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Abstract. Let we observe a signal 5(t), t € (0,1) in Gaussian white noise € dw(t).
The problem is to test a hypothesis S € ©; C L3(0,1) versus alternatives S €
©y C Ly(0,1). The sets Oy, O, are closed and bounded. We show that there exists
a statistical procedure allowing to make a true solution S € ©, or S € O, with
probability tending to one as ¢ — 0 (i.e. to distinguish two nonparametric sets
©; and ©3) iff there exists a finite-dimensional subspace H C L4(0,1) such that
the projections ©; and ©, on H have no common points. A similar result is also
obtained for the problems of testing hypotheses about density.

1. General Setting and Main Result. In estimation problems an asymptotic
behaviour of estimators is usually characterised from the three different viewpoints:
- consistency, rate of convergence and efficiency. In hypothesis testing the analogous

- of these viewpoints are the distinguishability of the hypotheses and the alterna-
tives, the optimal rates of distinguishability (the optimal rates of approaching the
' hypotheses and the alternatives allowing to dlstmgulsh them) and the asymptotic
minimax or Bayes optimality of tests.

For practical applications with a finite number of parameters the problems of
distinguishability and optimal rates of distinguishability do not present any dif-
ficulty. Essential difficulties arise if the sets of hypotheses or alternatives have
nonparametric nature. For example, such a problem is testing a hypothesis that
Ly-norm of deviation of density from the density of uniform distribution exceeds
p > 0 or a similar problem of signal detection in Gaussian white noise. Here testing
a hypothesis is possible only if additional a priori information is available. Thus
the problem of distinguishability in nonparametric setting deserves a special inves-
tigation. For the first time testing nonparametric hypotheses has been considered
by Mann and Wald (1942) and Stein (1956). In these papers the basic settings
have been proposed. The last years the problem of testing nonparametric hypothe-
ses was investigating intensively (See Ermakov (1990),(1995), Ingster (1988),(1993)
and references therein). The main attention has been paid to the optimal rates
of distinguishability and to construction of asymptotlcally minimax sequences of
tests. At the same time the simplest distinguishability problem has been consid-
ered only as an auxiliary question or as in the context of more powerful results on
optimal rates of distinguishability.

First of all, among the results on distinguishability problem, we should mention
Burnashev’s paper (1979). For a signal observed in the Gaussian white noise Bur-
nashev has shown that the problem of nonparametric signal detection in Ly-norm

~cannot be solved without additional a priori information. A similar result for the
problem of testing hypotheses about density has been obtained by Ingster (1993).
For a signal detection in the Gaussian noise, the problem of distinguishability has

“been studied in Ermakov (1990) for the sets of alternatives represented as difference
of two ellipsoids in Ls. A similar setting for a dlfference of two [, bodies has been
considered in Ingster (1993).

- The purpose of the paper is to find necessary and sufficient conditions of dis-
tinguishability of two bounded sets of hypotheses for the two problems: signal
detection in the Gaussian white noise and testing hypotheses about density. As we



know, almost all widespread statistical models are usually reduced to their analo-
gies with Gaussian white noise (see Donoho and Liu (1987), Brown and Low (1992),
Nussbaum (1995)). By this reason, we first of all consider the model of signal de-
' tection in the Gaussian white noise. Then a similar model of testing hypotheses
about density will be considered. : '
Suppose we observe a random process Y(t),t € (0,1), defined by the stochastic
differential equation ~ :

- dY () = S(t)dt + edw(t), € > 0.

Here S(t) is an unknown signal and dw(t) is the Gaussian white noise. The problem
is to test the hypothesis S € ©; C Ly(0, 1) versus the alternative S € ©2 C L,(0,1).
The sets ©; and O, are assumed to be closed and bounded.

For a test K, denote by ag(K.) its type I error probability for the hypothes1s
6 € ©1, and by B (K) its type II error probability for the alternative 8 € ©,. Let

ae(Kg) = sup age(K:), Be(Ke) = sup Boe(Ke)
€0, e

We say that the sets of hypotheses ©; and the sets of alternatives ©; are distin-
guishable if there exists a family of tests K, such that

lim sup (ac(A’e) + /86([{6)) <1
€—0

Otherwise we shall say that the sets of hypotheses and alternatives are indistin-
guishable.

