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Optimal control for shape memory alloys of the one-dimensional
Frémond model

Pierluigi Colli, M. Hassan Farshbaf-Shaker, Ken Shirakawa, Noriaki Yamazaki

Abstract

In this paper, we consider optimal control problems for the one-dimensional Frémond model for
shape memory alloys. This model is constructed in terms of basic functionals like free energy and
pseudo-potential of dissipation. The state problem is expressed by a system of partial differential
equations involving the balance equations for energy and momentum. We prove the existence of
an optimal control that minimizes the cost functional for a nonlinear and nonsmooth state problem.
Moreover, we show the necessary condition of the optimal pair by using optimal control problems
for approximating systems.

1 Introduction

This paper is concerned with optimal control problems for a simplified version of the mathematical
model proposed by Michel Frémond to describe the thermomechanical evolution of a shape memory
alloy. In the one-dimensional setting, one can think to a metallic wire, which has the surprising prop-
erty that it could be permanently deformed and then be forced to recover its original shape just by
thermal means. In the microscopic scale, such phenomenon has been ascribed to (solid-solid) phase
transitions between different configurations of the metallic lattice, known as austenite and martensite
from the metallurgical terminology.

The Frémond model is a macroscopic model which is constructed in terms of basic functionals like
free energy and pseudo-potential of dissipation, and it turns out to be consistent with the fundamental
laws of Thermodynamics (cf. [26, Chapter 13]). The model leads to the system of partial differential
equations and related conditions that is stated below. The balance equations for energy and momen-
tum are coupled with the partial differential inclusion governing the evolution of the pointwise phase
variables χ1, χ2 that are related to the volumetric fractions of austenite and martensite phases. The
other unknown variable of the system is the absolute temperature θ and, in the fixed one-dimensional
bounded interval Ω := (0, 1), the following system is considered:

(L0θ − L1χ1)t − hθxx = a0f(t, x) in Q := (0, T )× Ω, (1.1)

µ0

(
χ1

χ2

)
t

− µ1

(
χ1

χ2

)
xx

+ ∂IK(χ1, χ2) 3
(

l(θc − θ)
−βa1g(t)α(θ) + βα(θ)2χ2

)
in Q, (1.2)

−hθx(t, 0) + k(θ(t, 0)− a2γ0(t)) = hθx(t, 1) + k(θ(t, 1)− a3γ1(t)) = 0, t ∈ (0, T ), (1.3)

(χi)x(t, 0) = (χi)x(t, 1) = 0, t ∈ (0, T ), i = 1, 2, (1.4)
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θ(0, x) = θ0(x), χi(0, x) = χi,0(x), x ∈ Ω, i = 1, 2. (1.5)

The initial boundary value problem (SMA):={(1.1), (1.2), (1.3), (1.4), (1.5)} is based on energy balance
and phase dynamics, while the (longitudinal) displacement u, which plays the major role in the mo-
mentum balance, does not appear explicitly in (SMA). Indeed, the momentum balance equation in the
quasi-stationary form reads σx = 0, where the stress σ is related to the strain ux, the temperature θ,
and the phase proportions by the following constitutive relation:

σ = ux + βα(θ)χ2.

As the boundary conditions u(t, 0) = 0 (one end of the wire fixed), σ(1, t) = βg(t) (external traction
prescribed) are usually considered, it turns out that in the one-dimensional case σ and u can be
completely determined in terms of data and other unknowns (see especially the papers [12,21] dealing
with the one dimensional problem). That is the reason why in the dynamics of χi, i = 1, 2, written
above, one finds the complicate expression−βa1g(t)α(θ)+βα(θ)2χ2 instead of−βα(θ)ux. In fact,
it is time to point out that, in our system, L0, L1, h, k, µ0 µ1, l, β, and θc are positive coefficients with
proper physical meaning; in particular, θc represents a critical temperature. In addition, a0, a1, a2, and
a3 are fixed real numbers. Furthermore, f : Q→ R stands for a known source term, while g, γ0, γ1

are given functions defined on the finite time interval [0, T ]. The nonlinearity α acting on temperature
values is a smooth nonnegative decreasing function, vanishing on the interval [θCu,+∞) for a certain
fixed temperature (the so-called Curie point) θCu > θc: see, for instance, [13, assumptions (2.12),
(2.13)]. Actually, among the properties of α, in our analysis we just use the fact that α ∈ W 2,∞(R). As
the Frémond model assumes a nondifferentiable free energy, in (SMA) we meet the maximal monotone
graph ∂IK , representing the subdifferential of the indicator function IK of the plane triangle K (cf.
Figure 1 below):

K :=
{

(ξ, η) ∈ R2 ; 0 ≤ ξ ≤ 1, |η| ≤ ξ
}
. (1.6)

The set K is convex, and contains the admissible phase proportions. We also notice that

IK(χ1, χ2) :=

{
0, if (χ1, χ2) ∈ K,
∞, otherwise.

(1.7)

An updated and detailed presentation of the Frémond model and related system of equations and
conditions, applying to the multidimensional case as well, is provided in [8, 9], [26, Chapter 13], and
[27]. We also point out [8, 9] for existence and uniqueness results in the three-dimensional situation:
here, the various nonlinear terms arising in the derivation of the model are taken into account. For a
list of related references as well as for a survey of previous mathematical work, we address the reader
to [7, 13, 21]. The large time behavior of solutions is investigated in [17, 21, 22] in connection with the
convergence to steady-state solutions, global attractors, and so on. However, the study of the optimal
control problem for the Frémond model has not been reported to date, up to our knowledge. The
reason for that is, in our opinion, due to the difficulties created by the presence of the plane triangle
set K .

In this paper, we deal with the optimal control problem (OP) of (SMA) defined as follows:

Problem (OP): Find a quadruplet of control functions (f ∗, g∗, γ∗0 , γ
∗
1) ∈ UMad such that

J(f ∗, g∗, γ∗0 , γ
∗
1) = inf

(f,g,γ0,γ1)∈UM
ad

J(f, g, γ0, γ1),
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Optimal control for shape memory alloys of the one-dimensional Frémond model 3

where (f ∗, g∗, γ∗0 , γ
∗
1) is called an optimal control for (OP); here, putting

U := L2(0, T ;L2(Ω))×H1(0, T )×H1(0, T )×H1(0, T ),

UMad is the control space specified by

UMad :=

{
(f, g, γ0, γ1) ∈ U

|g|H1(0,1) ≤M,

|γi|H1(0,1) ≤M, i = 0, 1

}
(1.8)

for some fixed positive number M , and J(f, g, γ0, γ1) is the cost functional defined by

J(f, g, γ0, γ1) :=
c0

2

∫ T

0

|(θ − θd)(t)|2L2(Ω)dt+
c1

2

∫ T

0

|(χ1 − χ1,d)(t)|2L2(Ω)dt

+
c2

2

∫ T

0

|(χ2 − χ2,d)(t)|2L2(Ω)dt

+
m0

2

∫ T

0

a2
0|f(t)|2L2(Ω)dt+

m1

2

∫ T

0

a2
1|g(t)|2dt

+
m2

2

∫ T

0

a2
2|γ0(t)|2dt+

m3

2

∫ T

0

a2
3|γ1(t)|2dt,

(1.9)

where (f, g, γ0, γ1) ∈ UMad denotes the generic control and the triplet of functions (θ, χ1, χ2) yields
the unique solution to the state problem (SMA) with the source term (f, g, γ0, γ1). We also point out
that the given constants c0, c1, c2, m0, m1, m2, m3 are nonnegative, and θd ∈ L2(0, T ;L2(Ω)),
χ1,d ∈ L2(0, T ;L2(Ω)), χ2,d ∈ L2(0, T ;L2(Ω)) represent the known desired target profiles.

Note that if the constant a0 is equal to 0, then (OP) is a boundary control problem. Similarly, if a1 =
a2 = a3 = 0, then (OP) reduces to a distributed control problem with the heat source as control. In
addition, we remark that γ0 (resp. γ1) denotes the outside temperature control function at x = 0 (resp.
x = 1).

There is a vast amount of literature on optimal control problems for variational inequalities, phase
transitions problems and so on. In particular, we refer to the contributions [1, 4, 6, 11, 14–16, 23–25,
28–31, 35, 36, 38, 42, 43, 45, 46]. However, to the best of our knowledge, no result is available for the
optimal control analyisis of problems like (SMA), probably because of the triangular shape of K and
the non-smooth nonlinearity of the two-components constraints ∂IK(χ1, χ2) in (1.2).

The novelties of this work are as follows:

(a) We show the existence of an optimal control for (OP).

(b) We propose an approximation procedure for (SMA) and (OP). Then, we show the existence of ap-
proximating solutions to (SMA). In addition, we investigate the approximating control problems
of (OP).

(c) We show the relationship between the limits (ω-limit points) of sequences of approximating optimal
controls and the optimal controls of the limiting problem (OP).

(d) We show the necessary conditions for the approximating optimal control problems.

(e) We derive a weak formula of the necessary conditions for the original problem (OP), through the
limiting observation of approximating situations.
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Consequently, an effective approximating approach to the optimal controls of our control problem (OP)
will be presented as a further conclusion derived from the main results. Also, it is worth considering the
approximating optimal control problems from the view-point of numerical analysis, since the triangle
convexity of K and the full nonlinearity of the constraint ∂IK(·, ·) in (SMA) cause us the difficulty to
set the numerical experiments for (OP).

The plan of this paper is as follows. In Section 2, the main theorems, denoted by Theorems 2.1–2.5,
are stated. In Section 3, we check the well-posedness of the state problem (SMA) and this will help
us to prove Theorem 2.1 concerned with the existence of an optimal control for (OP). The following
Sections 4–5 are devoted to the proofs of Theorems 2.2, 2.3, and 2.4, corresponding to items (b),
(c), and (d), respectively. The final Section 6 contains the proof of Theorem 2.5, which corresponds to
item (e).

1.1 Notations and basic assumptions

We first state the notations that are used throughout this paper.

For any reflexive Banach space B, we denote by | · |B the norm of B, and denote by B′ the dual
space of B. Additionally, we denote by 〈·, ·〉B′,B the duality pairing between B′ and B. Furthermore,
for a positive integer m ∈ N, we use the product space Bm:

Bm :=
m∏
i=1

B =

m-factors︷ ︸︸ ︷
B ×B × · · · ×B

with the norm:

|z|Bm :=
m∑
i=1

|zi|B for z = (z1, z2, · · · , zm) ∈ Bm.

In particular, we put H := L2(Ω) with the usual real Hilbert structure, and denote by (·, ·)H the inner
product in H , for simplicity.

In addition, let V be the Sobolev space H1(Ω) with the inner product and norm:

(z, w)V := (zx, wx)H +
k

h
(z(0)w(0) + z(1)w(1)) for any z, w ∈ V,

and

|z|V :=

{
|zx|2H +

k

h

(
|z(0)|2 + |z(1)|2

)}1/2

for any z ∈ V,

which are equivalent to the standard inner product and norm of H1(Ω).

We now list some notation and definitions of subdifferentials of convex functions. For a proper (i.e., not
identically equal to infinity), l.s.c. (lower semi-continuous), and convex function φ : H → R ∪ {∞},
the effective domain D(φ) of φ is defined by D(φ) := {z ∈ H; φ(z) < ∞}. We denote by ∂φ
the subdifferential of φ in the topology of H . In general, the subdifferential is a possibly multi-valued
operator from H into itself, and for any z ∈ H , the value ∂φ(z) is defined as:

∂φ(z) := {z∗ ∈ H ; (z∗, y − z)H ≤ φ(y)− φ(z) for all y ∈ H} .

Then, a set D(∂φ) := {z ∈ H ; ∂φ(z) 6= ∅} is called the domain of ∂φ. For various properties
and related notions of a proper, l.s.c., convex function φ and its subdifferential ∂φ, we refer to the
monograph by Brézis [10]. In particular, for those in Banach spaces, we quote the books by Barbu [3,5].

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020



Optimal control for shape memory alloys of the one-dimensional Frémond model 5

We also recall a notion of convergence for convex functions, developed by Mosco [37].

Definition 1.1 (cf. [37]). Let φ, φn (n ∈ N) be proper, l.s.c., and convex functions on H . Then, we
say that φn converges to φ on H in the sense of Mosco [37] as n→∞ if the following two conditions
are satisfied:

(i) for any subsequence {φnk
}k∈N ⊂ {φn}n∈N, if zk → z weakly in H as k →∞, then

lim inf
k→∞

φnk
(zk) ≥ φ(z);

(ii) for any z ∈ D(φ), there is a sequence {zn}n∈N in H such that

zn → z in H as n→∞ and lim
n→∞

φn(zn) = φ(z).

Next, we give some assumptions on data. Throughout this paper, we assume the following conditions
(A1)–(A4).

(A1) T > 0, L0 > 0, L1 > 0, h > 0, k > 0, µ0 > 0, µ1 > 0, l > 0, β > 0, θc > 0, c0 ≥ 0,
c1 ≥ 0, c2 ≥ 0, m0 ≥ 0, m1 ≥ 0, m2 ≥ 0, m3 ≥ 0, and M > 0 are fixed constants. In
addition, a0, a1, a2, a3 are fixed real numbers.

(A2) α ∈ W 2,∞(R).

(A3) θ0 ∈ V , and χi,0 ∈ V (i = 1, 2) with (χ1,0, χ2,0) ∈ K , a.e. in Ω.

(A4) θd ∈ L2(0, T ;H), χ1,d ∈ L2(0, T ;H), χ2,d ∈ L2(0, T ;H) are the given desired target
profiles.

Finally, throughout this paper, Ni and νi, i = 1, 2, 3, · · · , denote positive (or nonnegative) constants
depending only on their argument(s).

2 Main results

We begin by defining the notion of solutions to (SMA). To this end, given γi ∈ H1(0, T ), i = 1, 2, we
define γ by putting (cf. [22, (2.4)]):

γ(t, x) :=
k

2h+ k
(a3γ1(t)− a2γ0(t))x+

ha3γ1(t) + (h+ k)a2γ0(t)

2h+ k
, (t, x) ∈ Q. (2.1)

It is easy to check that γ ∈ W 1,2(0, T ;H2(Ω)) solves the boundary value problem{
γxx(t, x) = 0 for any (t, x) ∈ Q,
−hγx(t, 0) + k(γ(t, 0)− a2γ0(t)) = hγx(t, 1) + k(γ(t, 1)− a3γ1(t)) = 0, t ∈ (0, T ).

(2.2)

Definition 2.1. Let θ0 ∈ V and χi,0 ∈ V (i = 1, 2). Then, a triplet of functions (θ, χ1, χ2) is called a
solution to (SMA), or (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) when the data are specified, on [0, T ], if the
following conditions are satisfied:

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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(S1) θ ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ).

(S2) χi ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ), i = 1, 2.

(S3) For all z ∈ V and a.a. t ∈ (0, T ),

(L0θt(t)− L1(χ1)t(t), z)H + h(θ(t)− γ(t), z)V = (a0f(t), z)H .

(S4) There is a pair of functions (ξ1, ξ2) ∈ (L2(0, T ;H))2 such that(
ξ1

ξ2

)
∈ ∂IK(χ1, χ2), a.e. in Q

and
2∑
i=1

{µ0((χi)t(t), zi)H + µ1((χi)x(t), (zi)x)H + (ξi(t), zi)H}

= l (θc − θ(t), z1)H +
(
−βa1g(t)α(θ(t)) + βα(θ(t))2χ2(t), z2

)
H

for any (z1, z2) ∈ V × V and a.a. t ∈ (0, T ).

(S5) θ(0) = θ0 in H , and χi(0) = χi,0 in H , i = 1, 2.

Here, we recall the known result of the existence-uniqueness and boundedness of solutions to (SMA).

Proposition 2.1. [22, Theorems 2.1 and 2.2] Suppose that assumptions (A1), (A2), and (A3) hold.
Let f ∈ L2(0, T ;H), g ∈ H1(0, T ), γ0 ∈ H1(0, T ), and γ1 ∈ H1(0, T ). Then, there is a unique
solution (θ, χ1, χ2) to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) on [0, T ] in the sense of Definition 2.1. In
addition, there is a positive constant N1, independent of f , g, γ0, γ1, θ0, χ1,0, and χ2,0, such that the
following estimate holds:

sup
t∈[0,T ]

|θ(t)|2V +
2∑
i=1

sup
t∈[0,T ]

|χi(t)|2V +

∫ T

0

|θt(t)|2Hdt+
2∑
i=1

∫ T

0

|(χi)t(t)|2Hdt

≤ N1

(
|θ0|2V + |χ1,0|2V + |χ2,0|2V + a2

2|γ0(0)|2 + a2
3|γ1(0)|2

+a2
0|f |2L2(0,T ;H) + a2

1|g|2L2(0,T ) + a2
2|γ0|2W 1,2(0,T ) + a2

3|γ1|2W 1,2(0,T ) + 1
) (2.3)

In the next Section 3, we give a sketch of the proof of Proposition 2.1. For the other results of (SMA),
we refer to [22], for instance.

