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Optimal control for shape memory alloys of the one-dimensional
Frémond model

Pierluigi Colli, M. Hassan Farshbaf-Shaker, Ken Shirakawa, Noriaki Yamazaki

Abstract

In this paper, we consider optimal control problems for the one-dimensional Frémond model for
shape memory alloys. This model is constructed in terms of basic functionals like free energy and
pseudo-potential of dissipation. The state problem is expressed by a system of partial differential
equations involving the balance equations for energy and momentum. We prove the existence of
an optimal control that minimizes the cost functional for a nonlinear and nonsmooth state problem.
Moreover, we show the necessary condition of the optimal pair by using optimal control problems
for approximating systems.

1 Introduction

This paper is concerned with optimal control problems for a simplified version of the mathematical
model proposed by Michel Frémond to describe the thermomechanical evolution of a shape memory
alloy. In the one-dimensional setting, one can think to a metallic wire, which has the surprising prop-
erty that it could be permanently deformed and then be forced to recover its original shape just by
thermal means. In the microscopic scale, such phenomenon has been ascribed to (solid-solid) phase
transitions between different configurations of the metallic lattice, known as austenite and martensite
from the metallurgical terminology.

The Frémond model is a macroscopic model which is constructed in terms of basic functionals like
free energy and pseudo-potential of dissipation, and it turns out to be consistent with the fundamental
laws of Thermodynamics (cf. [26, Chapter 13]). The model leads to the system of partial differential
equations and related conditions that is stated below. The balance equations for energy and momen-
tum are coupled with the partial differential inclusion governing the evolution of the pointwise phase
variables 1, X2 that are related to the volumetric fractions of austenite and martensite phases. The
other unknown variable of the system is the absolute temperature @ and, in the fixed one-dimensional
bounded interval 2 := (0, 1), the following system is considered:

<L0(9 - Lle)t - hew:p = aof(t, I) in Q = (07T) X Q’ (11)

X1 X1 16— 0) ,
(), = (), 2100905 (L) o) "9 09
—h0,(t,0) + k(0(t,0) — asyo(t)) = hl,(t, 1) + k(O(t,1) —azn(t)) =0, te(0,T), (1.3)
(xi)e(,0) = (x:)o(t,1) =0, te(0,T),i=12, (1.4)
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0(0,[[’) = 90<l’), Xz(owr) = Xi,O(x)a YRS Q> 1= 17 2. (15)

The initial boundary value problem (SMA):={(1.1), (.2), (1.3), (.4), (1.5)} is based on energy balance

and phase dynamics, while the (longitudinal) displacement w, which plays the major role in the mo-
mentum balance, does not appear explicitly in[[SMA)] Indeed, the momentum balance equation in the
quasi-stationary form reads o, = 0, where the stress o is related to the strain u,,, the temperature 0,
and the phase proportions by the following constitutive relation:

0 = Uy + fa(f)xs.

As the boundary conditions u(t, 0) = 0 (one end of the wire fixed), o(1,t) = Bg(t) (external traction
prescribed) are usually considered, it turns out that in the one-dimensional case o and u can be
completely determined in terms of data and other unknowns (see especially the papers [12}21] dealing
with the one dimensional problem). That is the reason why in the dynamics of x;, ¢ = 1,2, written
above, one finds the complicate expression — a1 g(t)a(0)+ Ba(8)? x> instead of —Ba(0)u,. Infact,
it is time to point out that, in our system, L, L1, h, k, 119 11, 1, 5, and 6 are positive coefficients with
proper physical meaning; in particular, ¢ represents a critical temperature. In addition, a, a1, as, and
ag are fixed real numbers. Furthermore, f : () — R stands for a known source term, while g, 7o, 71
are given functions defined on the finite time interval [0, T]. The nonlinearity o acting on temperature
values is a smooth nonnegative decreasing function, vanishing on the interval [#““, 4+00) for a certain
fixed temperature (the so-called Curie point) 8 > 6°: see, for instance, [13, assumptions (2.12),
(2.13)]. Actually, among the properties of «, in our analysis we just use the fact that o € W2’°°(R). As
the Frémond model assumes a nondifferentiable free energy, in[[SMA)]we meet the maximal monotone
graph Ol, representing the subdifferential of the indicator function I of the plane triangle K (cf.
Figure [1] below):

K:={(EneR;0<¢<, n <€} (1.6)

The set K is convex, and contains the admissible phase proportions. We also notice that

R Oa if (XlaX?) € Ka
T (X1, x2) = { 00, otherwise. (1.7)

An updated and detailed presentation of the Frémond model and related system of equations and
conditions, applying to the multidimensional case as well, is provided in [8,9], [26 Chapter 13], and
[27]. We also point out [8,9] for existence and uniqueness results in the three-dimensional situation:
here, the various nonlinear terms arising in the derivation of the model are taken into account. For a
list of related references as well as for a survey of previous mathematical work, we address the reader
to [7,[13,21]. The large time behavior of solutions is investigated in [17,[21}22] in connection with the
convergence to steady-state solutions, global attractors, and so on. However, the study of the optimal
control problem for the Frémond model has not been reported to date, up to our knowledge. The
reason for that is, in our opinion, due to the difficulties created by the presence of the plane triangle
set K.

In this paper, we deal with the optimal control problem [[OP)| of [SMA)| defined as follows:

Problem (OP): Find a quadruplet of control functions (f*, g*, v&, Vi) € UM such that

J(f*’g*7’78771k): inf , J(fag’70771)7
(f.9:70,m1)€UM
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Optimal control for shape memory alloys of the one-dimensional Frémond model 3

where (f*, g*,7¢,7;) is called an optimal control for (OP); here, putting
U:=L*0,T; L*(Q) x H(0,T) x H'(0,T) x H*(0,T),

L{é‘g is the control space specified by

|9l r10,1) < M,
Uy = { (f,9,7%,m) €U ’ ) (1.8)
4 Vil <M, i=0,1
for some fixed positive number M, and J( f, g, 70, 71) is the cost functional defined by
Co
J@%m%):—/ eedrpdw—/ (1 = x10) Oy
2 — X2.4) ()| 2()
(1.9)

+5 [ I
0
+_j’wmpﬁ+—/%mrw

+—/ aslyo(t |dt+—/ a3|vl )|?dt,

where (f,g,70,71) € UM denotes the generic control and the triplet of functions (6, x1, x2) yields
the unique solution to the state problem with the source term (f, g, 70, 71). We also point out
that the given constants cg, 1, Ca, Mg, M1, Moy, M3 are nonnegative, and 65 € L*(0,T; L*(2)),
X1.4 € L*(0,T; L*()), x2.4 € L*(0,T; L*(2)) represent the known desired target profiles.

Note that if the constant a, is equal to 0, then is a boundary control problem. Similarly, if a; =
as = az = 0, then reduces to a distributed control problem with the heat source as control. In
addition, we remark that -y, (resp. y1) denotes the outside temperature control function at x = 0 (resp.
rz=1).

There is a vast amount of literature on optimal control problems for variational inequalities, phase
transitions problems and so on. In particular, we refer to the contributions [1}/4,6,/11}14-16,[23-25,
28-31,/35,361/38,,142,/43,45,/46]. However, to the best of our knowledge, no result is available for the
optimal control analyisis of problems like probably because of the triangular shape of K and
the non-smooth nonlinearity of the two-components constraints 01 (x1, x2) in (1-2).

The novelties of this work are as follows:

(@) We show the existence of an optimal control for [OP)|

(b) We propose an approximation procedure for[[SMA) and[({OP)| Then, we show the existence of ap-
proximating solutions to [[SMA)] In addition, we investigate the approximating control problems

of [OP)}

(c) We show the relationship between the limits (w-limit points) of sequences of approximating optimal
controls and the optimal controls of the limiting problem [[OP)

(d) We show the necessary conditions for the approximating optimal control problems.

(e) We derive a weak formula of the necessary conditions for the original problem [[OP)] through the
limiting observation of approximating situations.
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Consequently, an effective approximating approach to the optimal controls of our control problem[(OP)|
will be presented as a further conclusion derived from the main results. Also, it is worth considering the
approximating optimal control problems from the view-point of numerical analysis, since the triangle
convexity of K and the full nonlinearity of the constraint 91k (-, -) in cause us the difficulty to
set the numerical experiments for [[OP)

The plan of this paper is as follows. In Section 2, the main theorems, denoted by Theorems [2.1H2.5]
are stated. In Section 3, we check the well-posedness of the state problem and this will help
us to prove Theorem concerned with the existence of an optimal control for [[OP)| The following
Sections 4-5 are devoted to the proofs of Theorems and corresponding to items (b),
(c), and (d), respectively. The final Section 6 contains the proof of Theorem [2.5] which corresponds to
item (e).

1.1 Notations and basic assumptions

We first state the notations that are used throughout this paper.

For any reflexive Banach space B, we denote by | - |5 the norm of B, and denote by B’ the dual
space of B. Additionally, we denote by (-, -) 5. g the duality pairing between B’ and B. Furthermore,
for a positive integer m € N, we use the product space B™:

m m-factors
B":=][B=BxBx---xB
i=1

with the norm:
m

|z|gm = Z |zi|p for z = (21,22, , 2m) € B™.
i=1

In particular, we put H := L?(2) with the usual real Hilbert structure, and denote by (-, )z the inner
product in H, for simplicity.
In addition, let V' be the Sobolev space H*(£2) with the inner product and norm:

(z,w)y = (24, we) g + % (2(0)w(0) + z(1)w(1)) forany z,w €V,

and

2 1/2
el = {Jalh 4 5 (2OF +1:07) ) oramy s € v

which are equivalent to the standard inner product and norm of H'(2).

We now list some notation and definitions of subdifferentials of convex functions. For a proper (i.e., not
identically equal to infinity), I.s.c. (lower semi-continuous), and convex function ¢ : H — R U {occ},
the effective domain D(¢) of ¢ is defined by D(¢) := {z € H; ¢(z) < oco}. We denote by ¢
the subdifferential of ¢ in the topology of H. In general, the subdifferential is a possibly multi-valued
operator from H into itself, and for any z € H, the value J¢(z) is defined as:

00(z) ={z"€ H; ("y—2)g < o(y) —¢(z) forally € H}.

Then, a set D(0¢) := {z € H; 0p(z) # ()} is called the domain of O¢. For various properties
and related notions of a proper, I.s.c., convex function ¢ and its subdifferential J¢, we refer to the
monograph by Brézis [10]. In particular, for those in Banach spaces, we quote the books by Barbu [3},5].

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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We also recall a notion of convergence for convex functions, developed by Mosco [37].

Definition 1.1 (cf. [37]). Let ¢, ¢,, (n € N) be proper, l.s.c., and convex functions on H. Then, we
say that ¢,, converges to ¢ on H in the sense of Mosco [37] asn — o< if the following two conditions
are satisfied:

(i) for any subsequence { ¢y, tren C {Pn}nen, if 2z — z weakly in H as k — oo, then

liminf ¢, (zx) > &(2);

k—

(ii) for any z € D(¢), there is a sequence {z,, }nen in H such that

zn — zin Hasn — oo and lim ¢,(z,) = ¢(2).

n—oo

Next, we give some assumptions on data. Throughout this paper, we assume the following conditions
(A1)—(A4).

(A1) T">0,Lyp>0,Ly >0,h >0,k >0, >0,pu >01>008>0,0>0,c >0,
1 >20,¢c0>20,mg>0,m; >0, mg >0, mg>0,and M > 0 are fixed constants. In
addition, ag, a1, as, as are fixed real numbers.

(A2) o € W2>(R).
(A3) 6y € V,and ;0 € V (i = 1,2) with (1,0, X20) € K, a.e.in Q.
(A4) 0, € L*(0,T;H), x1a € L*(0,T; H), x24 € L*(0,T; H) are the given desired target

profiles.

Finally, throughout this paper, V; and ;, ¢ = 1,2, 3, - - -, denote positive (or nonnegative) constants
depending only on their argument(s).