The problem of dlstlngulshablhty admits the followmg interpretation if the
sets of hypotheses and alternatives converge to each other. Assume we have two
families of sets ©1(p) and O3(p) with p € R} such that ©,(p2) C ©1(p1), O2(p2) C
O2(p1) for all 0 < p; < pz < co. Let ©1(p) N Oa(p) = 0 for all p > 0 and let
01(0) N ©2(0) # 0. We call p, the optimal rate of distinguishability if the sets
O1(pe) and Oy(p) are distinguishable and for any pic, p1e/pe — 0 as € — 0, the
sets ©1(p1c), O2(p1e) are indistinguishable. Finally, we shall say that the families
of sets ©1(p) and Oy(p) are asymptotically distinguishable if there exists p, — 0
as € — 0 such that the sets ©;(p.) and O2(p.) are distinguishable. It is clear
‘that the families of sets ©,(p) and ©,(p) are asymptotically distinguishable if the
sets O1(p), Oz(p) are distinguishable for any fixed p > 0. Thus the problem of
asymptotic distinguishability reduces easily to the simpler problem of the usual
distinguishability.

The interest to the problem of asymptotlc dlstmgulshablhty can be illustrated
- by the following simple example of sets of hypotheses and alternatives. Let ©4(p) =
{0} for all p > 0 and let ©2(p) = U\B,(0) where U is a closed bounded set and
B,(0) is the ball in L, of the radius p centered at zero. As follows from Theorem
1.1 below the hypothesis # = 0 and the set of alternatives @g(p) are distinguishable
iff U is a compact set. T hls example was the starting point in the consideration of
the problem. ~

We shall consider the problem of testing nonparametrlc hypothesm about den-
sity in the following setting. Let X7,...,X, be i.i.d.r.v.’s on a probability space
(Q,S, P) and let the measure P be absolutely continuous w.r.t. a probability mea-~
sure v with the density S(z) = dP/dv(z). The problem is to test the hypothesis
S € ©; C Ly(v) versus the alternative S € ©, C Ly(v). For such a setting we



can preserve the same notations and definitions as in the problem of signal detec-

 tion. The only difference is that the parameter ¢ in the notation should now be

replaced by the parameter n and instead of the asymptotlcs € — 0 we consider the
asymptotics n — oo.

We shall use the following notation. Let H-be a subspace of Ly(v). Denote by
Ilg the projection operator on the subspace H and by dim (H) the dimension of
H if H is finite-dimensional. For any 5,52 € Ly(v) define the inner product

(S1,5,) = /Q S1(H)5:(8) (dt)

a,nd let ||S1]|* = (S1,51). For any pair of subspaces Hy, H, C Lg(u) denote H; +
{S S = S]*I‘Sg, 51€H1, SzGHz}
The results for both the models are the same and are given below in Theorem
1.1. In this theorem, in the case of signal detection 1/ stands for the Lebesgue
measure in 2 = (0, 1).

Theorem 1.1. Let O, and ©; be closed bounded sets in Ly(v). Then, both in
the problem of signal detection and testing hypotheses about density, the sets ©,

and Oy are distinguishable iff there ezists a ﬁmte dzmenswnal subspace H C Ly(v)
such that Ig®; N Ix0, = 0. .

Theorem 1.1 implies that each solvable problem of hypotheses testmg has a “para-
metric counterpart”.

, Remark. For the problems of testing nonparametric hypotheses Theorem 1.1 can
be considered as the analogy to the following result on nonparametric estimation.
Let © be a bounded set in L,(v). Then there exists a consistent estimator of signals

- S € Oiff the closure of O is a compact set in L,(v) (see Ibragimov and Khasminskii

(1977)).

First we shall prove Theorem 1.1 for the Gaussian white noise model. Then we shall
point out the modifications in the proof requlred by the case of testmg hypotheses
about density. - .

