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Abstract. Let we observe a signal S(t), t E (0, 1) in Gaussian white noise c.dw(t). 
The problem is to test a hypothesis S E 8 1 C L2(0, 1) versus alternatives S E 
82 C L2(0, 1). The sets 81, 82 are closed and bounded. We show that there exists 
a statistical procedure allowing to make a true solution S E 8 1 or S E 8 2 with 
probability tending to one as c. -+ 0 ( i.e. to distinguish two nonparametric sets 
8 1 and 82) iff there exists a finite-dimensional subspace H C L2 (0, 1) such that 
the projections 81 and 82 on H have no common points. A similar result is also 
obtained for the problems of testing hypotheses about density. 

1. General Setting and Main Result. In estimation problems an asymptotic 
behaviour of estimators is usually characterised from the three different viewpoints: 
consistency, rate of convergence and efficiency. In hypothesis testing the analogous 
of these viewpoints are the distinguishability of the hypotheses and the alterna-
tives, the optimal rates of distinguishability (the optimal rates of approaching the 
hypotheses and the alternatives allowing to distinguish them) and the asymptotic 
minimax or Bayes optimality of tests. 

For practical applications with a finite number of parameters the problems of 
distinguishability and optimal rates of distinguishability do not present any dif-
ficulty. Essential difficulties arise if the sets of hypotheses or alternatives have 
nonparametric nature. For example, such a problem is testing a hypothesis that 
L2-norm of deviation of density from the density of uniform distribution exceeds 
p > 0 or a similar problem of signal detection in Gaussian white noise. Here testi:p.g 
a hypothesis is possible only if additional a priori information is available. Thus 
the problem of distinguishability in nonparametric setting deserves a special inves-
tigation. For the first time testing nonparametric hypotheses has been considered 
by Manh and Wald (1942) and Stein (1956). In these papers the basic settings 
have been proposed. The last years the problem of testing nonparametric hypothe-
ses was investigating intensively (see Ermakov (1990),(1995), Ingster (1988),(1993) 
and references therein). The main attention . has been paid to the optimal rates 
of distinguishability and to construction of asymptotically minimax sequences of 
tests. At the same time the simplest distinguishability problem has been consid-
ered only as an auxiliary question or as in the context of more powerful results on 
optimal rates of distinguishability. 

First of all, among the results on distinguishability problem, we should mention 
Burnashev's paper (1979). For a signal observed in the Gaussian white noise Bur-
nashev has shown that the problem of nonparametric signal detection in Lrnorm 
cannot be solved without additional a priori information. A similar result for the 
problem of testing hypotheses about density has been obtained by Ingster (1993). 
For a signal detection in the Gaussian noise, the problem of distinguishability has 
been studied in Ermakov (1990) for the sets of alternatives represented as difference 
of two ellipsoids in L2 • A similar setting for a difference of two lp bodies has been 
considered in Ingster (1993). 

The purpose of the paper is to find necessary and sufficient conditions of dis.:. 
tinguishability of two bounded sets of hypotheses for the two problems: signal 
detection in the Gaussian white noise and testing hypotheses about density. As we 



3 

know, almost all widespread statistical models are usually reduced to their analo-
gies with Gaussian white noise (see Donoho and Liu (1987), Brown and Low (1992), 
Nussbaum (1995)). By this reason, we first of all consider the model of signal de-
tection in the Gaussian white noise. Then a similar model of testing hypotheses 
about density will be considered. 

Suppose we observe a random process Y(t), t E (0, 1), defined by the stochastic 
differential equation 

dY(t) == S(t)dt + cdw(t), € > 0. 
Here S(t) is an unknown signal and dw(t) is the Gaussian white noise. The problem 
is to test the hypothesis SE 8 1 C L2(0, 1) versus the alternative SE 8 2 C L2(0, 1). 
The sets 8 1 and 8 2 are assumed to be closed and bounded. 

For a test Ke, denote by ao,e(I<e) its type I error probability for the hypothesis 
BE 8 1 , and by /30,e(Ke) its type H error probability for the alternative BE 8 2 . Let 

ae(I<e) == sup aoe(Ke), f3e(I<e) == sup /3oe(Ke) 
BE81 BE82 

We say ·that the sets of hypotheses 8 1 and the sets of alternatives 8 2 are distin-
guishable if there exists a family of tests Ke such that 

limsup (ae(Ke) + f3e(I<e)) < l. 
e-tO 

Otherwise we shall say that the sets of hypotheses and alternatives are indistin-
guishable. 