We now state the first main result of this paper, which is concerned with the existence of an optimal
control for (OP).

Theorem 2.1. Suppose that assumptions (A1), (A2), (A3), and (A4) hold. Then, the problem (OP)
has at least one optimal control (f ∗, g∗, γ∗0 , γ

∗
1) ∈ UMad , namely,

J(f ∗, g∗, γ∗0 , γ
∗
1) = inf

(f,g,γ0,γ1)∈UM
ad

J(f, g, γ0, γ1).

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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Remark 2.1. Note that Theorem 2.1 do not cover the uniqueness of optimal controls for (OP). Although
Hoffmann–Jiang [30] reported the uniqueness of optimal controls for a regular Fix–Caginalp system,
their technique is not applicable to our problem (OP), because of the constraint ∂IK(χ1, χ2) in (1.2).
Therefore, the uniqueness question of optimal controls for (OP) remains open.

In Section 3, we prove Theorem 2.1 by the quite standard method. In fact, by using the result of
convergence of solutions to (SMA), we give the proof of Theorem 2.1.

Note that it is very difficult to show the necessary conditions for (OP) directly, because of the constraint
∂IK(χ1, χ2) in (1.2) (cf. Remark 2.1). Therefore, by investigating approximating problems for (SMA)
and (OP), we show a limiting optimality system for (OP). To this end, we consider the following smooth
function K̂ε on R2 for each ε ∈ (0, 1]:

(A5) For each ε ∈ (0, 1], the function K̂ε is convex and non-negative on R2 such that K̂ε ∈
C2(R2), ∂i∂jK̂ε ∈ W 1,∞(R2) (i, j = 1, 2),

Kε :=
{

(z1, z2) ∈ R2 ; K̂ε(z1, z2) = 0
}
⊃ K,

|∂i∂jK̂ε(z1, z2)| ≤ 1

ε
for any i, j = 1, 2, and any (z1, z2) ∈ R2, (2.4)

and

K̂ε converges to IK on R2 in the sense of Mosco [37] as ε→ 0,

where ∂iK̂ε(z1, z2) is the partial derivative of K̂ε(z1, z2) with respect to the variable zi (i =
1, 2), namely, ∂i := ∂/∂zi.

Remark 2.2. A function with properties as in (A5) has already been used in [6, 40, 41]. Indeed, for
each ε ∈ (0, 1], a non-decreasing function F ε is defined by:

F ε(r) := sign(r)

∫ |r|
0

min

{
1

ε
,
[s− 1]+

ε2

}
ds for r ∈ R,

where [ · ]+ denotes the positive part of functions, and sign(·) is a signum function so that sign(0) = 0.
In addition, let F̂ ε be a primitive of F ε such that

F̂ ε(0) = 0 and F̂ ε(r) ≥ 0 for all r ∈ R.

Then, we observe that F ε is a C1-function with derivative (F ε)′ ∈ W 1,∞(R),

0 ≤ (F ε)′(r) ≤ 1

ε
for any r ∈ R,

and F̂ ε converges to I[−1,1] on R in the sense of Mosco [37] as ε → 0, where I[−1,1] is the indicator
function of the closed interval [−1, 1], that is defined by

I[−1,1](τ) :=

{
0, if τ ∈ [−1, 1],

∞, otherwise.

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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Note that the function K̂ε in assumption (A5) can be easily defined for each ε ∈ (0, 1]. We here give
a typical example of K̂ε.

Example 2.1. For each ε ∈ (0, 1], letKε be a smooth closed convex set in R2 such thatKε includes
the convex set K , the boundary of Kε is described by the combination of linear functions and cubic
functions (cf. |z1|3 + |z2|3 = constant), and Kε converges to K in the sense of Hausdorff distance
as ε → 0. More precisely, the pictures of K and its approximating set Kε are illustrated in Figure 1.
Then, by arguing similarly as in Remark 2.2, we can define the smooth convex function K̂ε satisfying
assumption (A5). The typical graph of K̂ε is illustrated in Figure 2, which is described by the combi-
nation of a cubic surface, a smooth surface, and so on (cf. (|z1|3 + |z2|3)/ε2,

√
|z1|3 + |z2|3/

√
ε,

and so on). For such constructions, we refer to the Appendix.

1

-1

K

z

z1

2

1

-1

Kz

z1

2 ε

ε
ε

ε

ε
ε

ε

Figure 1: Convex set K and its approximating set

Figure 2: The typical graph of K̂ε

Now, for each ε ∈ (0, 1], we present the following approximating state system for (SMA), denoted by
(SMA)ε:

Problem (SMA)ε.

(L0θ
ε − L1χ

ε
1)t − hθεxx = a0f(t, x) in Q = (0, T )× Ω, (2.5)

µ0

(
χε1
χε2

)
t

− µ1

(
χε1
χε2

)
xx

+∇K̂ε(χε1, χ
ε
2) =

(
l(θc − θε)

−βa1g(t)α(θε) + βα(θε)2χε2

)
in Q, (2.6)

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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−hθεx(t, 0) + k(θε(t, 0)− a2γ0(t)) = hθεx(t, 1) + k(θε(t, 1)− a3γ1(t)) = 0, t ∈ (0, T ), (2.7)

(χεi )x(t, 0) = (χεi )x(t, 1) = 0, t ∈ (0, T ), i = 1, 2, (2.8)

θε(0, x) = θ0(x), χεi (0, x) = χi,0(x), x ∈ Ω, i = 1, 2. (2.9)

In the rest, we denote (SMA)ε by (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε when the data of the initial value
θ0, χ1,0, χ2,0 and the control functions f, g, γ0, γ1 are specified. Note that for each ε ∈ (0, 1], the

constraint ∂IK(χ1, χ2) as in (1.2) is approximated by ∇K̂ε(χε1, χ
ε
2)(= ∂K̂ε(χε1, χ

ε
2)). In a similar

way to Proposition 2.1, we immediately get the following proposition, concerned with the solvability of
the approximating state problem (SMA)ε (ε ∈ (0, 1]).

Proposition 2.2. Suppose that assumptions (A1), (A2), (A3), and (A5) hold. Let f ∈ L2(0, T ;H),
g ∈ H1(0, T ), γ0 ∈ H1(0, T ), and γ1 ∈ H1(0, T ). Then, for each ε ∈ (0, 1], there is a unique
solution (θε, χε1, χ

ε
2) to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε on [0, T ], which solves the equations (2.5)–

(2.9) in the following sense:

(i) θε ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ).

(ii) χεi ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ), i = 1, 2.

(iii) For all z ∈ V and a.a. t ∈ (0, T ),

(L0θ
ε
t (t)− L1(χε1)t(t), z)H + h(θε(t)− γ(t), z)V = (a0f(t), z)H ,

where γ is the function defined in (2.1).

(iv) For all (z1, z2) ∈ V × V and a.a. t ∈ (0, T ),

2∑
i=1

{
µ0((χεi )t(t), zi)H + µ1((χεi )x(t), (z

ε
i )x)H + (∂iK̂

ε(χε1(t), χε2(t)), zi)H

}
= l (θc − θε(t), z1)H +

(
−βa1g(t)α(θε(t)) + βα(θε(t))2χε2(t), z2

)
H
.

(v) θε(0) = θ0 in H , and χεi (0) = χi,0 in H , i = 1, 2.

In addition, there is a positive constantN2, independent of ε, f , g, γ0, γ1, θ0, χ1,0, and χ2,0, such that
the following estimate holds:

sup
t∈[0,T ]

|θε(t)|2V +
2∑
i=1

sup
t∈[0,T ]

|χεi (t)|2V +

∫ T

0

|θεt (t)|2Hdt+
2∑
i=1

∫ T

0

|(χεi )t(t)|2Hdt

≤ N2

(
|θ0|2V + |χ1,0|2V + |χ2,0|2V + a2

2|γ0(0)|2 + a2
3|γ1(0)|2

+a2
0|f |2L2(0,T ;H) + a2

1|g|2L2(0,T ) + a2
2|γ0|2W 1,2(0,T ) + a2

3|γ1|2W 1,2(0,T ) + 1
)
.

(2.10)
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In Section 4, we give the sketch of the proof of Proposition 2.2.

Now, for each ε ∈ (0, 1] and δ ≥ 0, we present an approximating optimal control problem for (OP),
denoted by (OP)εδ, as follows:

Problem (OP)εδ. Find an optimal control (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad , namely,

Jεδ (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) = inf
(f,g,γ0,γ1)∈UM

ad

Jεδ (f, g, γ0, γ1),

where Jεδ (f, g, γ0, γ1) is the cost functional defined by

Jεδ (f, g, γ0, γ1) :=
c0

2

∫ T

0

|(θε − θd)(t)|2Hdt+
c1

2

∫ T

0

|(χε1 − χ1,d)(t)|2Hdt

+
c2

2

∫ T

0

|(χε2 − χ2,d)(t)|2Hdt

+
m0

2

∫ T

0

a2
0|f(t)|2Hdt+

m1

2

∫ T

0

a2
1|g(t)|2dt

+
m2

2

∫ T

0

a2
2|γ0(t)|2dt+

m3

2

∫ T

0

a2
3|γ1(t)|2dt

+
δ

2

∫ T

0

|(f − f ∗)(t)|2Hdt+
δ

2

∫ T

0

|(g − g∗)(t)|2dt

+
δ

2

∫ T

0

|(γ0 − γ∗0)(t)|2dt+
δ

2

∫ T

0

|(γ1 − γ∗1)(t)|2dt.

(2.11)

Here, (f, g, γ0, γ1) ∈ UMad is the control and the triplet of functions (θε, χε1, χ
ε
2) is the unique solu-

tion to the state problem (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε. Moreover, as in (1.9), θd ∈ L2(0, T ;H),
χ1,d ∈ L2(0, T ;H),χ2,d ∈ L2(0, T ;H) are the given desired target profiles, while (f ∗, g∗, γ∗0 , γ

∗
1) ∈

UMad is any fixed optimal control for (OP) obtained in Theorem 2.1.

We now state the second main result of this paper, which is concerned with the existence of an optimal
control for (OP)εδ for each ε ∈ (0, 1] and δ ≥ 0.

Theorem 2.2. Suppose that assumptions (A1)–(A5) hold. Let ε ∈ (0, 1], δ ≥ 0, and let (f ∗, g∗, γ∗0 , γ
∗
1) ∈

UMad be a chosen optimal control for (OP) given by Theorem 2.1. Then, the approximating problem
(OP)εδ has at least one optimal control (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad , namely,

Jεδ (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) = inf
(f,g,γ0,γ1)∈UM

ad

Jεδ (f, g, γ0, γ1).

The following third main result of the paper is concerned with the relationship between (OP) and (OP)εδ.

Theorem 2.3. Suppose that all the assumptions of Theorem 2.2 hold. Then, the following two state-
ments hold.

(I) Let δ = 0, ε ∈ (0, 1], and let (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad be an optimal control for the
approximating problem (OP)ε0. In addition, let (θ∗,ε, χ∗,ε1 , χ∗,ε2 ) be the unique solution to the
state problem (SMA;θ0, χ1,0, χ2,0, f

∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )ε on [0, T ]. Then, there exist a subse-
quence {εn}n∈N ⊂ {ε}ε∈(0,1], a quadruplet of functions (f ∗∗, g∗∗, γ∗∗0 , γ

∗∗
1 ) ∈ UMad , and the

unique solution (θ∗∗, χ∗∗1 , χ
∗∗
2 ) to (SMA;θ0, χ1,0, χ2,0, f

∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 ) on [0, T ] such that

(f ∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 ) is an optimal control for (OP), εn → 0, and

f ∗,εn → f ∗∗ weakly in L2(0, T ;H), (2.12)
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g∗,εn → g∗∗ weakly in H1(0, T ), and in L2(0, T ), (2.13)

γ∗,εni → γ∗∗i weakly in H1(0, T ), and in L2(0, T ), (i = 0, 1), (2.14)

(θ∗,εn , χ∗,εn1 , χ∗,εn2 )→ (θ∗∗, χ∗∗1 , χ
∗∗
2 ) in (C([0, T ];H))3 (2.15)

as n→∞.

(II) Let δ > 0, ε ∈ (0, 1], and let (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad be an optimal control for the ap-
proximating problem (OP)εδ. Let (f ∗, g∗, γ∗0 , γ

∗
1) ∈ UMad be an optimal control for (OP) obtained

in Theorem 2.1. In addition, let (θ∗,ε, χ∗,ε1 , χ∗,ε2 ) and (θ∗, χ∗1, χ
∗
2) be the unique solution to the

state problem (SMA;θ0, χ1,0, χ2,0, f
∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )ε and (SMA;θ0, χ1,0, χ2,0, f

∗, g∗, γ∗0 , γ
∗
1)

on [0, T ], respectively. Then, there exist a subsequence {εn}n∈N ⊂ {ε}ε∈(0,1] such that
εn → 0,

f ∗,εn → f ∗ in L2(0, T ;H), (2.16)

g∗,εn → g∗ weakly in H1(0, T ), and in L2(0, T ), (2.17)

γ∗,εni → γ∗i weakly in H1(0, T ), and in L2(0, T ), (i = 0, 1), (2.18)

(θ∗,εn , χ∗,εn1 , χ∗,εn2 )→ (θ∗, χ∗1, χ
∗
2) in (C([0, T ];H))3 (2.19)

as n→∞.

The proofs of Theorems 2.2 and 2.3 are given in Section 5. To show Theorem 2.3, we use the
fact that the unique solution (θε, χε1, χ

ε
2) to (SMA;θ0, χ1,0, χ2,0, f

ε, gε, γε0, γ
ε
1)ε converges to the

solution (θ, χ1, χ2) to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) in (C([0, T ];H))3 as ε → 0, if the data
(f ε, gε, γε0, γ

ε
1) converges to (f, g, γ0, γ1) as ε→ 0 in some appropriate sense.

The fourth main result is concerned with the necessary condition of an optimal sevenfold
(θ∗,ε, χ∗,ε1 , χ∗,ε2 , f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) for (OP)εδ, where (θ∗,ε, χ∗,ε1 , χ∗,ε2 ) is the unique solution to the
state problem (SMA;θ0, χ1,0, χ2,0, f

∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )ε on [0, T ], while the quadruplet
(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad denotes the optimal control for (OP)εδ obtained in Theorem 2.2.

Theorem 2.4. Suppose that all the assumptions of Theorem 2.2 hold. Let the quadruplet
(f ∗, g∗, γ∗0 , γ

∗
1) ∈ UMad be any optimal control for (OP) obtained in Theorem 2.1. In addition, for

the fixed number ε ∈ (0, 1] and δ ≥ 0, let (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad be an optimal control for
the approximating problem (OP)εδ obtained in Theorem 2.2, with (θ∗,ε, χ∗,ε1 , χ∗,ε2 ) being the unique
solution to the state problem (SMA;θ0, χ1,0, χ2,0, f

∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )ε on [0, T ]. Then, there exists
a unique solution (pε, qε1, q

ε
2) to the adjoint equations on [0, T ] as follows:

(pε, qε1, q
ε
2) ∈ (W 1,2(0, T ;H) ∩ L∞(0, T ;V ))3; (2.20)

−L0p
ε
t − hpεxx + lqε1 + βa1g

∗,ε(t)α′(θ∗,ε)qε2 − 2βα′(θ∗,ε)α(θ∗,ε)χ∗,ε2 qε2
= c0(θ∗,ε − θd) in Q;

(2.21)

−hpεx(t, 0) + kpε(t, 0) = hpεx(t, 1) + kpε(t, 1) = 0, t ∈ (0, T ), (2.22)
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−µ0(qε1)t + L1p
ε
t − µ1(qε1)xx + ∂2

1K̂
ε(χ∗,ε1 , χ∗,ε2 )qε1 + ∂1∂2K̂

ε(χ∗,ε1 , χ∗,ε2 )qε2
= c1(χ∗,ε1 − χ1,d) in Q;

(2.23)

−µ0(qε2)t − µ1(qε2)xx + ∂2∂1K̂
ε(χ∗,ε1 , χ∗,ε2 )qε1 + ∂2

2K̂
ε(χ∗,ε1 , χ∗,ε2 )qε2 − βα(θ∗,ε)2qε2

= c2(χ∗,ε2 − χ2,d) in Q;
(2.24)

(qε1)x(t, 0) = (qε1)x(t, 1) = (qε2)x(t, 0) = (qε1)x(t, 1) = 0, t ∈ (0, T ), (2.25)

pε(T, x) = qε1(T, x) = qε2(T, x) = 0, x ∈ Ω. (2.26)

In addition, (pε, qε1, q
ε
2) satisfies the following inequality:∫ T

0

a0((a0m0f
∗,ε + pε)(t), (f̌ − f ∗,ε)(t))Hdt

+

∫ T

0

a1(a1m1g
∗,ε(t)− (βα (θ∗,ε(t)), qε2(t))H) (ǧ − g∗,ε)(t)dt

+

∫ T

0

a2(a2m2γ
∗,ε
0 (t) + kpε(t, 0))(γ̌0 − γ∗,ε0 )(t)dt

+

∫ T

0

a3(a3m3γ
∗,ε
1 (t) + kpε(t, 1))(γ̌1 − γ∗,ε1 )(t)dt

+δ

∫ T

0

((f ∗,ε − f ∗)(t), (f̌ − f ∗,ε)(t))Hdt

+δ

∫ T

0

(g∗,ε − g∗)(t)(ǧ − g∗,ε)(t)dt

+δ

∫ T

0

(γ∗,ε0 − γ∗0)(t)(γ̌0 − γ∗,ε0 )(t)dt

+δ

∫ T

0

(γ∗,ε1 − γ∗1)(t)(γ̌1 − γ∗,ε1 )(t)dt

≥ 0, ∀(f̌ , ǧ, γ̌0, γ̌1) ∈ UMad .

