit m2 Vil 2
+/O (K(9)|Vln9|2+v(6)‘( “Z_;y | +‘ g‘ ,r9>ds

the above inequality is in fact an equality (since r was arbitrary) and hence, g fulfills a standard weak formulation.
To find the above equality, we inserted the definition of .27 and used, that the last entry vanishes. Note that fi is
defined in the usual way, i.e., i = —€AQ + F'($) — O withn- Vi =00n dQ x (0,T).

Remark 2.4 (formulation of dissipative solutions). During the proof of the previous remark, it became obvi-
ous that the property of regularity implies uniqueness as well as weak-strong uniqueness holds without the
relations and (15). That is, why we do not incorporate them into the Definition This would be possi-
ble and they are also weakly-sequential stable with respect to the underlying topology. Both formulations,
and (15), are excluded from Definition since they do not seem to contribute much information. The energy
inequality follows from by choosing (i, 8, @) = (0,0,0). The entropy inequality for constant test
functions follows by choosing (i, 8, @) = (0,6,0) in and formally passing to the limit @ — co. The weak-
strong uniqueness result and the regularity implies uniqueness result from Remark [2.3] even holds without the
relation (16), but without this relation, we lack any control on the time derivative of the temperature or rather
the entropy. This would deprive us from the possibility to establish strong convergence of approximate tem-
peratures, which in turn would lead to Young measure-valued temperatures in (22). Therefore, we kept in
Definition [2.5] In order to establish strong convergence of the temperature. We remark that it would be enough,
to include some estimate of the time derivative into the formulation, like

19, In081|_y(j0,71:w1r(02))) < €

in order to establish strong convergence of the temperatures and such a formulation does not rely on any
measure-valued relations.

An underlying idea of dissipative solution is that no equation is fulfilled anymore. This may seems odd, that a
solution to a partial differential equation is given as an inequality. But firstly, inequalities serve as a reasonable
solution concept in the context of Gradient flows [40], in the form of De Giorgis upper dissipation distance.
In this regard, dissipative solutions may also be interpreted as a generalization of the concept of minimizing
movements [15] applicable to more general non-gradient systems (e.g., GENERICs [27]).

Secondly, away from a certain regularity regime, the equations may not be considered as a good model. There
has been extensive work on the non-uniqueness of weak solutions using convex-integration techniques (see [31]
or [10])). Additionally, the equations are derived from energetic principles often under the assumption of certain
smoothness. Then the question arises, why should a generalized solution concept even fulfill the equations in a
distributional sense, even though they may not lead to a solution complying to the overall energetic principles.

The concept of dissipative solutions follows another approach and compares the dissipative solution to smooth
solutions, which fulfill the equations only approximately, but inherit enough regularity to deduce uniqueness,
i.e., are elements in a regularity class for which the equations make sense. Even though dissipative solution
comply with the underlying energy dissipation relations, they are still far from being unique. Therefore additional
selection criteria are needed in order to choose a good solution within this class of dissipative solutions. The
concept of maximal dissipation, i.e., selecting the solution dissipating the most energy was proposed (see [13]
or [9]) as a selection criterion to identify the physically relevant solution. This implies that the dissipative solution
with minimal energy should be selected. Therefore, one may considers the minimization problem (compare
to [34])

T
min / &(q(t))dr st gqis adissipative solution according to Definition [2.5].
{ge 2} Jo

Including the inequality conditions via a Lagrangian multiplier and taking the supremum over all side conditions,
we end up with the definition of maximal dissipative solutions (compare to [34]). Due to the fact that the energy
& is nonvonvex, this selection criterion still grants no unique solution. This stems from the fact that the cost
functional & is not convex, but also the set of dissipative solutions is not convex.
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In contrast, it is known that the associated energy in the limit of € — 0 is convex. This energy is the Hausdorff
measure of the resulting sharp interface I', 774~ (') = IVXIl.#(c), where xdenote the indicator function
associated to one fluid species [1]]. Since this is a convex energy, there may be some hope that in the limit € — 0,
maximal dissipation even provides a unique solution. Such a cost functional will favor shorter (and therewith
smoother) interfaces, which is desirable in applications [43].

2.3 Preliminaries

We collect different lemmata that are helpful in the remainder of the article. The following result was already
used in [36].

Lemma 2.7. Let {a,}, {b,} C L' (Qx (0,T)) and b, > 0a.e.in Q x (0,T) for all n € N. Assume that there
exists a constant ¢ such that

T 2 T
/ / 2 dxdt <c¢ and / / b,Inb,dxdr <c. (23)
0o Jab, 0 Ja

Then there exists a constant such that
T
/ / |ap|In'/2(1 + |a,|) dxdr < c.
0 Ja

Proof. In order to infer a bound for {a,}, we consider a new convex function y : Ry — [1, o] defined as
v(r) = (1/4)(r*(2Inr — 1) + 1), where it is intended that w(1) = 0 and Y(r) = +oo as r < 1. Determining
the precise expression of the conjugate function y*(s) is difficult, but we can at least estimate it appropriately.
We recall that

v (s) = max (sr—y(r))

reR;

and a simple computation shows that the maximum is attained at s = rInr. Hence, if r is the maximizer, using
first that s = rInr and then that s + 1 < 2 (which holds as r > 1), we have

1 1 1 52 52 1

* 2 2 2

q/(s)—rlnr—lp(r)—ér lnr+1r —Z—W—i—m—z
52 52 1

< + .
“In(s+1) lnz(s—i—l) 4

Additionally, we observe for y* that for any y € [2,0) it holds

21 21 1
w*(ylnl/zy)g y_iny n y iny _ 2 1),

- (24)
ln<l+yln1/2y) ln2<1+yln1/2y> 4

since the function
In In
y 4 y
In (1+y1n1/2y) ln2<1+yln1/2y>

y =

is bounded for y € [2,0), which is obvious for any compact subset in [2,00) and also holds as y /e as an
easy check shows.

Now, setting for simplicity u := v/b+ 1 and v := a + 2u, we have

[m (5)+ ;m(u?)] ”

Y
u
Vi 12 (Y [ RV
< _ _ i
_u[ln (u)+ﬁln (u )}u

vin!/2y =
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Analysis of a thermodynamically consistent Navier—Stokes—Cahn—Hilliard model 13

< Vn!2 (X> u+ kZulnl/z(uz)

<v (T (3)) + v+ 7 ()
- — u)+—=|\—-+u u
sV u u v V8 \ u?
2 2
v 1 1 1 /v
<c|l—=+1 P2 =D+ -+ — (| = +u’In(e?
< <M2+)+4u( (u”) )+4+\/§(u2 (u)
2
<c <2 +u?In(u?) + 1> : (25)
u
where we used calculation rules for the logarithm, properties of the square root under the additional observation
that In(v/u) > 0, the Legendre—Fenchel-Young inequality as well as the standard Young's inequality, and (24)

as well as the definition of y. Finally, integrating over Q x (0,T), we observe that the right-hand side is
bounded due to (23). From the left-hand side, we deduce with the bound that

T
/ / |an| 1'% (1+ |a,|) dxdz < c. (26)
0o Ja
O
Lemma 2.8. Let § € [0,1) and B € [25,2 —235]. For & > 0, it holds
00— (75(8)) ' (/5(0)~ 13(8)) < A5(016)
as well as

§l-p/2 <9ﬁ/2—é5/2—§é"/2‘1 (£28)~" (f3<9>—f3<é>)> < As(016)

and if additionally B € [48,1 — 6], it holds
(6P72—6P1%)2 < cA5(016),

where the constant depend on 0, i.e., its lower bound.