2 Main results
We begin by defining the notion of solutions to|(SMA)| To this end, given ; € H'(0,T),7i = 1,2, we
define «y by putting (cf. [22} (2.4)]):

K (agy1(t) — aoyo(t))z + hasy (t) Z}E}:——; k)awo(t),

v(t, x) : (t,z) € Q. (2.1)

T oh+k

It is easy to check that v € W12(0, T'; H%(2)) solves the boundary value problem

{ Yo (t,r) = 0 forany (t,z) € Q, (2.2)

_h’)/x(u 0) + k(’y(t7 0) - a2'70(t)) = h%ﬂ(tv 1) + k(y(ta 1) - a3'71(t)) = 07 te (07 T)

Definition 2.1. Lett, € V and x;o € V (i = 1,2). Then, a triplet of functions (0, x1, x2) is called a
solution to|(SMA), or|(SMA;0y, X1.0, X2.0, [+ 9, Y0, 71)| when the data are specified, on [0, T}, if the
following conditions are satisfied:

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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(S1) 0 € WH(0,T; H) N L>=(0,T; V).
(S2) x; € WH(0,T; H) N L=(0,T; V), i =1,2.
(S3) Forallz € V andaa.t € (0,7),

(Loi(t) = La(x1)i(t), 2)m + P(O(t) = 7(1), 2)v = (a0 (1), 2)mr-

(S4) There is a pair of functions (£1,&,) € (L*(0,T; H))? such that

(?) € 0lk(x1,x2), aein@
2

and

Z {ro(0x)e(8)s 2) i + () (), (20)2) 1 + (&(E), 20 }

=1(0° = 0(t). 21) + (—Barg(t)a(0(t)) + Ba(B(1))*x2(t), 22)
forany (z1,23) € V. x V andaa.t € (0,T).

(S5) 9(0) = 90 in H, anXm(O) = Xi,0 inH,i= 1, 2.

Here, we recall the known result of the existence-uniqueness and boundedness of solutions to [[SMA)]

Proposition 2.1. [22, Theorems 2.1 and 2.2] Suppose that assumptions|(AT)| [(A2), and|[(A3)| hold.
Let f € L*(0,T;H), g € HY(0,T), v € H(0,T), andy, € H*(0,T). Then, there is a unique
solution (0, x1, x2) to [(SMA;00, X1.0, X2.0, f+ 9,70, 71)| on [0, T] in the sense of Definition In
addition, there is a positive constant N, independent of f, g, Yo, 71, 6o, X1,0, @nd x2,0, such that the
following estimate holds:

sup (000 + 3 swp ()l + [ OB+ 3 [ ool

t€[0,T) i—1 t€l0,7]

v+ a3l (0)]* + agn (0)”

< N1(|90|%/+\X1,0|%/+|X2,0

+ag’f’%2(0,T;H) + aﬂgﬁ?(oi) + a%hoﬁxvlﬂ(o,T) + a%”}/ll%/vlv?([),T) + 1)

In the next Section 3, we give a sketch of the proof of Proposition For the other results of [SMA)]
we refer to [22], for instance.

We now state the first main result of this paper, which is concerned with the existence of an optimal

control for [[OP)l

Theorem 2.1. Suppose that assumptions (A1)} [(A2)] [(A3), and[(A4)| hold. Then, the problem[(OP)|
has at least one optimal control (f*, g*, v, i) € UM, namely,

J(f*7g*7’y(>)k>ﬁ)/>1k) = inf J(f797’70,71)-

M
(f,9,70,m1) €U

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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Remark 2.1. Note that Theorem|2.1do not cover the uniqueness of optimal controls for(OP)| Although
Hoffmann—Jiang |30] reported the uniqueness of optimal controls for a regular Fix—Caginalp system,
their technique is not applicable to our prob/em because of the constraint 01k (x1, x2) in (T-2).
Therefore, the uniqueness question of optimal controls for[(OP)| remains open.

In Section 3, we prove Theorem by the quite standard method. In fact, by using the result of
convergence of solutions to [[SMA)| we give the proof of Theorem [2.1

Note that it is very difficult to show the necessary conditions for [OP)|directly, because of the constraint
OIk(x1, Xx2) In (cf. Remark . Therefore, by investigating approximating problems for |(SMA)
and we show a limiting optimality system for[(OP)| To this end, we consider the following smooth
function K¢ on R? for each ¢ € (0, 1]:

(A5) For each ¢ € (0, 1], the function K¢ is convex and non-negative on R? such that K¢ €
CQ(R2), @'8]-[(8 S WI’OO(R2) (Z,] = 1,2),

K*® = {(21,22) S RZ 3 [A(E(zl,zQ) = O} D) K,

8,-8»}?€ 21, 2)| < = foranyi,j = 1,2, andany (21, 22) € R?, (2.4)
J

™| =

and
Ke converges to I on R? in the sense of Mosco [37] as ¢ — 0,

where 81-[?5(21, 29) is the partial derivative of IA(E(zl, 25) with respect to the variable z; (i =
1,2), namely, 0; :== 0/0z;.

Remark 2.2. A function with properties as in has already been used in [6,/40,/41]. Indeed, for
each e € (0, 1], a non-decreasing function F* is defined by:

1 [s—1]"

Ir|
Fe(r) = sign(r)/ min {—, }ds forr € R,
0

€ g2

where [ - | denotes the positive part of functions, and sign(+) is a signum function so that sign(0) = 0.
In addition, let F'* be a primitive of F** such that

F°(0)=0 and F°(r)>0 forallr € R.

Then, we observe that F* is a C'' -function with derivative (F¥) € W (R),

1
0<(F*)(r) <= foranyr € R,
5

and e converges to I|_1 1) on R in the sense of Mosco [37] as ¢ — 0, where I|_, 1) is the indicator
function of the closed interval [—1, 1], that is defined by

0, ifrel-1,1],
oo, otherwise.

Ii1yy(7) = {

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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Note that the function /¢ in assumption (A5)| can be easily defined for each ¢ € (0, 1]. We here give
a typical example of K°.

Example 2.1. Foreache € (0,1], let K© be a smooth closed convex set in R? such that K¢ includes
the convex set K, the boundary of K¢ is described by the combination of linear functions and cubic
functions (cf. |z1|® + |z2|*> = constant), and K¢ converges to K in the sense of Hausdorff distance
as e — 0. More precisely, the pictures of K and its approximating set K* are illustrated in Figure[1]
Then, by arguing similarly as in Remark we can define the smooth convex function K¢ satisfying
assumptionq@%l The typical graph of K¢ is illustrated in Figure@ which is described by the combi-
nation of a cubic surface, a smooth surface, and so on (cf. (|z1|® + |22|%) /€%, \/|21] + |22 /V/E,
and so on). For such constructions, we refer to the Appendix.

Zz Zz KE

Figure 2: The typical graph of Ke

Now, for each € € (0, 1], we present the following approximating state system for |(SMA), denoted by
(SMA)7}
Problem (SMA)°.

(L06€ — lezi)t — hﬁfm = aof(t, I) in Q = (0, T) X Q, (2.5)

Xi _ Xi TFE(LE E) l(@c_es) ) ;
Ho (X;)t Ha (X%) » + VK (X1, x3) = <—ﬁalg(t)0z(95) + 504(95)2)(% in@, (26)

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020



Optimal control for shape memory alloys of the one-dimensional Frémond model 9

CROE(E,0) + k(05 (,0) — azyo(t)) = hOE(t, 1) + k(6°(t,1) — azm(8)) = 0, t € (0,T), 2.7)

(X7)2(t,0) = (x7)(t,1) =0, t€(0,T),i=1,2, (2.8)

66(0’1‘) = 00(1:)7 Xf(o,l’) = Xi,O(x)a S Qv L= 17 2. (2.9)

In the rest, we denote |(SMA)| by | (SMA;0y, X1,0, X2.0. f, 9, Y0, 71)|when the data of the initial value
6o, X1.0, X2,0 and the control functions f, g,70, 71 are specified. Note that for each ¢ € (0, 1], the
constraint 01k (X1, x2) as in is approximated by VA= (x5, x5)(= OK®(x5,x5)). In a similar
way to Proposition [2.1], we immediately get the following proposition, concerned with the solvability of

the approximating state problem [(SMA)?| (¢ € (0, 1)).

Proposition 2.2. Suppose that assumptions|[(A1)| [(A2)| [(A3), and|(A5) hold. Let f € L*(0,T; H),
g € HY(0,T), v € H*0,T), and~, € H'(0,T). Then, for each ¢ € (0, 1], there is a unique
solution (6%, x5, x3) to|(SMA;6y, X1.0, X2.0, [, 9, Y0, 71)|on [0, T'], which solves the equations (2.5)—
(2.9) in the following sense:

(i) 0° € W12(0,T; H) N L>(0,T;V).
(i) x: e WH2(0,T; H)N L>(0,T;V),i=1,2.
(iii) Forallz € V anda.a.t € (0,7T),
(Lob; (t) — Lai(x1)e(t), 2) i + h(0°(t) — v(1), 2)v = (a0 f (), 2)m,
where 7 is the function defined in (2.1).
(iv) Forall(z1,20) € V xV andaa.t € (0,T),

> {uo((xf)t(t), 2+ i ((6)e (), (2)a)m + (0K (X (1), X5(1)), Zi)H}

i=1

=1(0° = 0°(t), 21) y + (—Barg()a(°(1)) + Ba(0°())*X5(t), 22) -
(v) 6°(0) =6y in H, and x5(0) = x,0in H,i =1,2.

In addition, there is a positive constant N, independent of €, f, g, 7o, 71, 00, X1,0, @nd X2,0, such that
the following estimate holds:

2 T 2 T
sup [FOR + 3 sup R + / 0 () Byt + / O (0) Byt
=1

te[0,7) i—1 t€0,71]
2 2 2 2 2, 2 2 (2.10)
< No| 6ol + [x10l7 + [x20l + a3|70(0)]* + a3|71(0)]

+ag|f|i2(O,T;H) + a%|g|i2(0,T) + a%|’70|12/1/1’2(0,T) + a§|’71|%/[/172(0,T) + 1) :

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020
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In Section 4, we give the sketch of the proof of Proposition

Now, for each ¢ € (0, 1] and § > 0, we present an approximating optimal control problem for |(OP),
denoted by (OP);3| as follows:

Problem (OP);. Find an optimal control (f*¢, g%, vy, 71"°) € UM, namely,

Jg(f*,«f’g*,‘f’,ygve?,yi“ﬁ) = inf Jg(f797707fy1)7

(f.970m1) UM

where J5(f, g,7,71) is the cost functional defined by

G T C T
F(F9.00m) =2 10 = 0@ Bt + S [ 106 — ) @) s
0 0
T
C
+2 106~ xaa) O et

2 Jy
T
+—/‘aﬂnwu~—/(mgﬁﬁ

+—/ a3l (t) 2dt+—/ a3y (t)[*dt

2/\@ P2 [ it oo

#5 [ 0= iP5 [ on=snra

(2.11)

Here, (f,9,%,71) € UM is the control and the triplet of functions (6%, x5, x5) is the unique solu-
tion to the state problem (SMA;6, X1.0, X2.0, /> 9, Yo, Y1)} Moreover, as in (1.9), 6, € L*(0,T; H),
X1.4 € L*(0,T; H), x2.4 € L*(0,T; H) are the given desired target profiles, while (f*, g*, 75, 7;) €
UM is any fixed optimal control for[[OP)] obtained in Theorem

We now state the second main result of this paper, which is concerned with the existence of an optimal
control for [(OP)5|for each ¢ € (0, 1] and § > 0.

Theorem 2.2. Suppose that assumptions|(A1)H(A5) hold. Lete € (0,1],6 > 0, andlet (f*, g*, 75, 75) €

L{é\fl be a chosen optimal control for|(OP)| given by Theorem E Then, the approximating problem
(OP)| has at least one optimal control (f*<, g*< vy, 71°) € UM, namely,

B g ) = b JS(fg00m):

(f,9,70,m )€U

The following third main result of the paper is concerned with the relationship between|(OP)|and|(OP);

Theorem 2.3. Suppose that all the assumptions of Theorem|[2.2 hold. Then, the following two state-
ments hold.

() Letd = 0,e € (0,1], and let (f*=, g%, 75, v1°) € UM be an optimal control for the
approximating problem [(OP):| In addition, let (6%, 7, x5°) be the unique solution to the
state problem|(SMA;00., x1,0, X2.0, /™, 9,7 71" )| on [0, T|. Then, there exist a subse-
quence {, }nen C {€}ec(0,1], @ quadruplet of functions (f**, g™, 7¢*,7*) € UL}, and the
unique solution (60", x7*, x3*) to|(SMA;6y, 1,0, X2.0, [, ¢, 7", 717)| on [0, T| such that
(f**, 9,7, ~7") is an optimal control for|(OP)| ,, — 0, and

oo — f** weakly in L*(0,T; H), (2.12)
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g — g™ weakly in H*(0,T), and in L*(0,T), (2.13)
AT — i+ weakly in H(0,T), andin L*(0,T), (i =0, 1), (2.14)
(05 G ™) = (07 3 ) i (C0.T): H)) 215)

asn — Q.