The problem of distinguishability admits the following interpretation if the 
sets of hypotheses and alternatives converge to each other. Assume we have two 
families of sets 81(P) and 82(p) with p ER~ suchthat 81(P2) C 81(P1), 82(p2) C 
82(P1) for all 0 < P1 < P2 < oo. Let 81 (p) n 82(P) == 0 for all p > 0 and let 
8 1 (0) n 8 2(0) -/= 0. We call Pe the optimal rate of distinguishability if the sets 
81 (Pe) and 82(Pe) are distinguishable and for any Pie, Pie/ Pe -+ 0 as E 4 0, the 
sets 81 (Pie), 82(P1e) are indistinguishable. Finally, we shall say that the families 
of sets 8 1 (p) and 8 2 (p) are asymptotically distinguishable if there exists Pe -+ 0 
as E -+ 0 such that the sets 8 1 (Pe) and 8 2(pe) are distinguishable. It is clear 
that the families of sets 8 1 (p) and 8 2 (p) are asymptotically distinguishable if the 
sets 8 1 (p), 8 2 (p) are distinguishable for any fixed p > 0. Thus the problem of 
asymptotic distinguishability reduces easily to the simpler problem of the usual 
distinguishabili ty. 

The interest to the problem of asymptotic distinguishability can be illustrated 
by the following simple example of sets of hypotheses and alternatives. Let 8 1(p) == 
{O} for all p > 0 and let 8 2(p) = U\Bp(O) where U is a closed bounded set and 
Bp(O) is the ball in L2 of the radius p centered at zero. As follows from Theorem 
1.1 below the hypothesis 0 = 0 and the set of alternatives 8 2(p) are distinguishable 
iff U is a compact set. This example was the starting point in the consideration of 
the problem. 

We shall consider the problem of testing nonparametric hypothesis about den-
sity in the following setting. Let X1, ••• , Xn be i.i.d.r. v. 's on a probability space 
(D, ~' P) and let the measure P be absolutely continuous w.r.t. a probability mea-
sure v with the density S(x) == dP/dv(x). The problem is to test the hypothesis 
S E 8 1 C L2(v) versus the alternative S E 8 2 C L2(v). For such a setting we 
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can preserve the same notations and definitions as in the problem of signal detec-
tion. The only difference is that the parameter c in the notation should now be 
replaced by the parameter n and instead of the asymptotics c--+ 0 we consider the 
asymptotics n --+ oo. 

We shall use the following notation. Let H·be a subspace of L2 (v). Denote by 
ITH the projection operator on the subspace H and by dim (H) the dimension of 
H if H is finite-dimensional. For any Si,S2 E L2(v) define the inner product 

and let llSill2 ==(Si, Si). For any pair of subspaces Hi, H2 C L2(v) denote Hi+ 
H2 == {S: S ==Si +S2, Si E Hi, S2 E H2}· 

The results for both the models are the same and are given below in Theorem 
1.1. In this theorem, in the case of signal detection v stands for the Lebesgue 
measure inn== (0, 1). 

Theorem 1.1. Let 8i and 82 be closed bounded sets in L2 (v). Then) both in 
the problem of signal detection and testing hypotheses about density) the sets 8i 
and 8 2 are distinguishable iff there exists a finite-dimensional subspace H C L2 (v) 
such that IIH8i n IIH82 == 0. . 
Theorem 1.1 implies that each solvable problem of hypotheses testing has a "para-
metric counterpart". 

Remark. For the problems of testing nonparametric hypotheses Theorem 1.1 can 
be considered as the analogy to the following result on nonparametric estimation. 
Let 8 be a bounded set in L2 ( v). Then there exists a consistent estimator of signals 
S E 8 iff the closure of 8 is a com pact set in L2 ( v) (see Ibragimov and Khasminskii 
(1977)). 
First we shall prove Theorem 1.1 for the Gaussian white noise model. Then we shall 
point out the modifications in the proof required· by the case of testing hypotheses 
about density. · 

2. Proof of Theorem 1.1. Signal in the Gaussian white noise. The 
sufficiency of condition is clear since under this condition the problem reduces to 
its finite-dimensional version. 