Proof. First, we observe for § = 0 that
Ao(08]0) = —6(In6—1)+8(Ind—1)+1nO(O—-8)=6—-0—H(In6 —1nbh).

and similar for 6 > 0 that

- 1 - < i 1~ _
As(0]0) = — 561D (95“ — 6%t —(5+1)6%(6 — 9)) =57 (95“ —66° — 39(9‘S - 95)>
1

S <<95 5%)(0— )+ 6° (0—@ - 1916<95_96))> |

—_—

=7]

Note that both terms on the right-hand side are positive, the first one since § > 0 and the second one since the
function s — s'/9 is convex. Thus, we proved the first assertion.

For the second one, we first find for § = 0 that

g1-B/2 <9ﬁ/2 —@h2_ géﬁﬂ(ln 6 —1In é))
< §'-B <9ﬁ/2 _@B2_ ggﬁﬂ(lng —1n é))
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+6p/2 <91ﬁ/2 —9'P/2_ <1 - B) 6'F2(ne6 —1né)>
2
+ (P12 —6P/2)(9'B/2 _ §'-B/2)
—0-60—-06(In6—1nbh).

The inequality holds, since both added terms are non-negative for f € (0,2) and the equality follows from
calculating the terms explicitly. For § = 2, there is nothing to show. Similarly, we observe for 6 > 0 that

5182 (B2 B2 B aprsip5 56
0 (e 0 550777008 ))
<§!-pP (eﬁ/z N 96>>

_ _ 1 _ N
L Gb <91—ﬁ/2 BB 5 <1 B 123) §1-B/2=5 (g _ 95)>
+(0P/2—gP/2)(91=P/2 _g1-P/2)

~ 1 ~
= 9—9—391—5(95—95).

For the last assertion, we observe in the case 8 € [26,1 — §] that
(082 —6P/22 — 0F — 6P — B6P— (£2(8)) " (f5(6) — £5(6))
i 3 B . N
2002 (o020 Lo ( )" (750) - 148) )

Since both terms on the right-hand side may be estimated according to assertion two, assertion three follows.
O

Lemma 2.9. Assume that 6 € L=(0,T;L%()) such that 101125 (0)) + 1 f5(0) | = (11 (2)) < € with ©(x) >0
fora.e.x € Qand 6 € L= (Q x (0,T)) with 8(x) > 8 > 0 for a.e. x € Q. Then there exists a constant C > 0
such that

115(6) = £3(8) [y < C | As(616)ax
where C only depends on ¢, |0 | 2= (@ (0,r))> and 6. In the case of 8 > 0 the constant also depends on 6.

Proof. For this proof, we have to distinguish the two possibilities 6 > 0 and 6 < O. In the first case, we
consider the function Ag : [0,00) —[0,0) given by hg(x) = exp(x) — 1 —x for 6 = 0 and hg(x) = (x +
l)é —1- %x. This functions hg are strictly monotone increasing, bijective, and convex. Hence, their inverse
functions hgl : [0,00) —[0,0) exists and is strictly monotone increasing, bijective, but in contrast concave.
This facts can be observed by 1 = d, (hgl(hg(x))) = (hgl)’(hg(x))h’g(x) and 0 =092 (hs_l(h(;(x))) =
(") (hs(x)) (R (x))* + (hgl)’(hg(x))ffg (x). In the second case, we consider /15 : [0,a5) —[0,0), where
ap =0 and ag = 1 for 8 > 0, given by hg(x) = hs(—x) such that fip(x) = exp(—x) — 1 +x and hg(x) =

(1 —x)1/5 1+ 5 Ly for § > 0. As beforehand, it can be seen that h5 is strictly monotone increasing, bijective,
and convex.

Additionally, we need some lower bound for hgl and ﬁgl in the sense of hgl (¥) > ¢/y and vice verse for Egl.
Therefore, we consider the Taylor expansion of the exponential function

1 /! 1 1
&&= 1+x+§/ rdsy’ = Ff—1—x> Exz = th(;l <2x2> .
0
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Similarly, we find for /5!
1 - (1
- = x< hal (2x2> .

1 1
efle—x—{—i/ e Ndsx? =
0
gl(y) <c,/yaswellas ﬁgl(y) > c,/y with

tim (75" (4)) /5 = ¢ > 0.

Similar assertions hold in the case 6 > 0.We use Jensen’s inequality for concave functions: Considering g

In the case 0 = 0, we may deduce, &

) concave it holds
/ g(f(x)dx<g </ flx) dx) for all measurable @ C Q
o} Q

®:={xcQf(x)>0(x)} and @=Q/w

[0,00) =0, 00

to connect the results, we define

and observe in the case 6 =0
. 0 6
/‘1n9—1n9|dx:/lnfdx+/~ln—dx

= st (1o ) Yo 3" (s (o
<n3! (/wh5 (mZ) dx) ! (/@izg (m

))e
)*)

| | D>

and in the case 6 >0

f(e)—ld +f3(é)/1—;égé;dx
© B

/‘fs (6)]dx _f5<)/fé
1(6 e (6
_/ _1< thz( ;_1>>dx—|— 5! h5<1—§zgé§>)d
) ~ (6
>—1> dx) +hy! (/@hg (1—2;@;)“).