() Letd > 0,e € (0,1], and let (f*=, "%, 75, 71°) € UM be an optimal control for the ap-
proximating problem Let (f*, 9", 7, 7i) € UM be an optimal control for|(OP)| obtained
in Theorem|2.1| In addition, let (6%, x1°, x5°) and (6%, x3, X5) be the unique solution to the
state problem|(SMA;0, X1,0, X2.0, /% 9%, %0, Y1) | and(SMA0o, X1.0, X2.0, /™5 97765 77))
on [0, T, respectively. Then, there exist a subsequence {c,}nen C {€}ec(o,1) Such that

en — 0,
o5 = % in LZ(O’T; H), (2.16)
g — g* weakly in H*(0,T), and in L*(0,T), (2.17)
Nfm — yF weakly in H'(0,T), and in L*(0,T), (i = 0,1), (2.18)
(6750 XX = (8 xind) in (C(0.T): H))P 219
asn — oo.

The proofs of Theorems [2.2] and [2.3] are given in Section 5. To show Theorem [2.3] we use the
fact that the unique solution (6%, x5, x5) to (SMA;00, X1.0, X2.0, /5, 9%, V5, 75 )7| converges to the
solution (6, x1, x2) to [(SMA;00, X1.0, X2.0, f> 9> Y0, 71)|in (C([0,T]; H))? as ¢ — 0, if the data
(f%,9°,75, ;) converges to (f, g,70,71) as € — 0 in some appropriate sense.

The fourth main result is concerned with the necessary condition of an optimal sevenfold
(05, X%, x5, 55, g%, 70°,70°) for[(OP)SL where (%2, X%, x3°) is the unique solution to the
state problem |(SMA;0, 1.0, X2.0, /%, 9", Y%, 71 )| on [0,T], while the quadruplet
(f5, 0,7, °) € UM denotes the optimal control for [(OP)%| obtained in Theorem

Theorem 2.4. Suppose that all the assumptions of Theorem hold. Let the quadruplet
(f*, 95,7, 7)€ UM be any optimal control for obtained in Theorem In addition, for
the fixed number e € (0,1] and 6 > 0, let (f*<, g%, 7y°,7,°) € UM be an optimal control for
the approximating problem [(OP)5| obtained in Theorem with (6%, X7, x5°) being the unique
solution to the state problem |(SMA;00, X1.0, X2.0, /%, 95,7 ", 71" )| on [0, T). Then, there exists
a unique solution (p°, ¢5, ¢5) to the adjoint equations on [0, T'] as follows:

(p°, 45, ¢5) € W20, T; H) N L=(0,T;V))?; (2.20)

—Lop; — hp5, + 1g5 + Barg™® () (0°°)q5 — 28/ (0°°)a(0°) x5 ¢5
= o0 —0,) inQ;

—hp(t,0) + kp°(t,0) = hpi(t,1) + kp°(t,1) =0, t € (0,7), (2.22)

(2.21)
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—p0(q])e + Lapf — pa(q5)aa + OT K (X1, X5 )a + 0102 K° (X7, x2°) a5

e ) (2.23)
= (X7 —x1,0) inQ;
—110(g5)e — H1(05) e + D201 K= (X1, X57)05 + OFK=(3°, X57) a5 — Be(6*) g5 (2.24)
= Cco(X3" — X2,a) InQ;
(@©)alt,0) = (©)a(t1) = (E)a(t,0) = (E)a(t,1) =0, tE(0,T), (225
p°(T,x)=q¢i(T,2) =¢5(T,z) =0, z €. (2.26)
In addition, (p®, 45, q5) satisfies the following inequality:
T
/ aol(aomof™ + %) (1), (F — F*)(t)) mdt
0
T
T / ax(armag™ (1) — (Bor (6°()), 5(6)ar) (G — g°°) ()t
0
T
T / an(azman(t) + kp (£,0)) (o — 7% (E)dt
0
T
T / as(asms(8) + k()0 — 7 (1)t
0
T
. / (£ = F)O. (F — £ () et @27)
0

i / (1 — ) () (o — 45 ()t

+6 [ (1T =) () (5 — 1) (t)dt
>0, Y(f 9% %) €UM.

In Section 5, we prove Theorem by showing the result of Gateaux differentiability of the cost
functional J5 (-, -, -, -).
In Theorem we get the optimality condition for|(OP)5l However, in general, it is difficult to show the

necessary condition of the optimal control for (OP)| since the subdifferential O (-, -) in (T.2) is not
smooth. Thus, by using the approximating problems |(OP)3 we give the optimality condition for |(OP)

We now state the final main result of this paper, which is concerned with the necessary condition of
the optimal control for [[OP)]

Theorem 2.5. Suppose that all the assumptions of Theorem|2.2 hold. Let the quadruplet ( f*, g*, 5, V1) €
UM be any optimal control for|(OP)| obtained in Theorem|2.1| Let (6*, x}, x3) be the unique solution
to the state problem[(SMA:0, x1,0, X2.0, /> 9, 15.71)|on [0, T'. In addition, let us set:

W= {¢e H'(Q): ¢(0.2) =0, aaz € Q}.
Then, there are the functions

pe W0, T; H)NL>(0,T;V), ¢ € L*0,T;V)NL¥(0,T; H) (i =1,2),
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and the elements ; € W' (i = 1, 2) satisfying the following:

—Lopt — hpaa + Ly + Barg* (1)’ (6%)q2 — 26/ (0%) o (0%) x5(t) o

— o0 —0a) N Q. 229
—hp,(t,0) + kp(t,0) = hp,(t,1) + kp(t,1) =0, t € (0,7), (2.29)

/ (1101 (1), Go(6)) st + / (Lape(t), () st + / (2 (@) (8), Colt)) et
0 0. 0 (2.30)

e, Owear = €4 / (G (0) — x0a(), ()t foral ¢ € W,
0

/  (ona6), (1)) el + / (1 (02)a (00, o))t + G

- [ ot 0Pt Ot )
—a | "0 — xaalt), CO)mdt oranC € W
p(T,z) =0, z €. (2.32)
In addition, (p, q1, qo) satisfies the following inequality:
[ aoltamos® + 910G - )0

[ antamig 0 = (G0 60, ) 0 - o)

- " amman (6) + kplt, 0))Go — %) () (239

+ az(asmai (t) + kp(t, 1)) (1 — 71)(t)dt

207 v(f7g7’?07’?1>€ué\c4l'

In Section 6, we prove Theorem [2.5by letting € — 0 in (2.21)—(2.27).
Remark 2.3. The identities (2.30) and (2.31) can be regarded as some variational forms of

—po(qr)e + Lipe — po(q1)ze + 1 = c1(X] — X1.4),

and
—10(q2)t — 111(q2)aw + 2 — Ba(07)?q2 = c2(X5 — X2.4)
in the distribution sense, respectively.

3 Optimal control for (OP)

In this section, we prove Theorem which is concerned with the existence of an optimal control for
[[GP)] Throughout this section, we suppose that all the assumptions of Theorem 2.1]are made.

We begin with the sketch of the proof of Proposition |2.1
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Proof of Proposition[2.7] This proposition has already been proved in [22, Theorems 2.1 and 2.2].
However, we give the sketch of the proof of this Proposition 2.1]to make use of a similar idea in the
approximating state problem|(SMA)?| (¢ € (0, 1]).

Note that ¢ € C([0,T]), because H'(0,T') is compactly embedded in C'([0,77]). Then, by the
standard monotone arguments as in [22, Theorem 2.1], we can show the uniqueness of solutions to
(SMA)L Therefore, we here omit the detailed proof of the uniqueness of solutions to|(SMA)

We next give the sketch of the proof of existence of solutions to[[SMA)] To this end, note that[(SMA)|
can be reformulated to the following system of abstract evolution equations:

0,(t) — E—O(Xl) (t) + 04 (0(1)) > Z—Zf(t) inH fort € (0,7), (3.1)

06 (0 x3(0)) + 200 (0) X2 (1) + Gy O xal0) 3 0,0) WX H 5
fort € (0,7,

9(0) = 90 in H, and (X1<O),X2(0)) = (Xl,OaX?,U) in H x H. (33)

Here, O¢'(+) is the subdifferential of a time-dependent convex function ¢’ (-) on H foreach t € [0, T7,

defined by
h

—_— —_ 2 1
gOt(Z) = 2L0 z ’Y(t)|V> if 2 € V>

00, otherwise,

(3.4)

where 7 is the function defined in (2-7). In addition, (-, -) is the subdifferential of a convex function
1 on H x H, defined by:

Z/|Z”” )|?dx

2#0
21, %29) 1=
Ve =) + L | Iic(a1(@), s@))d, im € V=12,
Ho
00, otherwise.

\

Furthermore, G, (-, *) is a time-dependent operator on H x [ for each 6§ € C([0,T]; H) and
t € [0, 7], defined by

G (e1,72) = o (=U0° = 0(0). Bang()a0(0) = BaO)*2)
forany (21, 22) € H x H.

Then, we can show the existence of a solution to (3.1)—(3.3) by employing the fixed point argument
for continuous operators in compact convex sets (e.g., Schauder’s fixed point theorem). Indeed, by
modifying the proof of [22, Theorem 2.1] (cf. [34, Theorem 2.1]), we can construct a solution to (3.1)—
(3.3). Hence, we omit the detailed proof.

In addition, from the standard calculations (cf. [22, Theorem 2.2]), we obtain (2.3). Indeed, multiplying

(@) by (1/L1)(6(t) — () and 0,(t) — (1), multiplying (.2) by (11/1120) (X1 (t), x2(t)) and
(1/0)((x1)e(t), (x2):(t)), using Young’s inequality, and integrating in time, we get the a priori estimate
(2.3). For such arguments, we refer to [22, Theorem 2.2].

Thus, the proof of Proposition is complete. O
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We now state the result of continuous dependence of solutions to

Proposition 3.1. Suppose that all the assumptions of Proposition hold. In addition, assume

{fn}neN C L2(07T; H)! {(gm’yo,m’yl,n)}neN C (HI(O,T))3, f € L2(0,T;H), (9770771) €
(H'(0,7))3, and

fn — f weakly in L*(0,T; H), (3.7)
gn — g weakly in H'(0,T), (3.8)
(Yons Y1.n) = (0, 71) in (C[0,T1)? (3.9)

asn — o0o. Let (6, X1.n, X2.n) @nd (0, x1, x2) denote the unique solutions to the state problems

[(SMA;00, X1,05 X205 fn: 9y Yo V1.0)| @NA[(SMA:H, X1.0, X205 /> 9: Y0, Y1)} respectively, on [0, T'.
Then, (0., X1.n, X2.n) converges to (0, x1, X2) in the sense that

(Qna Xl,na X2,n) — (€7 X1, XQ) in (C([Oa T]a H))3 asmn — oo. (310)

Proof. By (2.3), there are a subsequence {ny}ren C {n}nen, the triplet of functions (0, x1, x2) €
(W20, T; H) N L>=(0,T;V))? such that nj, — oo,

(enkv Xl,nka XZ,nk> — (67 X1, XZ) in (C([07 T]7 H))37
weakly in (W12(0,T; H))3, (3.11)
weakly-* in (L>°(0,T;V))?

as k — oo.

We now show that (6, x1, x2) is a solution to|(SMA;6y, X1.0, X2.0, f> g, Y0, 71)|on [0, T']. To this end,
note that the solution (an, X1,mp X?m) to ((SMA)| satisfies the following abstract evolution equations
(cf. Proposition [2.1):

(Ony)e(t) + Oy, (0n, (1)) = %fnk () + %(ka)t(t) in H fort € (0,7), (3.12)
0 0
d
%(Xlﬁk (t)7 X2,ny, (t)) + 8w(X17nk (t)7 X2,ny, (t)) > _Gznk (t)(Xl,nk. (t)7 X2,ny, (t)) (3.13)
in H x Hfort e (0,T),
enk (0) = 90 in Ha and (Xl,nk (0)7 X2,n (O)> = (Xl,O; XQ,O) in H x H7 (314)

where ], (-) is the time-dependent convex function defined by (3.4) with () replaced by 7, (¢), and
(-, ) is the convex function defined by (3.5). In addition, ngk(t)(., +) is a time-dependent operator

on H x H defined by with 6(t) and g(t) replaced by 6, (t) and g, (t), respectively:

1

Gy, (21, 22) = g U= O, (), Bargn, () (B, (1)) = Ber(Bn, (£))*22) (3.15)

forany (21, 22) € H x H.