2. Proof of Theorem 1.1. Signal in the Gaussian white noise. The
sufficiency of condition is clear since under this condition the problem reduces to
its finite-dimensional version.

The necessity will be proved separately for the following three cases: @1 {So},
O, is a compact set, and O is an arbitrary bounded set. The first two cases are
considered to make transparent the idea of the proof for the most general case.

Lemma2.1. Let©; = {So} and let O be a closed bounded subset of La(v ) Assume
the hypothesis S = Sy and the alternative S € O are distinguishable. Then there
exists a finite- dzmenszonal subspace H € La(v) such that Ly S, ¢ HH@2

Clearly we can take the aforementioned H in such a way that Sp € H.

Proof of Lemma 2.1. Suppose the opposite. Then, for any sequence p > 0, px — 0
“as k — co, there exists a sequence Sl, Say. .. € Oy such that sup{|(S;—So, Sk—S50)] :
0<s< k} < Pk :



Fix a sequence €,, > 0 and define a sequence of a priori Bayes measures j, in
‘such a way that u,(S;) = 1/m, 1 < j < m. The corresponding Bayes likelihood
ratios are

1 & '
"= Pl (S50 = So(®) du(®) — 2e2lIS; — SollT} (2)
To complete the proof, it suffices to show that th‘ere;exists a sequence pp, — 0 as
m — oo such that ‘

%1_1)%0 Var,.[In] =0 (2.2)

By direct calculations we get

Var,, [In] -2 Z exp{€.2(S;, — S0, S5, — S0)} — 1 (2.3)

J1:g2=1

which implies (2.2).

Lemma 2.2. Let ©; be a compact set in Ly(v) and O3 be a closed bounded subset of
Ly(v). Then ©; and O are distinguishable only if there ezists a finite- dzmenszonal
- subspace H of Ly(v) such that TIg©; N HH®2 .

Proof of Lemma 2.2. Let us fix a pomt 7 € O; and consider the problem of
testing the hypothesis S = 7 versus § € ©,. By Lemma 2.1, there exists a
finite dimensional subspace H, such that 7 € H, and 7 ¢ IIg,©,. Denote r, =
p(Ilg, 7,11, ©,) and define the set U, = {S: |S — 7| <r,/2, S € O1}. It is clear
that the sets U, and O, are distinguishable. Since ©; is a compact set, there exists
" a finite covering of ©; by some sets U,,,..., U,, with 7,... ,7 € ©;. Define the
subspace H = H,, + ...+ H,,. Then IIg0; N IIxO®; = 0, which completes the

proof of Lemma 2.2.

In the proof of Theorem 1.1 in the general setting we shall use the following version
of Lemma 2.1.

Lemma 2.3. Let the sets ©; and O be closed and bounded in La(v). Let the
hypotheses § € O and 0 € O, be distinguishable. Then there exists m such that for
any T € O, there exists a ﬂnite-dimensiqnal subspace H, such that dim (H,;) <m
and Mg, v ¢ Iy, O,. 4

Proof of Lemma 2.3. Suppose the opposﬂ;e Then for any sequence p, > 0, p, — 0
as n — oo there exists a sequence S, € O, satisfying the following. For every
n there exist signals Spi,..., S € O such that sup{|(Ss; — Su,Sni — Sn)| :
1 <7< j<n}<pn Arguing similarly to the proof of Lemma 2.1, we come to
the contradiction.

Proof of Theorem 1.1. Although the arguments have a rather complicated char-
acter, the proof is based basically on the following two facts: Lemma 2.3 and
indistinguishability of sets ©; and O, of the type 01 =UR {61}, ©2 = 1_1{022}
where 0y = (au1,duz,. .- ), Qj = 0ifi #j,t=1,2 and ay; = (— )t 1fz = j,
t=1,2.