(6
L f5(0
=" </wh5 (fZ(é)

The functions hg and 715 are chosen in a way that that
Ao(6]6) = Bo(In(8/6))

Oho(In(6/8)) =
and
Ohs (;zﬁ ; 1) = Ohs (1—222;) < As(8]0),

respectively. In the case of hg, we immediately observe

- (/wé/\(;(em)dx) §C\//w(1;/\6(9|é)dx

Due to the assumptions, the relative energy is bounded, i.e
/ A5(6]8)dx € L=(0,T).
Q

Berlin 2020
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Concerning the function 7131, we found that it is bounded on bounded sets and that 7131 (¥)/+/y = c. Combining

this, we find
- 1 ~ As(6 9 dx
! (/ ~A5(9|9)dx) 5 Jots(016) ,/ A5(6]6)d
0 Jis As(6]6)dx

where the first factor on the right-hand side is just a constant. The fact that Ag(@]é) > 0 implies for any w C Q
that [, As(0]0)dx < [, As(6|0)dx. We find that

1

Hfé(e)_fé(é)HLl(Q)SC 5/\5(9’@)

L)
This implies the assertion. Note that 0 is essentially bounded by positive constants from below and above. O
Lemma 2.10. Let B € [48,2 —28]. Assume that 8 € L*(0,T;L'(Q)) such that

195 ()1 (@) + If5(O) | =rr (@) < €

with 8(x) > 0 for a.e.x € Q and € L=(Q) with (x) > 8 > 0 for a.e. x € Q. Then there exists a constant
¢ > 0 such that

6712 =882, g < [ As(6]6)ax
where C only depends on c, ”éHLw(QX((LT)), and 8.

Proof. First, we observe that

(P12 0PIy = (gP/* — pP/*)2 _20P/4(gB/4 — gP/4)
such that we find by Young’s inequality and Jensen’s inequality

- - - - 2
1652~ 8572|2, q) < (11694 — 8P/4|2, ) + 2116711 |67/ — 694 11y
<2 (|08 — 8P4 g + 41108 2 g 0P — P14 2, o))

(Hgﬁ/4 BB /414, g + 4]0P/ 20 ||9B/4_§13/4Hi2(9)>.

Lemma|[2.8|implies that

2
||9ﬁ/4_95/4||%](9) <c <</£2A5(9|6)dx> +||9/3/4||iw(9)/91\5(6|6)dx> .

Since the relative energy is bounded, i.e.,
/A(;(G]é)dx € L7(0,T),
Q

we find the assertion.

Lemma 2.11. Let 0,0,¢: Q— R, with g(x) < 1/2 for a.e. x € Q. Then it holds that

0 1 ~
/fgdxg/TAg(e\e)Jrzﬁgdx.
Q0 Jo 0
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Analysis of a thermodynamically consistent Navier—Stokes—Cahn—Hilliard model 17

Proof. We define the convex function Y5 : Ry —-R; viax+—x—1—Inxintheof 6 =0and x —x—1—

+(x® —1) in the case of § € (0,1). The convex conjugates are given by ¥ (y) = —In(1 —y) for § = 0 and

vi(v) = 152 ((1—y)%/©=D —1). Computing the first derivatives of the conjugates, we observe (W)’ (y) =
(1 —y)’ﬁ. We may combine the results by

(66— (£3(8)) "' (15(6) ~£3(8)) + V3 (0)+ [ (v3) (5)se.

i —

0 < <9> Fyi(e) =
ég S Vs é W(S 8) =
The assertion of the lemma follows by Lemma[2.8| w5(0) = 0, inserting (y)’, and observing that g(x) < 1/2.

O

3 Existence of measure-valued solutions

This section is devoted to the existence of measure-valued solutions.

3.1 Approximate scheme

In this section, we present an approximate scheme. We only want to comment on the proof of existence of
solutions to the approximate scheme and do not prove it in full detail, since this seems to be fairly standard. The
scheme consists of a discretization and a regularization step. The Navier—Stokes-like equation and the phase-
field equations are discretized by a Galerkin approach and the energy balance is regularized appropriately.
Let V,, C V be a Galerkin space spanned by eigenfunctions of the Stokes-problem with homogeneous Dirich-
let data and W,, C HI(Q) be a Galerkin space spanned by the eigenfunctions of the Laplace equation with
homogeneous Neumann conditions (with [ ¢@,dx = 0). Let ¥ > 0, then we consider the approximate system

(Juy + (- Vuy,v) + (v(6,)Vu,; Vv) — (Vo ,,v) =0 forallv € V,,
(@ + (Un- V)0, &)+ (Vy, V&) =0forall L € W,,

1
S(V(van) + (SF/((pl’l) - el’l _.u'mn) = 0 fOI’ a” n € WI’H (27)

v _
03
n-ky(6,)V6,=00ndQ x (0,T).

(0 + (- V))O(6n) + 6,A1, — V- (k(6,)V ,) + V(6,) |V, |* + [V * in Q x (0,T),

where Ky(r) = Kk(r) + yr” with p > d?. It would be enough to assume that p > (d*> —4)/2d, which is re-
quired to establish weak solutions (vanishing defect measure m, compare to Theorem (17)). The system
is completed with appropriate initial values. The existence to such an approximate system may be shown by
Schauder’s fixed point argument (see [28] Prop. 19] or [22] Sec. 3.4.3]), where it is essential to show the posi-
tivity of the temperature 6, by a comparison principle similar to [28, Lemma 17] or [22], Sec. 3.4.2], where the
regularization term, the last term on the left-hand side of the approximate energy balance, is essential to deduce
non-negativity of the temperature on the approximate level. It has to be taken into account that the elastic stress
in the first equation of was adapted such that the energy inequality holds on the discrete level. First pass-
ing to the limit in the Galerkin discretization and afterwards in the regularization, we end up with the solution
according to Definition[2.2] We refer to [28] or [22] Sec. 3] for more details on such an approximation procedure.

The essential a priori estimates and the weak-sequential stability to prove the existence result rigorously are
given in the sequel of this section.
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3.2 A priori estimates

Energy estimate. Formally, we deduce by testing by u, equation by 1, equation (1d); by u and
equation (Td)> by d; @, adding all the resulting equations, and integrating over Q x (0,7) that

1 £ 1
/ (2|u]2 + EW(NZ + EF((p) +f5(0)— Qfé(e)) dx<c¢ forae.t€(0,T).
Q
This implies due to the coercivity of F' (see Hypothesis [2.1) the estimates
9]l = 0,722 (0)) T IVl 1= (0,7:22(0)) T €SS SUPe(0,7) / F(o(t))dx+ Qs ()| =~0rLi (@) <C-  (28)
The properties of F' let us conclude that additionally
0l z=(0,7:10()) < ¢ With p <ocoford =2and p=2d/(d—2)ford > 3.

Entropy estimate. Formally testing equation by 1/6 leads to

[ (s60) o dx+//< IVIn6 4 v(o >’(V"gsym2+’vg’2)dxds:

| 3(60)— gn) ox.