(2.27)

In Section 5, we prove Theorem 2.4 by showing the result of Gâteaux differentiability of the cost
functional Jεδ (·, ·, ·, ·).

In Theorem 2.4, we get the optimality condition for (OP)εδ. However, in general, it is difficult to show the
necessary condition of the optimal control for (OP), since the subdifferential ∂IK(·, ·) in (1.2) is not
smooth. Thus, by using the approximating problems (OP)εδ, we give the optimality condition for (OP).

We now state the final main result of this paper, which is concerned with the necessary condition of
the optimal control for (OP).

Theorem 2.5. Suppose that all the assumptions of Theorem 2.2 hold. Let the quadruplet (f ∗, g∗, γ∗0 , γ
∗
1) ∈

UMad be any optimal control for (OP) obtained in Theorem 2.1. Let (θ∗, χ∗1, χ
∗
2) be the unique solution

to the state problem (SMA;θ0, χ1,0, χ2,0, f
∗, g∗, γ∗0 , γ

∗
1) on [0, T ]. In addition, let us set:

W := {ζ ∈ H1(Q) ; ζ(0, x) = 0, a.a. x ∈ Ω}.

Then, there are the functions

p ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ), qi ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) (i = 1, 2),
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and the elements ςi ∈ W ′ (i = 1, 2) satisfying the following:

−L0pt − hpxx + lq1 + βa1g
∗(t)α′(θ∗)q2 − 2βα′(θ∗)α(θ∗)χ∗2(t)q2

= c0(θ∗ − θd) in Q,
(2.28)

−hpx(t, 0) + kp(t, 0) = hpx(t, 1) + kp(t, 1) = 0, t ∈ (0, T ), (2.29)

∫ T

0

(µ0q1(t), ζt(t))Hdt+

∫ T

0

(L1pt(t), ζ(t))Hdt+

∫ T

0

(µ1(q1)x(t), ζx(t))Hdt

+〈ς1, ζ〉W ′,W = c1

∫ T

0

(χ∗1(t)− χ1,d(t), ζ(t))Hdt for all ζ ∈ W,
(2.30)

∫ T

0

(µ0q2(t), ζt(t))Hdt+

∫ T

0

(µ1(q2)x(t), ζx(t))Hdt+ 〈ς2, ζ〉W ′,W

−
∫ T

0

(βα(θ∗(t))2q2(t), ζ(t))Hdt

= c2

∫ T

0

(χ∗2(t)− χ2,d(t), ζ(t))Hdt for all ζ ∈ W,

(2.31)

p(T, x) = 0, x ∈ Ω. (2.32)

In addition, (p, q1, q2) satisfies the following inequality:∫ T

0

a0((a0m0f
∗ + p)(t), (f̌ − f ∗)(t))Hdt

+

∫ T

0

a1(a1m1g
∗(t)− (βα (θ∗(t)), q2(t))H) (ǧ − g∗)(t)dt

+

∫ T

0

a2(a2m2γ
∗
0(t) + kp(t, 0))(γ̌0 − γ∗0)(t)dt

+

∫ T

0

a3(a3m3γ
∗
1(t) + kp(t, 1))(γ̌1 − γ∗1)(t)dt

≥ 0, ∀(f̌ , ǧ, γ̌0, γ̌1) ∈ UMad .

(2.33)

In Section 6, we prove Theorem 2.5 by letting ε→ 0 in (2.21)–(2.27).

Remark 2.3. The identities (2.30) and (2.31) can be regarded as some variational forms of

−µ0(q1)t + L1pt − µ2(q1)xx + ς1 = c1(χ∗1 − χ1,d),

and
−µ0(q2)t − µ1(q2)xx + ς2 − βα(θ∗)2q2 = c2(χ∗2 − χ2,d)

in the distribution sense, respectively.

3 Optimal control for (OP)

In this section, we prove Theorem 2.1, which is concerned with the existence of an optimal control for
(OP). Throughout this section, we suppose that all the assumptions of Theorem 2.1 are made.

We begin with the sketch of the proof of Proposition 2.1.
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Proof of Proposition 2.1. This proposition has already been proved in [22, Theorems 2.1 and 2.2].
However, we give the sketch of the proof of this Proposition 2.1 to make use of a similar idea in the
approximating state problem (SMA)ε (ε ∈ (0, 1]).

Note that g ∈ C([0, T ]), because H1(0, T ) is compactly embedded in C([0, T ]). Then, by the
standard monotone arguments as in [22, Theorem 2.1], we can show the uniqueness of solutions to
(SMA). Therefore, we here omit the detailed proof of the uniqueness of solutions to (SMA).

We next give the sketch of the proof of existence of solutions to (SMA). To this end, note that (SMA)
can be reformulated to the following system of abstract evolution equations:

θt(t)−
L1

L0

(χ1)t(t) + ∂ϕt(θ(t)) 3 a0

L0

f(t) in H for t ∈ (0, T ), (3.1)

d

dt
(χ1(t), χ2(t)) + ∂ψ(χ1(t), χ2(t)) +Gt

θ(t)(χ1(t), χ2(t)) 3 (0, 0) in H ×H
for t ∈ (0, T ),

(3.2)

θ(0) = θ0 in H, and (χ1(0), χ2(0)) = (χ1,0, χ2,0) in H ×H. (3.3)

Here, ∂ϕt(·) is the subdifferential of a time-dependent convex function ϕt(·) onH for each t ∈ [0, T ],
defined by

ϕt(z) :=


h

2L0

|z − γ(t)|2V , if z ∈ V,
∞, otherwise,

(3.4)

where γ is the function defined in (2.1). In addition, ∂ψ(·, ·) is the subdifferential of a convex function
ψ on H ×H , defined by:

ψ(z1, z2) :=


µ1

2µ0

2∑
i=1

∫
Ω

|(zi)x(x)|2dx

+
1

µ0

∫
Ω

IK(z1(x), z2(x))dx, if zi ∈ V, i = 1, 2,

∞, otherwise.

(3.5)

Furthermore, Gt
θ(t)(·, ·) is a time-dependent operator on H × H for each θ ∈ C([0, T ];H) and

t ∈ [0, T ], defined by

Gt
θ(t)(z1, z2) :=

1

µ0

(−l(θc − θ(t)), βa1g(t)α(θ(t))− βα(θ(t))2z2)

for any (z1, z2) ∈ H ×H.
(3.6)

Then, we can show the existence of a solution to (3.1)–(3.3) by employing the fixed point argument
for continuous operators in compact convex sets (e.g., Schauder’s fixed point theorem). Indeed, by
modifying the proof of [22, Theorem 2.1] (cf. [34, Theorem 2.1]), we can construct a solution to (3.1)–
(3.3). Hence, we omit the detailed proof.

In addition, from the standard calculations (cf. [22, Theorem 2.2]), we obtain (2.3). Indeed, multiplying
(1.1) by (1/L1)(θ(t) − γ(t)) and θt(t) − γt(t), multiplying (1.2) by (µ1/lµ0)(χ1(t), χ2(t)) and
(1/l)((χ1)t(t), (χ2)t(t)), using Young’s inequality, and integrating in time, we get the a priori estimate
(2.3). For such arguments, we refer to [22, Theorem 2.2].

Thus, the proof of Proposition 2.1 is complete.
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We now state the result of continuous dependence of solutions to (SMA).

Proposition 3.1. Suppose that all the assumptions of Proposition 2.1 hold. In addition, assume
{fn}n∈N ⊂ L2(0, T ;H), {(gn, γ0,n, γ1,n)}n∈N ⊂ (H1(0, T ))3, f ∈ L2(0, T ;H), (g, γ0, γ1) ∈
(H1(0, T ))3, and

fn → f weakly in L2(0, T ;H), (3.7)

gn → g weakly in H1(0, T ), (3.8)

(γ0,n, γ1,n)→ (γ0, γ1) in (C[0, T ])2 (3.9)

as n → ∞. Let (θn, χ1,n, χ2,n) and (θ, χ1, χ2) denote the unique solutions to the state problems
(SMA;θ0, χ1,0, χ2,0, fn, gn, γ0,n, γ1,n) and (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1), respectively, on [0, T ].
Then, (θn, χ1,n, χ2,n) converges to (θ, χ1, χ2) in the sense that

(θn, χ1,n, χ2,n)→ (θ, χ1, χ2) in (C([0, T ];H))3 as n→∞. (3.10)

Proof. By (2.3), there are a subsequence {nk}k∈N ⊂ {n}n∈N, the triplet of functions (θ, χ1, χ2) ∈
(W 1,2(0, T ;H) ∩ L∞(0, T ;V ))3 such that nk →∞,

(θnk
, χ1,nk

, χ2,nk
)→ (θ, χ1, χ2) in (C([0, T ];H))3,

weakly in (W 1,2(0, T ;H))3,

weakly-∗ in (L∞(0, T ;V ))3

 (3.11)

as k →∞.

We now show that (θ, χ1, χ2) is a solution to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) on [0, T ]. To this end,
note that the solution (θnk

, χ1,nk
, χ2,nk

) to (SMA) satisfies the following abstract evolution equations
(cf. Proposition 2.1):

(θnk
)t(t) + ∂ϕtnk

(θnk
(t)) 3 a0

L0

fnk
(t) +

L1

L0

(χ1,nk
)t(t) in H for t ∈ (0, T ), (3.12)

d

dt
(χ1,nk

(t), χ2,nk
(t)) + ∂ψ(χ1,nk

(t), χ2,nk
(t)) 3 −Gt

θnk
(t)(χ1,nk

(t), χ2,nk
(t))

in H ×H for t ∈ (0, T ),
(3.13)

θnk
(0) = θ0 in H, and (χ1,nk

(0), χ2,nk
(0)) = (χ1,0, χ2,0) in H ×H, (3.14)

where ϕtnk
(·) is the time-dependent convex function defined by (3.4) with γ(t) replaced by γnk

(t), and
ψ(·, ·) is the convex function defined by (3.5). In addition, Gt

θnk
(t)(·, ·) is a time-dependent operator

on H ×H defined by (3.6) with θ(t) and g(t) replaced by θnk
(t) and gnk

(t), respectively:

Gt
θnk

(t)(z1, z2) :=
1

µ0

(−l(θc − θnk
(t)), βa1gnk

(t)α(θnk
(t))− βα(θnk

(t))2z2)

for any (z1, z2) ∈ H ×H.
(3.15)

From (A2), (3.11), and Lebesgue’s dominated convergence theorem, note that

α(θnk
)→ α(θ) in L2(0, T ;H) as k →∞. (3.16)
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We also note from (3.8) and the compact embedding H1(0, T ) ↪→ C([0, T ]) that

gnk
→ g in C([0, T ]) as k →∞,

taking a subsequence if necessary. Thus, we observe from (A2), (3.11), and (3.16) that

G
(·)
θnk

(·)(χ1,nk
, χ2,nk

)→ G
(·)
θ(·)(χ1, χ2) weakly in (L2(0, T ;H))2 (3.17)

as k →∞. In addition, we easily observe from (2.1) and (3.9) that

γnk
→ γ in C([0, T ];V ) as k →∞, (3.18)

thus,
ϕtnk
→ ϕt on H in the sense of Mosco [37] as k →∞ for all t ∈ [0, T ]. (3.19)

Applying the abstract convergence theorem established in [2,33] with (3.7), (3.11), (3.17), and (3.19),
there is a triplet of functions (θ̃, χ̃1, χ̃2) (taking a subsequence if necessary) such that (θ̃, χ̃1, χ̃2) ∈
(W 1,2(0, T ;H) ∩ L∞(0, T ;V ))3,

(θnk
, χ1,nk

, χ2,nk
)→ (θ̃, χ̃1, χ̃2) in (C([0, T ];H))3 as k →∞, (3.20)

and (θ̃, χ̃1, χ̃2) is the unique solution to the following system:

θ̃t(t) + ∂ϕt(θ̃(t)) 3 a0

L0

f(t) +
L1

L0

(χ1)t(t) in H for t ∈ (0, T ), (3.21)

d

dt
(χ̃1(t), χ̃2(t)) + ∂ψ(χ̃1(t), χ̃2(t)) 3 −Gt

θ(t)(χ1(t), χ2(t)) in H ×H for t ∈ (0, T ), (3.22)

θ̃(0) = θ0 in H, and (χ̃1(0), χ̃2(0)) = (χ1,0, χ2,0) in H ×H. (3.23)

On account of the uniqueness of solutions to (3.21)–(3.23) and to the state problem
(SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) (cf. (3.1)–(3.3)), we conclude from (3.11) and (3.20) that (θ, χ1, χ2) =

(θ̃, χ̃1, χ̃2) is a unique solution to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) on [0, T ], and the convergence
(3.10) holds without extracting any subsequence from {n}n∈N. Thus, the proof of Proposition 3.1 has
been completed.

We now prove the main Theorem 2.1 of this paper, which is concerned with the existence of an optimal
solution to (OP).

Proof of Theorem 2.1. By the quite standard method, we can prove Theorem 2.1. Indeed, let
{(fn, gn, γ0,n, γ1,n)}n∈N ⊂ UMad be a minimizing sequence such that

lim
n→∞

J(fn, gn, γ0,n, γ1,n) = inf
(f,g,γ0,γ1)∈UM

ad

J(f, g, γ0, γ1).

Then, from the definition (1.9) of J(fn, gn, γ0,n, γ1,n), it follows that {fn}n∈N is bounded inL2(0, T ;H).
In addition, from the definition (1.8) ofUMad , we see that {(gn, γ0,n, γ1,n)}n∈N is bounded in (H1(0, T ))3.

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020



Optimal control for shape memory alloys of the one-dimensional Frémond model 17

Note that H1(0, T ) is compactly embedded in C([0, T ]). Therefore, there are a subsequence
{nk}k∈N ⊂ {n}n∈N and the quadruplet of functions (f ∗, g∗, γ∗0 , γ

∗
1) ∈ UMad such that nk → ∞

and
fnk
→ f ∗ weakly in L2(0, T ;H), (3.24)

gn → g∗ weakly in H1(0, T ), in C([0, T ]), (3.25)

(γ0,n, γ1,n)→ (γ∗0 , γ
∗
1) weakly in (H1(0, T ))2, in (C([0, T ]))2 (3.26)

as k → ∞. Indeed, we get (f ∗, g∗, γ∗0 , γ
∗
1) ∈ UMad , because UMad is a convex and closed subset,

hence is weakly closed.

Let (θnk
, χ1,nk

, χ2,nk
) uniquely solve problem (SMA;θ0, χ1,0, χ2,0, fnk

, gnk
, γ0,nk

, γ1,nk
) on [0, T ].

Then, by Proposition 3.1, we observe that

(θnk
, χ1,nk

, χ2,nk
)→ (θ∗, χ∗1, χ

∗
2) in (C([0, T ];H))3 as k →∞, (3.27)

where (θ∗, χ∗1, χ
∗
2) is a unique solution to (SMA;θ0, χ1,0, χ2,0, f

∗, g∗, γ∗0 , γ
∗
1) on [0, T ].

