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Data-driven confidence bands for distributed
nonparametric regression

Valeriy Avanesov

Abstract

Gaussian Process Regression and Kernel Ridge Regression are popular nonparametric re-
gression approaches. Unfortunately, they suffer from high computational complexity rendering
them inapplicable to the modern massive datasets. To that end a number of approximations have
been suggested, some of them allowing for a distributed implementation. One of them is the
divide and conquer approach, splitting the data into a number of partitions, obtaining the local es-
timates and finally averaging them. In this paper we suggest a novel computationally efficient fully
data-driven algorithm, quantifying uncertainty of this method, yielding frequentist L2-confidence
bands. We rigorously demonstrate validity of the algorithm. Another contribution of the paper is a
minimax-optimal high-probability bound for the averaged estimator, complementing and general-
izing the known risk bounds.

1 Introduction

The problem of nonparametric regression arises in numerous applications including but not limited to
finance [12, 48, 43, 2], neuroimaging [22, 34], climate [20, 31, 30], geology [14, 26, 23] and optimization
[40, 11]. The frequentist setting of such a problem considers n response-covariate pairs (yi, Xi) from
R×X are being observed such that

yi = f ∗(Xi) + εi

for a compact X ⊆ Rd, centered independent sub-Gaussian noise εi of variance σ2. Throughout
the paper we presume Xi are drawn independently w.r.t. some unknown continuous measure π. In
the paper we investigate the behaviour of one of the most popular non-parametric approaches to
estimation of f ∗ – the Gaussian Process Regression (GPR) [32, 5, 19, 7]. GPR, being a Bayesian
procedure, has been predominantly examined from a Bayesian point of view, i.e. no existence of f ∗

has been presumed, contrary to the frequentist setting we consider here. Namely, the contraction rate
of the posterior distribution has been typically in focus [45, 46, 3].

Commonly, in order to analyse the frequentist behaviour of GPR, researchers turn to the Kernel Ridge
Regression (KRR), whose point estimate f̂ coincides with the mean of GPR posterior [6, 28, 44, 25,
52]. Most recently researchers have also developed interest for frequentist confidence sets. Namely,
the authors of [49] suggest an approach to construct sup-norm confidence bands.

Unfortunately, KRR and GPR suffer from O(n3) time complexity, which renders them inapplicable to
the datasets containing more than several thousands elements. To that end numerous approximations
emerged. A wide variety of them rely on a low-rank approximation of the kernel driving the GP prior,
e.g. PCA [38] or Nyström approximation [47]. The latter has been demonstrated to achieve nearly
minimax-optimal performance [1, 16, 37]. Another strategy is to split the dataset into P partitions,
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V. Avanesov 2

obtain the local estimates f̂p separately and then average them, yielding f̄ . This does not only reduce
the complexity to O(n3/P 2), but also makes a distributed implementation trivial. In [35] the method
is given theoretical treatment for parametric families of dimenionality p(n)/n→ const ∈ (0, 1). [13]
employed the idea for GPR, in [53] the idea is applied to KRR and further studied in [27]. A broad
range of distributed non-parametric methods is analysed in [42].

One of the properties making GPR the instrument of choice is the ability to quantify the uncertainty
of prediction. Only recently [49] have demonstrated that GPR posterior can be used to construct
sup-norm frequentist confidence bands. At the same time, data driven-techniques based on Kernel
Density Estimator were suggested [18, 9]. To the best of the authors’ knowledge there has not yet been
a distributed approach to the problem of nonparametric regression yielding frequentist uncertainty
estimates.

The main contribution of this paper is enrichment of the divide and conquer approach suggested by
[53] with a highly cost-effective novel bootstrap algorithm constructing confidence bands for f ∗. We
rigorously demonstrate the validity of the approach. The main result is established for undersmoothed
prior, which is an assumption commonly employed to establish the validity of confidence sets [24, 41,
33, 49]. Moreover, we also obtain a minimax-optimal high-probability bound for

∥∥f̄ − f ∗∥∥2

2
, extending

the earlier results [53, 27, 29], where the authors control expectation of the norm or of its positive
power.

1.1 Notation

In the paper we heavily rely on a spectral decomposition of the kernel operator k(·, ·) w.r.t. π. Mer-
cer’s theorem [32] provides existence of normalized eigenfunctions φj ∈ L2(X , π) along with the
corresponding eigenvalues µj (in decreasing order). For a function ‖·‖2 denotes an L2(X , π)-norm,
namely ‖f‖2

2 =
∫
f 2dπ, the dot-product is also defined w.r.t. π: 〈f, g〉 =

∫
fgdπ. The kernel k(·, ·)

induces a RKHSHk endowed with a norm

‖f‖2
Hk =

∞∑
j=1

〈f, φj〉2

µj
. (1.1)

For a vector ‖·‖ denotes an `2-norm, while for a matrix it denotes its maximum absolute eigenvalue.
Frobenius norm is denoted as ‖·‖F . We denote j-th largest eigenvalue of an operator A as λj(A)
and ‖A‖1 :=

∑∞
j=1 |λj(A)|. I stands for an identity operator. We also use c and C as generalized

positive constants, whose values may differ from line to line and depend only on k(·, ·). We use � to
denote equality up to a multiplicative constant – namely, ai � bi implies cbi ≤ ai ≤ Cbi for all i.
We will also writeHs to denote a RKHS induced by a kernel exhibiting polynomial eigendecay of form
µj � j−2s (Assumption 3.1).