Note that the convection terms vanish due to the incompressibility of . For 6 = 0, we have to observe that
In® < 0 for @ > 1 in order to deduce again for all § € [0, 1) that

H ﬁ )| Val

<c, (29)

1£5(0) | r=0.7:21 @) + IVE(O) |20 0.7
2(Qx(0,T))

e

where Korn’s inequality is used [22, Thm. 10.15]. From Young’s inequality, we observe for 6 < [3/2

IV£5(0)ll2(@x(0,r)) < VEO) I 12(0x (0,7 < € (30)

Additional estimates. Integrating (Td); implies that the mass of @ is conserved, i.e., [ ¢(t)dx = |, ¢(0)dx
Integrating (d)., we find that [, u(t)dx = [o(1/€)F'(@(¢)) — 6(¢)dx < c. By Young’s inequality, we may
deduce that

L[ |[Vu?
Vil @xory) < 5/9 . +0dx<c,
such that Poincaré’s inequality implies

1]l Laran @x o)) S € (31)

Estimate in the case § = 0. Testing eqaution (Td), by In 0, we find

//01n9dxdt<HV(pHLzQX0T IVIn 20 01 +// 0)In6 — ulnBdxdr. (32)

Using the Legendre—Fenchel inequality for the convex conjugates y — ¢” and x — xInx, we estimate further

T
/ /F’((p)ln9+uln6dxdt
0o JQ

T !
<c (HeHu (@x(0.1)) +/ / <F’(<P) +u> In <F’(<p) +u> dxdt> :
0o Jo\ €& €
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Analysis of a thermodynamically consistent Navier—Stokes—Cahn—Hilliard model 19

where the right-hand side is bounded due to assumption (9), (28), and (@1). This implies a bound on 61n 6,
because 8In@ > —e~! pointwise a.e. in Q x (0,T). Applying Lemma we may deduce the additional
estimates

T
| 19204 [90) 4| (F) g 1072 (14 (VS < (39

Estimates for the time-derivative. Comparison in equation implies by the above estimates that
/ 190l gz gy 072 (14 10l gy g )t < for p > d,
since W27 (Q) is embedded into %' (Q). Concerning the convection terms, we observe

H”q’HLZ 0,7:L¢/@-(Q)) T Hufa( M2 0,7;L4/[d=1(Q
( )

< lullz=(0.7:8) (CHQDHLw(o,T;Lw/H(Q)) + Hf(/s(e)HLZ(o,T;de/d—z(g))> ; (34)

where the right-hand side is bounded due to (28), (30), the embedding H' < L?¢/(4=2) and Poincaré’s in-
equality. By comparison in (Td);, one may find

T
/0 H&;(PH(WI,[;(Q))*IHI/Z <]+H8,(pH(W1,p(Q))*>dtSC forp>d, (35)
since W!7(Q) is embedded into €’ (Q). Similar, comparison in the entropy balance provides

||atfé<6)H///([QT];(WLP(Q))*) <c forp>d.

Additional regularity. Finally, we observe that under the condition (17), the defect measure m vanishes. Indeed,
in this case, we infer from the entropy inequality that ||6B/2 | 2(w12) < ¢, which implies due to an embedding

that || 6P |1 (1ry < e for p<ooford =2and p=d/(d—2)ford > 3. From the energy estimate (28), we infer
|69 l|=(11) < c. Interpolating between these two spaces under the assumption (17) implies that

d
10llLo@x o1y <€ forg> 3.

Together with the entropy bound this implies improved bounds on u and L, i.e.,

r v(0)|(Vu 2 |vul?
||V"|!Lﬁ(9x(o,r))+HVMllLﬂ(gx(o,T))S/O /Q< ( )|(9 L] +| g' >dxdt+H9||Lq(gx(o,T)) <c

for p > 2d/(d +2), where Korn's inequality is used [22, Thm. 10.15]. An embedding together with Poincaré’s
inequality implies that

ullzr@x0,7)) + |4l r@x(0,r))  forr>2.

This in turn already implies that a hypothetical approximate sequence {u, @ u, } is relative weakly compact in
L'(Q x (0,T); R,

Since F is A-convex, we may define G := F + A[ such that G is convex. To infer additional regularity for Vo,
we test equation (Td), by |G'(9)[*"2G’(9) to infer that

[ [6-16"@Iver (6 o) 2+ 16 (o) oxar

= [ [@+u+19)iG @) 26 (p)dxor
0 JQ
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s 1 s s s s
L@x(01) T (‘|9||i‘Y(QX(O,T))+H“||LS(Q><(O7T))+A’ ||(p||LS(Q><(07T))> :

S —

<)

N

For s = min{r, ¢}, the first term on the right-hand side of the previous inequality may be absorbed into the left-
hand side and the other terms are bounded. Such that by comparison in (Td)2, we observe [[AQ||s(ax(0,7)) < €
and by an embedding we find

) 2d
||V(P||LP(Q><(07T)) <c forp> mln{d,d_z} > 2.

This in turn already implies that a hypothetical approximate sequence {V@, ® V@, } is relative weakly compact
in L' (Q x (0,T);RY*9). Note that in the case d = 3 the relatively weakly compactness property of {V¢, @
V@, }in L'(Q x (0,T);R?*?) could already be achieved by choosing § > 6/5 — 6/5p instead of (T7).

Remark 3.1. To infer the estimates on the time derivatives of the solutions to the discrete system rigorously,
some stability properties of the LZ(Q)-Projection onto the Galerkin spaces are needed.

3.3 Weak sequential compactness

Considering a hypothetical approximate sequence { (i, 6,, s, W) }, we are going to prove the weak sequential
compactness of the measure-valued formulation (2.2). As an approximate sequence the solutions to could
be chosen. Collecting the bounds from the previous section, we observe

u, >u inL=0,T;H)NL'(0,T;W"(Q)), (36)
duy—du in L'(0,T:(Wgh(Q))"), (37)

@, —= @ inL=(0,T;:H'(Q))NLY(0,T;W>(Q)), (38)
0—0,¢ inL'(0,T;(W'P(Q))"), (39)
£(6,)—n inL*(0,T:H (Q)), (40)
f1(6,) = ¢ inL*(0,T;:H (Q))NL>(0,T;.#(Q)), (41)
31 (6,) = 9,1 (8) in.#([0,T]; (W”’(Q))*) forp>d, (42)
t—u inLY0,T;whi(Q)). (43)

The Lions—Aubin lemma (see [43| Cor. 7.9]) grants that
u,—u inLP(0,T;L(Q))forall p € [l,)andq € [1,2), (44)
@, — @ inLP(0,T;L"(Q))forall p€[l,e0) and r € [1,2d/(d —2)), (45)
Vo, — Vo inL'(0,T;L(Q)) forall p € [1,00) and g € [1,2), (46)
f(6,) =& inL*(0,T;L*(Q)). (47)
Due to (47), we can extract a subsequence that converges a.e.in Q x (0,T), i.e., f5(60,) = & a.e.inQx (0,T).

Since f} is a bijective function, we define 6 = (f%)~'(&) and observe that 6, — 6 a.e.in Q x (0,T). Vitali’s
theorem together with implies

6,—6 inL'(0,T;:L'(Q)). (48)

The continuity of f§ and Q5 implies that f5(6,) — f5(0) and Q5(6,) — Q5(0) a.e.in Q x (0,T).