From (3.11), and Lebesgue’s dominated convergence theorem, note that

a(f,,) — a(f) in L*(0,T; H) as k — oo. (3.16)

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020



P. Colli, M.H. Farshbaf-Shaker, K. Shirakawa, N. Yamazaki 16

We also note from and the compact embedding H'(0, 7)) — C([0,T]) that
Gn, — g inC([0,T)) as k — oo,
taking a subsequence if necessary. Thus, we observe from (3.11), and that
G() )(Xl s X2y ) — Gé'().)(xl, X2) weakly in (L*(0,T; H))? (3.17)
as k — oo. In addition, we easily observe from and that
Yo — 7 INC([0,T]; V) as k — oo, (3.18)

thus,
©h, — @' on H in the sense of Mosco [37] as k — oo forall ¢ € [0, 7. (3.19)

Applying the abstract convergence theorem established in [2,33] with (3.7), (3.11), (3.17), and (3.19),
there is a triplet of functions (6, \1, X2) (taking a subsequence if necessary) such that (0, X1, X2) €
(Wh2(0,T; H) N L>(0,T;V))?,

(en,w X1,np5 X?,nk) — (ga %17 %2) in (C<[07 T]v H))S ask — 00, (3-20)
and (5, X1, X2) is the unique solution to the following system:

5@+%(UD—#U+%%H)Mﬂwe@ﬂ, @21)

S0, Ta(0) + 0RO, Talt)) 3~ Gy (1 (), xa0) in H x Htort € (0.7), (322

0(0) = 6 in H, and (Y1(0), X2(0)) = (x1.0, X2.0) in H x H. (3.23)

On account of the uniqueness of solutions to (3.21)-(3.23) and to the state problem
I(SMA;00, X1.0, X2.0, [+ 9, Y0, 71)|(cf. (3-1)—(3-3)), we conclude from (3:17) and that (0, x1, X2) =
(0, X1, X2) is a unique solution to |(SMA;90, X1,05 X2.05 f> 9, Y0, 71)on [0, 77, and the convergence
holds without extracting any subsequence from {n},cn. Thus, the proof of Proposition has
been completed. O

We now prove the main Theorem [2.7] of this paper, which is concerned with the existence of an optimal

solution to [[OP)]

Proof of Theorem[2.1l By the quite standard method, we can prove Theorem Indeed, let
{(fn, Gny Yo Y1.m) fnen C UM be a minimizing sequence such that

lim J(fnagm'}/O,m'Vl,n) = inf J(fuga'VOa'Vl)'
n—00 (f.9:70,m1)€UM

Then, from the definition (7-9) of J(f, 9n, Yo.n, Y1.n), it follows that { f,, }.en is bounded in L2(0, T'; H).
In addition, from the definition (T-8) of UM, we see that { (g, Yo.n, V1.n) }nen is boundedin (H'(0,T))3.
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Note that H'(0,T) is compactly embedded in C([0,T]). Therefore, there are a subsequence
{ni}ren C {n}nen and the quadruplet of functions (f*, g*, v, v5) € UM such that ny — oo
and

frn. — [ weaklyin L?(0,T; H), (3.24)
gn — g* weakly in H'(0,T), in C([0,T)), (3.25)
(Yoms71.) = (70, 71) weakly in (H(0, 7)), in (C([0,T7))? (3.26)

as k — oo. Indeed, we get (f*, g*,75,77) € UM, because UM is a convex and closed subset,
hence is weakly closed.

Let (s X1,k X2,, ) UNiQuely solve problem [(SMA;0o, X 1.0, X205 fr > Gngs Y0.n5: Yine )| ON [0, T
Then, by Proposition[3.1] we observe that

(an X1,n5 X2,nk) — (9*7 X; X;) in (C([()? T]; H))S ask — o0, (3.27)

where (6%, X}, x3) is a unique solution to [((SMA;0y, X1.0, X2.0. f*, 9", 75, V1)l on [0, 1.
Therefore, it follows from (3.24)—(3.27) and the weak lower semicontinuity of L2-norm that

J(f*ug*778»71k) S lim J(fnmgnk”YO,nk?’YLnk) = inf J(f7g770771>7
k—o0 (f:9v0,m)eUM

which implies that (f*, ¢*,75,77) € Z/Ié‘g is an optimal control to |(OP)| Thus, the proof of Theorem
[2.1]is complete. O

4 Approximating problems (SMA)° and (OP);

In this section, we consider the approximating problems [SMA)F and [[OP)j| of [SMA)| and [([OP)]
respectively, for each ¢ € (0,1] and 6 > 0. After showing the solvability of |(SMA)®| we prove
Theorems and which is concerned with the existence of optimal control for |(OP);| and the

relationship between|(OP)[and [(OP)j

We begin by proving Proposition which is concerned with the solvability of the approximating
system |(SMA)F.

Proof of Proposition[2.2 By a similar argument to we can construct the unique solution

(65, X3, x5) to [((SMA;0y, X1.0, X2.0, f, 9,70, 71)°| on [0, T'] satisfying the bounded estimate (2.70).
Indeed, the approximating problem [(SMA)®|is reformulated to the following system of abstract evolu-

tion equations (cf. (8.1)—(3.3)):

Gi(6) — 22 0EN(E) + 0 (67 (1)) 3 S° 7 (1) in H fort € (0,T), 1)
0 0
d
S (X0, x5 (1)) + 0¢7(xi (1), x2(t)) + G-y (X3 (1), x5(t)) = (0,0) in H x H (4.2)
fort € (0,7,
98(0) = 00 in H, and (Xi(()),Xg(O)) = (XLO? ngo) in H X H, (43)
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where ' (+) and Gf,)(-, -) are same ones defined by (3.4) and (3.6), respectively. In addition, for each
e € (0, 1], ¢° is a proper, l.s.c., and convex function on H x H, defined by:

2M02/|sz o)fde

] _ 4.4
V¥(a1, 22) +— KE(Zl( ), 22(x))dx, itz eV, i=1,2, 9

00, otherwise,

where [A(s(-, -) is the function in the assumption |(A5)

Therefore, by the slight modification of the proof of [22, Theorems 2.1 and 2.2], we can show that
I(SMA;00, X1.0, X2.,0, f+ 9,70, 71)°| has a unique (6%, x5, x5) fulfilling ()—(v) and the a priori estimate
(2.10) in Proposition For the detailed arguments, we refer to [22, Theorems 2.1 and 2.2].

Thus, the proof of Proposition[2.2]is complete. O

We now state the following result of continuous dependence between|(SMA){and|(SMA)%|(e € (0, 1]).

Proposition 4.1. Suppose that all the assumptions of Proposition hold. In addition, assume
€ € (07 1]: {fs}ee(l),l] C L2(07 T7 H), {(ge’ 787 7%)}56(0,1} C <H1(Oa T))S! f S LZ(Oa T7 H)’
(9:70,m1) € (H'(0,T))?, and

f¢ — f weakly in L*(0,T; H), (4.5)
g° — g weakly in H'(0,T), (4.6)
(76,71) = (0,71) in (C[0, T))? (4.7)

as ¢ — 0. Let (6°,x5,Xx5) be the unique solution to the approximating state problem
I(SMA;60, X1.0, X2.0, /%, 9,76, V) on [0, T]. Then, (6, x5, x5) converges to the unique solution
(6, X1, x2) to[(SMA;00, X1.0, X2.0, J> 9, Y0, 71)| on [0, T in the sense that

(6°, X1, x5) = (6, x1.x2) in(C([0,T); H))? ase — 0. (4.8)

Proof. By (2.10) with (#5), #-6), and (4.7), there are a subsequence {&, }nen C {€}-c(0,1) and the
triplet of functions (0, x1, x2) € (W12(0,T; H) N L*°(0,T;V))?3 such that &,, — 0,

(6=, X3, x5") = (0, x1,x2) in (C([0,T1]; H))?,
weakly in (W12(0,T; H))3, (4.9)
weakly-* in L>((0,T;V))3

as n — OoQ.

By similar arguments used in the proof of Proposition (3.1}, we can show that (0, x1, x2) is a solution to

I(SMA;00, X1.0, X2.0, f+ 9,70, 71)|0n [0, T]. Indeed, note that the solution (6", xi", x5") to|(SMA)°"
satisfies the system of abstract evolution equations (4.1)—(4.3) with € replaced by ¢,,. In addition, we

observe from assumption [(A5)| that

Y — 1) on H x H in the sense of Mosco [37] as n — oo,
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where 1" and 1) are convex functions defined in (4.4) with € replaced by ¢,, and (3.5), respectively.

By a similar manner to the proof of Proposition , we conclude that (6, x1, x2) is a unique solution
to[(SMA:6y, X1.0, X2.0: f, 9, Y0, 71)|on [0, T'], and the convergence (4.8) holds without extracting any
subsequence from {8}56(0’1}. Thus, the proof of Proposition is complete. O

We now prove the second main theorem of this paper (Theorem [2.2), which is concerned with the
existence of an optimal control for|(OP)5|for each € € (0, 1] and § > 0.

Proof of Theorem[2.2. By an argument similar to that as in Proposition (cf. Proposition 4.1), we
can obtain the result of convergence of solutions to Hence, for each ¢ € (0,1] and 6 > 0,
the proof of the existence of an optimal control (f*<, g*¢ v;°, %) € UM forwiII be a slight
modification of that as in Theorem Thus, we omit the detailed proof of this Theorem O

We next prove Theorem concerning the relationship between the optimal control problems [[OP)|

and

Proof of Theorem2.3. We first show (I) Assume 0 = 0. Let {(f*™*, g*, 79, 11’ E)}ge(o 1] C U be
a sequence of optlmal controls for gl Let (f, 9,70, 71) be arbitrary function in uM d - In addition, let
(0%, x5, Xx5) be a unique solutlon to the approximating state problem
I(SMA;00, X1.0, X2,0, f+ 9,70, 71)| on [0, T, and let (6, x1, x2) be a unique solution to the original
state problem|(SMA;0o, X 1.0, X2,0, f> 9, %0, 7] on [0, T]. Then, we observe from Proposition 4.1]that

X1, X2) = (U, X1, X2) In L ase — 0. 10
0, x5, X5 0 in (C([0,T]; H))? 0 (4.10)
Since (%, g%, 75, 71"") is the optimal control for [(OP)5| we observe that

I (%, 0%, 75 1)

SJS(f? g, 70, ’yl)
Co

T T
=2 [Tl = a0+ 5 [ 106 - a0t (1)
0 0

C2 T e 2
+ 5 |(X5 — x2,0)(t)|7dt

2 0
m T
w0 [ s [ dopa

+—/ azlyo(t ]dt+—/ a3|71 |dt

Clearly, it follows from ({-8), @-11), @10), and @T7) that {(f*, ¢"°, 79", 71"") }ec(0,1] is bounded

in UM with respect to € € (0, 1]. Therefore, taking account of the compact embedding H*(0,7") <
C([0,T7), there are a subsequence {e,}ney C {€}ec(o1) and the quadruplet of functions
(f*™, 9™, 7%, 71") € UM such that e, — 0,

f*,sn N f** weakly in L2(0,T, H)’ (412)

g — g™ weaklyin H'(0,T), in C([0,T7), (4.13)
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(07 A7%) = (37, 77") weakly in (H'(0,7))2, in (C([0, T]))?, @14)
asn — o0.