2 The algorithm

GPR attains bias-variance trade-off via imposing a Gaussian Process (GP) prior over the function in
question. A GP prior is driven by its mean (typically, assumed to be constant and zero) and covariance
function

f ∼ GP(0, σ2(nρ)−1k(·, ·)),
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where ρ > 0 is a regularization parameter. In the current study we focus on Matérn kernels, yet
the results are also applicable to any covariance function demonstrating polynomial eigendecay and
boundness of its eigenfunctions. Posterior distribution over f is also a GP with mean

f̂(x) = k∗(x) (K + nρI)−1 y,

where y := [yi]i=1..n, k∗(x) = [k(x, xi)]i=1..n and K = [k(xi, xj)]i,j=1..n.

Alternatively, one can arrive to the same point estimate via Kernel Ridge Regression (KRR) [32]

f̂ := arg max
f

{
− 1

2n

n∑
i=1

(yi − f(Xi))
2 − ρ

2
‖f‖2

Hk

}
, (2.1)

where ‖·‖Hk refers to the RKHS norm, induced by the kernel k(·, ·) (see (1.1) for the definition).

The problem (2.1) is notorious for its high computational complexity being O(n3), rendering it impos-
sible to scale. As [53] suggests, split the set of indices {1, 2, .., n} into P disjoint sets {Sp}Pp=1 of size
S := |Sp| = n/P (we presume n/P is natural for simplicity). Now define P local estimators

f̂p := arg max
f

− 1

2S

∑
i∈Sp

(yi − f(Xi))
2 − ρ

2
‖f‖2

Hk

 (2.2)

and the averaged one

f̄ :=
1

P

P∑
p=1

f̂p.

Of course, P cannot grow linearly with n, yet for highly smooth classes of functions it can grow as a
power of n close to 1, making the overall complexity O(n3/P 2) nearly linear (see (3.6) for details).

Distribution of f̄ has a complicated nature, while its limiting distribution involves the spectral decom-
position of k(·, ·), which is time-consuming to obtain. This significantly complicates the problem of
constructing confidence bands for a confidence level β of sort

P
{∥∥f̄ − f ∗∥∥

2
≤ rβ

}
= β. (2.3)

To that end we suggest a non-trivial bootstrap procedure. Classic bootstrap schemes [15] suggest
to re-sample the input data. In our case it means solving the problems (2.2) from scratch for each
bootstrap iteration, which is time-consuming. In order to avoid that we suggest to re-sample f̂p directly,

achievingO(P ) time complexity. Formally, we draw f̂ [p independently and uniformly from
{
f̂p

}P
p=1

for

p = 1..P and define a bootstrap counterpart of the averaged estimator f̄

f̄ [ :=
1

P

P∑
p=1

f̂ [p.

Denoting the bootstrap measure as P[ we can now obtain r[β as

P[
{∥∥f̄ [ − f̄∥∥

2
≤ r[β

}
= β.

We establish closeness of P and P[ in some sense (see Theorem 3.3), justifying the use of the
bootstrap quantile r[β instead of the real-world rβ in (2.3).
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Remark 2.1. From a distributed implementation standpoint it may be more convenient and efficient
to employ multipliers instead of sampling with return. Namely, the bootstrap counterpart of f̄ can be
constructed as f̄w := 1

P

∑P
p=1 upf̂p for i.i.d. weights up with unit expectation and variance, e. g.

up ∼ N (1, 1). All the results demonstrated for f̄ [ are also valid for f̄w, as we only rely on the first
two moments of the bootstrap estimate.

3 Theoretical analysis

3.1 Assumptions

First of all, we impose a polynomial rate of decay on the eigenvalues of k(·, ·).

Assumption 3.1 (Polynomial eigendecay). Let there exist a constant s > 1/2 s.t. for the j-th largest
eigenvalue µj of k(·, ·)

µj � j−2s.

As demonstrated in [49], Assumption 3.1 holds for Matérn kernel with smoothnessα in a d-dimensional
space with s = (2α + d)/2. Another popular example is a Squared Exponential kernel, which is
known to exhibit an exponential rate of eigendecay. With some abuse of formality, our results can be
applied in this case with s = ∞. Alternatively, the argument can be carefully repeated with minimal
augmentation in this case as well.

We also assume the eigenfunctions of the kernel to be bounded. The analysis in [50, 4] proves the
assumption holds for Matérn kernel under uniform and normal distributions of covariates on a compact.

Assumption 3.2 (Boundness of eigenfunctions). Denote a normalized eigenfunction corresponding to
the j-th largest eigenvalue as φj(·). Let there exist a positive constant Cφ s.t.
supj maxX∈X |φj(X)| ≤ Cφ.

In conclusion we impose sub-Gaussianity assumption over noise, that being a common relaxation of
Gaussianity.

Assumption 3.3 (Sub-Gaussianity). Let there exist a constant g2 s.t. for all a ∈ R

E [exp(aε1)] ≤ exp

(
g2a2

2

)
.

3.2 Theoretical results

We open the section with a consistency result for f̂ . A similar bound is obtained in [6]. We extend it,
explicitly covering undersmoothed priors and providing a slightly tighter bound for that case. Note, it
gives a bound in terms of L2(X , π)-norm, which is natural, as an increase of density of Xi in some
subset of X leads to better predictions on the subset.