Therefore, it follows from (3.24)–(3.27) and the weak lower semicontinuity of L2-norm that

J(f ∗, g∗, γ∗0 , γ
∗
1) ≤ lim

k→∞
J(fnk

, gnk
, γ0,nk

, γ1,nk
) = inf

(f,g,γ0,γ1)∈UM
ad

J(f, g, γ0, γ1),

which implies that (f ∗, g∗, γ∗0 , γ
∗
1) ∈ UMad is an optimal control to (OP). Thus, the proof of Theorem

2.1 is complete.

4 Approximating problems (SMA)ε and (OP)εδ

In this section, we consider the approximating problems (SMA)ε and (OP)εδ of (SMA) and (OP),
respectively, for each ε ∈ (0, 1] and δ ≥ 0. After showing the solvability of (SMA)ε, we prove
Theorems 2.2 and 2.3, which is concerned with the existence of optimal control for (OP)εδ and the
relationship between (OP) and (OP)εδ.

We begin by proving Proposition 2.2, which is concerned with the solvability of the approximating
system (SMA)ε.

Proof of Proposition 2.2. By a similar argument to (SMA), we can construct the unique solution
(θε, χε1, χ

ε
2) to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε on [0, T ] satisfying the bounded estimate (2.10).

Indeed, the approximating problem (SMA)ε is reformulated to the following system of abstract evolu-
tion equations (cf. (3.1)–(3.3)):

θεt (t)−
L1

L0

(χε1)t(t) + ∂ϕt(θε(t)) 3 a0

L0

f(t) in H for t ∈ (0, T ), (4.1)

d

dt
(χε1(t), χε2(t)) + ∂ψε(χε1(t), χε2(t)) +Gt

θε(t)(χ
ε
1(t), χε2(t)) = (0, 0) in H ×H

for t ∈ (0, T ),
(4.2)

θε(0) = θ0 in H, and (χε1(0), χε2(0)) = (χ1,0, χ2,0) in H ×H, (4.3)
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where ϕt(·) and Gt
(·)(·, ·) are same ones defined by (3.4) and (3.6), respectively. In addition, for each

ε ∈ (0, 1], ψε is a proper, l.s.c., and convex function on H ×H , defined by:

ψε(z1, z2) :=


µ1

2µ0

2∑
i=1

∫
Ω

|(zi)x(x)|2dx

+
1

µ0

∫
Ω

K̂ε(z1(x), z2(x))dx, if zi ∈ V, i = 1, 2,

∞, otherwise,

(4.4)

where K̂ε(·, ·) is the function in the assumption (A5).

Therefore, by the slight modification of the proof of [22, Theorems 2.1 and 2.2], we can show that
(SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε has a unique (θε, χε1, χ

ε
2) fulfilling (i)–(v) and the a priori estimate

(2.10) in Proposition 2.2. For the detailed arguments, we refer to [22, Theorems 2.1 and 2.2].

Thus, the proof of Proposition 2.2 is complete.

We now state the following result of continuous dependence between (SMA) and (SMA)ε (ε ∈ (0, 1]).

Proposition 4.1. Suppose that all the assumptions of Proposition 2.2 hold. In addition, assume
ε ∈ (0, 1], {f ε}ε∈(0,1] ⊂ L2(0, T ;H), {(gε, γε0, γε1)}ε∈(0,1] ⊂ (H1(0, T ))3, f ∈ L2(0, T ;H),
(g, γ0, γ1) ∈ (H1(0, T ))3, and

f ε → f weakly in L2(0, T ;H), (4.5)

gε → g weakly in H1(0, T ), (4.6)

(γε0, γ
ε
1)→ (γ0, γ1) in (C[0, T ])2 (4.7)

as ε → 0. Let (θε, χε1, χ
ε
2) be the unique solution to the approximating state problem

(SMA;θ0, χ1,0, χ2,0, f
ε, gε, γε0, γ

ε
1)ε on [0, T ]. Then, (θε, χε1, χ

ε
2) converges to the unique solution

(θ, χ1, χ2) to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) on [0, T ] in the sense that

(θε, χε1, χ
ε
2)→ (θ, χ1, χ2) in (C([0, T ];H))3 as ε→ 0. (4.8)

Proof. By (2.10) with (4.5), (4.6), and (4.7), there are a subsequence {εn}n∈N ⊂ {ε}ε∈(0,1] and the
triplet of functions (θ, χ1, χ2) ∈ (W 1,2(0, T ;H) ∩ L∞(0, T ;V ))3 such that εn → 0,

(θεn , χεn1 , χ
εn
2 )→ (θ, χ1, χ2) in (C([0, T ];H))3,

weakly in (W 1,2(0, T ;H))3,

weakly-∗ in L∞((0, T ;V ))3

 (4.9)

as n→∞.

By similar arguments used in the proof of Proposition 3.1, we can show that (θ, χ1, χ2) is a solution to
(SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) on [0, T ]. Indeed, note that the solution (θεn , χεn1 , χ

εn
2 ) to (SMA)εn

satisfies the system of abstract evolution equations (4.1)–(4.3) with ε replaced by εn. In addition, we
observe from assumption (A5) that

ψεn → ψ on H ×H in the sense of Mosco [37] as n→∞,
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where ψεn and ψ are convex functions defined in (4.4) with ε replaced by εn and (3.5), respectively.

By a similar manner to the proof of Proposition 3.1, we conclude that (θ, χ1, χ2) is a unique solution
to (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) on [0, T ], and the convergence (4.8) holds without extracting any
subsequence from {ε}ε∈(0,1]. Thus, the proof of Proposition 4.1 is complete.

We now prove the second main theorem of this paper (Theorem 2.2), which is concerned with the
existence of an optimal control for (OP)εδ for each ε ∈ (0, 1] and δ ≥ 0.

Proof of Theorem 2.2. By an argument similar to that as in Proposition 3.1 (cf. Proposition 4.1), we
can obtain the result of convergence of solutions to (SMA)ε. Hence, for each ε ∈ (0, 1] and δ ≥ 0,
the proof of the existence of an optimal control (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad for (OP)εδ will be a slight
modification of that as in Theorem 2.1. Thus, we omit the detailed proof of this Theorem 2.2.

We next prove Theorem 2.3 concerning the relationship between the optimal control problems (OP)
and (OP)εδ.

Proof of Theorem 2.3. We first show (I). Assume δ = 0. Let {(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )}ε∈(0,1] ⊂ UMad be
a sequence of optimal controls for (OP)ε0. Let (f, g, γ0, γ1) be arbitrary function in UMad . In addition, let
(θε, χε1, χ

ε
2) be a unique solution to the approximating state problem

(SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε on [0, T ], and let (θ, χ1, χ2) be a unique solution to the original
state problem (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1) on [0, T ]. Then, we observe from Proposition 4.1 that

(θε, χε1, χ
ε
2)→ (θ, χ1, χ2) in (C([0, T ];H))3 as ε→ 0. (4.10)

Since (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) is the optimal control for (OP)ε0, we observe that

Jε0(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )

≤Jε0(f, g, γ0, γ1)

=
c0

2

∫ T

0

|(θε − θd)(t)|2Hdt+
c1

2

∫ T

0

|(χε1 − χ1,d)(t)|2Hdt (4.11)

+
c2

2

∫ T

0

|(χε2 − χ2,d)(t)|2Hdt

+
m0

2

∫ T

0

a2
0|f(t)|2Hdt+

m1

2

∫ T

0

a2
1|g(t)|2dt

+
m2

2

∫ T

0

a2
2|γ0(t)|2dt+

m3

2

∫ T

0

a2
3|γ1(t)|2dt.

Clearly, it follows from (1.8), (2.11), (4.10), and (4.11) that {(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )}ε∈(0,1] is bounded
in UMad with respect to ε ∈ (0, 1]. Therefore, taking account of the compact embedding H1(0, T ) ↪→
C([0, T ]), there are a subsequence {εn}n∈N ⊂ {ε}ε∈(0,1] and the quadruplet of functions
(f ∗∗, g∗∗, γ∗∗0 , γ

∗∗
1 ) ∈ UMad such that εn → 0,

f ∗,εn → f ∗∗ weakly in L2(0, T ;H), (4.12)

g∗,εn → g∗∗ weakly in H1(0, T ), in C([0, T ]), (4.13)
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(γ∗,εn0 , γ∗,εn1 )→ (γ∗∗0 , γ
∗∗
1 ) weakly in (H1(0, T ))2, in (C([0, T ]))2, (4.14)

as n→∞.

Let (θ∗,εn , χ∗,εn1 , χ∗,εn2 ) be the unique solution to the approximating state problem
(SMA;θ0, χ1,0, χ2,0, f

∗,εn , g∗,εn , γ∗,εn0 , γ∗,εn1 )εn on [0, T ]. Then, by (4.12)–(4.14) and Proposition 4.1,
we observe that (θ∗,εn , χ∗,εn1 , χ∗,εn2 ) converges to the unique solution (θ∗∗, χ∗∗1 , χ

∗∗
2 ) to the original

state system (SMA;θ0, χ1,0, χ2,0, f
∗∗, g∗∗, γ∗∗0 , γ

∗∗
1 ) on [0, T ] in the sense that

(θ∗,εn , χ∗,εn1 , χ∗,εn2 )→ (θ∗∗, χ∗∗1 , χ
∗∗
2 ) in (C([0, T ];H))3 as n→∞. (4.15)

From (4.10)–(4.15) and the weak lower semicontinuity of L2-norm, we infer that

J(f ∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 ) ≤ lim inf

n→∞
Jεn0 (f ∗,εn , g∗,εn , γ∗,εn0 , γ∗,εn1 )

≤ lim
n→∞

Jεn0 (f, g, γ0, γ1) = J(f, g, γ0, γ1).

Since (f, g, γ0, γ1) is arbitrary function in UMad , we conclude from the above inequality that
(f ∗∗, g∗∗, γ∗∗0 , γ

∗∗
1 ) is the optimal control for (OP). Hence, Theorem 2.3(I) holds.

We now show (II). Assume δ > 0. Let (f ∗, g∗, γ∗0 , γ
∗
1) be the optimal control for (OP) obtained in Theo-

rem 2.1. Let (θε, χε1, χ
ε
2) be a unique solution to the approximating state system

(SMA;θ0, χ1,0, χ2,0, f
∗, g∗, γ∗0 , γ

∗
1)ε on [0, T ]. In addition, let (θ∗, χ∗1, χ

∗
2) be a unique solution to the

original state problem (SMA;θ0, χ1,0, χ2,0, f
∗, g∗, γ∗0 , γ

∗
1) on [0, T ]. Then, we observe from Proposi-

tion 4.1 that
(θε, χε1, χ

ε
2)→ (θ∗, χ∗1, χ

∗
2) in (C([0, T ];H))3 as ε→ 0. (4.16)

On the other hand, since (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) is an optimal control for (OP)εδ, we observe that

Jεδ (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )

≤Jεδ (f ∗, g∗, γ∗0 , γ
∗
1)

=
c0

2

∫ T

0

|(θε − θd)(t)|2Hdt+
c1

2

∫ T

0

|(χε1 − χ1,d)(t)|2Hdt (4.17)

+
c2

2

∫ T

0

|(χε2 − χ2,d)(t)|2Hdt

+
m0

2

∫ T

0

a2
0|f ∗(t)|2Hdt+

m1

2

∫ T

0

a2
1|g∗(t)|2dt

+
m2

2

∫ T

0

a2
2|γ∗0(t)|2dt+

m3

2

∫ T

0

a2
3|γ∗1(t)|2dt.

It follows from (1.8), (2.11), (4.16), and (4.17) that {(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )}ε∈(0,1] is bounded in UMad
with respect to ε ∈ (0, 1]. Therefore, taking account of the compact embedding H1(0, T ) ↪→
C([0, T ]), there are a subsequence {εn}n∈N ⊂ {ε}ε∈(0,1] and the quadruplet of functions

(f̃ , g̃, γ̃0, γ̃1) ∈ UMad such that εn → 0,

f ∗,εn → f̃ weakly in L2(0, T ;H), (4.18)

g∗,εn → g̃ weakly in H1(0, T ), in C([0, T ]), (4.19)
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(γ∗,εn0 , γ∗,εn1 )→ (γ̃0, γ̃1) weakly in (H1(0, T ))2, in (C([0, T ]))2, (4.20)

as n→∞.

For any n ∈ N, let (θ∗,εn , χ∗,εn1 , χ∗,εn2 ) be a unique solution to the approximating state system
(SMA;θ0, χ1,0, χ2,0, f

∗,εn , g∗,εn , γ∗,εn0 , γ∗,εn1 )εn on [0, T ]. Then, from (4.18)–(4.20) and Proposition

4.1, we observe that (θ∗,εn , χ∗,εn1 , χ∗,εn2 ) converges to the unique solution (θ̃, χ̃1, χ̃2) to the original

state system (SMA;θ0, χ1,0, χ2,0, f̃ , g̃, γ̃0, γ̃1) on [0, T ] in the sense that

(θ∗,εn , χ∗,εn1 , χ∗,εn2 )→ (θ̃, χ̃1, χ̃2) in (C([0, T ];H))3 as n→∞. (4.21)

From (2.11), (4.16)–(4.21), and the weak lower semicontinuity of L2-norm, we infer that

δ

2
lim sup
n→∞

∫ T

0

|(f ∗,εn − f ∗)(t)|2Hdt

≤ lim sup
n→∞

(
Jεnδ (f ∗, g∗, γ∗0 , γ

∗
1)− c0

2

∫ T

0

|(θ∗,εn − θd)(t)|2Hdt

− c1

2

∫ T

0

|(χ∗,εn1 − χ1,d)(t)|2Hdt−
c2

2

∫ T

0

|(χ∗,εn2 − χ2,d)(t)|2Hdt

− m0

2

∫ T

0

a2
0|f ∗,εn(t)|2Hdt−

m1

2

∫ T

0

a2
1|g∗,εn(t)|2dt

−m2

2

∫ T

0

a2
2|γ
∗,εn
0 (t)|2dt− m3

2

∫ T

0

a2
3|γ
∗,εn
1 (t)|2dt

)
≤J(f ∗, g∗, γ∗0 , γ

∗
1)− c0

2

∫ T

0

|(θ̃ − θd)(t)|2L2(0,1)dt

− c1

2

∫ T

0

|(χ̃1 − χ1,d)(t)|2Hdt−
c2

2

∫ T

0

|(χ̃2 − χ2,d)(t)|2Hdt

− m0

2

∫ T

0

a2
0|f̃(t)|2Hdt−

m1

2

∫ T

0

a2
1|g̃(t)|2dt

− m2

2

∫ T

0

a2
2|γ̃0(t)|2dt− m3

2

∫ T

0

a2
3|γ̃1(t)|2dt

=J(f ∗, g∗, γ∗0 , γ
∗
1)− J(f̃ , g̃, γ̃0, γ̃1).

Thus, we have

J(f̃ , g̃, γ̃0, γ̃1) +
δ

2
lim sup
n→∞

∫ T

0

|(f ∗,εn − f ∗)(t)|2Hdt ≤ J(f ∗, g∗, γ∗0 , γ
∗
1).

Since (f ∗, g∗, γ∗0 , γ
∗
1) is the optimal control for (OP), we observe that

δ

2
lim sup
n→∞

∫ T

0

|(f ∗,εn − f ∗)(t)|2Hdt = 0. (4.22)

Therefore, we conclude from (4.18) and (4.22) that f̃ = f ∗ and the convergence (2.16) holds, i.e.,

f ∗,εn → f ∗ in L2(0, T ;H) as n→∞.
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By the same arguments as above, we observe that g̃ = g∗, γ̃0 = γ∗0 , γ̃1 = γ∗1 , and the convergence
(2.17) and (2.18) hold.

In addition, due to the uniqueness of solutions to (SMA;θ0, χ1,0, χ2,0, f
∗, g∗, γ∗0 , γ

∗
1) on [0, T ], we

infer that (θ̃, χ̃1, χ̃2) = (θ∗, χ∗1, χ
∗
2) and the convergence (2.19) holds. Hence, Theorem 2.3(II) holds.

Thus, the proof of Theorem 2.3 is complete.

5 Optimality condition for (OP)εδ

In previous Section 4, we proved the existence of an optimal control (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) for the
approximating problem (OP)εδ for each ε ∈ (0, 1] and δ ≥ 0. In this section, we show the main result
(Theorem 2.4) concerning the necessary condition of the optimal control for (OP)εδ.