Let (6*’6",X1"5",X§’5") be the unique solution to the approximating state problem
I(SMA:0o, X1.0, X2.0, /", ", %", 71 " )="|on [0, T. Then, by @#.12)-@.14) and Proposition

*,En *,En

we observe that (0% x°", x5™") converges to the unique solution (0**, x1*, x3*) to the original
state system|(SMA;0o, X1.0, X2.0, /> 9,75, 717)|on [0, T in the sense that

(0" X7 X ™) = (07,77, x6") in (C([0,T); H))? as n — oo (4.15)

From (4.10)—(4.15) and the weak lower semicontinuity of L?-norm, we infer that

J(F g7 A5 AT < limind JG (£, g7 755, 97 )

< lim J5"(f, 9,7, 71) = J(f, 9 %0, 1)-

n—oo

Since (f,g,7%,71) is arbitrary function in UM, we conclude from the above inequality that

(f™, g™, 75", 77") is the optimal control for (OP)| Hence, Theorem [2.3(1) holds.

We now show (Il). Assume & > 0. Let (f*, g*, ¢, ;) be the optimal control for[[OP)|obtained in Theo-
rem Let (6°,x5,x5) be a unique solution to the approximating state system
ISMA;0o, X1.0, X2.0, 5 9575, v1)on [0, T']. In addition, let (6%, x7, x3) be a unique solution to the
original state problem (SMA;0o, x1.0, X2.0, [, 9", g, 71 )|on [0, T']. Then, we observe from Proposi-
tion 4.lthat

(0°,x7,x5) — (6", x3, x5) in (C(]0,T]; H))3 ase — 0. (4.16)

On the other hand, since (f*<, "%, vy, 7,"°) is an optimal control for [(OP)5} we observe that

C T C T
=5 | 1 = 0)Oldt+ 5 | 106~ xaa) (Ot (4.17)
0
C2 ‘ € 2
T3 [(X3 = X2.0) (1) [t
0
T T
+ 20 [ e+ 5 [ atig P
0 0

T T
mo . ms %
+ 72 [ apporae+ 2 [ adpiorae
0 0

It follows from (1-8), @-11), @-16), and @17) that {(f**, ¢"°, 75", 71"°) }ee(0,1 is bounded in U35
with respect to ¢ € (0, 1]. Therefore, taking account of the compact embedding H'(0,7) —

C([0,T1), there are a subsequence {c,}nen C {€}ec(01] and the quadruplet of functions

(f,9,%,7) € UM such that €,, — 0,

Fo = f weakly in L*(0,T; H), (4.18)
g*,En — Ei weakly in I—I1 (0, T); in C([07 T])? (419)
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(3557 755) = (30, 7) weakly in (E'(0, 7)), in (C([0. 7)), (4.20)

asn — oQ.

*,En

For any n € N, let (0", *E",XQ ) be a unique solution to the approximating state system
(SMA00, X1,05 X2.0: f 7", g7, 79", 71 ™")*"| on [0, T]. Then, from [@.78)-(4:20) and Proposition
4.1, we observe that (0% y7", x»°") converges to the unique solution (6, Y1, X2) to the original

state system|(SMA;€0, X1,0, X2.0; f+ 9, Yo, 7y’1)|on [0, T'] in the sense that

(0 X x3™) = (0,50 %) in (C(0,T]: H)) as n— o @21)

From (2.11), (#.16)—(@.21), and the weak lower semicontinuity of L2-norm, we infer that

5 T
§limsup/0 [(f5 — f)(t)[Fdt

n—oo

T
. En * * * * G *,En
Shmsup (J(S (f g 770771) - _0/ |(9 ’ _ed)(t)‘%dt
0

n—o0 2

T T

*,En Co
-9 g - a0t - 2
0 0

T
m *,En, m *,En
- e [ e opa

m * TL * ’VL
-2 [ o -2 [ e opa)

* * * * G
<0300~ 2 1000

(™ — Xo.a) (1) Fdt

0
a (T - 2 2 [T~ 2
-3 (X1 — Xx1,0)(t)|7dt — 5} |(X2 — X2,0)(t)|7dt
0 0
T T
m ~ m ~
S A I WO
T T
m N m —~
—{/@mw%—f ()Pt
0 0

:J(f*v 9*7 75’ ’YD - J(f, g) :}707:771)-

Thus, we have

T~~~ 5 T *,€ * Xk k%
HE.GF0T0) + glimsup [ |55 = £t < T 75.70)
0

n—oo

Since (f*, g*,7¢,77) is the optimal control for|(OP)}, we observe that

T
glimsup/ |(f5 — f*)(t)|5dt = 0. (4.22)
0

n—o0

Therefore, we conclude from (4.18) and (4.22) that f = f* and the convergence (2:16) holds, i.e.,

fo — £ in L*(0,T; H) asn — oo.
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By the same arguments as above, we observe that g = ¢*, 70 = 7, 71 = 71, and the convergence
(2-17) and (2:18) hold.

In addition, due to the uniqueness of solutions to [(SMA:0o, x1.0, X2.0, /> 9" 75, 1) on [0, T, we
infer that (6, X1, X2) = (6%, X3, x3) and the convergence (2.79) holds. Hence, Theorem II) holds.

Thus, the proof of Theorem [2.3|is complete. O

5 Optimality condition for (OP);

In previous Section 4, we proved the existence of an optimal control (f*¢, " 5%, ~;°) for the
approximating problem [(OP)|for each ¢ € (0, 1] and § > 0. In this section, we show the main result
(Theorem concerning the necessary condition of the optimal control for [[OP)3

Throughout this section, we suppose that all the assumptions of Theorem are made. In addition,
we fix e € (0,1] and § > 0.

For the space U := L*(0,T;H) x H'(0,T) x H*(0,T) x H'(0,T) (cf. (1.8)), we define the
control-to-state mapping as follows.

Definition 5.1. (I) We denote by A* : U — (L*(0,T’; H))? the control-to-state mapping that assigns
to any control (f, g,7v,71) € U the solution (6, x1, x2) := A*(f, g,7%,71) to the approximating
state system|(SMA;0, X1,0, X2.0, /> 9, Y0, 71)7| on [0, T7.

(D Let (f*, g%, 75, 75) € UM be the optimal control for|(OP)5| Then,

(0%, X1, x5, 15, 95 0. m) = (M (95 %:): £ 9770 71)
is called the optimal pair for the optimal control problem|(OP);

For a moment, we often omit the subscript € € (0, 1].
We first show the Gateaux differentiability of A® and Jj.

Note from Proposition that for any control (f, g,70,71) € U, the approximating state system
(SMA;0y, X1.0, X2.0, [, 9> Y0, 71)°| has a unique solution (6, x1, x2) on [0, 7. Therefore, for any
(f,9,7,71) € U, any direction (f,g,%,%) € U, and any number A € [—1,1] \ {0}, we here
put (O, X120, X20) = AS(f +Af, 9+ XG0 + Mo, 1+ M), (0, x1, x2) == A(f, 9,7, ),
uy = (0x — 0)/ X\, wix = (xax — x1)/A and wax = (x20 — X2)/ A

Note that the triplet of functions (uy, wy x, w2, ) satisfies the following system:

(Loux — Liwi )¢ — h(up)ge = aof(t,z) inQ = (0,T) x Q, (5.1)

I (w1,,\> .y <w1,A) n Fil,)\(t? T)wix + 7?27/\(15, T)wa, )
’ Wax /)y ' W20/ 3 F;l,)\(ta T)wi \ + F;z,\(ta T)wa )
—lu,\

- (—&ng(t)a(&) — Barg(t)an(t, x)uy + Ban(t, x)urxax + ﬁa(&)zwz,,\> in Q.

(5.2)

—h(ur)z(t,0) 4+ k(ua(t, 0) — az¥o(t)) = h(ur)=(t, 1) + k(ur(t, 1) — az7(t)) =0,

fort € (0,7, (53)
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(w@/\)x(t7 O) = (wi,)\)z(tu 1) = 07 te (O7T)7 1= 17 27 (5.4)

ur(0,2) =0, w;»(0,2) =0, z€Q,i=12, (5.5)

where notations ffj’/\ (2,7 =1, 2), @», and @, are functions on Q, given as:
Ff17/\(t,x) = /01 alail?a(xl(t,x) +s(xan(t,z) —xal(t, ), xan(t, z))ds, (i=1,2);
Kp(t.o) = /01 020:K° (X1 (1, ), xa b, ) + (o (1) — xalt,)))ds, (i =1,2);
ay(t,x) = /1 o' (0(t,x) + s(0\(t, ) — 0(t,x)))ds;
0

ax(t,z) = /0 20/ (0(t, x) + s(0x(t, x) — 0(t, ) (0(t, x) + s(Ox(t, x) — O(t, x)))ds;

for (t,z) € @, with use of the partial derivative 820]'[?6 of the convex function K * (1,7 =1,2) and
the derivative ' of the single-valued function «.

We now give a uniform estimate of solutions (uy, ws x, w2 ) to (B.1)—(E-5) with respect to A €
[—1, 1]\ {0}.

Lemma 5.1. Suppose that all the assumptions of Theorem|2.4] are satisfied. Then, there is a positive
number N3 > 0, independent of A € [—1, 1] \ {0}, such that

2 T 2 T
sup [us(®2 + 3 sup Jwia(@) + / (ldt+ 3 / (wsa)o(8) Pyt
te[0,7) i—1 t€0,T] 0 i—=1 “0
<N (@317 s 00, + 19820 + @G0l + a3 Bz ) (56
forany (f, 3, %0,%1) € U.

Proof. Note from [(A2)]that

[t o) < v, (@t o) <, V() €Q (5.7)
for some positive constant v; > 0 independent of A € [—1,1] \ {0}.
In addition, from the assumption for IA(E, we observe that (cf. (2.4)):

. 1
K\t 2)] <=, aa(t,z)e@, (i,j=1,2). (5.8)

€
Here, from the boundedness (2.10) of solutions to [(SMA )| we note that

sup 0500+ 3 sup PeaalOf+ [ 160+ 3 [ (e ar

te[0,7) i—1 t€0.71]
<vy (|60l3 + Ix10l + Ix2003 + a3170(0)]* + a3]50(0)* + a3]71(0)* + a3|51(0)]?
+ag| fIT20.m.m) + @0l fT20mm + @il91220m) + 63191 7200m) (5.9)

+a3v0lieor) + @150l m) + a3nlieer + a3 He e + 1>
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where v, > 0 is a positive constant, independent of (f,g,%0, 1) € U, (f,3,7%,%) € U, and
Ae[—1,1]\ {0}.

Since the embedding V' — L>°(£2) is compact, we infer from (5.9) that

2

Z sup [ xix(t)|7 ()

i—1 t€[0,7]
<vy (160]% + [x1.0[% + [x20[% + a370(0)* + a3]50(0)[* + a3]y1 (0)* + a3|5 (0)[*
+a(2]|f|%2(07T;H) +a§‘f|i2(07T;H) +a%|9|%2(o,T) +a%|g|%2(0,T) (5.10)

+a§|70|12/1/172(0,T) + a§|70|%vl,2(07:r) + a§|71|12/l/172(0,T) + a§|%|3v1,z(o,m + 1)

where 1/, > 0 is a positive constant, independent of (f,g,%o,71) € U, (f,3,7%,%) € U, and
A€ [—1,1]\ {0}.

On account of (5.7), (5.8), and (5.10), the uniform estimate (5.6) can be shown in a similar manner to
the proof of (2.10) (cf. (2.3)). Therefore, we omit the detailed calculations. Thus, the proof of Lemma
[6.1]is complete. O

We now state the result of the Gateaux differentiability of A°.