Theorem 3.1. Impose Assumption 3.1, Assumption 3.2, Assumption 3.3 and let f ∗ ∈ Hs◦ for s◦ ≥ s.
Choose

ρ = n−
2s

2s+1 .
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Then for any x > 1 and any t > 2.6 on a set of probability at least 1− e−x − e−t/2∥∥∥f̂ − f ∗∥∥∥
2
≤ C
√

txgn−
s

2s+1 + C ‖f ∗‖Hs◦ n
−min{s◦,2s}

2s+1

for some C > 0 depending only on s.

The proof (deferred to Appendix A) relies on the bound, established on a set of high probability.
Namely, we define a class of designs we are satisfied with (Assumption A.1), next we demonstrate
the measure of the class is high (Lemma D.2) and establish a consistency result under Assumption
A.1 (Lemma A.3). Here we choose the regularization parameter ρ in a classical manner, acquiring
balance between bias and variance in case s◦ = s.

Under mild assumptions the same minimax-optimal bound may be established for f̄ .

Theorem 3.2. Impose Assumption 3.1, Assumption 3.2, Assumption 3.3 and let f ∗ ∈ Hs◦ , s◦ ≥ s
and

P ≤ c
n

2s−1
2s+1

log n
. (3.1)

Choose
ρ = n−

2s
2s+1 .

Then for all x > 1 and t > 2.6 with probability at least 1− e−x − e−t/2∥∥f̄ − f ∗∥∥
2
≤ C
√

txgn−
s

2s+1 + C ‖f ∗‖Hs◦ n
−min{s◦,2s}

2s+1 . (3.2)

This theorem is a direct corollary of Lemma B.1. The strategy of the proof is to consider Fisher expan-
sion (see Lemma E.1 proven by [39]) for each f̂p, expressing the discrepancy between the sample-
level parameter and its penalized population-level counterpart in terms of Hessian and gradient of the
likelihood. Next, we bound the Hessian by Lemma D.2, sum up the expansions and employ additivity
of the gradient. Finally, we obtain the concentration via Hanson-Wright inequality.

The expression (3.1) dictates the maximum number of partitions P allowed for the minimax-optimal
bound (B.2) to hold. It does indeed match the condition obtained in [53].

Having obtained the high-probability bound with exponential tail, we can apply integrated tail probability
expectation formula to produce the following corollary, repeating the result by [29].

Corollary 3.1. Impose assumptions of Theorem 3.2. Then for any positive η

E
[∥∥f̄ − f ∗∥∥η

2

]
= O

(
n−

sη
2s+1

)
.

Finally, we turn to analysis of the suggested bootstrap scheme. The idea is usual for bootstrap validity
results [10, 8]. First, we establish Gaussian Approximation for the estimator f̄ . In order to do so we
first notice that by CLT

sup
r>0

∣∣∣P{∥∥f̄ − f ∗ρ∥∥2

2
< r
}
− P

{
‖γ‖2 < r

}∣∣∣→ 0

for n, P → +∞, where f ∗ρ = E
[
f̄
]

and γ is a centered Gaussian element of a Hilbert space with
covariance operator Var

[
f̄
]
. As we are interested in a concentration around f ∗ and not f ∗ρ , we also

have to account for the mis-tie between the two, making use of Gaussian Comparison, arriving to

sup
r>0

∣∣∣P{∥∥f̄ − f ∗∥∥2

2
< r
}
− P

{
‖γ‖2 < r

}∣∣∣→ 0. (3.3)
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Here we will have to impose undersmoothness of the prior (s◦ > s) in order to make the remainder
term negligible.

Turning to the bootstrap estimator f̄ [, we will use CLT again, which yields

sup
r>0

∣∣∣P{∥∥f̄ [ − f̄∥∥2

2
< r
}
− P

{
‖γ̂‖2 < r

}∣∣∣→ 0 (3.4)

for a centered Gaussian element of a Hilbert space γ̂ with covariance operator Var
[
f̄ [
]
. The final

step is to establish closeness of covariance operators of γ and γ̂ and apply Gaussian Comparison
obtaining

sup
r>0

∣∣P{‖γ‖2 < r
}
− P

{
‖γ̂‖2 < r

}∣∣→ 0. (3.5)

Combining (3.3), (3.4) and (3.5) will constitute the following claim.

Theorem 3.3. Impose Assumption 3.1, Assumption 3.2, Assumption 3.3 and let f ∗ ∈ Hs◦ for s◦ > s.
Choose

ρ = n−
2s

2s+1 .

Then

R[ := sup
r>0

∣∣∣P{∥∥f̄ − f ∗∥∥2

2
< r
}
− P[

{∥∥f̄ [ − f̄∥∥2

2
< r
}∣∣∣

≤ C

(
σ2n

2
2s+1 log2 n

P

) 4s−1
8s

+ Cn−
2min{s,s◦−s}

2s+1 ‖f ∗‖2
Hs◦ .

The sketched proof is implemented in Appendix C.

Naturally, the remainder gets smaller for larger P , as it implies a richer set to sample from. On the other
hand, Theorem 3.2 imposes an upper bound on P . Up to logarithmic terms, the choice of P = P (n)
implying both R[ = o(1) and (3.1) must satisfy

n
2

2s◦+1 � P (n)� n
2s◦−1
2s◦+1 (3.6)

in order for us to have both high-probability bound and credible bands. Clearly, it is possible only for
s◦ > 3/2. In case of Matérn kernels this translates to α+d/2 > 3/2, prohibiting only the case d = 1
and α ∈ (1/2, 1].