Throughout this section, we suppose that all the assumptions of Theorem 2.4 are made. In addition,
we fix ε ∈ (0, 1] and δ ≥ 0.

For the space U := L2(0, T ;H) × H1(0, T ) × H1(0, T ) × H1(0, T ) (cf. (1.8)), we define the
control-to-state mapping as follows.

Definition 5.1. (I) We denote by Λε : U → (L2(0, T ;H))3 the control-to-state mapping that assigns
to any control (f, g, γ0, γ1) ∈ U the solution (θ, χ1, χ2) := Λε(f, g, γ0, γ1) to the approximating
state system (SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε on [0, T ].
(II) Let (f ∗, g∗, γ∗0 , γ

∗
1) ∈ UMad be the optimal control for (OP)εδ. Then,

(θ∗, χ∗1, χ
∗
2, f

∗, g∗, γ∗0 , γ
∗
1) = (Λε(f ∗, g∗, γ∗0 , γ

∗
1), f ∗, g∗, γ∗0 , γ

∗
1)

is called the optimal pair for the optimal control problem (OP)εδ.

For a moment, we often omit the subscript ε ∈ (0, 1].

We first show the Gâteaux differentiability of Λε and Jεδ .

Note from Proposition 2.2 that for any control (f, g, γ0, γ1) ∈ U , the approximating state system
(SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε has a unique solution (θ, χ1, χ2) on [0, T ]. Therefore, for any
(f, g, γ0, γ1) ∈ U , any direction (f̌ , ǧ, γ̌0, γ̌1) ∈ U , and any number λ ∈ [−1, 1] \ {0}, we here
put (θλ, χ1,λ, χ2,λ) := Λε(f + λf̌ , g + λǧ, γ0 + λγ̌0, γ1 + λγ̌1), (θ, χ1, χ2) := Λε(f, g, γ0, γ1),
uλ := (θλ − θ)/λ, w1,λ = (χ1,λ − χ1)/λ, and w2,λ = (χ2,λ − χ2)/λ.

Note that the triplet of functions (uλ, w1,λ, w2,λ) satisfies the following system:

(L0uλ − L1w1,λ)t − h(uλ)xx = a0f̌(t, x) in Q = (0, T )× Ω, (5.1)

µ0

(
w1,λ

w2,λ

)
t

− µ1

(
w1,λ

w2,λ

)
xx

+

(
K
ε

11,λ(t, x)w1,λ +K
ε

12,λ(t, x)w2,λ

K
ε

21,λ(t, x)w1,λ +K
ε

22,λ(t, x)w2,λ

)

=

(
−luλ

−βa1ǧ(t)α(θλ)− βa1g(t)αλ(t, x)uλ + βαλ(t, x)uλχ2,λ + βα(θ)2w2,λ

)
in Q,

(5.2)

−h(uλ)x(t, 0) + k(uλ(t, 0)− a2γ̌0(t)) = h(uλ)x(t, 1) + k(uλ(t, 1)− a3γ̌1(t)) = 0,
for t ∈ (0, T ),

(5.3)
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(wi,λ)x(t, 0) = (wi,λ)x(t, 1) = 0, t ∈ (0, T ), i = 1, 2, (5.4)

uλ(0, x) = 0, wi,λ(0, x) = 0, x ∈ Ω, i = 1, 2, (5.5)

where notations K
ε

ij,λ (i, j = 1, 2), αλ, and αλ are functions on Q, given as:

K
ε

i1,λ(t, x) =

∫ 1

0

∂1∂iK̂
ε(χ1(t, x) + s(χ1,λ(t, x)− χ1(t, x)), χ2,λ(t, x))ds, (i = 1, 2);

K
ε

i2,λ(t, x) =

∫ 1

0

∂2∂iK̂
ε(χ1(t, x), χ2(t, x) + s(χ2,λ(t, x)− χ2(t, x)))ds, (i = 1, 2);

αλ(t, x) =

∫ 1

0

α′(θ(t, x) + s(θλ(t, x)− θ(t, x)))ds;

αλ(t, x) =

∫ 1

0

2α′(θ(t, x) + s(θλ(t, x)− θ(t, x)))α(θ(t, x) + s(θλ(t, x)− θ(t, x)))ds;

for (t, x) ∈ Q, with use of the partial derivative ∂i∂jK̂ε of the convex function K̂ε (i, j = 1, 2) and
the derivative α′ of the single-valued function α.

We now give a uniform estimate of solutions (uλ, w1,λ, w2,λ) to (5.1)–(5.5) with respect to λ ∈
[−1, 1] \ {0}.

Lemma 5.1. Suppose that all the assumptions of Theorem 2.4 are satisfied. Then, there is a positive
number N3 > 0, independent of λ ∈ [−1, 1] \ {0}, such that

sup
t∈[0,T ]

|uλ(t)|2V +
2∑
i=1

sup
t∈[0,T ]

|wi,λ(t)|2V +

∫ T

0

|(uλ)t(t)|2Hdt+
2∑
i=1

∫ T

0

|(wi,λ)t(t)|2Hdt

≤N3

(
a2

0|f̌ |2L2(0,T ;H) + a2
1|ǧ|2L2(0,T ) + a2

2|γ̌0|2W 1,2(0,T ) + a2
3|γ̌1|2W 1,2(0,T )

)
(5.6)

for any (f̌ , ǧ, γ̌0, γ̌1) ∈ U .

Proof. Note from (A2) that

|αλ(t, x)| ≤ ν1, |αλ(t, x)| ≤ ν1, ∀(t, x) ∈ Q (5.7)

for some positive constant ν1 > 0 independent of λ ∈ [−1, 1] \ {0}.

In addition, from the assumption (A5) for K̂ε, we observe that (cf. (2.4)):

|Kε

ij,λ(t, x)| ≤ 1

ε
, a.a. (t, x) ∈ Q, (i, j = 1, 2). (5.8)

Here, from the boundedness (2.10) of solutions to (SMA)ε, we note that

sup
t∈[0,T ]

|θλ(t)|2V +
2∑
i=1

sup
t∈[0,T ]

|χi,λ(t)|2V +

∫ T

0

|(θλ)t(τ)|2Hdτ +
2∑
i=1

∫ T

0

|(χi,λ)t(τ)|2Hdτ

≤ν2

(
|θ0|2V + |χ1,0|2V + |χ2,0|2V + a2

2|γ0(0)|2 + a2
2|γ̌0(0)|2 + a2

3|γ1(0)|2 + a2
3|γ̌1(0)|2

+ a2
0|f |2L2(0,T ;H) + a2

0|f̌ |2L2(0,T ;H) + a2
1|g|2L2(0,T ) + a2

1|ǧ|2L2(0,T ) (5.9)

+a2
2|γ0|2W 1,2(0,T ) + a2

2|γ̌0|2W 1,2(0,T ) + a2
3|γ1|2W 1,2(0,T ) + a2

3|γ̌1|2W 1,2(0,T ) + 1
)
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where ν2 > 0 is a positive constant, independent of (f, g, γ0, γ1) ∈ U , (f̌ , ǧ, γ̌0, γ̌1) ∈ U , and
λ ∈ [−1, 1] \ {0}.
Since the embedding V ↪→ L∞(Ω) is compact, we infer from (5.9) that

2∑
i=1

sup
t∈[0,T ]

|χi,λ(t)|2L∞(Ω)

≤ν ′2
(
|θ0|2V + |χ1,0|2V + |χ2,0|2V + a2

2|γ0(0)|2 + a2
2|γ̌0(0)|2 + a2

3|γ1(0)|2 + a2
3|γ̌1(0)|2

+ a2
0|f |2L2(0,T ;H) + a2

0|f̌ |2L2(0,T ;H) + a2
1|g|2L2(0,T ) + a2

1|ǧ|2L2(0,T ) (5.10)

+a2
2|γ0|2W 1,2(0,T ) + a2

2|γ̌0|2W 1,2(0,T ) + a2
3|γ1|2W 1,2(0,T ) + a2

3|γ̌1|2W 1,2(0,T ) + 1
)

where ν ′2 > 0 is a positive constant, independent of (f, g, γ0, γ1) ∈ U , (f̌ , ǧ, γ̌0, γ̌1) ∈ U , and
λ ∈ [−1, 1] \ {0}.
On account of (5.7), (5.8), and (5.10), the uniform estimate (5.6) can be shown in a similar manner to
the proof of (2.10) (cf. (2.3)). Therefore, we omit the detailed calculations. Thus, the proof of Lemma
5.1 is complete.

We now state the result of the Gâteaux differentiability of Λε.

Proposition 5.1. Suppose that all the assumptions of Theorem 2.4 are satisfied. Then, the control-to-
state mapping Λε admits the Gâteaux derivative at any (f, g, γ0, γ1) ∈ U . More precisely, for arbitrary
(f, g, γ0, γ1) ∈ U , there exists a triplet of functions (u,w1, w2) ∈ (W 1,2(0, T ;H)∩L∞(0, T ;V ))3

such that:

D(f̌ ,ǧ,γ̌0,γ̌1)Λ
ε(f, g, γ0, γ1) := lim

λ→0

Λε(f + λf̌ , g + λǧ, γ0 + λγ̌0, γ1 + λγ̌1)− Λε(f, g, γ0, γ1)

λ

= (u,w1, w2) for any direction (f̌ , ǧ, γ̌0, γ̌1) ∈ U , (5.11)

and (u,w1, w2) solves the following linear system:

(L0u− L1w1)t − huxx = a0f̌(t, x) in Q, (5.12)

µ0

(
w1

w2

)
t

− µ1

(
w1

w2

)
xx

+

(
∂2

1K̂
ε(χ1, χ2)w1 + ∂2∂1K̂

ε(χ1, χ2)w2

∂1∂2K̂
ε(χ1, χ2)w1 + ∂2

2K̂
ε(χ1, χ2)w2

)
=

(
−lu

−βa1ǧ(t)α(θ)− βa1g(t)α′(θ)u+ 2βα′(θ)α(θ)uχ2 + βα(θ)2w2

)
in Q,

(5.13)

−hux(t, 0)+k(u(t, 0)−a2γ̌0(t)) = hux(t, 1)+k(u(t, 1)−a3γ̌1(t)) = 0 for t ∈ (0, T ), (5.14)

(wi)x(t, 0) = (wi)x(t, 1) = 0, t ∈ (0, T ), i = 1, 2, (5.15)

u(0, x) = 0, wi(0, x) = 0, x ∈ Ω, i = 1, 2. (5.16)
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Proof. Let (f, g, γ0, γ1) be any function in U . For all directions (f̌ , ǧ, γ̌0, γ̌1) ∈ U and small numbers
λ ∈ [−1, 1]\{0}, we put (θλ, χ1,λ, χ2,λ) := Λε(f+λf̌ , g+λǧ, γ0 +λγ̌0, γ1 +λγ̌1), (θ, χ1, χ2) :=
Λε(f, g, γ0, γ1), uλ := (θλ − θ)/λ, w1,λ = (χ1,λ − χ1)/λ, w2,λ = (χ2,λ − χ2)/λ.

Then, by the uniform estimate (5.6) for (uλ, w1,λ, w2,λ), it turns out that there are a subsequence
{λn}n∈N ⊂ {λ}λ∈[−1,1]\{0} and the triplet (u,w1, w2) ∈ (W 1,2(0, T ;H) ∩ L∞(0, T ;V ))3 such
that λn → 0,

(uλn , w1,λn , w2,λn)→ (u,w1, w2) in (C([0, T ];H))3,
weakly in (W 1,2(0, T ;H))3,
weakly-∗ in (L∞(0, T ;V ))3,

 (5.17)

as n→∞, and by the lower semicontinuity of the norm:

sup
0≤t≤T

|u(t)|2V +
2∑
i=1

sup
t∈[0,T ]

|wi(t)|2V +

∫ T

0

|ut(t)|2Hdt+
2∑
i=1

∫ T

0

|(wi)t(t)|2Hdt

≤ N3

(
a2

0|f̌ |2L2(0,T ;H) + a2
1|ǧ|2L2(0,T ) + a2

2|γ̌0|2W 1,2(0,T ) + a2
3|γ̌1|2W 1,2(0,T )

)
,

(5.18)

where N3 is the same constant as in Lemma 5.1.

We now prove that the limit triplet (u,w1, w2) of (uλn , w1,λn , w2,λn) satisfies (5.12)–(5.16) in the
variational sense. To this end, note from (5.6) that

|θλ − θ|L2(0,T ;H) +
2∑
i=1

|χi,λ − χi|L2(0,T ;H)

= λ|uλ|L2(0,T ;H) + λ
2∑
i=1

|wi,λ|L2(0,T ;H)

≤ λ
√
T |uλ|L∞(0,T ;H) + λ

√
T

2∑
i=1

|wi,λ|L∞(0,T ;H)

≤ 3λ
√
TN3

(
a2

0|f̌ |2L2(0,T ;H) + a2
1|ǧ|2L2(0,T ) + a2

2|γ̌0|2W 1,2(0,T ) + a2
3|γ̌1|2W 1,2(0,T )

) 1
2

→ 0 as λ→ 0.

(5.19)

Taking a subsequence if necessary, we observe from (5.19), (A2), (A5), and the continuity of functions
∂i∂jK̂

ε(·, ·) (i, j = 1, 2), α′(·), and α(·) that

θλn(t, x)→ θ(t, x),

χi,λn(t, x)→ χi(t, x), (i = 1, 2),

K
ε

ij,λn(t, x)→ ∂j∂iK̂
ε(χ1(t, x), χ2(t, x)), (i, j = 1, 2),

αλn(t, x)→ α′(θ(t, x)),

αλn(t, x)→ 2α′(θ(t, x))α(θ(t, x)),

for a.a. (t, x) ∈ Q in the pointwise senses, as n→∞.

Here, let us fix arbitrary 0 ≤ t0 < t1 ≤ T . Since functions K
ε

ij,λ, αλ, and αλ (λ ∈ [−1, 1] \ {0}) are
respectively bounded in senses of (5.8) and (5.7), we can apply Lebesgue’s dominated convergence
theorem to show that

K
ε

ij,λn → ∂j∂iK̂
ε(χ1, χ2), (i, j = 1, 2),

αλn → α′(θ),

αλn → 2α′(θ)α(θ),

α(θλn)→ α(θ),

in L2(t0, t1;H), as n→∞. (5.20)

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020



P. Colli, M.H. Farshbaf-Shaker, K. Shirakawa, N. Yamazaki 26

Combining (5.6), (5.10), (5.17), (5.19), and (5.20), and by (A2), (A5), and the compact embeddings
V ↪→ L∞(Ω) and H1(0, T ) ↪→ C([0, T ]), it is deduced that:

uλn → u weakly in L2(t0, t1;V ), (5.21)

(uλn)t → ut weakly in L2(t0, t1;H), (5.22)

wi,λn → wi weakly in L2(t0, t1;V ), (i = 1, 2), (5.23)

(wi,λn)t → (wi)t weakly in L2(t0, t1;H), (i = 1, 2), (5.24)

K
ε

ij,λnwj,λn → ∂j∂iK̂
ε(χ1, χ2)wj in L2(t0, t1;H), (i, j = 1, 2), (5.25)

ǧα(θλn)→ ǧα(θ) in L2(t0, t1;H), (5.26)

gαλnuλn → gα′(θ)u in L2(t0, t1;H), (5.27)

αλnuλnχ2,λn → 2α′(θ)α(θ)uχ2 in L2(t0, t1;H), (5.28)

and
α(θ)2w2,λn → α(θ)2w2 in L2(t0, t1;H), (5.29)

as n→∞, (i, j = 1, 2).

Note from (5.1)–(5.5) that (uλn , w1,λn , w2,λn) satisfies the following variational identities:∫ t1

t0

L0((uλn)t(t), z)Hdt− L1

∫ t1

t0

((w1,λn)t(t), z)Hdt+ h

∫ t1

t0

(uλn(t), z)V dt

=

∫ t1

t0

(a0f̌(t), z)Hdt+ k

∫ t1

t0

a2γ̌0(t)z(0)dt+ k

∫ t1

t0

a3γ̌1(t)z(1)dt

for all z ∈ V and n = 1, 2, 3, · · ·

(5.30)

and

µ0

∫ t1

t0

2∑
i=1

((wi,λn)t(t), zi)Hdt+ µ1

∫ t1

t0

2∑
i=1

((wi,λn)x(t), (zi)x)Hdt

+

∫ t1

t0

2∑
i=1

(K
ε

i1,λ(t, x)w1,λ(t) +K
ε

i2,λ(t, x)w2,λ(t), zi)Hdt

=

∫ t1

t0

(−luλn(t), z1)Hdt (5.31)

+

∫ t1

t0

(−βa1ǧ(t)α(θλn(t))− βa1g(t)αλn(t, x)uλn(t), z2)Hdt

+

∫ t1

t0

(βαλn(t, x)uλn(t)χ2,λn(t) + βα(θ(t))2w2,λn(t), z2)Hdt

for all (z1, z2) ∈ V × V and n = 1, 2, 3, · · · .
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On account of (5.17) and (5.21)–(5.29), and taking the limits in (5.30) and (5.31) as n → ∞, we
observe that the limit triplet (u,w1, w2) of (uλn , w1,λn , w2,λn) satisfies (5.12)–(5.15) in the variational
sense.