Since the time-derivative of the sequences {u,} and {@,} converge weakly in L'(0,7;(W??(Q))*) and
L'(0,T; (WP (Q))*) for p > d, respectively, we deduce that u, —u in %, ([0, T]; (W>P(Q))*) and ¢ — ¢ in
%, ([0,T]; (WP (Q))*), which implies by a standard lemma (see [37, page 297]) that

u,—u in%6,([0,T;:L*(Q)) and @,—¢ inE,([0,T;H(Q)).
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Analysis of a thermodynamically consistent Navier—Stokes—Cahn—Hilliard model 21

The energy bounds allow to deduce the existence of a measure m € L=(0,T;.4 (Q;R?*¢) (see [3, 42], or
compare [35]) such that

U, Qu, + eV, VP, “u@u+eVoaVeo+m inL7(0,T;.4 (Q;RY). (49)

By the lower semi-continuity of weak convergence, we may observe that m is a semi-positive matrix, i.e., for any
ac e (Qx[0,T];R?), we find

(ma®a) = lim | ((u,Qu,+eVQ, VY, — (uu+eVeaVe)): (a®a)dx

n—oo JO
> liminf ((un -a)* +¢e(Vo, -a)2> - ((u -a)’+¢e(Vo -a)2> dx>0.
n—o [0
The pointwise strong convergence implied by and allow to deduce that m is indeed a defect measure,
i.e., the Lebesgue-part is zero. The estimate implies that the convective terms in and are relatively
weakly compact in L (Q x (0,T)).

With these different convergences at hand, it is a standard matter to pass to the limit in the formulation (TT).
The convergences also allow to pass to the limit in the formulation (T4). Indeed, Hypothesis [2.1] allows to infer
that {F'(¢,)} is relatively weakly compact, by the a.e. convergence of { @, }, the continuity of F/, and Vitali's
theorem, we find

F'(¢) = F'(9) inL'(0,T:L1(R)),
which allows together with to pass to the limit in (T4). From and (56), we may deduce
u, 0, —ug in LY4D(Q % (0,T)).

This, together with and allow to pass to the limit in (T3). The convergence in the energy inequality is
observed by multiplied by the identity, the a.e.-convergence of { @, } and {6, }, the continuity and coercivity
of F and Qg, as well as Fatou’s lemma [21].

Passing to the limit on the right-hand side of is straightforward, where estimate guarantees that the
convective term is relatively weakly compact in L!(Q x (0,T)). For the left-hand side, we observe that the
dissipative terms under the time-intergral converge due to the lower semi-continuity of convex functions (see
loffe [29] or Thm. 2in [19]). For the entropic part, which is the first term in (12), the convergence for @ is obvious,
since @, — @ in 6,,([0,T]; H' (Q)). For 8 > 0, { £5(6,)} is relatively weakly compact in L' (Q x (0,T)) due
to the energy estimate (28), which together with the a.e.-point-wise convergence of {6, } and Vitali's theorem
implies the convergence of { [, f5(6,)dx} to [, f5(0)dxfora.e.z € (0,T). Inthe case § =0, we may argue
similar on the set 6@ > 1. For 8 < 1 we may argue by the positivity of —In 6 and Fatou’s lemma see [28] or [36].

In case that holds, the additional regularity holds, the sequences {u, @ u, + eV, @ V@, } is relatively
weakly compact in L' (Q x (0,T')) such that m is vanishing [42, Lem. 3.2.14].

4 Relative energy inequality

This section is devoted to the proof of the relative energy inequality. For convenience we set € = 1 in this section.
All calculations may be adapted to varying € easily.

Proposition 4.1. Let (4,6, ¢) together with p € L?(0,T;W"1(Q)) and m € L=(0,T;.# (4 RL:L ) be a

measure-valued solution according to Definition and let (i, é, () €Y be aregular weak solution according
to Definition[2.2] Then the relative energy inequality

holds for a.e. t € (0,7 and thus the assertion.

DOI 10.20347/WIAS.PREPRINT.2739 Berlin 2020



R. Lasarzik 22

4.1 Relative energy

The following calculation hold for a.e. t € (0, 7). Regrouping of the appearing terms in gives
. x 1 1, 1 5 1
Aw,0.0/1.6,9)+ (1) = | (WP + V9P +F(9)+05(6) ) dx+ 2 (m.])

+ [ (3 390f+F(p)+05(6) ) ax

~ [ = 6(73(0) - 9))dx+ 29— 9l 1-(q)
= [ (V6 Vo (F'(@)(p - 9)+2F(9)) ax 51a)
— | (/5(8)+05(8) ~ 69— Rlp— 5P dx. (51b)

First, we observe by the energy inequality for the weak solution and the energy equality ({T5) with equality)
for the strong solution that

1 1 1

[, (S04 51900P + F(o0) + 05(6(0) ) ax+ 1)

Q

1
# [ (S0P + 00+ F(p0) + 05(6(0) ) o
Q
< [ (S0P +31von +F (o) +0s(60) ) + [ (510 +31VaF +F(go) +0s(6) ) - (62
=, S Mol T 51V %o s(bo ,, \ glHo %o slbo) | -
Testing the weak form of the momentum balance with &, i.e., choosing & = @ in ({), we find

t
—/u'ﬁdx
Q

u&,ﬁ—l— (u®u) : Vidxds

_ / / )(Vat)oym : (Vit)sym — (V9 © V) : (Vi) gymlx — /ﬁ (Vit)oym : m(dx)ds.

Inserting additionally the strong formulation of the momentum balance for u tested with u, we observe

/uudx

/ / (Vu)sym . (Vﬁ)sym dxdr
_ —/ /(u®u);va+(a®a):Vudx+ﬁ(va)Sym . m(dx)ds (53)
0 JQ Q
*/O /Q(V<P®V<p):(Vﬁ)sym+(V¢®V¢):(Vu)symdxds.

Choosing ¥ = 8 in (T2), one may observe

Vugm|*>  [Vul?

0 0
S/O /Q(K(e)vlne'Vé+(afé+("'v)é)(fé(9)—(p))dxds, (54)

Similar, we find by testing the energy balance for the strong solution with 0 that

// ( 0)|VInb|> +V-(k (é)VIné)+v(é)‘( ~)Sym‘2 | ‘f’2>dxds

//eat (@-V))(f5(8) — @)dxds. (55)
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For the terms in line (51a)), we find with the fundamental theorem of calculus that

t

—/Q(V¢-v<p+(F'(¢)(<P—</3)+2F(¢)))dx
— _/T/V&(p.V(pdx_(at(p,A(mds

/<at<p ¢, F'( +/ (F"(9)0,@(@ — @) +2F'(§)d,¢) dxds,

where this formula first only holds for more regular functions, but can be extended by density arguments. Choos-
ing @ = —fi ({{3), { = 0, ¢ in (14), and adding both equations provides

t
—/ /V(p-V&t(I)+Vu-Vﬁdxdt
—/ 00.5)~ [ (up)- Vit +09,9+1ap ~F'(9)0,9axds

—/ (dro, 1) /u(p) F' (@) — (u@) - VAY — (up)-VO+00,p+ 1o, ¢ — F'(¢)d, pdxds.