As discussed in Section 1, choice of an undersmoothed prior is a common way to trade optimality of
an estimator for a possibility to construct a confidence interval. But how much do we have to pay?
Consider the two summands in the claim of Theorem 3.3. The choice s = 2

3
s◦ implies the former term

dominates the latter, hence this choice is the largest reasonable sacrifice. The concentration rate for
f̄ then would be n−

s◦
2s◦+3/2 (instead of the minimax n−

s◦
2s◦+1 ) which is only marginally suboptimal.

4 Simulation study

In this section we study the suggested algorithm experimentally. We choose X = [0, 1] and f ∗(x) =
sin(τx), where τ ≈ 6.28 . . . denotes the number of radians in a turn. The design is uniformly and
identically sampled from X . The noise εi is Gaussian with variance σ2 = 1, meaning the signal-to-
noise ratio is 1/

√
2. Nominal confidence level is set to β = 0.95. The number of bootstrap iterations is
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Figure 1: The horizontal axis uses log-2 scale. The nominal significance level is β = 0.95, shown with
a dashed line. The estimated coverage probability is shown with a red line, the error bars correspond
to Wilson 95% point-wise confidence intervals. The green and the blue lines depict the quantile rβ
(see (2.3)) and the average root-mean-square error respectively. Each point of the plot is averaged
over 1280 trials.

chosen as 1000. k(·, ·) is chosen to be Matérn kernel with a smoothness index α = 5/2. We choose
sample size n = 217 and let P vary from 26 to 213. The results are shown in Figure 1. As Theorem 3.3
suggests, the number of partitions needs to be large enough and we observe, the method matches
the nominal confidence level for P ≥ 28 and does not diverge from it even when excessively large
P (e.g. above 210) renders the averaged estimator f̄ sub-optimal. The latter effect is described by
Theorem 3.2. Thus, there is a wide range to choose P from, enjoying both minimax optimal estimator
f̄ and valid confidence bands.

5 Conclusion and future work

The problem of distributed nonparametric regression being of great importance in the light of the
ever-growing datasets has earlier received a consistent estimator. Namely, the Fast-KRR approach,
being an application of divide and conquer paradigm to KRR. Its consistency has been demonstrated
in terms of risk. In this paper we complement these results with a high-probability bound. Our main
contribution is a novel enhancement of the method, providing a confidence band in addition to the
point estimate. The time complexity of the procedure, being sub-linear in sample size, is dwarfed by
the complexity of the Fast-KRR itself, so calculation of the confidence bands is virtually free of charge.
The theoretical analysis of the procedure is powered by the recent results on Gaussian Comparison
[17] and a familiar Central Limit Theorem in a Hilbert space [51].

Future research should also explore the posteriors of KRRs

f | {(Xi, yi)}i∈Sp ∝ exp

{
− 1

2σ2

n∑
i=1

(yi − f(Xi))
2

}
exp

{
−ρ

2
‖f‖2

Hk

}
,

justifying aggregation of both posterior mean and covariance. A major obstacle here would be the
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need to obtain a spectral decomposition of the kernel (as it is involved in the posterior covariance),
which is computationally difficult.

There is also a promising alternative. So far all the consistency results for Fast-KRR deal with L2-
measure. Obtaining a concentration with respect to a stronger L∞-norm may turn out highly beneficial
in the light of the recent research [49]. There the authors have recognized the posterior covariance
of Gaussian Process Regression as an M-estimator and employed the observation to justify its use in
construction of sup-norm frequentist confidence sets.
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A Proof of f̂ consistency

All the claims presented in Appendices A – D implicitly impose Assumption 3.1, Assumption 3.2 and
Assumption 3.3. We also let ρ = ρ(n) = o(1) and f ∗ ∈ Hs◦ . In this section we let s◦ ≥ s.

We open the section with some notation. Consider the eigenvalues {µj}∞j=1 and normalized eigen-
functions {φj(·)}∞j=1 of k(·, ·) w.r.t. continuous measure π. Now for f ∈ Hk we have the vector
f of expansion coefficients fj := 〈f, φj〉. Further, we introduce the design matrix Φ ∈ Rn×∞ s.t.
Φij = φj(Xi). At this point the estimator (2.1) can be rewritten as

f̂ := arg max
f

(
− 1

2n
‖Φf − y‖2 − ρ

2

∑
j

f2
j

µj

)
.

Next, consider a diagonal matrix M ∈ R∞×∞ s. t. Mjj =
√
µj and define θ := M−1f , Ψ := ΦM ,

rewriting (2.1) again

θ̂ := arg max
θ

− 1

2n
‖Ψθ − y‖2︸ ︷︷ ︸
L(θ)

−ρ
2
‖θ‖2

 .

We also define
θ∗ := arg max

θ
E [L(θ)]

and its penalized counterpart

θ∗ρ := arg max
θ

E [L(θ)]− ρ

2
‖θ‖2 . (A.1)
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Similarly we define f∗ρ and f ∗ρ . We also introduce a vector ε ∈ Rn s.t. εi = εi. By the means of trivial
calculus we have

∇ζ := ∇ (L(θ)− Eε[L(θ)]) =
1

n
ΨTε

and

D2
ρ := −∇2 (L(θ)− 2ρ ‖θ‖) =

1

n
ΨTΨ + ρI.

Now we are ready to formulate an assumption we impose on the design {Xi}ni=1.

Assumption A.1 (Design regularity). Let there exist some positive δ s. t.∥∥∥(M2 + ρI
)−1/2

D2
ρ

(
M2 + ρI

)−1/2 − I
∥∥∥ ≤ δ < 1.