The necessity will be proved separately for the following three cases: 8i == {So}, 
8i is a compact set, and 8 1 is an arbitrary bounded set. The first two cases are 
considered to make transparent the idea of the proof for the most general case. 

Lemma2.1. Let8 1 = {5'0 } and let 82 be a closed bounded subset of L2 (v). Assume 
the hypothesis S == S0 and the alternative S E 8 2 aredistinguishable. Then there 
exists a finite-dimensional subspace H E L2(v) such that IIHSo ~ IIH82. 

Clearly we can take the aforementioned H in such a way that So E H. 

Proof of Lemma 2.1. Suppose the opposite. Then, for any sequence Pk> 0, Pk--+ 0 
ask--+ oo, there exists a sequence Si, S2, ... E 82 such that sup{l(Sj-So, Sk-So)I : 
0:::; j < k} <Pk· 
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Fix a sequence Em > 0 and define a sequence of a priori Bayes measures µm in 
such a way that µm ( Sj) == 1 / m, 1 ~ j ~ m. The corresponding Bayes likelihood 
ratios are 

1 m 1 1 . 
Im = m j; exp{ E-;;..

1 lo (Si(t) - So(t)) dw(t) - 2€-;;..2 llSi - Soli2} (2.1) 

To complete the proof, it suffices to show that there exists a sequence Pm -+ 0 as 
m -+ oo such that 

lim Varµm[Im] == 0 
m-too 

(2.2) 
By direct calculations we get 

m 

Varµm[Im] = m-2 L exp{c~2 (Sj1 - So,Sj2 - So)}-1 (2.3) 
ii ,j2=l 

which implies (2.2). 

Lemma 2.2. Let 8 1 be a compact set in L2(v) and 8 2 be a closed bounded subset of 
L2 ( v). Then 8 1 and 8 2 are distinguishable only if there exists a finite-dimensional 
subspace H of L2(v) such that IlH81 n IIH82 = 0. 
Proof of Lemma 2.2. Let us fix a point T E 8 1 and consider the problem of 
testing the hypothesis S = T versus S E 8 2. By Lemma 2.1, there exists a 
finite dimensional subspace HT such that T E HT and T t/:. ITHr 8 2. Denote rT = 
p(ITHr r, ITHr82) and define the set Ur= {S: IS - rl ~ rT/2, SE 81}. It is clear 
that the sets UT and 8 2 are distinguishable. Since 8 1 is a compact set, there exists 

· a finite covering of 81 by some sets Ur~, ... , UTn with Ti, ... , Tn E 8 1. Define the 
subspace H = HT1 + ... +: HTn. Then IIH81 n IlH82 = 0, which completes the 
proof of Lemma 2.2. 

In the proof of Theorem 1.1 in the general setting we shall use the following version 
of Lemma 2.1. 

Lemma 2.3. Let the sets 8 1 and 8 2 be closed and bounded in L2(v). Let the 
hypotheses B E 8 1 and B E 8 2 be distinguishable. Then there exists m such that for 
any T E 8 1 there exists a finite-dimensional subspace HT such that dim (HT) ~ m 
and ITHr T t/:. IIHr82. . 

Proof of Lemma 2.3. Suppose the opposite. Then for any sequence Pn > 0, Pn-+ 0 
as n -+ oo there exists a sequence Sn E 8 1 satisfying the following. For every 
n there exist signals Sn1, ... , Snn E 82 such that sup{l(Snj - Sn, Sni - Sn)I : 
1 ~ i < j ~ n} < Pn. Arguing similarly to the proof of Lemma 2.1, we come to 
the contradiction. 

Proof of Theorem 1.1. Although the arguments have a rather complicated char-
acter, the proof is based basically on the following two facts: Lemma 2.3 and 
indistinguishability of sets 8 1 and 82 of the type 81 = U~1 {B1i}, 82 = U~1 {B2i}, 
where Bti = (atii, ati2, ... ), atij = 0 if i # j, t == 1, 2 and atij == (-l)t if i == j, 
t = 1,2. 

Suppose the opposite. Let r1 E 8 1 and ry1 E 8 2. Then by Lemma 2.3 there exist 
finite dimensional subspaces HT1 , H111 such that IlHr1 T1 t/:. ITHr1 82 and IIH,71 'r/1 t/:. 
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Il,.,1 8 1. We evidently can suppose that Ti E HT1 and ry1 E H,.,1 • Denote H1 
HT! + H111' II1 = IIH1' and let Ai = II181 n II1 82 =I- 0. 