Suppose the opposite. Let r; € @1 and n; € @2 Then by Lemma 2.3 there exist
finite dimensional subspaces H,,, Hp, such that IIg, 7 ¢ IIg, ©, and Iy, m ¢



I1,,0:. We evidently can suppose that € H, and n; € H,,. Denote H, =
H¢1 -+ Hm, Hl = HHI, and let A1 = H1@1 N H1®2 75 (D

Let Ao € A;. There exist the following three possibilities.
i. There exist a vicinity of U of Ag and a finite-dimensional subspace H such that

HH(H—IUl N @1) N HH( _1U1 N @2) = (2 4)

#i. There does not exist finite-dimensional subspace H e Lg(u) such that ITg(TI7 AN
0:) NIg(T7 A N O;) = 0.
iti. There exist sequences of points A; € H; converging to Ao as i — oo, the
vicinities U; of A; and finite-dimensional subspaces H;, H;_; C H;, dlm(H,-) — 00
as 1 — 00, such that '

HH‘-(HI_IUJ' N @1) N HH'»(HIIU]' N @2) = {. Zf 1< ‘ (25)
and
Mg, (07'U; N6 )nIIH,(H‘IU»ﬂ@z)#(D if j>i. (2.6)

It is clear that if for all points Ag € A; the case i takes place, then the conclusion
of Theorem 1.1 is fulfilled.

Consider the case 7. By Lemma 2.3, we can define subspaces H; usmg the
following inductive arguments. Let z; € HH (7' Uit1 N O1) N Mg, (I Uigr N O)
and IIg, z; = A;. Then there exist 7; € ©; and n; € O, such that Iy, = Hg,n =
z;. Consider the problems of testing the hypotheses S = 7; versus S € ©, and
S € ©; versus S = m;. Applying to these two problems Lemma 2.3, we can
find a finite-dimensional subspace Ho,y1 such that 7, € Hoip1, 70 € Hozqq and
7 & UHy 1O, 7 € iy, 010 It s clear that A; = 1,0, N 5,0, # 0. We can
suppose that the points Ti; M, J > 4 satisfy the relation Iy, 7; = Hgn; € A; and
- that there exists a sequence zo; € H; such that IIjzg; = Ao and g, 75 — 2o as
j — oo. If the sequences Ti> Tlj do not satisfy this condition we can always pass to
subsequences 7;,7; possessing this property, using the followmg diagonal process.
Since A, is a compact we can choose a subsequence 2;; = Ilg,7; of the sequence

2
Iy, 7 converging to some 202 E A2 Denoting such a subsequence 7;; as T,S ), we

choose a subsequence 7, % of 7 such that Mg, (=) converges to some zoz € Ags,
and so on. It is clear that the result HH ®) of the indicated procedure and Iy, n(k)
- defined similarly starting with »; converge to zg; for all ¢+ and that Ilg, zo; = Ao,
My, 205 = 20 for all j > 1.

Let us define the sequences of Bayes a priori measures p; and ps on the sets
©; and ©,, respectively, with the atoms piym(z1:) = =, pam(22:) = =, 1 <1 < m.
We denote by 7y, t = 1,2, the corresponding Bayes a posteriori likelihood ratios
with respect to the measure of the Gaussian white noise.

We can represent H; as H; = H;_; @ H,; where @ means direct sum. In further
arguments we can suppose that Ilg,zo; = Ilgn; = g1 = 20 for all 7 > 1,
since we always can choose a subsequence A; such that, for sufficiently large ¢, the
differences Iy, 7; — z0:;, Hm;m; — 20i With j > ¢ are as small as desired. Taking into
account this assumption, we choose the system of coordinates in H; such that the
coordinates of zo;, 7y, 7; are g, 20; = (@:,0,...,0), g, 7 = (@1, 61:,0,...,0) and
HHc;ni = (ali,bgi,cm',o,. . ,0). '



Thus, we can write ’
C Mim = Tgm = — 2 Jp - (2.7)
m k=1 '

where

Ji = exp{z e 2(anp; — —a )}(exp{e'2(a1k¢k + b1kCix — %(afk +63))}—

=1

} 1 |
eXP{G_z(azk‘/’k,-i- barCik + corCor — 2(“% + b3 + c3)) ) (2.8)

Here vy, ik, (or are yindependent Gaussian random variables, Ev, = E(y =
Elw =0, By} = B¢}, = B¢, = €% '
Since EJy, Jk, = 0 if ky # ko then

. 2 RRT _ 2 _
7711_1;130 E* |7y — Tom] = %1_1;130 E[rim — Tom]* =0 (2.9)

Since m does not depend on €, we come to the contradiction.
In the case i the arguments are the same as in ii. The only difference is that
now we set A; = Ag. The proof of Theorem 1.1 is completed.