Assumption A.1 can seem to be obscure, but Lemma D.2 guarantees that it holds for a random design
with Xi being i.i.d. and distributed w.r.t. a continuous measure.

First, we bound the bias term.

Lemma A.1. Let f ∗ ∈ Hs◦ and s◦ ≥ s. Then∥∥f∗ − f∗ρ
∥∥2 ≤ ρmin{ s◦s ,2} ‖f ∗‖2

Hs◦ .

Proof. From the stationarity condition for (A.1) one gets(
θ∗ρ − θ

∗
)

= ρ
(
M2 + ρI

)−1
θ∗

and hence (
f∗ρ − f∗

)
= ρ

(
M2 + ρI

)−1
f∗. (A.2)

Now using the fact that f ∗ ∈ Hs◦

∥∥∥ρ (M2 + ρI
)−1

f∗
∥∥∥2

≤ Cρ2
∑
j

j−2s◦

(j−2s + ρ)2

(f∗j)
2

j−2s◦
.

Maximization of j−2s◦

(j−2s+ρ)2
over j > 0 yields

∥∥∥ρ (M2 + ρI
)−1

f∗
∥∥∥2

≤ ρmin{ s◦s ,2} ‖f ∗‖2
Hs◦ . (A.3)

Combining (A.2) and (A.3) finalizes the proof.

The next lemma bounds the right-hand side of Fisher expansion (Lemma E.1).

Lemma A.2. For all x > 0

P

{∥∥D−1
ρ ∇ζ

∥∥ ≤ Cg

√
1 +
√

x + 2x

ρ1/(2s)n(1− δ)

}
≥ 1− e−x.
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Proof. By the definition of∇ζ

∥∥D−1
ρ ∇ζ

∥∥2
=

1

n2
εTΨT

(
1

n
ΨTΨ + ρI

)−1

Ψε.

Clearly, (
1

n
ΨTΨ + ρI

)
≥ (1− δ)

(
M2 + ρI

)
and hence ∥∥D−1

ρ ∇ζ
∥∥2 ≤ εT 1

n2
ΨT
(
(1− δ)

(
M2 + ρI

))−1
Ψε.

Applying Lemma D.1 completes the argument.

Now we are ready to establish a consistency result.

Lemma A.3. Impose Assumption A.1. Then on a set of probability at least 1− e−x for all x > 1∥∥∥f̂ − f ∗∥∥∥
2
≤ C

√√√√√ g2x

(1− δ)ρ1/(2s)n︸ ︷︷ ︸
V ariance

+ ρmin{ s◦s ,2} ‖f ∗‖2
Hs◦︸ ︷︷ ︸

Bias

.

Proof. We apply Lemma A.2 along with Lemma E.1, which yield for some positive C on a set of
probability at least 1− e−x for any positive x

∥∥∥Dρ

(
θ̂ − θ∗ρ

)∥∥∥ ≤ Cg

√
1 +
√

x + 2x

ρ1/(2s)n(1− δ)
.

But clearly,

(1− δ)
∥∥∥f̂ − f∗ρ

∥∥∥2

2
=
∥∥∥√1− δM(θ̂ − θ∗)

∥∥∥2

≤ (1− δ)
∥∥∥Dρ

(
θ̂ − θ∗

)∥∥∥2

.

In order to bound the bias term we apply Lemma A.1, constituting the claim.

The proof of Theorem 3.1 is almost trivial now.

Proof of Theorem 3.1. The proof consists in applying Lemma D.2 followed by applying Lemma A.3.

B Proof of f̄ consistency

Denote a map from X to R∞

ψ(X) := (
√
µ1φ1(X)

√
µ2φ2(X)

√
µ3φ3(X) ...)T ∈ R∞

and ψi := ψ(Xi).

We have earlier introduced the objects related to the global estimator f̂ , such as Ψ, D2
ρ, θ̂, f̂ , ε. In

this section we make use of their local counterparts related to f̂p such as Ψp, D2
ρ(p), θ̂p, f̂(p), ε(p).

Also define θ̄ := 1
P

∑
p θ̂p and f̄ := 1

P

∑
p f̂(p). Throughout the section we let s◦ ≥ s.
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Lemma B.1. Let

P ≤ c
n

2s−1
2s+1

log n
. (B.1)

Choose
ρ = n−

2s
2s+1 .

Then for all x > 0 and t > 0 with probability at least 1− e−x − (et − t− 1)
−1

∥∥f̄ − f ∗∥∥
2
≤ C

√
t
(
1 + 2x +

√
x
)
gn−

s
2s+1 + C ‖f ∗‖Hs◦ n

−min{s◦,2s}
2s+1 . (B.2)

Proof. Using Fisher expansion (Lemma E.1)

Dρ(p)
(
θ̂p − θ∗ρ

)
=

1

S
D−1
ρ (p)Ψpε(p)

=
1

S
D−1
ρ (p)

∑
i∈Sp

ψiεi

 .

Now by Lemma D.2 with probability at least 1− (et − t− 1)
−1 we have

∥∥∥(1− δ(S, t))1/2 (M2 + ρI
)1/2

(
θ̄ − θ∗ρ

)∥∥∥ ≤ ∥∥∥∥∥ 1

P

P∑
p=1

Dρ(p)
(
θ̂p − θ∗ρ

)∥∥∥∥∥
≤
∥∥∥∥ 1

n
(1− δ(S, t))−1/2 (M2 + ρI

)−1/2
Ψε

∥∥∥∥
and hence ∥∥f̄ − f∗ρ

∥∥ ≤ 1

1− δ(S, t)

∥∥∥∥ 1

n

(
M2 + ρI

)−1/2
Ψε

∥∥∥∥ .
Next apply Lemma D.1. On a set of probability at least 1− e−x for all x > 0 we have

∥∥f̄ − f∗ρ
∥∥ ≤ Cg

1− δ(S, t)

√
1 +
√

x + 2x

ρ1/(2s)n
.