In addition, it follows from (5.5) and (5.17) that the initial conditions (5.16) hold:

u(0, ·) = lim
n→∞

uλn(0, ·) = 0 in H ,

wi(0, ·) = lim
n→∞

wi,λn(0, ·) = 0 in H , (i = 1, 2).

Note that the Hessian matrix of K̂ε is positive semi-definite (cf. (6.11) below), since K̂ε is the convex
function on R2 (cf. (A5)). Therefore, by the usual method with helps from the fact that g ∈ C([0, T ])
(cf. (1.8)), α ∈ W 2,∞(R) (cf. (A2)), and χ2 ∈ L∞(Q) (cf. (5.10)), more precisely, by argument similar
to [22, Theorem 2.1], we can prove that the solutions to the Cauchy problem (5.12)–(5.16) are uniquely
determined. Hence, the uniqueness of solution to (5.12)–(5.16) guarantees that of cluster points of the
sequence (uλ, w1,λ, w2,λ) as λ→ 0:

(∗) (uλ, w1,λ, w2,λ) originally converges to the unique solution (u,w1, w2) to (5.12)–(5.16), in the
variational sense (cf. (5.30) and (5.31)), as λ → 0, and hence the operator X(f,g,γ0,γ1) : U →
(L2(0, T ;H))3, defined by X(f,g,γ0,γ1)(f̌ , ǧ, γ̌0, γ̌1) := D(f̌ ,ǧ,γ̌0,γ̌1)Λ

ε(f, g, γ0, γ1) for all di-

rection (f̌ , ǧ, γ̌0, γ̌1) ∈ U , is well-defined.

On account of the linearity inherent in (5.12)–(5.16), and the estimate (5.18), we observe that each
operatorX(f,g,γ0,γ1) ((f, g, γ0, γ1) ∈ U ) is a bounded and linear operator from U into (L2(0, T ;H))3,
and hence, the control-to-state mapping Λε admits the Gâteaux derivative at any (f̌ , ǧ, γ̌0, γ̌1) ∈ U .
Thus, the proof of Proposition 5.1 is complete.

We now state the Gâteaux differentiability of the cost function Jεδ , which is a direct consequence of
Proposition 5.1.

Corollary 5.1. Suppose that all the assumptions of Theorem 2.4 are satisfied. Then, the cost function
Jεδ admits the Gâteaux derivative at any (f, g, γ0, γ1) ∈ U . More precisely,

D(f̌ ,ǧ,γ̌0,γ̌1)J
ε
δ (f, g, γ0, γ1)

:= lim
λ→0

Jεδ (f + λf̌ , g + λǧ, γ0 + λγ̌0, γ1 + λγ̌1)− Jεδ (f, g, γ0, γ1)

λ

=c0

∫ T

0

((θ − θd)(t), u(t))Hdt+ c1

∫ T

0

((χ1 − χ1,d)(t), w1(t))Hdt

+ c2

∫ T

0

((χ2 − χ2,d)(t), w2(t))Hdt

+m0a
2
0

∫ T

0

(f(t), f̌(t))Hdt+m1a
2
1

∫ T

0

g(t)ǧ(t)dt

+m2a
2
2

∫ T

0

γ0(t)γ̌0(t)dt+m3a
2
3

∫ T

0

γ1(t)γ̌1(t)dt (5.32)

+ δ

∫ T

0

((f − f ∗)(t), f̌(t))Hdt+ δ

∫ T

0

(g − g∗)(t)ǧ(t)dt

+ δ

∫ T

0

(γ0 − γ∗0)(t)γ̌0(t)dt+ δ

∫ T

0

(γ1 − γ∗1)(t)γ̌1(t)dt
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for any (f, g, γ0, γ1) ∈ U and any direction (f̌ , ǧ, γ̌0, γ̌1) ∈ U , where in the above formula (θ, χ1, χ2) =
Λε(f, g, γ0, γ1) denotes the unique solution to the approximating state system
(SMA;θ0, χ1,0, χ2,0, f, g, γ0, γ1)ε on [0, T ], θd ∈ L2(0, T ;H), χ1,d ∈ L2(0, T ), and χ2,d ∈
L2(0, T ) are the given desired target profiles, and (u,w1, w2)(= D(f̌ ,ǧ,γ̌0,γ̌1)Λ

ε(f, g, γ0, γ1)) is the
triplet of functions obtained in Proposition 5.1.

Proof. By virtue of Proposition 5.1 and (5.19), we can prove the Gâteaux differentiability of the cost
function Jεδ . Indeed, let (u,w1, w2) := D(f̌ ,ǧ,γ̌0,γ̌1)Λ

ε(f, g, γ0, γ1). Then, we have:

D(f̌ ,ǧ,γ̌0,γ̌1)J
ε
δ (f, g, γ0, γ1)

:= lim
λ→0

Jεδ (f + λf̌ , g + λǧ, γ0 + λγ̌0, γ1 + λγ̌1)− Jεδ (f, g, γ0, γ1)

λ

= lim
λ→0

{
c0

2

∫ T

0

((θλ + θ − 2θd)(t), uλ(t))Hdt

+
c1

2

∫ T

0

((χ1,λ + χ1 − 2χ1,d)(t), w1,λ(t))Hdt

+
c2

2

∫ T

0

((χ2,λ + χ2 − 2χ2,d)(t), w2,λ(t))Hdt

+
m0a

2
0

2

∫ T

0

((2f + λf̌)(t), f̌(t))Hdt+
m1a

2
1

2

∫ T

0

(2g + λǧ)(t)ǧ(t)dt

+
m2a

2
2

2

∫ T

0

(2γ0 + λγ̌0)(t)γ̌0(t)dt+
m3a

2
3

2

∫ T

0

(2γ1 + λγ̌1)(t)γ̌1(t)dt

+
δ

2

∫ T

0

((2(f − f ∗) + λf̌)(t), f̌(t))Hdt+
δ

2

∫ T

0

(2(g − g∗) + λǧ)(t)ǧ(t)dt

+
δ

2

∫ T

0

(2(γ0 − γ∗0) + λγ̌0)(t)γ̌0(t)dt+
δ

2

∫ T

0

(2(γ1 − γ∗1) + λγ̌1)(t)γ̌1(t)dt

}
= c0

∫ T

0

((θ − θd)(t), u(t))Hdt+ c1

∫ T

0

((χ1 − χ1,d)(t), w1(t))Hdt

+ c2

∫ T

0

((χ2 − χ2,d)(t), w2(t))Hdt

+m0a
2
0

∫ T

0

(f(t), f̌(t))Hdt+m1a
2
1

∫ T

0

g(t)ǧ(t)dt

+m2a
2
2

∫ T

0

γ0(t)γ̌0(t)dt+m3a
2
3

∫ T

0

γ1(t)γ̌1(t)dt

+δ

∫ T

0

((f − f ∗)(t), f̌(t))Hdt+ δ

∫ T

0

(g − g∗)(t)ǧ(t)dt

+ δ

∫ T

0

(γ0 − γ∗0)(t)γ̌0(t)dt+ δ

∫ T

0

(γ1 − γ∗1)(t)γ̌1(t)dt

for any (f, g, γ0, γ1) ∈ U and any direction (f̌ , ǧ, γ̌0, γ̌1) ∈ U .

From Proposition 5.1 and (5.18), it follows that for any (f, g, γ0, γ1) ∈ U , the functional:

(f̌ , ǧ, γ̌0, γ̌1) ∈ U 7→ D(f̌ ,ǧ,γ̌0,γ̌1)J
ε
δ (f, g, γ0, γ1)
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will form a bounded linear functional on U . Hence, the cost functional Jεδ admits the Gâteaux derivative
at any (f, g, γ0, γ1) ∈ U with the directional derivative as in (5.32). Thus, the proof of Corollary 5.1 is
complete.

On account of Proposition 5.1 and Corollary 5.1, we can prove Theorem 2.4 concerning
the necessary condition of an optimal pair

(θ∗,ε, χ∗,ε1 , χ∗,ε2 , f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) = (Λε(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ), f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )

for the approximating problem (OP)εδ.

Proof of Theorem 2.4. Let

(θ∗,ε, χ∗,ε1 , χ∗,ε2 , f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) = (Λε(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ), f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )

be the optimal pair for (OP)εδ. Then, note from (2.10) and the compact embedding V ↪→ L∞(Ω) that
χ∗,ε2 ∈ L∞(Q) (cf. (5.10)).

On account of (2.4), g∗,ε ∈ C([0, T ]) (cf. (1.8) and the compact embeddingH1(0, T ) ↪→ C([0, T ])),
α ∈ W 2,∞(0, T ) (cf. (A2)), and χ∗,ε2 ∈ L∞(Q), we can construct the unique solution to the adjoint
equations (2.20)–(2.26) by applying Schauder’s fixed point theorem and the theory of abstract non-
linear evolution equations (cf. [32, 34, 39, 44]). For such arguments, we refer to [34, Theorem 2.1], for
instance. Thus, we omit the detailed proof of the existence-uniqueness of the solutions (pε, qε1, q

ε
2) to

the adjoint equations (2.20)–(2.26).

We now show the necessary condition (2.27) for (OP)εδ. To this end, from the convexity of UMad , note
that

(f, g, γ0, γ1) + λ(f̌ − f, ǧ − g, γ̌0 − γ0, γ̌1 − γ1)

= (1− λ)(f, g, γ0, γ1) + λ(f̌ , ǧ, γ̌0, γ̌1) (5.33)

∈ UMad , ∀λ ∈ [0, 1], ∀(f, g, γ0, γ1) ∈ UMad , ∀(f̌ , ǧ, γ̌0, γ̌1) ∈ UMad .

In addition, from Corollary 5.1 it follows that Jεδ is Gâteaux differentiable at any quadruplet (f, g, γ0, γ1) ∈
UMad .

Furthermore, we observe from Proposition 5.1 that Λε is Gâteaux differentiable at (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈
UMad . Therefore, we here put:

(u∗,ε, w∗,ε1 , w∗,ε2 ) := D(f̌−f∗,ε,ǧ−g∗,ε,γ̌0−γ∗,ε0 ,γ̌1−γ∗,ε1 )Λ
ε(f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ).

Since (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) is a minimizer for Jεδ (·, ·, ·), we infer from (5.33) that

Jεδ (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )

≤Jεδ (f ∗,ε + λ(f̌ − f ∗,ε), g∗,ε + λ(ǧ − g∗,ε), γ∗,ε0 + λ(γ̌0 − γ∗,ε0 ), γ∗,ε1 + λ(γ̌1 − γ∗,ε1 ))

for all λ ∈ [0, 1] and all (f̌ , ǧ, γ̌0, γ̌1) ∈ UMad .

Therefore, we observe from Corollary 5.1, the adjoint system (2.21)–(2.26), and the linear system
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(5.12)–(5.16) that

0 ≤D(f̌−f∗,ε,ǧ−g∗,ε,γ̌0−γ∗,ε0 ,γ̌1−γ∗,ε1 )J
ε
δ (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )

=c0

∫ T

0

((θ∗,ε − θd)(t), u∗,ε(t))Hdt+ c1

∫ T

0

((χ∗,ε1 − χ1,d)(t), w
∗,ε
1 (t))Hdt

+ c2

∫ T

0

((χ∗,ε2 − χ2,d)(t), w
∗,ε
2 (t))Hdt

+m0a
2
0

∫ T

0

(f ∗,ε(t), (f̌ − f ∗,ε)(t))Hdt+m1a
2
1

∫ T

0

g∗,ε(t)(ǧ − g∗,ε)(t)dt

+m2a
2
2

∫ T

0

γ∗,ε0 (t)(γ̌0 − γ∗,ε0 )(t)dt+m3a
2
3

∫ T

0

γ∗,ε1 (t)(γ̌1 − γ∗,ε1 )(t)dt

+ δ

∫ T

0

((f ∗,ε − f ∗)(t), (f̌ − f ∗,ε)(t))Hdt+ δ

∫ T

0

(g∗,ε − g∗)(t)(ǧ − g∗,ε)(t)dt

+ δ

∫ T

0

(γ∗,ε0 − γ∗0)(t)(γ̌0 − γ∗,ε0 )(t)dt+ δ

∫ T

0

(γ∗,ε1 − γ∗1)(t)(γ̌1 − γ∗,ε1 )(t)dt

=

∫ T

0

(−L0p
ε
t(t), u

∗,ε(t))Hdt+

∫ T

0

h(pεx(t), u
∗,ε
x (t))Hdt

+

∫ T

0

kpε(t, 0)u∗,ε(t, 0)dt+

∫ T

0

kpε(t, 1)u∗,ε(t, 1)dt

+

∫ T

0

(lqε1(t), u∗,ε(t))Hdt+

∫ T

0

(βa1g
∗,ε(t)α′(θ∗,ε(t))qε2(t), u∗,ε(t))Hdt

−
∫ T

0

(2βα′(θ∗,ε(t))α(θ∗,ε(t))χ∗,ε2 (t)qε2(t), u∗,ε(t))Hdt

+

∫ T

0

(−µ0(qε1)t(t), w
∗,ε
1 (t))Hdt+

∫ T

0

(L1p
ε
t(t), w

∗,ε
1 (t))Hdt

+

∫ T

0

µ1((qε1)x(t), (w
∗,ε
1 )x(t))Hdt+

∫ T

0

(∂2
1K̂

ε(χ∗,ε1 (t), χ∗,ε2 (t))qε1(t), w∗,ε1 (t))Hdt

+

∫ T

0

(∂1∂2K̂
ε(χ∗,ε1 (t), χ∗,ε2 (t))qε2(t), w∗,ε1 (t))Hdt

+

∫ T

0

(−µ0(qε2)t(t), w
∗,ε
2 (t))Hdt+

∫ T

0

µ1((qε2)x(t), (w
∗,ε
2 )x(t))Hdt

+

∫ T

0

(∂2∂1K̂
ε(χ∗,ε1 (t), χ∗,ε2 (t))qε1(t), w∗,ε2 (t))Hdt

+

∫ T

0

(∂2
2K̂

ε(χ∗,ε1 (t), χ∗,ε2 (t))qε2(t), w∗,ε2 (t))Hdt

−
∫ T

0

(βα(θ∗,ε(t))2qε2(t), w∗,ε2 (t))Hdt

+m0a
2
0

∫ T

0

(f ∗,ε(t), (f̌ − f ∗,ε)(t))Hdt+m1a
2
1

∫ T

0

g∗,ε(t)(ǧ − g∗,ε)(t)dt

+m2a
2
2

∫ T

0

γ∗,ε0 (t)(γ̌0 − γ∗,ε0 )(t)dt+m3a
2
3

∫ T

0

γ∗,ε1 (t)(γ̌1 − γ∗,ε1 )(t)dt

+ δ

∫ T

0

((f ∗,ε − f ∗)(t), (f̌ − f ∗,ε)(t))Hdt+ δ

∫ T

0

(g∗,ε − g∗)(t)(ǧ − g∗,ε)(t)dt
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+ δ