Proposition 5.1. Suppose that all the assumptions of Theorem|2.4 are satisfied. Then, the control-to-
state mapping A° admits the Gateaux derivative at any ( f, g, Y0, 71) € U. More precisely, for arbitrary
(f,9,7,71) € U, there exists a triplet of functions (u, wy, ws) € (WLH2(0,T; H)YNL>®(0,T;V))3
such that:

Ae(f + /\fag+ )\gvfy() + A’?Oa’yl + )\’?1) - AE(f?.g?’YOa’yl)

D(]Euf]ﬁOv’VYl)Ag(f7 49,70, 71) = }\gr(l) 3
= (u,wy,wy) for any direction (f, §, 50, 71) € U, (5.11)

and (u, w1, ws) solves the following linear system:

(Lou — Lywy )y — htg, = aof'(t, x) inQ, (5.12)

110 (wl) ~ (w1> + <8ff?g(X17X2)w1 +a231f?6(X17X2)w2>
t TT

0102 K5 (x1, x2)wn + 03 K= (x1, x2) w2 (5.13)

( —lu ) n0
—Baig(t)a(8) — Barg(t)a! (0)u + 280’ (0)a(O)uxs + Ba(0)2ws ) ¢

—huy(t,0) +k(u(t,0) —as¥o(t)) = huy(t, 1)+ k(u(t, 1) —as¥:(t)) =0 fort € (0,7, (5.14)

(wi)l‘(t? 0) = (wi)z(t7 1) =0, te (07 T), 1=1,2, (5.15)

u(0,2) =0, wi(0,2)=0, z€Q,i=12. (5.16)
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Proof. Let (f, g,70,71) be any function in /. For all directions (f, 3,50, 71) € U and small numbers
A € [=1, 1]\ {0}, we put (0x, X1, X2.0) 1= A°(f+Af, 9+AG, 7%+ Mo, 11 +A1), (6, X1, x2) =
A*(f, 9,70, 71)s un i= (0x — 0) /A win = (Xaa — X1) /A w2 = (x2n — x2)/ A
Then, by the uniform estimate for (uA, W1 )\, wg,,\), it turns out that there are a subsequence
{Antnen € {Ahaeimip\fop and the triplet (u, wy, ws) € (WH2(0,75 H) N L>(0,T;V))* such
that A\, — 0,
(U, Wi A, Won,) = (u,wi,wa) in (C([0,T]; H))?,

weakly in (W1H2(0,T; H))3, (5.17)

weakly-x in (L>°(0,T; V)3,
as n — 00, and by the lower semicontinuity of the norm:

2

sup |u(t)|? + sup wit2+/ U dt + / dt
0§t§T| @)y Z»the[o,ﬂ' )7 Jue(t) 3 Z ()] 518

21 12 20512
< N3 (a’0|f|L2(O,T;H) + a1|9|L2(o,T) + a2h/0‘W172(0,T) + a’3|71|W172(0,T)> ,
where N; is the same constant as in Lemma
We now prove that the limit triplet (u, wy, ws) of (uy,,wr a,, ws,y,) satisfies (B.72)—(5.16) in the

variational sense. To this end, note from (5.6) that
2

0\ — 0| L20,7,11) + Z IXix — XilL2 (o, m)

i=1
2

= Mua|20,mm) + A Z Wi x| L2071
i—1

2
< MT|usl oy + AT Y |wia|p o7
=1

(5.19)

1
2

< 3AVTNs (631 Baoirny + 03103200y + 3Folira0r) + i) )
— 0 as A\ — 0.

Taking a subsequence if necessary, we observe from (5.19), (A2)} [(A5)], and the continuity of functions
0,0;K°(-,) (i,j = 1,2),d'(-), and a(+) that

( 0y, (t,x) = 0(t,x),
Xia (8 2) = xi(t, @), (i =1,2),
Ky, () = 0,0.K° (b, ), xa(t, @), (0,5 = 1,2),
a, (t,x) = o (0(t, x)),

[ @, (8, 7) = 2/ (0(t, %)) (0(L, ),

fora.a. (¢,z) € @ in the pointwise senses, as n — 0o.

Here, let us fix arbitrary 0 < tg < t; < T. Slnce functions KU w @y, and @y (A € [—1,1]\ {0}) are
respectively bounded in senses of (5.8) and (5.7), we can apply Lebesgue’s dominated convergence

theorem to show that
€

Kiin — 0;0,K°(x1,x2), (1,5 = 1,2),
ay, — 01/(9),
E)\n — 20/(9)04(9),

a(fy,) — af),

in L2(to,t1; H), asn — oo, (5.20)
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Combining (5.6), (5.10), (5.17), (5.19), and (5.20), and by [(A2)] and the compact embeddings

V — L>®(Q)and H'(0,T) < C([0,T]), it is deduced that:

uy, — u weakly in L*(to, t1; V),

(uy,): — u; weakly in L*(tg, ty; H),
w; \, — w; weakly in L*(tg,t1; V), (i=1,2),
(win,)e — (w;); weaklyin L?(to,ty; H), (i=1,2),
?jﬁnwj,,\n — @&I?E(Xl,xg)wj in L?(to, t1; H), (i,j=1,2),
ga(0y,) — ga(0) in L*(to, t1; H),
gaix, uy, — ga'(Q)u in L*(tg, ty; H),
Qx, U, Xa2n, — 20 (0)a(@)uxy in L (tg, t1; H),

and
a(0)*wq., — af)*wy in L*(tg, t; H),

asn — oo, (1,5 = 1,2).

Note from (5.1)—-(5.5) that (u,, w1 x,, W2z, ) satisfies the following variational identities:

/t Lo((us (), )t — Ly /t (win)e(®), 2)mdt + h /t (s, (1), 2) vt
:/t1(a0f(t),z)Hdt+k;/tlag%(t)zm)dwk/tlam(t)zu)dt

forallze€ Vandn=1,2,3,---

and

o [ 3 Cwia, o) 2t + [ S (win o), ().
+ /t 1 Z(F:L)\(t’ x)wy A(t) +Ff27)\(t, x)wa (1), z;)pdt

_ / iy (8), 20)

to

n / (—Barg(t)a(ba, (1)) — Barg(t)ain, (t, 2)ux, (1), 22) dt

to

+ / 1(55An(t,x)uAn(t)Xg,An(t) + Ba(0(t))*wan, (1), 22) prdt

to
forall (z1,20) € V xVandn=1,23,---.
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On account of (5.17) and (5.21)—(5.29), and taking the limits in (5.30) and (5.31) as n — oo, we
observe that the limit triplet (u, w1, wa) of (uy,, w1 x,, W2, ) satisfies (5.12)—(5.15) in the variational
sense.

In addition, it follows from (5.5) and (5.17) that the initial conditions (5.16) hold:
u(0,-) = lim wy,(0,-) =0 in H,
n—oo

w;(0,-) = lim w;,(0,-) =0 inH, (i =1,2).
n—oo
Note that the Hessian matrix of K¢ is positive semi-definite (cf. (6.11) below), since K* is the convex
function on R? (cf. |(A5)). Therefore, by the usual method with helps from the fact that ¢ € C/([0,T1)

(cf. (T8)), « € W2>=(R) (cf.|(A2)), and x2 € L>°(Q) (cf. (5.10)), more precisely, by argument similar
to [22, Theorem 2.1], we can prove that the solutions to the Cauchy problem (5.12)—(5.16) are uniquely
determined. Hence, the uniqueness of solution to (5.72)—(5.16) guarantees that of cluster points of the
sequence (uy, W x, W2, 5) as A — O:

(%) (ux,wq n,ws ) originally converges to the unique solution (u, wy, ws) to (B.12)—(5.16), in the
variational sense (cf. (6.30) and (5.31)), as A — 0, and hence the operator X{; 4 1o,) : U —

<L2<07 Tl H))3’ defined by X(fagv”/Ole)(.]E? ga /707 ’71) = D(f,g,’yo,’yl)Ae(fa 9,70, 71) for all di-
rection (f, g, Y0, 71) € U, is well-defined.

On account of the linearity inherent in (5.12)—(5.16), and the estimate (5.18), we observe that each
operator X{f,g.0.41) ((f+ 9,70, 71) € U)is abounded and linear operator from U into (L*(0,T'; H))?,
and hence, the control-to-state mapping A° admits the Gateaux derivative at any (f, J,%0,%1) € U.
Thus, the proof of Proposition|5.1|is complete. O

We now state the Gateaux differentiability of the cost function J5, which is a direct consequence of
Proposition [5.1

Corollary 5.1. Suppose that all the assumptions of Theorem|2.4 are satisfied. Then, the cost function
J§ admits the Gateaux derivative at any (f, g,70,71) € U. More precisely,
D(ﬁg,%,&l)Jg(fv 9:%0,71)

— lim Jg(f + /\fug+ )\5]770 + >"70a’71 + )‘5/1) — Jg(fagﬁoﬁl)
.—)\—>0 A

—cy / (6 — Ba)(8), u(t)) et + ¢ / (61— X0 (t), wi(8)) et
e / (2 — Xa) (£), wa(t)) et
[ (70, FO)de +muad [ a0t

T T
—|—m2a§/ VO(t)Wo(t)dt‘i‘m:sa%/ V()T (t)dt (5.32)
0

o / ((F = F)(E), F(O) it + / (g - ¢")()g(t)dt

o / (0 — 7)) 0(t)dt + 6 / (1 — 7)) ()t
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forany (f, g, 70, 71) € U and any direction ( f, §, %, 51) € U, where in the above formula (8, x1, x2) =
A(f,9,7%,7) denotes the unique solution to the approximating state system
|(SMA;(90, X1,0, X2,0, f, g, %0, ’Yl)al on [0, T], Gd c LQ(O, T; H), X1,d € LQ(O, T), and X2,d €
L*(0,T) are the given desired target profiles, and (u, wy, ws)(= D5 550 40N (f, 9,70, 71)) is the
triplet of functions obtained in Proposition[5. 1}

Proof. By virtue of Proposition and (5.19), we can prove the Gateaux differentiability of the cost
function .J§. Indeed, let (u, w1, wa) == D ;5 5\ A°(f, 9,7, 71)- Then, we have:

Dt 3505075 (9,70, 71)
J5(f + A9+ A, 7% + Mo, v+ M) = J5(f, 9,7, 1)

= lm )
. Co r
— lim {—/ ((Or+ 6 — 20,) (1), un(£)) prdt
C1 T
+3 ((xax +x1 = 2x1,0) (1), wia(t)) mdt
0
Co T
+3 ((xzx 4 X2 = 2X2,0) (1), wa A (1)) mdt
0
moad 2

| s ap@. i+ 5 [ g a)0atar

m;a% /0 (290 + Mo)(t)Yo(t)dt + ik /0 (271 + M) ()3 (t)de
2 [ -y eapw, oS [ 065+ pwsa
2 /o ’ 2 Jo

+5 [ 0o =)+ 3o+ [ e -0+ e oae
= oo [ (@000t +er [ (0 = )@

ro | (2 — xa) (), wal6)

[ L0, @)t + / "yttt

#maad [ ottt + mact [ @i

#0 [ (= 05Ot +5 [ (o~ g0

v [ o= s0a-+o [ =00

for any (f> 9,70, P)/l) €U and any direction (fa ga ;YOa ;)/1) cu.
From Proposition[5.1]and (5.18), it follows that for any (f, g, v0,71) € U, the functional:

(fvvgafvymﬁ/l) cU D(f,g,ﬁo,ﬁl)J§<f7g7’YOa ’}/1)
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will form a bounded linear functional on U{. Hence, the cost functional .J§ admits the Gateaux derivative
atany (f,9,7%.v) € U with the directional derivative as in (5:32). Thus, the proof of Corollary [5.1]is
complete. 0

On account of Proposition[5.1]and Corollary 5.1} we can prove Theorem [2.4] concerning
the necessary condition of an optimal pair

(0, X7 x5 5,075, ) = (A (5, 075 % ) 5, 075,95, 1)

for the approximating problem |(OP);

Proof of Theorem[Z2.4. Let

(0, X7 x5 5,07 %) = (A (5, 075 % ) 5, 075,95, 1)

be the optimal pair for [[OP)%} Then, note from (2.70) and the compact embedding V' < L>°() that
X5° € Lo(Q) (cf. G10)).

On account of 2.4), g* € C([0,T]) (cf. and the compact embedding H'(0,7) — C([0,T7)),
a € W2(0,T) (cf.|(A2)), and x5° € L>(Q), we can construct the unique solution to the adjoint
equations (2.20)—(2.26) by applying Schauder’s fixed point theorem and the theory of abstract non-
linear evolution equations (cf. [32,[34,139,44]). For such arguments, we refer to [34, Theorem 2.1], for
instance. Thus, we omit the detailed proof of the existence-uniqueness of the solutions (p°, ¢5, ¢5) to

the adjoint equations (2.20)—(2.26).