Assumption (B.1) implies 1− δ(S, t) > 1/2. The bias term is controlled by Lemma A.1.

C Bootstrap validity proof

Define P i.i.d. vectors g(p) := f̂(p)− f∗ρ , denote Σ = E
[
g(p)g(p)T

]
and Σ̂ := 1

P

∑
p g(p)g(p)T .

Throughout the section we let s◦ > s.

Lemma C.1. Consider a centered Gaussian element of a Hilbert space γ with a covariance operator
Σ. Then for all positive t > 2.6 and δ = δ(S, t) coming from Lemma D.2

(1 + δ)−1Σ∗ ≤ nVar
[
f̄ − f∗ρ

]
≤ (1− δ)−1Σ∗,

(1 + δ)−1Σ∗ ≤ SVar
[
f̂(p)− f∗ρ

]
≤ (1− δ)−1Σ∗
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and
tr (Σ) ≤ Cσ2S−1ρ−1/(2s),

where Σ∗ := σ2 (M2 + ρI)
−2
M4. Morover, uniformly for positive r∣∣P{∥∥f̄ − f ∗∥∥

2
≤ r
}
− P

{
P−1/2 ‖γ‖ ≤ r

}∣∣
≤ CP−1/2 + Cn−

2min{s,s◦−s}
2s+1 ‖f ∗‖2

Hs◦ .

Proof. Using Fisher expansion (Lemma E.1) we have

(
θ̂p − θ∗ρ

)
=

1

S
D−2
ρ (p)

∑
i∈Sp

ψiεi


and hence by Lemma D.2 we have

M
(
θ̄ − θ∗ρ

)
≥ 1

n(1 + δ)
M
(
M2 + ρI

)−1

(∑
i

ψiεi

)
.

In the same way we obtain the less-or-equal inequality constituting the first part of the claim. The
bound for tr (Σ) is obtained by Lemma D.3

tr (SΣ) ≤ Cσ2(1− δ)−1
∑
j

µ2
j

(µj + ρ)2 ≤ Cσ2ρ−1/(2s).

This also bounds the six largest eigenvalues of SΣ away from zero.

Next we use Lemma A.2, Lemma D.2 and Lemma E.1 in the same way we did in the proof of Lemma
A.3 and have for an arbitrary p and all positive x

P
{
‖g(p)‖ ≥ Cg

√
x

ρ1/(2s)S

}
≤ e−x.

Hence, using integrated tail probability expectation formula we have

E
[
‖g(p)‖3] ≤ ( C2g2

ρ1/(2s)S

)3/2

.

By Lemma D.3

E
[
‖g(p)‖2] � C2g2

ρ1/(2s)S
.

Now we are ready to apply Lemma E.3 which yields∣∣∣P{∥∥f̄ − f ∗ρ∥∥2
≤ r
}
− P

{
P−1/2 ‖γ‖ ≤ r

}∣∣∣ ≤ C
g3

σ3
P−1/2.

The last step is to apply Lemma E.2 accounting for the mis-tie between f ∗ and f ∗ρ , which is controlled
by Lemma A.1.

Lemma C.2. For all t > 2.6 on a set of probability at least 1− e−t/2 − P−3

S
∥∥∥Σ̂− Σ

∥∥∥ ≤ ∆(P, t) := Cσ2
√

tρ−1/(2s)P−1/2 logP.
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Proof. Consider P i.i.d. matrices
Ωp = g(p)g(p)T − Σ,

Lemma C.1 yields

(1 + δ)−1M4
(
M2 + ρI

)−2 ≤ Σ ≤ (1− δ)−1M4
(
M2 + ρI

)−2
.

On a set of probability at least 1− P−3 for all p we have

tr
(
g(p)g(p)T

)
≤ C

g2 logP

ρ1/(2s)S
,

at the same time by Lemma C.1
tr (Σ) ≤ Cσ2ρ−1/(2s)S−1

and hence
tr (Ωp) ≤ Cσ2ρ−1/(2s)S−1 logP.

Clearly, ∥∥Ω2
p

∥∥ ≤ tr
(
Ω2
p

)
≤ Cσ2ρ−1/sS−2 log2 P.

The rest is due to Lemma E.4.

Lemma C.3. On the same set which the claim of Lemma C.2 holds on (of probability at least 1 −
e−t/2 − P−3) for an arbitrary t > 2.6

S
∥∥∥Σ− Σ̂

∥∥∥
1
≤ C

∆(P, t)1−1/(4s)

ρ1/(2s)
.

Proof. Denote ∆ := ∆(P, t).

S
∥∥∥Σ− Σ̂

∥∥∥
1

= S

 ∑
j2s≤1/(ρ

√
∆)

+
∑

j2s>1/(ρ
√

∆)

∣∣∣λj(Σ− Σ̂)
∣∣∣

≤ C
∆1−1/(4s)

ρ1/(2s)
+

C

ρ2

∫
u2s>1/(ρ

√
∆)

du

u4s

≤ C
∆1−1/(4s)

ρ1/(2s)
.