Let .A.0 E A1. There exist the following three possibilities. 
i. There exist a vicinity of U1 of Ao and a finite-dimensional subspace H such that 

(2.4) 

ii. There does not exist finite-dimensional subspace HE L2(v) such that IIH(Il11 .A.0 n 
81) n IIH(II11 .A.on 82) = 0. 
iii. There exist sequences of points Ai E H1 converging to ).0 as i --+ oo, the 
vicinities Ui of Ai and finite-dimensional subspaces Hi, Hi-I c Hi, dim (Hi) --+ oo 
as i --+ oo, such that 

and 
rrHi(rr11uj n 81) n rrHi(rr11uj n 82) =I- 0 if j > i. (2.6) 

It is clear that if for all points Ao E A1 the case i takes place, then the conclusion 
of Theorem 1.1 is fulfilled. 

Consider the case iii. By Lemma 2.3, we can define subspaces Hi using the 
following inductive arguments. Let Zi E IIHi(rr11ui+l n 81) n IIHJII11ui+l n 82) 
and IIH1 Zi = Ai. Then there exist Ti E 81 and 'r/i E 82 such that IIHiTi = IIHi'r/i = 
Zi. Consider the problems of testing the hypotheses S = Ti versus S E 8 2 and 
S E 8 1 versus S = ry1 . Applying to these two problems Lemma 2.3, we can 
find a finite-dimensional subspace Ho,i+i such that .Ti E Ho,i+i, 'r/i E Ho,i+i and 
Ti fj. IIHo,i+l 82' 'r/i fj. IIHo,i+l 81. It is dear that Ai = II Hi 81 n II Hi 82 =I- 0. We can 
suppose that the points Tj; 'r/j, j > i satisfy the relation II Hi Tj = II Hi 'r/j E Ai and 
that there exists a sequence Zoi E Hi such that II1zoi = Ao and IIHiTj --+ Zoi as 
j --+ oo. If the sequences Tj, 'r/j do not satisfy this condition we can always pass to 
subsequences Tj, 'r/j possessing this property, using the following diagonal process. 
Since A2 is a compact we can choose a subsequence z 2j = IIH2 TiJ of the sequence 
IIH2 Ti converging to some zo2 E A2. Denoting such a subsequence Ti1 as Tp), we 
choose a subsequence Tp) of T~2) such that IIH3 T~

3) converges to some z 03 E A03 , 

and so on. It is clear that the result IIHiT~k) of the indicated procedure and IIHi'r/ik) 
defined similarly starting with 'r/i converge to Zoi for all i and that IIH1 Zoi = Ao, 
IIHiZoj = Zoi for all j > i. 

Let us define the sequences of Bayes a priori measures µ 1 and µ 2 on the sets 
8 1 and 82, respectively, with the atoms µ1m(Z1i) = ! , µ2m(Z2i) = ! , 1 ::; i ::; m. 
We denote by 'lftm, t = 1, 2, the corresponding Bayes a posteriori likelihood ratios 
with respect to the measure of the Gaussian white noise. 

We can represent Hi as Hi= Hi-I EB Hci where EB means direct sum. In further 
arguments we can suppose that IIHiZoj = IIHi'r/i = IIHiTj = Zoi for all j > i, 
since we always can choose a subsequence Aj such that, for sufficiently large i, the 
differences ITHJj - Zoi, IIHi'r/i - Zoi with j > i are as small as desired. Taking into 
account this assumption, we choose the system of coordinates in Hi such that the 
coordinates of Zoi, Ti, 'r/i are IIHciZoi = ( ai, 0, ... , 0), IIHcJi = ( aii, b1i, 0, ... , 0) and 
IIHci'r/i = ( aii, b2i, C2i, 0, ... , 0). . 
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Thus, we can write 

(2.7) 

where 
k-1 1 1 

Jk = exp{L c-2(atlfi - 2a;)}(exp{E-2 (a1k'lfak + b1k(1k - -(aik + bik))}-
i=l 2 

exp{ £-
2(a2k'¢k + b2k(lk + C2kfo - ~( a~k + b~k + c;k)) }. (2.8) 

Here 'l/'k, (!k, (2k are independent Gaussian random variables, E'lfak 
E(2k = 0, E'lfa~ = E(lk = E(?k = E

2
• 

E(lk = 
Since EJk1 Jk2 = 0 if k1 -/=- k2 then 

(2.9) 

Since m does not depend on E, we come to the contradiction. 
In the case ii the arguments are the same as in iii. The only difference is that 

now we set ,,\ = A0 • The proof of Theorem 1.1 is completed. · 

3. Proof of Theorem 1.1 for the case of testing hypotheses about density. 
The arguments are basically the same as in the case of signal detection, up , to 
evident modification of terminology and some changes in analytical relations. 