∫ T

0

(γ∗,ε0 − γ∗0)(t)(γ̌0 − γ∗,ε0 )(t)dt+ δ

∫ T

0

(γ∗,ε1 − γ∗1)(t)(γ̌1 − γ∗,ε1 )(t)dt

=

∫ T

0

(L0u
∗,ε
t (t)− L1(w∗,ε1 )t(t), p

ε(t))Hdt+

∫ T

0

h(u∗,εx (t), pεx(t))Hdt

+

∫ T

0

ku∗,ε(t, 0)pε(t, 0)dt+

∫ T

0

ku∗,ε(t, 1)pε(t, 1)dt

+

∫ T

0

(µ0(w∗,ε1 )t(t), q
ε
1(t))Hdt+

∫ T

0

µ1((w∗,ε1 )x(t), (q
ε
1)x(t))Hdt

+

∫ T

0

(∂2
1K̂

ε(χ∗,ε1 (t), χ∗,ε2 (t))w∗,ε1 (t), qε1(t))Hdt

+

∫ T

0

(∂2∂1K̂
ε(χ∗,ε1 (t), χ∗,ε2 (t))w∗,ε2 (t), qε1(t))Hdt

+

∫ T

0

(lu∗,ε(t), qε1(t))Hdt

+

∫ T

0

(µ0(w∗,ε2 )t(t), q
ε
2(t))Hdt+

∫ T

0

µ1((w∗,ε2 )x(t), (q
ε
2)x(t))Hdt

+

∫ T

0

(∂1∂2K̂
ε(χ∗,ε1 (t), χ∗,ε2 (t))w∗,ε1 (t), qε2(t))Hdt

+

∫ T

0

(∂2
2K̂

ε(χ∗,ε1 (t), χ∗,ε2 (t))w∗,ε2 (t), qε2(t))Hdt

+

∫ T

0

(βa1g
∗,ε(t)α′(θ∗,ε(t))u∗,ε(t), qε2(t))Hdt

−
∫ T

0

(2βα′(θ∗,ε(t))α(θ∗,ε(t))u∗,ε(t)χ∗,ε2 (t), qε2(t))Hdt

−
∫ T

0

(βα(θ∗,ε(t))2w∗,ε2 (t), qε2(t))Hdt

+m0a
2
0

∫ T

0

(f ∗,ε(t), (f̌ − f ∗,ε)(t))Hdt+m1a
2
1

∫ T

0

g∗,ε(t)(ǧ − g∗,ε)(t)dt

+m2a
2
2

∫ T

0

γ∗,ε0 (t)(γ̌0 − γ∗,ε0 )(t)dt+m3a
2
3

∫ T

0

γ∗,ε1 (t)(γ̌1 − γ∗,ε1 )(t)dt

+ δ

∫ T

0

((f ∗,ε − f ∗)(t), (f̌ − f ∗,ε)(t))Hdt+ δ

∫ T

0

(g∗,ε − g∗)(t)(ǧ − g∗,ε)(t)dt

+ δ

∫ T

0

(γ∗,ε0 − γ∗0)(t)(γ̌0 − γ∗,ε0 )(t)dt+ δ

∫ T

0

(γ∗,ε1 − γ∗1)(t)(γ̌1 − γ∗,ε1 )(t)dt

=

∫ T

0

a0(a0m0f
∗,ε(t) + pε(t), (f̌ − f ∗,ε)(t))Hdt

+

∫ T

0

a1(a1m1g
∗,ε(t)− (βα(θ∗,ε(t)), qε2(t))H)(ǧ − g∗,ε)(t)dt

+

∫ T

0

a2(a2m2γ
∗,ε
0 (t) + kpε(t, 0))(γ̌0 − γ∗,ε0 )(t)dt

+

∫ T

0

a3(a3m3γ
∗,ε
1 (t) + kpε(t, 1))(γ̌1 − γ∗,ε1 )(t)dt
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+ δ

∫ T

0

((f ∗,ε − f ∗)(t), (f̌ − f ∗,ε)(t))Hdt+ δ

∫ T

0

(g∗,ε − g∗)(t)(ǧ − g∗,ε)(t)dt

+ δ

∫ T

0

(γ∗,ε0 − γ∗0)(t)(γ̌0 − γ∗,ε0 )(t)dt+ δ

∫ T

0

(γ∗,ε1 − γ∗1)(t)(γ̌1 − γ∗,ε1 )(t)dt

for any (f̌ , ǧ, γ̌0, γ̌1) ∈ UMad . Thus, the proof of Theorem 2.4 is complete.

6 Optimality condition to (OP)

In previous Section 5, we proved Theorem 2.4, which is concerned with the optimality condition for the
approximating problem (OP)εδ. However, it is difficult to show the necessary condition of the optimal
control for (OP) directly, because of the non-smooth constraint ∂IK(·, ·) in (1.2). Therefore, through
the limiting observation of approximating problems (OP)εδ, we derive the optimality condition for (OP).

We now prove the final main result (Theorem 2.5) of this paper, which is concerned with the necessary
condition of the optimal control for (OP).

Proof of Theorem 2.5. On account of Theorem 2.3(II) and Theorem 2.4, we can prove Theorem 2.5.

Indeed, we assume δ > 0. Let (f ∗, g∗, γ∗0 , γ
∗
1) ∈ UMad be any optimal control for (OP) obtained in The-

orem 2.1. In addition, let (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) be the optimal control for (OP)εδ obtained in Theorem
2.2. Furthermore, let (θ∗,ε, χ∗,ε1 , χ∗,ε2 ) and (θ∗, χ∗1, χ

∗
2) be unique solutions to

(SMA;θ0, χ1,0, χ2,0, f
∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )ε and (SMA;θ0, χ1,0, χ2,0, f

∗, g∗, γ∗0 , γ
∗
1) on [0, T ], respec-

tively. Then, we observe from Theorem 2.3(II) that there is a subsequence of ε (which we also denote
ε for simplicity) such that

f ∗,ε → f ∗ in L2(0, T ;H), (6.1)

g∗,ε → g∗ weakly in H1(0, T ), and in L2(0, T ), (6.2)

γ∗,εi → γ∗i weakly in H1(0, T ), and in L2(0, T ), (i = 0, 1), (6.3)

(θ∗,ε, χ∗,ε1 , χ∗,ε2 )→ (θ∗, χ∗1, χ
∗
2) in (C([0, T ];H))3 (6.4)

as ε→ 0.

We now prove Theorem 2.5 by taking the limit with respect to ε. To this end, we give the a priori
estimate of the solution (pε, qε1, q

ε
2) to the adjoint equations (2.21)–(2.26).

Note from (1.8), (2.10), and the embeddings V ↪→ L∞(Ω) and H1(0, T ) ↪→ C([0, T ]) that

|χ∗,ε2 |L∞(Q) ≤ ν3, |g∗,ε|C([0,T ]) ≤ ν3, ∀ε ∈ (0, 1] (6.5)

for some positive constant ν3 independent ε ∈ (0, 1].

Multiply (2.21) by pε. Then, by α ∈ W 2,∞(R) (cf. (A2)), (6.5), and Young’s inequality, we find positive
constants ν4 and ν5, independent of ε ∈ (0, 1], such that

− L0

2

d

dτ
|pε(τ)|2H + h|pε(τ)|2V

≤ν4

(
|pε(τ)|2H + |qε1(τ)|2H + |qε2(τ)|2H

)
+ ν5|θ∗,ε(τ)− θd(τ)|2H (6.6)

for a.a. τ ∈ (0, T ).
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By integrating (6.6) in τ over [T − t, T ] (t ∈ [0, T ]), we have

L0

2
|pε(T − t)|2H + h

∫ T

T−t
|pε(τ)|2V dτ

≤ν4

∫ T

T−t

(
|pε(τ)|2H + |qε1(τ)|2H + |qε2(τ)|2H

)
dτ

+ ν5

∫ T

T−t
|θ∗,ε(τ)− θd(τ)|2Hdτ, ∀t ∈ [0, T ]. (6.7)

Next, multiply (2.21) by −pεt . Then, by α ∈ W 2,∞(R) (cf. (A2)), (6.5), and Young’s inequality, we find
positive constants ν6 and ν7, independent of ε ∈ (0, 1], such that

L0

2
|pεt(τ)|2H −

h

2

d

dτ
|pε(τ)|2V

≤ν6

(
|qε1(τ)|2H + |qε2(τ)|2H

)
+ ν7|θ∗,ε(τ)− θd(τ)|2H (6.8)

for a.a. τ ∈ (0, T ).

By integrating (6.8) in τ over [T − t, T ] (t ∈ [0, T ]), we have

L0

2

∫ T

T−t
|pεt(τ)|2Hdτ +

h

2
|pε(T − t)|2V

≤ν6

∫ T

T−t

(
|qε1(τ)|2H + |qε2(τ)|2H

)
dτ + ν7

∫ T

T−t
|θ∗,ε(τ)− θd(τ)|2Hdτ, ∀t ∈ [0, T ]. (6.9)

Similarly, multiply (2.23) (resp. (2.24)) by qε1 (resp. qε2), and add the resultant to get:

−µ0

2

2∑
i=1

d

dτ
|qεi (τ)|2H + µ1

2∑
i=1

|(qεi )x(τ)|2H + (L1p
ε
t(τ), qε1(τ))H

+(∂2
1K̂

ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε1(τ), qε1(τ))H + (∂1∂2K̂
ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε2(τ), qε1(τ))H

+(∂2∂1K̂
ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε1(τ), qε2(τ))H + (∂2

2K̂
ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε2(τ), qε2(τ))H

−(βα(θ∗,ε(τ))2qε2(τ), qε2(τ))H

= c1(χ∗,ε1 (τ)− χ1,d(τ), qε1(τ))H + c2(χ∗,ε2 (τ)− χ2,d(τ), qε2(τ))H

for a.a. τ ∈ (0, T ).

(6.10)

Since K̂ε is the convex function on R2 (cf. (A5)), note that the Hessian matrix of K̂ε is positive semi-
definite, more precisely,

(∂2
1K̂

ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε1(τ), qε1(τ))H + (∂1∂2K̂
ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε2(τ), qε1(τ))H

+ (∂2∂1K̂
ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε1(τ), qε2(τ))H + (∂2

2K̂
ε(χ∗,ε1 (τ), χ∗,ε2 (τ))qε2(τ), qε2(τ))H

=

∫
Ω

(qε1(τ, x), qε2(τ, x))∇2K̂ε(χ∗,ε1 (τ, x), χ∗,ε2 (τ, x))

(
qε1(τ, x)
qε2(τ, x)

)
dx

≥0, (6.11)

where∇2K̂ε(·, ·) is the Hessian matrix of K̂ε defined by

∇2K̂ε(χ∗,ε1 , χ∗,ε2 ) :=

(
∂2

1K̂
ε(χ∗,ε1 , χ∗,ε2 ) ∂1∂2K̂

ε(χ∗,ε1 , χ∗,ε2 )

∂2∂1K̂
ε(χ∗,ε1 , χ∗,ε2 ) ∂2

2K̂
ε(χ∗,ε1 , χ∗,ε2 )

)
.
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Therefore, by (6.10), (6.11), and Young’s inequality, we find positive constants ν8 and ν9, independent
of ε ∈ (0, 1], such that

− µ0

2

2∑
i=1

d

dτ
|qεi (τ)|2H + µ1

2∑
i=1

|(qεi )x(τ)|2H

≤L0

4
|pεt(τ)|2H + ν8

(
|qε1(τ)|2H + |qε2(τ)|2H

)
(6.12)

+ ν9

(
|χ∗,ε1 (τ)− χ1,d(τ)|2H + |χ∗,ε2 (τ)− χ2,d(τ)|2H

)
for a.a. τ ∈ (0, T ).

By integrating (6.12) in τ over [T − t, T ] (t ∈ [0, T ]), we have

µ0

2

2∑
i=1

|qεi (T − t)|2H + µ1

2∑
i=1

∫ T

T−t
|(qεi )x(τ)|2Hdτ

≤L0

4

∫ T

T−t
|pεt(τ)|2Hdτ + ν8

∫ T

T−t

(
|qε1(τ)|2H + |qε2(τ)|2H

)
dτ (6.13)

+ ν9

∫ T

T−t

(
|χ∗,ε1 (τ)− χ1,d(τ)|2H + |χ∗,ε2 (τ)− χ2,d(τ)|2H

)
dτ, ∀t ∈ [0, T ].

Adding (6.7), (6.9), (6.13), we find positive constants ν10 and ν11, independent of ε ∈ (0, 1], such that

L0

2
|pε(T − t)|2H + h

∫ T

T−t
|pε(τ)|2V dτ +

L0

4

∫ T

T−t
|pεt(τ)|2Hdτ +

h

2
|pε(T − t)|2V

+
µ0

2

2∑
i=1

|qεi (T − t)|2H + µ1

2∑
i=1

∫ T

T−t
|(qεi )x(τ)|2Hdτ

≤ν10

∫ T

T−t

(
|pε(τ)|2H + |qε1(τ)|2H + |qε2(τ)|2H

)
dτ (6.14)

+ ν11

∫ T

T−t

(
|θ∗,ε(τ)− θd(τ)|2H + |χ∗,ε1 (τ)− χ1,d(τ)|2H + |χ∗,ε2 (τ)− χ2,d(τ)|2H

)
dτ,

∀t ∈ [0, T ].

Applying Gronwall-type inequality (e.g., [33, Proposition 0.4.1]) to (6.14), we infer from (6.4) that∫ T

0

(
|pε(τ)|2H + |qε1(τ)|2H + |qε2(τ)|2H

)
dτ

≤ν12

(
|θ∗ − θd|2L2(0,T ;H) + |χ∗1 − χ1,d|2L2(0,T ;H) + |χ∗2 − χ2,d|2L2(0,T ;H) + 1

)
(6.15)

for some constant ν12 > 0, independent of ε ∈ (0, 1], and dependent on T . Hence, we conclude
from (6.14) and (6.15) that

sup
t∈[0,T ]

{
|pε(t)|2H + |pε(t)|2V +

2∑
i=1

|qεi (t)|2H

}

+

∫ T

0

|pε(t)|2V dt+

∫ T

0

|pεt(t)|2Hdt+
2∑
i=1

∫ T

0

|(qεi )x(t)|2Hdt

≤ν13

(
|θ∗ − θd|2L2(0,T ;H) + |χ∗1 − χ1,d|2L2(0,T ;H) + |χ∗2 − χ2,d|2L2(0,T ;H) + 1

)
(6.16)
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for some constant ν13 > 0, independent of ε ∈ (0, 1] and dependent on T .

For any ε ∈ (0, 1], let us now define a bounded and linear functional ςε1 ∈ W ′ on W , by putting:

〈ςε1 , ζ〉W ′,W :=

∫ T

0

{
(∂2

1K̂
ε(χ∗,ε1 (t), χ∗,ε2 (t))qε1(t), ζ(t))H

+(∂1∂2K̂
ε(χ∗,ε1 (t), χ∗,ε2 (t))qε2(t), ζ(t))H

}
dt, ∀ζ ∈ W.

(6.17)

Similarly, we define a bounded and linear functional ςε2 ∈ W ′ on W by:

〈ςε2 , ζ〉W ′,W :=

∫ T

0

{
(∂2∂1K̂

ε(χ∗,ε1 (t), χ∗,ε2 (t))qε1(t), ζ(t))H

+(∂2
2K̂

ε(χ∗,ε1 (t), χ∗,ε2 (t))qε2(t), ζ(t))H

}
dt, ∀ζ ∈ W.

(6.18)

On account of (2.23), (2.25), (6.4), (6.16), and (6.17), there exists a positive constant ν14, independent
of ε ∈ (0, 1], such that:

|〈ςε1 , ζ〉W ′,W | ≤
∣∣∣∣∫ T

0

(µ0(qε1)t(t), ζ(t))Hdt

∣∣∣∣+

∣∣∣∣∫ T

0

(L1p
ε
t(t), ζ(t))Hdt

∣∣∣∣
+

∣∣∣∣∫ T

0

(µ1(qε1)x(t), ζx(t))H dt

∣∣∣∣+

∣∣∣∣∫ T

0

(c1(χ∗,ε1 − χ1,d)(t), ζ(t))H dt

∣∣∣∣
=

∣∣∣∣∫ T

0

(−µ0q
ε
1(t), ζt(t))Hdt

∣∣∣∣+

∣∣∣∣∫ T

0

(L1p
ε
t(t), ζ(t))Hdt

∣∣∣∣
+

∣∣∣∣∫ T

0

(µ1(qε1)x(t), ζx(t))H dt

∣∣∣∣+

∣∣∣∣∫ T

0

(c1(χ∗,ε1 − χ1,d)(t), ζ(t))H dt

∣∣∣∣
≤ ν14

(
|θ∗ − θd|L2(0,T ;H) + |χ∗1 − χ1,d|L2(0,T ;H) + |χ∗2 − χ2,d|L2(0,T ;H) + 1

)
|ζ|W

for any ζ ∈ W = {z ∈ H1(Q) ; z(0, x) = 0, a.e. x ∈ Ω}.

Therefore, we get

|ςε1 |W ′ ≤ ν14

(
|θ∗ − θd|L2(0,T ;H) + |χ∗1 − χ1,d|L2(0,T ;H) + |χ∗2 − χ2,d|L2(0,T ;H) + 1

)
(6.19)

for all ε ∈ (0, 1].