We now show the necessary condition (2.27) for |(OP)j| To this end, from the convexity of L{ad, note
that

(f»gﬁoﬁl) +)\(f_f7g_ga’?0_707’?1 _’71)
= (L= N(f. 9.7 m) + A(f. g, %,%) (5.33)

Eué\c/{a V)\E [071]7 v(f79770a71) da V(f 1)62/{%
In addition, from Corollaryit follows that .J§ is Gateaux differentiable at any quadruplet ( f, g, 70, 71) €
Upd
Furthermore, we observe from Proposition[5.1]that A® is Gateaux differentiable at (f*, g*<,75°,11) €
UM Therefore, we here put:

*,€ *,€ *EY L _ E( LH,E K E KE _KE
(u™F, Wy, wy ) = D(fff*ﬁaygfg*vf7'7/0—75’87"}/177;’5)/\ (595 % 507
Since (f*<, g%, 755,71 °) is a minimizer for J5 (-, -, -), we infer from (5.33) that

J5(f, 075 )
ST (A = ), 0+ A0 — 979), %7 + A0 — 1), nT + A — 1))
forall A € [0,1] and all (£, §,%0,51) € UM

Therefore, we observe from Corollary the adjoint system (2.21)—(2.26), and the linear system
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(5.12)—(5.16) that
3 E( P*,E L KE KE _¥E
0 SD(f—f*’f,Q—g*’sfro—’Yo*’Eﬁl—’Yf’s)J5 (f5 051"

—oo [ (0 00O Ot s [ (7 xa O, O
bor [ 1067~ xoa) (0,5 )
b [0, Ot it [ 40— g0
s [ 25060~ )0+ [ 270~ i) 0
#3 [ = 0. = r Ot +5 [ - )06 - ) O
#6 [ 66 =060 - 250t 45 [ 61 =06 i 0
= [t @+ [ b5 0. O
+ /0 k(6. 0t (£, 0V + /0 R (6 1t
-/ (0, w0 + / (Bang (0 0 ()5 (0), (1) e
- [ @56 )00 o) )t
[ oot i@+ [ G000
[ a0, Qi )pr + [ GRROG0,6O)0),w O)n
[ OR300 @t
[ s O+ [ (@0, 5O
@R 015 )i 0,05 0t
-/ CORR O (1), () (1) i (1)) el
- [ ety @)
b [0, 7= O+t [0 - 0
s [ 257060~ 2600+ [ 270 i) 0

o / ((F= = )0, (F = 1)) mde + 6 / (6" — g )G — g°) (1)t
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5| L0 =) OG0 - 2Dyt + 0 / L = O — )0t
- (Lo (8) — L (w00, 7 (6l + / (s (0), 50 e
+ /OT ku*=(t,0)p°(t,0)dt + /OT ku™(t, 1)p°(t, 1)dt
</ o), g ()l + / (1) (0) () (0))
[ O O0 )i 0).ai)
b [ @R 01 0, it
+ [ .o

T

iy (uo(WS’E)t(t),QS(t))Hdt+/O pa (w3 ")a(t), (63)x (1)) el

(210K (1 (1), X5 (£)w (1), 65(1)) mrdt

+ [ (BBR (A= (0), " (0)wy (1), ¢5(1)) et

_|_

(Barg™ () (07 (8))u™ (1), ¢5(t)) it

S

(28a/(67(1))a (07 (1)) u™* (t)x5 " (1), ¢5 () mlt

T

C\c\ﬁo\o\

(Ba(0 (1) (1), G5(¢)) mdt
T moa? / (P20, (F = £75)(0) et + muc2 / (O — g™ (et

T

st [ 25060~ )0+ [ 270 i) 0

#3 [ = 0.0 = 7Ot +5 [ - )06 - ) O

4 / (357 = ) (OG0 — 267 (e + /OT(vi"s—vT)(t)(%—vf’e)(t)dt
= [ antaomor (o) + 7). (F £t

[ mamig o) - (o 0), 601G - o o

; / aslazmyy(t) + kp(£,0)) (o — 707 (8)dt

+ /0 ag(azmgyy*(8) + kp(t, 1)) (51 — 1°)()dt
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6 / ((F*= = )0, (F = ) () mdt + 6 / (6 — g) O — g°°) (1)t

6 / (5 = 20 (D) o — o) ()t + 6 / (25— ) (8) (G — 1) (Bt

for any (f, 4,50, %1) € UM. Thus, the proof of Theoremis complete. O

6 Optimality condition to (OP)

In previous Section 5, we proved Theorem which is concerned with the optimality condition for the
approximating problem However, it is difficult to show the necessary condition of the optimal
control for directly, because of the non-smooth constraint O/ (-, -) in (1.2). Therefore, through
the limiting observation of approximating problems we derive the optimality condition for [(OP)

We now prove the final main result (Theorem of this paper, which is concerned with the necessary
condition of the optimal control for [OP)

Proof of Theorem[2.5 On account of Theorem [2.3(1l) and Theorem we can prove Theorem

Indeed, we assume & > 0. Let (f*, g%, 7¢, ;) € UM be any optimal control for@obtained in The-
orem In addition, let (f*<, g*¢, 75, 71"°) be the optimal control for |(OP)| obtained in Theorem
2.2l  Furthermore, let (6%° x7%,x5°) and (6% x%,x5) be unique solutions to
(SMA;00, X1.0, X2.0, /%, 9%, %", 71 )*|and [(SMAo, X1.0, X2.0, /7, 9%, 75, 77)|on [0, T, respec-
tively. Then, we observe from Theorem [2.3(11) that there is a subsequence of € (which we also denote
¢ for simplicity) such that

o — f*inL*0,T; H), (6.1)

g*° — g* weaklyin H'(0,T), andin L*(0,7), (6.2)

7 — 4F weaklyin H'(0,T), andin L*(0,T), (i = 0,1), (6.3)
(0%, X7, x5°) = (0", X7, x3) in (C([0,T; H))? (6.4)

asc — 0.

We now prove Theorem by taking the limit with respect to €. To this end, we give the a priori
estimate of the solution (p°, ¢5, ¢5) to the adjoint equations (2.27)—(2.26).

Note from (1.8), (2.10), and the embeddings V' — L>(Q) and H'(0,T) < C([0,T]) that
X5 L@ < vs, 19" |cqom < v, Ve € (0,1] (6.5)
for some positive constant 3 independent ¢ € (0, 1].

Multiply (2.21) by p°. Then, by a € WQ’OO(R) (cf.|(A2)), (6.5), and Young’s inequality, we find positive
constants v, and vs, independent of & € (0, 1], such that

Lo d . )
— fglp (T + hlp* (D)}
<wy (Ip°(7)|H + a1 (DN +165(7)[37) + 50" (7) — 6a(T) |5 (6.6)

fora.a. 7 € (0,7).
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By integrating in7over [T'—t,T] (t € [0,T)), we have

T

L (> £
DT =0+ b [

T—t

<u, / (OB + 1O + () dr

T—t

T
+ V5/ |0%%(7) — O4(7)|3,dr, Wt €[0,T). (6.7)

T—t

Next, multiply 2:27) by —p$. Then, by a € W%>(R) (cf. [(A2) ), and Young’s inequality, we find
positive constants v and vz, independent of ¢ € (0,1}, s ch that

Lo, . hd
DU(r)lE - 35 ()

< (|5 (7) 5 + \q2( i) +val0=(7) = Oa(7) [ (6.8)
fora.a. 7 € (0,7).

By integrating in7over [T'—t,T] (t € [0,T)), we have

L £ h £
70 [P} ()adr + (T = )l
T—t
T T
SVG/ (|q§(7)|§i + |q§(7)|§{) dr + y7/ 0% () — Qd(7)|12qd7, vt € [0, 7). (6.9)
T—t T—t

Similarly, multiply (2.23) (resp. (2.24)) by g7 (resp. ¢5), and add the resultant to get:

Zd—m ol +u12| (6)e () + (Lapi (1), 5 (7))

O K (X (7 )7X2 (T))di (7). g5 (7 ))H+(5182K6(X’{6(7) 2 (7)) (7), 45 (7)) u
+(220 K (1 (7), x5 (7)) (1), G5 (1) + (3K (3 (7). X5 (1)) a5(7), 65(7)) - (6.10)
—(Ba(07(7))?a5(7), a5(7))
= a0 (1) = x1,a(7), 41 (7)) + (37 (7) — X2.4(7), (7)) 1
fora.a. 7 € (0,7).

Since Ke is the convex function on IR? (cf.|(A5)), note that the Hessian matrix of Keis positive semi-
definite, more precisely,

(2RO (1), X ()5 (1), 65 (1) + (919 K= (7 (1), x5 " (1)) a5 (), 4 (7))
+ (DO K= (G (1), 3" (M) (1), 5() i + (DK (X5 (1), X3 (7)) 5 (7), 65(7))
_ 15 € 2 Tre (. *E *,€ Qi(Tv x)
~ [0 ) PR ) o) (57 Y
>0, 6.11)

where V2K < (-, -) is the Hessian matrix of K< defined by

Vzl?s(x?a ;,a): aQKE(X?EaX;ﬁ) 8182/{{8(9(?679(;5) ‘
DK (X177 x2")  BE (X%, x2")
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Therefore, by (6.10), (6.11), and Young'’s inequality, we find positive constants vg and vy, independent

of e € (0, 1], such that
2

2
1 d, . .
=S @ Y @) ()
=1

2 4
i=1
LO 5 2 € 2 € 2
< ()l + vs (163 (7)1 + 16:(7) ) (6.12)
+vo (X7 (7) = x1a(P)5 + X327 (7) = xaa(7)[)
fora.a. 7 € (0,7).
By integrating inTover [T —t,T] (t € [0,T]), we have
v
Ozm —mm@/ Dldr
(6.13)

<o [ i o [ (GG + ) o

T—t T—t

T
+ Vg/ (X5 (7) = x1.a(P) + XG5 (7) = x2a()[) dr, - Ve € [0,T].
T—t

Adding (6.7), (6.9), (6.13), we find positive constants v and /11, independent of ¢ € (0, 1], such that

LO ) T T
—|p€<T—t>|H+h/

L h
s+ 2 / P () + 21" (T = 1)
T—t 4 T—t 2

|
Z|qz —t|H+u12/ ldr

T
<vig / (5 () + () + 65 [%) dr 6.14)
T—t
T
o / (16°2(r) — Ba(r) + 125 (1) — xaa(M)E + G5 (7) — xou(T)[) dr
T—t

vt € [0,T].
Applying Gronwall-type inequality (e.g., [33, Proposition 0.4.1]) to ( , we infer from (6.4) that

[ 0 @ + Ol + sl i

<12 <‘9* - 0d|%2(0,T;H) + X1 — Xl,dﬁ'ﬁ(O,T;H) +Ixz — X2,d|%2(O,T;H) + 1) (6.15)

for some constant v15 > 0, independent of € € (0, 1], and dependent on T". Hence, we conclude

from and that
2
- {|pe<t>|%,+ O +z|qf<t>|z}

te[0,T

+/0 p ()|th+/ Ip; (¢ Hdt+2/ (4])a(D) 5zt

(O,T;H) + 1) (616)

<vi3 <|9* - 9d|L2(o,T;H) + X1 — Xl,d|L2(0,T;H) + x5 —
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for some constant 115 > 0, independent of € € (0, 1] and dependent on 7.

For any ¢ € (0, 1], let us now define a bounded and linear functional < € W’ on W, by putting:

O i= [ @R OG0, 6 )00

(6.17)
R () (D)0, (1) b, ¥ € W.
Similarly, we define a bounded and linear functional <5 € W' on W by:
T A~
5w = [ (@R 0G0 )i 0. ) o

FOFREOG (0,7 (0)a(0), CO) p b, VC € W.

On account of (2.23), (2.25), (6.4), (6.16), and (6.17), there exists a positive constant /14, independent
of e € (0, 1], such that:

(sT, Qwrw| <

/()T(Mo(fﬁ)t(lt)aC(zf))det‘Jr /OT(Llpf(t)vC(t))Hdt‘

" / (a6 (1), Co1)) | + / <c1<x1*8—xl,dxt),c(t))Hdt'

/OT(—uho(t)a Ct(t))Hdt’ + /OT(Llpj(t), C(t))Hdt’

+/0 (11(q7)x(t), Ca(t)) g dt +/0 (cl(x’{’e—Xl,d)(t),C(t))Hdt'

< w10 = Oal 20y + 1XF — Xvalzzorm + 1X5 — Xadl2omm + 1) [Clw
forany( € W ={z € HY(Q); 2(0,z) =0, ae. x € Q}.