Similar calculations for the strong solution, i.e., testing (1d); with tt and inserting equation (Td), twice, we find

1
/<at(p,A(/3> (09, F'(¢ /Vﬂ Vitdxds
0

:/O/Qa’(p“"'v((i"v)(p)'V(P+('~4'V)‘I~)F/((P>—(fl-V)(f)de—<8t(p7é+‘a>ds. (56)

Combining the last three equations, we arrive at

- [ (79 Vo+ (F(@)p~9)+2F (@) x|,
_/I/ (up) - VF' () — (up) - VAG — (up) - VB + 03, ¢ dxds
+//v )-Vo+ (@-V)PF'(¢) — (@-V)podx — (3,9,0) ds

+/o /Qaf‘f’ (F'(@)—F'(¢)—F"(¢)(¢ — ¢)) dxds.

(57)

Applying now the fundamental theorem of calculus to the terms in line (51D), we find

~ | (2£5(6)~613(8)— b) i,
- //2]3S 18,6 — 3,6£,(8) — 6£1(6)3,6 —6¢dx — (9,0,8)ds (58)

= —/0 /98’9(1%(9)_éfg(é))_até‘de—<3z(p,é>ds
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Inserting now (52), (53), (5), &7), and into (51), we observe
A(u(1),6(1), ¢ 0 ) o))
Vu Joyml® o V(O (Vit)sym|*

)|a(t
+//< +6 5 —(V(9)+V(é))(Vu)sym:(Vﬁ)sym>dxds
_|_/ /< \ .U‘z WHP ZV/.L-V/fL> dxds

+// Gx(6 \v1n9|2—;<( )V1n0-V6+6x(6)[VIn6|* +V-(x(8)In6)6) dxds

CDz

< (0,00, @olin, B0, 30) + [ [ 96 (F'(9)= F'(9) ~ F'(§) (9~ §)) ax0s
_/Ot/g(u®u)ZVﬁ—|—(ﬁ®ﬁ):Vudx +/§(Vﬂ>symimz(dx)ds
- / [ / (VO V) : (Vit)sym + (VPR VH) : (Vit)gymdxds
+// (k6 +(u-V)B)(£5(6) —9) — (6(0 + (@ V))(f3(6) — §)) dxds
— [ [ o) VF'(9) - we)-vap— (up) - VG +0,paxas
+[ /QV<<a-V>¢>-V<p+<a-V>¢F'<<p>—<a-v>¢edx—<a,(p,é>ds

~ [ [ 2805(6) - £5(8) - 269ax— (219.6)ds + T o~ I} -1

For the term due to the convection in the fluid, we find
—/Q(u®u) :Via+ (n®@u) : Vudx
_ —/Q((u—ﬁ)@)u):Vﬁ+((ﬁ—u)®ﬁ):Vudx
_ —/Q((u—ﬁ)®(u—ﬁ)):Vﬁ+((ﬁ—u)®ﬁ):(Vu—Vﬁ)dx

- — [ (w0 @ w=a) : (Vi)ymax

1(Vit)sym, || () Il = f‘HiZ(Q)

IN

where (Vﬂ)sym,_ denotes the negative part of this symmetric matrix (see Section. The first equality follows
from the fact that u and @ are divergence free, such that u - V|ii|> and i - V|u|? integrated over Q vanish. The
second equality is just a rearrangement and the third follows again from the fact that & is a solenoidal vector
field. Concerning the defect measure m, we may estimate

(VB m(0x) < | (Vi) 10 (m.1)

since the positive part may be estimated by zero due to the semi-positiveness of the matrix m(dx).

For the coupling terms of the fluid and the phase-field equation, we observe
/ v (( )-Vo+ (up) - VA dx
- /Q (VO@VO) : (Vit)eym+ (VP D VP) : (Vit)gymdx

- /Qva (VG V) + (- VIVH-Vo + (ug) - VAP dx
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—/gva; (Vo2 Vo) — (u-V)pAPdx
= [ Vi (V9 —Vp)© Vo) +(@-V)V5-Vo+ u(p— ) VAix
= — [ Va: (Vo -V§)© (Vo V) + (=) (p—§)- VApax
+ [ Vi (Vo- V)@ V) + (@ V)Ve- (Vo V) + (a(p— §)-V)apax.

The first equality in the above equality chain follows from the product rule, a rearrangement, and an integration-
by-parts on the last term. The second and third equality are just rearrangements, while once using that i is
divergence free, such that the integral over (it - V)|V |* vanishs. Finally, we again observe by an integration-
by-parts rule and since i is a solenoidal vector field that the last line of the above equation vanishes. Note the
the integration-by-parts rule for the last step initially only holds for more regular function, but may be extended
by density arguments. The terms due to the nonconvex potential in (59), gives

- [ (wg)-VF'(#) - V) (¢)dx
= | @@= 0))-VF(@)+@-V)o (F'(9)~F(®)~ F"(@)(p—9)) + @-V)F"(9)(p~ ) x
- | @0 =) VF'(®) - @-V)9F"(§)(p— §) dx.

The first equality is valid since u and i are solenoidal functions. Indeed by (u-V)@F'(¢) = (u-V)F(p), we
observe that the integral over this term vanishes. Similar, this holds for the term (& - V)F (9) = (- V)@F' ().
The second equality is just a rearrangement. The last line of the above equation vanishes again, which may be
inferred from the fact that it is a solenoidal vector field. Together, we estimate by Hélder’s inequality,

/Q V((@-V)$) - Vo+ (up) - VAGdx — /Q (VOR V) : (Vi) + (VEDVP) : (Vit)oymx
- | wg)-VF'(9)+ @-V)F () ax
< [(V@)sym, =@ VP = VO 20 + 140 — F' (@) w11 — | 120y |9 — Bl a2
+ @96 (F'(9)~F'(9)~F'(9)9-9)ax
For the convection terms in the heat equation and the phase-field equation, we observe

|- 9)6(55(60) — 9) —0(@-V)(/5(8) @)+ (ug) - V6 (- V)6 cx

= | 9)B(75(0)~ £5(8)) — - V)6.£§(6) (6 — 6) dx
= [ (w=a)-V)8(75(6) = 15(8)) + (@-V)B(13(6) ~ £5(6) — §(B)(6 — 8)) x

The first equation is valid due to a rearrangement using again the vanishing divergence of # and i, i.e., the inte-

grals over (u-V)0£5(0) = (u-V)f5(0) and 6(it- V) f5(6) = 0 £5(6)(@-V)6 = (- V) 1er 5 (r)dr vanish,
respectively. The second equality follows again by adding and subtracting the appropriate terms. Together, we
find the estimate

/Q(u'V)é(fé(G)—q)) 0(@-V)(f35(0)— @)+ (up)- VO — (a-V)podx

<NVl 1) ( lu—ll2(q) || f5(8) — f5(0)]| 2.
Q)
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- ~ % =\ —1 =
@9)136) i) [ (6—6-(£7(8)) " (15(6)~ £3(6)) ) ox
The remaining terms in including time derivatives, can be formally transformed to

28(/5(0)— 9) — 09,(/3(6) — ) — 09,6
=38(/5(6)—15(8)) —a55(O)(6 6
013(8) (66— (£5(6))" (/5(0)~ £3(6))) .