3. Proof of Theorem 1.1 for the case of testing hypotheses about density.
The arguments are basically the same as in the case of signal detection, up to
evident modification of terminology and some changes in analytical relations.

Let us first outline the modifications of the corresponding version of Lemma
2.1. As a consequence, we obtain also the results of Lemmas 2.2 and 2.3.

Proof of Lemma 2.1 for the case of testing hypotheses about density. We can pre-
serve the same arguments as in the case of 51gnal detection; all we need in addition
is to suppose that |(So, S; — So)| < pk. For all j denote ¢; = S; — So. For all 71, 72
we set 1,5, = (5, 3,), Toj, = (S0, éj,) and roo = (So, So)-

The corresponding likelihood ratio (compare with (2.1)) w.r.t. measure v equals
I=][%X.), I ——ZHS (Xs) = — ZH(SO X)+¢J(X ) (B.1)
s=1 - j=1s=1 ]—1 s=1

in the case of the hypothesis and its Bayes alternative, respectlvely.
By direct calculation we get

Eu[Im - IO]2 = Dml. - -Dm2a Dml = Dmll + Dm12 ‘ (32)
~ where . .
‘ , S L om— 1 .
Dy = 2m > (roo + T0j1 + 7'032 + Tsz) ——Tg  (3:3)
: 1<i1<je<m m ) : .

Dz = m'? 2(7‘00 + 2ro; + 1)t —mTirgy =

J=1 ‘
. k .
m=2 Y |1S51*" = m™H|Sol[*", (3.4)
j=1 . )
sz = 2m_l Z(TOO + Toj)n — 27’30 ‘ (35) ’

i=1



- Since the choice of m and of the sequence p; does not depend on n,\ (3.2)-(3.5)
together imply (2.2). This completes the proof of Lemma 2.1.

Proof of Theorem 1.1 for the case of testing hypotheses about density. We can use
the same arguments as for the problem of signal detection, till the definition of the
likelihood ratios 7y, and mo,. The likelihood ratios 7y, and me, now are taken
w.r.t. measure v and are

1 & 1 & ;
Tim = — 2=: ylk, Tom = Ekg::l Jok (3.6)

with . ) ‘ ‘ , ~ ,

Jik = H )+ Z a;ihi(Xs) + anrtor(Xs) + blk(lk( ))

s—l .
Jop = H )+ Z a;pi(Xs) + a2k¢k( s) + barCie(Xs) + caror(X5)).

- s=1
Here 91,... , %k, Cik, C% are the orthonormal basis orths of properly chosen coor-
dinates (compare with (2.8)).

Denote

gk .'13) + E zwz

¢_1k( z) = a1k¢k($) + birCik(z ) ,
par(x) = aarbr(z) + b2k§11;(513) + carCar(z).
Then, for t=1,2, - : ' :

n

T = T (on(Xe) + 6u(X.)-

s=1
,Foranyk1<k2andzg—12wehave ’ o
(qu + ¢zkngk2 + ¢Jk2) y||gk1 ||2 + (¢ikxagk2)' (37)

This implies E,[Jix,(Jik, — Jok,)] = 0. Hence E, [(Jix, — Jox, )(J1k, — J21,)] = 0.
Therefore : S

B[mim — mam]? = m™2 > (llg + durl+

k=1
g + Sarl[™ — 2(gk + P1rs Gk + P2x)™")- (3.8)
~ Hence '
hm E,[mim — Tom)® = 0. (3.9)

‘This completes the proof of Theorem 1.1.
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