Lemma C.4. Consider γ[ ∼ N (0, Σ̂). Then uniformly for positive r∣∣P[ {∥∥f̄ [ − f̄
∥∥ < r

}
− P[

{
P−1/2

∥∥γ[∥∥ < r
}∣∣ ≤ C

g3

σ3
P−1/2.

Proof. The proof consists in applying CLT. In order to estimate the moments involved in its residual
term we apply Theorem 3.1 to the local estimates f̂p and obtain on a set of probability at least 1 −
Pe−x − Pe−t/2 (choosing 2x = t = 4 logP ) for S large enough

‖g(p)‖ ≤ 1,

which enables us to apply Hoeffding’s inequality, yielding concentration for u chosen as
√

logP

P
{∣∣E[ [‖g(p)‖2]− E

[
‖g(p)‖2]∣∣ > uP−1/2

}
≤ 2e−2u2
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and also
P
{∣∣E[ [‖g(p)‖3]− E

[
‖g(p)‖3]∣∣ > uP−1/2

}
≤ 2e−2u2

.

Now we can bound the moments involved in Lemma E.3

E[
[∥∥∥f̂ [(p)− f̄

∥∥∥2
]
� E

[∥∥∥f̂(p)− f∗
∥∥∥2
]
�
(
σρ−1/(2s)

)2
,

E[
[∥∥∥f̂ [(p)− f̄

∥∥∥3
]
� E

[∥∥∥f̂(p)− f∗
∥∥∥3
]
�
(
gρ−1/(2s)

)3
.

Lemma C.2 (choose t = 2 logP ) demonstrates boundness of the six largest eigenvalues of Σ̂ away
from zero. Finally, we use Lemma D.4 to account for the conditioning (probability of the set is at least
1− 1/P ).

Proof of Theorem 3.3. Finally, we are in position to demonstrate closeness of P and P[. We apply
Lemma C.4 and Lemma C.1, obtaining two Gaussian approximations and compare them by the means
of Lemma E.2. We use Lemma C.3 (choose t = 2 logP ) to establish closeness of the covariance
operators of the limiting distributions. Finally, account for conditioning (Lemma D.4).

D Technical Results

The following lemma aids to bound the right-hand side of Fisher expansion (Lemma E.1).

Lemma D.1. For all positive x

P


∥∥∥∥ 1

n

(
M2 + ρI

)−1/2
Ψε

∥∥∥∥ ≤ Cg

√
1 +
√

x + 2x

ρ1/(2s)n

 ≥ 1− e−x.

Proof. Trivially, ∥∥∥∥ 1

n

(
M2 + ρI

)−1/2
Ψε

∥∥∥∥2

=

∥∥∥∥∥∥∥εT
1

n2
ΨT
(
M2 + ρI

)−1
Ψ︸ ︷︷ ︸

A

ε

∥∥∥∥∥∥∥ .
Now we bound every diagonal element of the matrix A.

max
i
Aii ≤

C2
φ

n2

∞∑
j=1

µj
µj + ρ

.

Now employ Lemma D.3, which holds due to Assumption 3.1, and obtain

max
i
Aii ≤ Cρ−1/(2s)n−2.

Therefore,
tr (A) ≤ Cρ−1/(2s)n−1

and trivially

tr
(
A2
)
≤
(
Cρ−1/(2s)n−1

)2
,

‖A‖F =
√

tr (ATA) ≤ Cρ−1/(2s)n−1.

Finally, we are ready to employ Hanson-Wright inequality [36], constituting the claim.
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Below we demonstrate that Assumption A.1 holds with high probability under general assumptions.

Lemma D.2. Let {φj} and {µj} be eigenfunctions and eigenvalues of k(·, ·) w.r.t. π. Then Assump-
tion A.1 holds for some C > 0 and arbitrary t > 2.6 with

δ = Cρ−1/(2s)

(√
t

n
+

t

n

)

on a set of probability at least 1− e−t/2.

Proof. Consider matrices Ψi ∈ R∞×∞ s. t. Ψi
jk =

√
µjµkφj(Xi)φk(Xi). Denote

Ωi =
(
M2 + ρI

)−1/2 (
Ψi + ρI

) (
M2 + ρI

)−1/2 − I.

Observe
1

n

n∑
i

Ωi =
(
M2 + ρI

)−1/2
(

1

n
ΨTΨ + ρI

)(
M2 + ρI

)−1/2 − I.

Due to the fact that the eigenfunctions are normalized, E [Ωi] = 0.

Below j and k, being summation indexes, always run from 1 to∞ unless specified otherwise. Clearly
the maximum eigenvalue of a p.s.d. matrix does not exceed its trace. Hence, using Lemma D.3∥∥∥(M2 + ρI

)−1/2
Ψi
(
M2 + ρI

)−1/2
∥∥∥ ≤ C

∑
j

µj
µj + ρ

≤ Cρ−1/(2s)

and ∥∥∥(M2 + ρI
)−1/2

ρI
(
M2 + ρI

)−1/2
∥∥∥ ≤ ρmax

j

1

µj + ρ

≤ 1.

Further, using the choice of ρ we have

‖Ωi‖ ≤ Cρ−1/(2s) + 2

≤ Cρ−1/(2s).