Note that the two occurrences of (8,(p,é> in already cancel each other. In the first equality all terms
depending on ¢ and @ vanish due to cancellations, the second equation follows by an application of the chain
rule. Consequently, we find

9%0(f5(0)—6/5(8))+0 6

| 26(75(6)— 0) = 031(75(8) — ) — 02,6 — A8 (£5(6) — 615(8)) +,Bpax
< N5 @i [ (6-6-(5(8)" (13(60)— 5(8))) ax
Inserting everything back into (59), we may conclude

P (u(t),0(1), 9(1)|a(t),6(), (1))

+/ / ( (9) Sym‘ +0 V(é)|(gﬁ)sym|2 — (v(@) + v(é))(Vu)sym : (Vﬁ)sym) dxds

- 2 \vJ 2
+// <9| Kl +9| H| —2vu- V/.L>dxds

+// 9K(9)|V1n9[2—K(G)Vln@-Vé+9K(é)|Vlné|2+V-(K(é)lné)9)dxds
0 JQ

Sﬁ(uoaeoa(pom(bé(b(po)
! ~ ~ ~ ! 1/~ 1"y ~
[ | 09+@v)9) (F(9)~F(9)~F'(§)(p~ 9) dxds
0JQ
1
+ [ 1)l (= g + (1)) 05
!
+ [ 1D lz-(0)]I 0 = V2 g
+ [ 180 = F(®) s = all)c1V0 ~ Vla)
T / 1961~ ( 20 || 75(0) f3<e>HL2(Q))ds
- 0—0— (£(6)) " (£4(0)— £4(8)) ) dxd
@[30 im0 | (0-6(15(6)) ' (15(6) ~ £5(6)) ) oxds
+E”(p_¢”(W1’°"(Q))
(60)
4.2 Dissipative terms

In this section, we consider the different dissipative terms arising in inequality and (60). Starting with the
terms due to friction in the fluid, we observe by some manipulations that

"V(6)|(V“)sym|2 V(é)|(Vf‘)sym‘2
0 5 +6 ;

= (v(8) +v(6))(Vit)sym : (Vi) sym
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Applying Young’s inequality in a standard manner, implies

év(9)|(vu)sym|2 v(0)|(Vit)sym* B

0 +0 F (v(6) +v(6))(Vit)sym : (Vi) sym
2
5 A2
= v(0) |\ Vo[ S o] IO v

Similar, but somehow simpler we find for the dissipative terms due to the chemical potential after some manip-

ulations that
~ 2
SIVul VAP | |0 [o
0 00— —-2Vu-vViig = —Vu—4/=V .
o V% HAVH=NgVh—y v

Concerning the terms due to the heat conduction, we first consider the case k(60) = kp, thus § = 0 and also
6 = 0. Note that

/ 6x(6)|VIn8[2+6V-(k(6)VInb)dx — / V.(k(6)V8)dx=0.
Q Q
We observe with some algebraic transformations that

6|VInO>—~VIno-V6+(60—06)|VInb|>+AlnbH (6 —0)
=6VInO-(VIn® —VInd)+ (6 —6)|VInb|> +AlnbH(6 — )
=0(|VIn6 —VInf[*+VInh-(VIn6 —Vino))

+(6—-6—-06(In6—1nb)[VInbh|*+6(In6 —1nb)|VInb|?)
+AInB(60—60—6(In6 —1nb))+AlnB(6(In6 —1nHh)).

From an integration-by-parts on the last term, using the fact that Vinb -n= (Vé -n)/é = 0 vanishes on the
boundary (see (T€)), and the product rule, we may infer

/éVlné-(Vln@—Vlné)—i—é(lne—lné)\Vlné]zdx—/Vlné-V(é(lnG—lné))dxzo.
Q Q
We may conclude that
xo/ 6|VInO|>—VIne-Vé+ (6 —8)[VInd|> + Alnd(6 — §)dx
Q

_ K‘()/ 6|VIn® — Vinb|>dx
JQ
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+K0/ (0—6—6(n6 —1n6))(|VInb|? +Aln6)dx.
Q

For B € (0,2] and 28 < f3, we find
/éeﬁ|v1n9|2—eﬁvév1n9+(9—é)é5|v1né|2+(e—é)v.(éﬁvmé)dx
Q

- ,22/9 (81V6P/22 — 8112052y 5P 2V 6P /2) ax o

4

—i—Bz/Q((9—é)’VéB/Z‘2+g(g_é)v_(éﬁ/zvéﬁ/2)> dx .

For the first line on the right-hand side of (61), we observe
6|VeP/2)2 - g'-B/2gB /2y 5B/2y B/2
= 0|VeP/2 Vo221 ' -BI2(gB/2 _ gB/2\v@B/2veP/2 + §VEHR/2(VEP/2 —v§h/2)

- é|v9ﬁ/2 _ Véﬁ/2|2 + él—ﬁ/z(éﬁ/z _ 9ﬁ/2)vél3/2(vgﬁ/2 _ Véﬁ/Q)
+ évéﬁ/2(vgl3/2 _ Véﬁ/Z) + gl—ﬂ/2(§ﬁ/2 _ 9ﬁ/2)|véﬁ/2‘2 7

and for the second line on the right-hand side of (67), we observe

(6—6)|VeP/212 4 g(e —0)V-(8P/2vaP/?)

= (00— (7(0) " (730) ~ £3(0))) (V0P 1+ B w80 2ver))
F(R0) 7 (15(0) ~ 75(6)) (V892 + B v (@#2vp )

— (60 (74(8) " (15(6) - £5(8))) (vEP"P 1 D w89 2ve0 )
+0P271 (£1(8)) " (£5(8) — £5(8)) g(é‘—ﬂ/ﬂvéﬁ/ﬂz+v-(évéﬁ/2>).