Therefore, we get

st lwr < via (10° = bal 20 + X3 — Xvalrzorm) + X6 — x2dlr20rm +1)  (6.19)
foralle € (0, 1].
In addition, from (2.24), (2:25), (.4), (6-16), (6.18), and a € W2>(R) (cf. [(A2)), there exists a

positive constant 115, independent of ¢ € (0, 1], such that:

{55, Qwrw| <

/0 T(uo(qé)t(t), ¢ (t))m’ + /0 ' (11(5)2 (1), Ca(1)) dt‘

_|_

[ o swram.cn, ]| [ o - xaw.aoa

/OT(—Mqu(t), Ct(t))Hdt‘ + /OT (11(g5)=(1), Qx(t))Hdt’

+ +

[ ey, i +| [ <c2<x;’€—xQ,d><t>,<<t>>Hdt\

<vis (’9* - 9d|L2(0,T;H) + |X>1k - Xl,d‘LQ(OvT;H) + |X; - X2,d|L2(07T;H) + 1) |C|W

forany ¢ € W.
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Therefore, we get
S5 lwr < vis (160° = balr2omm) + X5 — Xvalrzorm + X6 — Xx2dlr20rm + 1) (6.20)
foralle € (0, 1].

By boundedness estimates (6.16), (6.19), and (6.20), there are a subsequence of £ (which we also
denote ¢ for simplicity), the functions p € W12(0,T; H) N L>(0,T;V), ¢ € L*0,T;V) N
L>(0,T;H) (i =1,2),and elements g; € W’ (i = 1, 2) such that

p°—p inC([0,T]; H),
weakly in W12(0,T; H), (6.21)
weakly-x in L>(0,T;V),

p°(-,0) = p(-,0) weaklyin L*(0,T), (6.22)

p°(-,1) = p(-,1) weaklyin L*(0,T), (6.23)
¢ — q; weaklyin L*(0,T;V), .

weakly-x in L>(0,7; H), (i=12), (6-24)

¢F — ¢ weakly-xin W' (i = 1,2) (6.25)

ase — 0.

Taking account of the convergence (6.1)—(6.4) and (6.21)—(6.25), we can prove that the equations

(2.28)—(2.32) hold. Indeed, in a similar manner to the proof of (5.20)—(5.29), we infer from [(A2)] (6.2),
(6.4), (6.5), and Lebesgue’s dominated convergence theorem that

g () (07°()) = g7 ()’ (67(-)) in L*(to, t1; H),
a/(67°()a(07°()x3" = a'(07()a(07(-)x; in L*(to, tv; H),
a(07())* = a(0°(-))* in L*(to, t:; H),
for arbitrary 0 < ¢ty < t; < T, as ¢ — 0. Therefore, it follows from[(A2)| (6.5), and that
g () (07 ())az = g7 ()’ (07(-))as weakly in L%(to, t1; H),  (6.26)
' (05°(:)a(0°())xs g5 — & (0%()a(6*(+)) x5q2 weakly in L?(t, ty; H),  (6.27)
a(0°())2q5 — a(0°(1)) g weakly in L*(to, t1; H), (6.28)

for arbitrary 0 < ty < t; <T,ase — 0.

In addition, the approximating adjoint system (2.21)—(2.25) is equivalent to the following variational
identities:

/0 (— Lopf (), @ () et + / B (1), (1) vt + / (15 (1), (1))t
+ / (Barg™ (o (67 (£))g5(1), @ (1)) et
- / (260! (9 (1)) (6" ()5 (D5 (1), w (1)) mdt

T
_ / co(075(t) — Oa(t), w(B)mdt  forallw € L2(0,T:V), (6.29)
0
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/0 (Moqf(t),ét(t))HdtJr/o (Llpi(t)vC(t))Hdt“‘/o 11((q1)2(t), G (t))
+ (st C)W',W

T
:cl/ (X7 (1) = x1.a(t), (1) ydt - forall ¢ € W, (6.30)
0

and
[ s, 60t + [ )0, Ot (65
-/ (B0 ()50, C(0)
= /OT (G (1) = x2a(t), C(8)) y dt  forall ¢ € W, (6.31)

Therefore, taking the limit of (6.29)—(6.37) as ¢ — 0, we observe from (6.4) and (6.21)—(6.28) that the
adjoint system (2.28)—(2.31) hold. In addition, we conclude from (2.26) and (6.27) that (2.32) holds.

Finally, we show (2.33). To this end, note from [(A2), (6.2), (6.4), (6.5), and Lebesgue’s dominated
convergence theorem that

(9= 9")()a(07() = (9 = g")()a(0"()) in L*(0,T; H) as ¢ — 0.

Hence, we infer from (6.24) that

T

tiy [ (Bara(0* (1)), 45(0)m(5 — ™) 1)
=lim | (Bai(g = g")(Da0"(1)), g5(0)) el

:/0 (Bai(g— g*)(t)a(07(t)), q2(t)) gdt
:/0 (Barc(07 (1)), g2(t) (G — g (t)dt, g e H(0,T). .

Therefore, taking the limit in (2.27) as ¢ — 0, we conclude from (6.7)—(6.4), (6.27)—(6.24), and (6.32)
that (2.33) hold. Hence, we see that Theorem[2.5 holds in the case when 6 > 0.

Similarly, we can consider the case when 0 = 0. Indeed, let (f**, g**, 7(*, 1) € U(% be any optimal
control for[(OP)|obtained in Theorem[2.3{1). Namely, there exists a subsequence of ¢ (denoted by ¢ for
simplicity) such that (¢, g*%, 5%, v1"°) € UM is the optimal control for the approximating problem
(OP), (0°, 1, x5°) is the unique solution to [(SMA;6o, X1.0, X2.0, /%, 9", %, 71" )on [0, T7,
(6™, x7*, x5") is the unique solution to the original state system|(SMA;0y, x1.0, X2.0. f ™ 9™, 75" 75|
on [0,77], and

¢ = f** weaklyin L*(0,7; H), (6.33)
g*F — g™ weaklyin H'(0,T), andin L*(0,T), (6.34)
7F = 4 weakly in H'(0,7T), and in L?(0,T), (i =0,1), (6.35)

DOI 10.20347/WIAS.PREPRINT.2737 Berlin 2020



P. Colli, M.H. Farshbaf-Shaker, K. Shirakawa, N. Yamazaki 38

(0%, X7 x5°) = (07,x7", x3") in (C([0,T]; H))? (6.36)
asec — 0.

On account of (6.21)—(6.28) and the arguments similar to the case 4 > 0, we can show that the adjoint
system (2.28)—(2.33) works in the case when 6 = 0.

We now show that (f**, g**, 73*, vi*) € UM satisfies the optimality condition (2.33). To this end, we
note from (2.27) and § = 0 that (f*<, g, vy, 7,°) € UM satisfies the following:

[ aoltamos 40,50t~ [ ety ), 540
[ g™ (0 G 0), 60106 ~ o))
[ aatmaan @) + 0,0 - o) 637)
[ astmaaai0) + 0, 10) 6 5o

T
> / aolaomo f°(8), f*<(E)udt  Torany (f, 3, 0. 51) € UM,
0

Then, by (6.21)—(6.28), (6.32)—(6.36), and the weak lower semicontinuity of Z?-norm, we observe from
(6.37) that

/0 " aol(aomaf™ + )0, F(2)) it~ / aop(t), (1)) e
N / " (maasg™ (1) — (Bana(8°* (1)), 2(1)) )@ — 97N (O)t
v (o (6) 1 kp(t,0)) (5o — ") (1)

N / " dgmaasi*(6) + kp(t, 1)(n — i) ()t

T
Z/ ao(agmof(t), £ (t))udt forany (f, 7,50, 71) € UM,
0

which implies that (f**, g**,75*,71*) € UM satisfies (2.33). Hence, we conclude that Theorem
holds for the the optimal control (f**, g**, &%, ;*) € UM to|(OP)|obtained in Theorem [2.3().

Thus, the proof of Theorem [2.5]is complete. O

Remark 6.1. In Theorems|2.3 and[2.5, we consider two cases: § = 0 and § > 0. If 5 > 0, then, for
each optimal control (f*, g*, ¢, 71) to[(OP)} we can find the sequence of optimal controls for[(OP)j]
that converges to (f*, g*, g, ;) strongly in L*(0,T; H) x (L?(0,T))3. However, it is very difficult
to give the numerical experiments for since the cost function J§ depends on the unknown
optimal control (f*, g*,~g,~v1) for((OP) If 6 = 0, then, the cost function J§ is independent of the
optimal control for Therefore, in the numerical analysis, we are forced to adopt as the
approximating problem for[(OP)| Thus, it is worthy considering the case when & = 0 in Theorems
and[Z.5
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Appendix

In this Appendix, we provide a typical example of /¢ in Example[2.1] which is a smooth closed convex
set in R? such that & includes the convex set K defined in (1.6). In addition, we give an example of
construction of the convex function /K¢ satisfying assumption [(A5)

We first define K¢ in Example for any ¢ € (0, 1]. To this end, we specify the boundary of K®.
Indeed, we consider six boundary parts of /¢ illustrated in Figure : first, we put

g £ g g
Al——,—], B(1l-——=,-1——), Cl+e —1),
({’/E \/§> ( 72 \/§> (e 1)
g 9 9 19
D(1+4¢,1), E{1-—14—), F|——,—);
ey ( V2 ﬁ) ( /2 32)

then, we define the boundary 0 K¢ of K¢ as follows:

Z;
'I, ,,,,,,
K
Zi 4
P O
Figure 3: Convex sets K and K°
( 2e
29 = —2 —3—\/§ on 0K¢|ag,
21— 1P+ |+ 1P = ondK®|pc,
z1=1+¢ on O0K¢|cp,
OK* : (ap.1)
|21 _1‘3+|22_1|3:€3 on 8K€|DE;
2¢e
2 :,21_1_% on OK°®|gF,
L |Zl|3—|— |22|3 :ES on 8K€|FA,

where 0K°¢|;; (i, j = A, B, C,D, E, F) indicates the boundary part of X from the points i to j.

By (ap-1), we can define the smooth closed convex set K © with the boundary 0 K illustrated in Figure
[glfor any € € (0, 1].

Remark Ap.1. The convex set K is line-symmetric relative to the z;-axis, and hence, the set K°
defined as above is also line-symmetric (cf. Figure[3). In addition, K¢ converges to K in the sense of
Hausdorff distance, thus, in the sense of Mosco [37] as ¢ — O.
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Remark Ap2. By similar arguments as above, more precisely, by replacing € with 2¢, we can define
the smooth closed convex set K% in R? such that K includes K° for any ¢ € (0, 1] (cf. Figure
below).

Figure 4: Convex set K¢

On account of Remarks Ap , we can define the smooth convex function satisfying assumption
(A5)| Indeed, we consider seven regions of R? illustrated in Figure :

R?:= KUD,UDyU D3 U D, U D5 U Dg.

Ds

Figure 5: Decomposition of R?

At first, we define

[?8(21,22) =0 onkK.
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Next, we define I?s(zl, z9) on D as follows:

(0 on D; N K*,

1 |21 + 2> e
152 6e2 6
1
<\3/ 12112 + |22]® — 5) on Dy N (K% \ K¢),
4f Te

T o0v2
(\5/ |21|3+|22|3—8> on Dl\KQS.

IA(E(zl, 29) 1= 30V2

2
- z 3 + |z 3 _
1
\ 30v2
Similarly, we can define IA(E(zl, zy)on Dy, (i = 2,3,4,5,6) by the movement of the above function
along the boundary 0 K©. Indeed, for instance, we have that

(0 on Dy N K°,
1 |21 — 12 € 1
I — 1] = DsN K2€ K¢
15\/5( 682 6 30\/§ (|Zl | 8) on 4 ( \ )7
Ke(z ,29) 1=
(1 2) 9 | 1|3 4\/— . 7e
[ Z j— —_——
45 V' : 45~ 90v/2
——— (|71 = 1| —¢ on D, \ K%,
| s (a=1l-2) N
(0 on D5 N K¢,
1 |21—1|3+|22—1|3_8
15v/2 62 6
. o — 1P+ |z — 1P — ) on Ds N (K \ K?),
K*(21,22) := 30v2 <\/| 1= 1P + ]z =1 5 M (K5 K°)
4\/_ Te
= 1P+ e — 1P — e+ ——
21— 1P+ |z —13—6) on D5 \ K2,
\ ~go05 (VI =1+ =1 5\
and so on.

On account of the construction of ¢ as above, assumption [(A5)| can be easily verified by standard
calculations. Here, we omit the details.
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