In addition, from (2.24), (2.25), (6.4), (6.16), (6.18), and α ∈ W 2,∞(R) (cf. (A2)), there exists a
positive constant ν15, independent of ε ∈ (0, 1], such that:

|〈ςε2 , ζ〉W ′,W | ≤
∣∣∣∣∫ T

0

(µ0(qε2)t(t), ζ(t))Hdt

∣∣∣∣+

∣∣∣∣∫ T

0

(µ1(qε2)x(t), ζx(t))H dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
βα(θ∗,ε(t))2qε2(t), ζ(t)

)
H
dt

∣∣∣∣+

∣∣∣∣∫ T

0

(c2(χ∗,ε2 − χ2,d)(t), ζ(t))H dt

∣∣∣∣
=

∣∣∣∣∫ T

0

(−µ0q
ε
2(t), ζt(t))Hdt

∣∣∣∣+

∣∣∣∣∫ T

0

(µ1(qε2)x(t), ζx(t))H dt

∣∣∣∣
+

∣∣∣∣∫ T

0

(
βα(θ∗,ε(t))2qε2(t), ζ(t)

)
H
dt

∣∣∣∣+

∣∣∣∣∫ T

0

(c2(χ∗,ε2 − χ2,d)(t), ζ(t))H dt

∣∣∣∣
≤ν15

(
|θ∗ − θd|L2(0,T ;H) + |χ∗1 − χ1,d|L2(0,T ;H) + |χ∗2 − χ2,d|L2(0,T ;H) + 1

)
|ζ|W

for any ζ ∈ W .
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Therefore, we get

|ςε2 |W ′ ≤ ν15

(
|θ∗ − θd|L2(0,T ;H) + |χ∗1 − χ1,d|L2(0,T ;H) + |χ∗2 − χ2,d|L2(0,T ;H) + 1

)
(6.20)

for all ε ∈ (0, 1].

By boundedness estimates (6.16), (6.19), and (6.20), there are a subsequence of ε (which we also
denote ε for simplicity), the functions p ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ), qi ∈ L2(0, T ;V ) ∩
L∞(0, T ;H) (i = 1, 2), and elements ςi ∈ W ′ (i = 1, 2) such that

pε → p in C([0, T ];H),
weakly in W 1,2(0, T ;H),
weakly-∗ in L∞(0, T ;V ),

 (6.21)

pε(·, 0)→ p(·, 0) weakly in L2(0, T ), (6.22)

pε(·, 1)→ p(·, 1) weakly in L2(0, T ), (6.23)

qεi → qi weakly in L2(0, T ;V ),
weakly-∗ in L∞(0, T ;H),

}
(i = 1, 2), (6.24)

ςεi → ςi weakly-∗ in W ′ (i = 1, 2) (6.25)

as ε→ 0.

Taking account of the convergence (6.1)–(6.4) and (6.21)–(6.25), we can prove that the equations
(2.28)–(2.32) hold. Indeed, in a similar manner to the proof of (5.20)–(5.29), we infer from (A2), (6.2),
(6.4), (6.5), and Lebesgue’s dominated convergence theorem that

g∗,ε(·)α′(θ∗,ε(·))→ g∗(·)α′(θ∗(·)) in L2(t0, t1;H),

α′(θ∗,ε(·))α(θ∗,ε(·))χ∗,ε2 → α′(θ∗(·))α(θ∗(·))χ∗2 in L2(t0, t1;H),

α(θ∗,ε(·))2 → α(θ∗(·))2 in L2(t0, t1;H),

for arbitrary 0 ≤ t0 < t1 ≤ T , as ε→ 0. Therefore, it follows from (A2), (6.5), and (6.24) that

g∗,ε(·)α′(θ∗,ε(·))qε2 → g∗(·)α′(θ∗(·))q2 weakly in L2(t0, t1;H), (6.26)

α′(θ∗,ε(·))α(θ∗,ε(·))χ∗,ε2 qε2 → α′(θ∗(·))α(θ∗(·))χ∗2q2 weakly in L2(t0, t1;H), (6.27)

α(θ∗,ε(·))2qε2 → α(θ∗(·))2q2 weakly in L2(t0, t1;H), (6.28)

for arbitrary 0 ≤ t0 < t1 ≤ T , as ε→ 0.

In addition, the approximating adjoint system (2.21)–(2.25) is equivalent to the following variational
identities: ∫ T

0

(−L0p
ε
t(t), $(t))Hdt+

∫ T

0

h(pε(t), $(t))V dt+

∫ T

0

(lqε1(t), $(t))Hdt

+

∫ T

0

(βa1g
∗,ε(t)α′(θ∗,ε(t))qε2(t), $(t))Hdt

−
∫ T

0

(2βα′(θ∗,ε(t))α(θ∗,ε(t))χ∗,ε2 (t)qε2(t), $(t))Hdt

=

∫ T

0

c0(θ∗,ε(t)− θd(t), $(t))Hdt for all $ ∈ L2(0, T ;V ), (6.29)

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020



Optimal control for shape memory alloys of the one-dimensional Frémond model 37

∫ T

0

(µ0q
ε
1(t), ζt(t))Hdt+

∫ T

0

(L1p
ε
t(t), ζ(t))Hdt+

∫ T

0

µ1((qε1)x(t), ζx(t))Hdt

+ 〈ςε1 , ζ〉W ′,W

=c1

∫ T

0

(χ∗,ε1 (t)− χ1,d(t), ζ(t))H dt for all ζ ∈ W, (6.30)

and ∫ T

0

(µ0q
ε
2(t), ζt(t))Hdt+

∫ T

0

µ1((qε2)x(t), ζx(t))Hdt+ 〈ςε2 , ζ〉W ′,W

−
∫ T

0

(βα(θ∗,ε(t))2qε2(t), ζ(t))Hdt

=c2

∫ T

0

(χ∗,ε2 (t)− χ2,d(t), ζ(t))H dt for all ζ ∈ W. (6.31)

Therefore, taking the limit of (6.29)–(6.31) as ε→ 0, we observe from (6.4) and (6.21)–(6.28) that the
adjoint system (2.28)–(2.31) hold. In addition, we conclude from (2.26) and (6.21) that (2.32) holds.

Finally, we show (2.33). To this end, note from (A2), (6.2), (6.4), (6.5), and Lebesgue’s dominated
convergence theorem that

(ǧ − g∗,ε)(·)α(θ∗,ε(·))→ (ǧ − g∗)(·)α(θ∗(·)) in L2(0, T ;H) as ε→ 0.

Hence, we infer from (6.24) that

lim
ε→0

∫ T

0

(βa1α(θ∗,ε(t)), qε2(t))H(ǧ − g∗,ε)(t)dt

= lim
ε→0

∫ T

0

(βa1(ǧ − g∗,ε)(t)α(θ∗,ε(t)), qε2(t))Hdt

=

∫ T

0

(βa1(ǧ − g∗)(t)α(θ∗(t)), q2(t))Hdt

=

∫ T

0

(βa1α(θ∗(t)), q2(t))H(ǧ − g∗)(t)dt, ∀ǧ ∈ H1(0, T ). (6.32)

Therefore, taking the limit in (2.27) as ε→ 0, we conclude from (6.1)–(6.4), (6.21)–(6.24), and (6.32)
that (2.33) hold. Hence, we see that Theorem 2.5 holds in the case when δ > 0.

Similarly, we can consider the case when δ = 0. Indeed, let (f ∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 ) ∈ UMad be any optimal

control for (OP) obtained in Theorem 2.3(I). Namely, there exists a subsequence of ε (denoted by ε for
simplicity) such that (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad is the optimal control for the approximating problem
(OP)ε0, (θ∗,ε, χ∗,ε1 , χ∗,ε2 ) is the unique solution to (SMA;θ0, χ1,0, χ2,0, f

∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 )ε on [0, T ],
(θ∗∗, χ∗∗1 , χ

∗∗
2 ) is the unique solution to the original state system (SMA;θ0, χ1,0, χ2,0, f

∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 )

on [0, T ], and
f ∗,ε → f ∗∗ weakly in L2(0, T ;H), (6.33)

g∗,ε → g∗∗ weakly in H1(0, T ), and in L2(0, T ), (6.34)

γ∗,εi → γ∗∗i weakly in H1(0, T ), and in L2(0, T ), (i = 0, 1), (6.35)
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(θ∗,ε, χ∗,ε1 , χ∗,ε2 )→ (θ∗∗, χ∗∗1 , χ
∗∗
2 ) in (C([0, T ];H))3 (6.36)

as ε→ 0.

On account of (6.21)–(6.28) and the arguments similar to the case δ > 0, we can show that the adjoint
system (2.28)–(2.33) works in the case when δ = 0.

We now show that (f ∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 ) ∈ UMad satisfies the optimality condition (2.33). To this end, we

note from (2.27) and δ = 0 that (f ∗,ε, g∗,ε, γ∗,ε0 , γ∗,ε1 ) ∈ UMad satisfies the following:∫ T

0

a0((a0m0f
∗,ε + pε)(t), f̌(t))Hdt−

∫ T

0

a0(pε(t), f ∗,ε(t))Hdt

+

∫ T

0

a1(m1a1g
∗,ε(t)− (βa1α(θ∗,ε(t)), qε2(t))H)(ǧ − g∗,ε)(t)dt

+

∫ T

0

a2(m2a2γ
∗,ε
0 (t) + kpε(t, 0))(γ̌0 − γ∗,ε0 )(t)dt (6.37)

+

∫ T

0

a3(m3a3γ
∗,ε
1 (t) + kpε(t, 1))(γ̌1 − γ∗,ε1 )(t)dt

≥
∫ T

0

a0(a0m0f
∗,ε(t), f ∗,ε(t))Hdt for any (f̌ , ǧ, γ̌0, γ̌1) ∈ UMad .

Then, by (6.21)–(6.28), (6.32)–(6.36), and the weak lower semicontinuity ofL2-norm, we observe from
(6.37) that ∫ T

0

a0((a0m0f
∗∗ + p)(t), f̌(t))Hdt−

∫ T

0

a0(p(t), f ∗∗(t))Hdt

+

∫ T

0

a1(m1a1g
∗∗(t)− (βa1α(θ∗∗(t)), q2(t))H)(ǧ − g∗∗)(t)dt

+

∫ T

0

a2(m2a2γ
∗∗
0 (t) + kp(t, 0))(γ̌0 − γ∗∗0 )(t)dt

+

∫ T

0

a3(m3a3γ
∗∗
1 (t) + kp(t, 1))(γ̌1 − γ∗∗1 )(t)dt

≥
∫ T

0

a0(a0m0f
∗∗(t), f ∗∗(t))Hdt for any (f̌ , ǧ, γ̌0, γ̌1) ∈ UMad ,

which implies that (f ∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 ) ∈ UMad satisfies (2.33). Hence, we conclude that Theorem 2.5

holds for the the optimal control (f ∗∗, g∗∗, γ∗∗0 , γ
∗∗
1 ) ∈ UMad to (OP) obtained in Theorem 2.3(I).

Thus, the proof of Theorem 2.5 is complete.

Remark 6.1. In Theorems 2.3 and 2.5, we consider two cases: δ = 0 and δ > 0. If δ > 0, then, for
each optimal control (f ∗, g∗, γ∗0 , γ

∗
1) to (OP), we can find the sequence of optimal controls for (OP)εδ

that converges to (f ∗, g∗, γ∗0 , γ
∗
1) strongly in L2(0, T ;H)× (L2(0, T ))3. However, it is very difficult

to give the numerical experiments for (OP)εδ, since the cost function Jεδ depends on the unknown
optimal control (f ∗, g∗, γ∗0 , γ

∗
1) for (OP). If δ = 0, then, the cost function Jε0 is independent of the

optimal control for (OP). Therefore, in the numerical analysis, we are forced to adopt (OP)ε0 as the
approximating problem for (OP). Thus, it is worthy considering the case when δ = 0 in Theorems 2.3
and 2.5.
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Appendix

In this Appendix, we provide a typical example ofKε in Example 2.1, which is a smooth closed convex
set in R2 such that Kε includes the convex set K defined in (1.6). In addition, we give an example of
construction of the convex function K̂ε satisfying assumption (A5).

We first define Kε in Example 2.1 for any ε ∈ (0, 1]. To this end, we specify the boundary of Kε.
Indeed, we consider six boundary parts of Kε illustrated in Figure 3: first, we put

A

(
− ε

3
√

2
,− ε

3
√

2

)
, B

(
1− ε

3
√

2
,−1− ε

3
√

2

)
, C(1 + ε,−1),

D(1 + ε, 1), E

(
1− ε

3
√

2
, 1 +

ε
3
√

2

)
, F

(
− ε

3
√

2
,
ε
3
√

2

)
;

then, we define the boundary ∂Kε of Kε as follows:

1

-1

K

z

z1

2

1

-1

Kz

z1

2 ε

ε

ε

ε

ε

A

B
C

D
E

F

Figure 3: Convex sets K and Kε

∂Kε :



z2 = −z1 −
2ε
3
√

2
on ∂Kε|AB,

|z1 − 1|3 + |z2 + 1|3 = ε3 on ∂Kε|BC,

z1 = 1 + ε on ∂Kε|CD,

|z1 − 1|3 + |z2 − 1|3 = ε3 on ∂Kε|DE,

z2 = z1 +
2ε
3
√

2
on ∂Kε|EF,

|z1|3 + |z2|3 = ε3 on ∂Kε|FA,

(ap.1)

where ∂Kε|ij (i, j = A,B,C,D,E,F) indicates the boundary part of Kε from the points i to j.

By (ap.1), we can define the smooth closed convex setKε with the boundary ∂Kε illustrated in Figure
3 for any ε ∈ (0, 1].

Remark Ap.1. The convex set K is line-symmetric relative to the z1-axis, and hence, the set Kε

defined as above is also line-symmetric (cf. Figure 3). In addition, Kε converges to K in the sense of
Hausdorff distance, thus, in the sense of Mosco [37] as ε→ 0.
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Remark Ap.2. By similar arguments as above, more precisely, by replacing ε with 2ε, we can define
the smooth closed convex set K2ε in R2 such that K2ε includes Kε for any ε ∈ (0, 1] (cf. Figure 4
below).

1

-1

K

z

z1

2

ε ε
ε

ε

ε
ε

ε

K2ε

ε

ε

ε

ε

ε

Figure 4: Convex set K2ε

On account of Remarks Ap.1–2, we can define the smooth convex function K̂ε satisfying assumption
(A5). Indeed, we consider seven regions of R2 illustrated in Figure 5:

R2 := K ∪D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6.

Figure 5: Decomposition of R2

At first, we define

K̂ε(z1, z2) = 0 on K.
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Next, we define K̂ε(z1, z2) on D1 as follows:

K̂ε(z1, z2) :=



0 on D1 ∩Kε,

1

15
√

2

(
|z1|3 + |z2|3

6ε2
− ε

6

)
− 1

30
√

2

(
3
√
|z1|3 + |z2|3 − ε

)
on D1 ∩ (K2ε \Kε),

2

45
√
ε

√
|z1|3 + |z2|3 −

4
√

2

45
ε+

7ε

90
√

2

− 1

30
√

2

(
3
√
|z1|3 + |z2|3 − ε

)
on D1 \K2ε.

Similarly, we can define K̂ε(z1, z2) on Di, (i = 2, 3, 4, 5, 6) by the movement of the above function
along the boundary ∂Kε. Indeed, for instance, we have that

K̂ε(z1, z2) :=



0 on D4 ∩Kε,

1

15
√

2

(
|z1 − 1|3

6ε2
− ε

6

)
− 1

30
√

2
(|z1 − 1| − ε) on D4 ∩ (K2ε \Kε),

2

45
√
ε

√
|z1 − 1|3 − 4

√
2

45
ε+

7ε

90
√

2

− 1

30
√

2
(|z1 − 1| − ε) on D4 \K2ε,

K̂ε(z1, z2) :=



0 on D5 ∩Kε,

1

15
√

2

(
|z1 − 1|3 + |z2 − 1|3

6ε2
− ε

6

)
− 1

30
√

2

(
3
√
|z1 − 1|3 + |z2 − 1|3 − ε

)
on D5 ∩ (K2ε \Kε),

2

45
√
ε

√
|z1 − 1|3 + |z2 − 1|3 − 4

√
2

45
ε+

7ε

90
√

2

− 1

30
√

2

(
3
√
|z1 − 1|3 + |z2 − 1|3 − ε

)
on D5 \K2ε,

and so on.

On account of the construction of K̂ε as above, assumption (A5) can be easily verified by standard
calculations. Here, we omit the details.
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