To combine the previous two equations, we observe that the two second lines on the right-hand sides may be
related via an integration-by-parts

/Qévéﬁ/z(veﬁﬁ—véﬁ/z)dx: /Q(éﬁ/2 — 08/ V.(6V6P/?) dx
and the algebraic relation
0'-B/2(6P2 _ gPB/2)|VoP/2 2 4 (6812 — 0B/2)v.(6VEE/?)
FOP (13(0)) 7 (13(0) 15(8)) B (81 P veP P 4 v (8v6P1))
= — (6" P VePP v (6VHP)2) (eﬁ/z ~ep2 Lot ) (400 —f,§<é>>)
= (B2 (@ PRvP) (08 682 - BB (13(6)) (150) - 3(6)) )
Taking everything together into (61), we may conclude by Young’s inequality that

/ 66P|VIn6> —0PVOVInG + (6 —0)6P|In6>+ (6 —0)V-(6PVInh)dx
Q

_ ;2 [ BIV6P2 VORI 15 P(0P — 082 VEP (VORI V8P ) ox
Q
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w5 [ (0-0- (0) " (15(0)- £3(0) (V8PP B v (@290 ) ox
~ g 8@ PPve) (9“/2—9’”2 Bor1 (16) ™ (5(0) - fé(é))>dx

_[32/6]V6ﬁ/2 VoP/22 _§1-P|gh/2 _ gB/22|v@P/2 2 dx

+,f2 /Q (6-6—(£3(6)) " (r3(6) - £5(8))) <|véﬁ/2|2+§v-(éﬁ/zvéﬁ/2)>dx

g [ (0P8 8vas) (0072 882 - BB (13(8) " (13(6) - 150)) ) ox

To handle the difference of the temperatures in the L?-norm for B > 1— 3, we need to absorb some parts into
the dissipative terms. Via an Gagliardo Nirenberg inequality, we observe

082657212, < ¢ (|[V0P/2 - Vg2 /442 gB2 _ gh/2 42 o B2 _ 522
< ﬁlzweﬁ/z—véﬁ/zniz G082 — GBI,
From Lemma[2.10/and Lemma|2.8] we find for 8 € (48,2 — 28] that
/Qéeﬁwlneyz— 0PVOVING + (0 —0)6°|Inb|> + (0 — 6)V-(6PVInd)ax

17 _ VTR _
> B2 _vgB/22gx— / B/2 B2 '
> [32/99|V9 V6P ax—c | As(6]6) Hve Hw<g>+||A9 (@) ) 0x

4.3 Nonconvex contribution

This section concerns the last term on the right-hand side of (59).

1 N _ N
EatH(P— (pH(2W1~°°(Q))* =0 —@llwi=@y sup (Q—3p,P).

[Pl 1.0=1

Since the equation holds, we may find
(09~ 9,9.@) = — | (up—ip)-Vo-+ (Vi ~ Vi) - Vx
Q

= — [ (w-a)p-+a(p— ) Voox

\[Vy ,/ Vil \/> VCID—i-V[L(e—l)-VCDdx
< <||"—'7||L2(Q)H(PHL2(Q)+H‘P—¢HL2(Q)H17||L2(Q) VO~
6 0__ o> Vil 3
RTINS TT TP
0 6 Ol [=(Q
. @ ©)

(62)
Since ¢ and @ have the same mean, the Poincaré inequality holds for its difference since [, ¢ — @dx =0, i.e.,

[0 = 0ll2) <cllVe =Vl 2(q)
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such that

1 ~ _ - - -
3010 =01y < 19— Bl (Iu=all2i0) 9ll2() + ¢ VO = Vol 2oy il 2o

g1/

L1(Q)

N 6 0.
+ 19— ¢l wi=(0)- \/?VH—\/éVM
L2(Q

Vi

+110 =0l wi=@) [CEIS

L=(Q)

Combining all the estimates, we conclude that

B(u(),0(t),0(t)a(r),0(t), +/ Ko/ 8|VIn6 — VInd| dx

“f e

+//2K‘9|veﬁ/2 VP22 ¢

2

Vu)sym dxds

0,
5<V“)sym

Jreu i

< (0o, O, ol o, )+ [ [ 09+ @-¥)9) (F'(9) — F'(
[ U)oy (I3 0y + 1))
t
+ ||<va>sym,f||m>uwpfv«puiz(mds
IA~_F/~ _~112 \V4 _V~2
te [ 180 =F/ (@) lwrsiay (Ju =l ) + V0 VPl q)) ds

+ [ 10030)+ @ V)13 O)limi@) [ (0-8- (150) " (75(0) — 15(0)) ) axas

dxds

)= F"(

ES]l
St

! 2
2 op/2 58/2|
+c/O /QAa(GIG) (HV@ HLM(Q)JFHAG I, (Q)> dxds

t
+M [ Nlo= 9wy (Iu= @19l +elVo = Vollizi@llilize ) ds
. 1/2
M [ Nlo=llwi-@ O5u- \fv ot

Vi
5

é [2(Q)

)(@—@))dxds

16 — 6]l11(q)

ds

_ 0))\2
/ SV Hu i[> q +Hf(/s(9)—fé(é)“y<g))+/Q(‘/w)2v(9))g\(Vﬁ)sym|2dxds.

The last line may be estimated by the relative energy due to Lemma[2.9]or Lemma[2.70]and Lemma[2.77] The

last term in the second to the last line, we may estimate by

16— 8]lp1(0) < /Q 06— (f5(8)7"(f5(8) — £5(8))dx +c|| f5(6) — £5(8)ll11 ()

which can be further estimated by Lemma [2.8] and From the calculation in [36] Section 4.3], we find for a

function fulfilling Hypothesis [2.7] that

)+F'(@))dxds

Es]]

[ 19+ @ 0ol @)@ - 9) - F'
0 JQ
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t A ~
< C/o 1@+ (@-V)Q|| =) & (u,0,0]@,0,p)ds. (63)
Applying Gronwall’s estimate implies the relative energy inequality and thus Proposition 4.1

Proof of Theorem[2.8 In order to prove Theorem [2.6] we have to show the relative energy inequality for
every test function (i, é, Q) € %, which is not assumed to be a solution anymore. This can be done by adapting
the proof of the previous section and adding and simultaneously subtracting the equations for (i, é,(f)) e
in 52), (B3), (56), and (62). This gives rise to the solution operator .27 defined in such that we infer

! ! G 1 ~
Z(q1q)(t) + %(m,,]> +/ W (qlg)e” ¥ DT ds < %(q|g)(0)elo# @9
0

! ?_u 1 ~
+/0 (q),| 06| )+ M| =0 wi=() | @ w1 =) el X @dT g,
i—u

Observing that (m;,I) is non-negative and may be estimated from below by zero, this implies the inequality
and thus the assertion.

O
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