Let us first outline the modifications of the corresponding version of Lemma 
2.1. As a consequence, we obtain also the results of Lemmas 2.2 .and 2.3. 

Proof of Lemma 2.1 for the case of testing hypotheses about density. We can pre-
serve the same arguments as in the case of signal detection; all we need in addition 
is to suppose that l(So, Sk - So)! <Pk· For all j denote <Pi= Si - So. For all i1,j2 
we set rjd2 = (</;jp </;jJ, roj1 =(So, </>ii) and roo =(So, So). 

The corresponding likelihood ratio (compare with (2.1)) w.r.t. measure v equals 
m 

Io= ITBo(Xs), 
. lm n. lm n , 
Im= - LIT Sj(Xs) = - LIT (So(Xs) + </;j(Xs)) (3.1) 

m j=l s=l m j=l s=l s=l · 

in the case of the hypothesis and its Bayes alternative, respectively. 
By direct calculation we get 

where 
Ev[Im - Io] 2 = Dml - Dm2, Dml = Dm11 + Dm12 

D 2 -2 "'""""' ( , )n m - 1 n 
mll = m LJ roo + roi1 + roh + riii2 - roo' 

l~j1<i2~m m 
k 

Dm12 = m-2 l:(roo + 2roj + riit - m-1 r~0 = 
j=l 

k 
m-2 L llSill2n - m-1llS01!2n, 

j=l 

k 

Dm2 = 2m-1 L(roo + rojt - 2r~0 
j=l 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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Since the choice of m and of the sequence Pk does not depend on n, (3.2)-(3.5) 
together imply (2.2). This completes the proof of Lemma 2.1. 

Proof of Theorem 1.1 for the case of testing hypotheses about density. We can use 
the same arguments as for the problem of signal detection, till the definition of the 
likelihood ratios 1r1m and ?T2m· The likelihood ratios ?T1m and ?T2m now are taken 
w.r.t. measure v and are 

with 

1 m 

?T1m = - L Jlk, 
m k=l 

n k-1 
J1k = II (--\o(Xs) + L ai1/Ji(Xs) + alk'lfJk(Xs) + blk(1k(Xs)), 

s=l i=l 
n k-1 

J2k = II (--\o(Xs) + L ai'l/Ji(Xs) + a2k'l/Jk(Xs) + b2k(lk(Xs) + C2k(2k(Xs)). 
s=l i=l 

(3.6) 

Here 'lj;1, ... , 'l/Jk, (lk, (2k are the orthonormal basis orths of properly chosen coor-
dinates (compare with (2.8) ). 

Denote 

Then, for t=l,2, 

k-1 
9k(x) = Ao(x) + L ai'l/Ji(x), 

i=l 

cf>lk(x) = alk'l/Jk(x) + blk(lk(x), 
c/>2k(x) = a2k'l/Jk(x) + b2k(lk(x) + C2k(2k(x). 

n 
Jtk = II (gk(Xs) + c/>tk(Xs)). 

s=l 

For any k1 < k2 and i,j = 1, 2 we have 

(9k1 + c/>ik1 '9k2 + c/>jk2) = I l9k1 11
2 + ( ¢ik1 '9k2). (3.7) 

This implies Ev[Jiki(J.1k2 - J2kJ] = 0. Hence Ev[(J1k1 - J2k1)(Jlk2 - J2kJ] = 0. 
Therefore m 

Ev[?T1m - ?T2m]
2 = m-2 L(ll9k + ¢1kll 2

n+ 
k=l 

I l9k + c/>2kl l2n - 2(gk + cf>lk, 9k + c/>2k)2n). 
Hence 

lim Ev[?T1m - 7T2m]
2 = 0. 

m-+oo 
This completes the proof of Theorem 1.1. 

(3.8) 

(3.9) 
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