Now the goal is to bound tr (E [Ω2
i ]). First, we observe

E
[(
M2 + ρI

)−1/2
(Ψi + ρI)

(
M2 + ρI

)−1/2
]

= I

due to the fact that E [Ψi] = M2. Therefore,

E
[
Ω2
i

]
= E

((M2 + ρI
)−1/2 (

Ψi + ρI
) (
M2 + ρI

)−1/2
)2

︸ ︷︷ ︸
A

− I.
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For its trace, using I[·] to denote an indicator, we have

tr
(
E
[
Ω2
i

])
≤
∑
j

(∑
k

(
C2
φ

√
µjµk + ρI[j = k]

)2

(µj + ρ) (µk + ρ)
− 1

)

≤
∑
j

∑
k

(
C2
φ

√
µjµk

)2

(µj + ρ) (µk + ρ)
+

∣∣∣∣∣∑
j

((
C2
φµj + ρ

µj + ρ

)2

− 1

)∣∣∣∣∣
=: T1 + T2.

Using Lemma D.3 twice, relying on the choice of ρ we have

T1 ≤ C
∑
j

(
µj

µj + ρ

∑
k

µk
µk + ρ

)
≤ C

∑
j

µj
µj + ρ

× ρ−1/(2s)

≤ Cρ−1/s.

The treatment of the second term uses decay of µj

T2 ≤ C

∣∣∣∣∣∑
j

µ2
j + ρµj

(µj + ρµj)2

∣∣∣∣∣
≤ C

∑
j

ρµj
µ2
j + 2µjρ+ ρ2

≤ C
∑
j

µj
µj + ρ

≤ Cρ−1/(2s),

where Lemma D.3 was used again. Therefore, we have∥∥E [Ω2
i

]∥∥ ≤ tr
(
E
[
Ω2
i

])
≤ Cρ−1/s.

Finally, apply Lemma E.4, demonstrating that Assumption A.1 holds for

δ = Cρ−1/(2s)

(√
t

n
+

t

n

)
with probability at least 1− e−t/2.

The next lemma, being almost folklore (see [53, 49, 39]), bounds the effective dimensionality.

Lemma D.3.
∞∑
j=1

µj
µj + ρ

� ρ−1/(2s).

Proof.
∞∑
j=1

µj
µj + ρ

�
∑

j2s≤1/ρ

1

1 + j2sρ︸ ︷︷ ︸
T1

+
∑

j2s>1/ρ

1

1 + j2sρ︸ ︷︷ ︸
T2

.
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T1 � ρ−1/(2s).

T2 =
1

ρ

∑
j2s>1/ρ

1

1/ρ+ j2s

� 1

ρ

∑
j2s>1/ρ

1

j2s

� 1

ρ

∫ +∞

u=ρ−1/(2s)

du

u2s

� ρ−1/2s.

The next lemma quantifies how much a measure of a set changes after conditioning.

Lemma D.4. Consider a measure P and two measurable sets A and B. Then

|P {A} − P {A|B}| ≤ 2P
{
B̄
}
.

Proof.

|P {A} − P {A|B}| =
∣∣P {A|B}P {B}+ P

{
A|B̄

}
P
{
B̄
}
− P {A|B}

∣∣
=
∣∣P {A|B} (P {B} − 1) + P

{
A|B̄

}
P
{
B̄
}∣∣

≤ 2P
{
B̄
}
.

E Tools

This section briefly cites the results we relied upon.

E.1 Consistency of penalized maximum likelihood estimation

Consider a quadratic concave likelihood L(θ) = L(θ, Y ) for θ being an infinite-dimensional parame-
ter and Y denoting the random data. The following result quantifies the mis-tie between the penalized
sample-level estimate

θ̂ := arg max
θ

L(θ)− ρ ‖θ‖2︸ ︷︷ ︸
Lρ(θ)

,

penalized population-level estimate

θ∗ρ := arg max
θ

E [L(θ)]− ρ ‖θ‖2

and non-penalized population-level estimate

θ∗ := arg max
θ

E [L(θ)] .

Also define

D2
ρ := −∇2

(
E [L(θ)]− ρ ‖θ‖2) and∇ζ := ∇ζ(θ) = ∇ (L(θ)− E [L(θ)]) .
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Lemma E.1. Fisher expansion holds:

Dρ

(
θ̂ − θ∗ρ

)
= D−1

ρ ∇ζ.

Proof. Using Taylor expansion around the stationary point θ̂ we have

∇Lρ(θ) = −D2
ρ

(
θ − θ̂

)
.

Now we notice∇E
[
Lρ(θ

∗
ρ)
]

= 0 and obtain

∇Lρ(θ∗ρ) = ∇ζ = −D2
ρ

(
θ∗ρ − θ̂

)
.

Finally, relying on the fact that ρ > 0, thus D2
ρ is invertible, we multiply both sides of the last equation

by D−1
ρ .

This result has been generalized in [39] (Theorem 2.2).

E.2 Gaussian Comparison

Lemma E.2 (Theorem 2.1 by [17]). Consider two centered Gaussian elements of a Hilbert space ζ
and η with covariance operators Σ1 and Σ2 and a deterministic Hilbert element a. Denote

κ(Σ) =

√∑
j>1

λ2
j(Σ)

√∑
j≥1

λ2
j(Σ)

−1/2

.

Then

sup
r>0
|P {‖ζ − a‖ < r} − P {‖η‖ < r}| ≤ C (κ(Σ1) + κ(Σ2))

(
‖Σ1 − Σ2‖1 + ‖a‖2) .

E.3 Central Limit Theorem

Lemma E.3 (Corollary of the main theorem by [51]). Consider centered X1, X2, .., Xn being i.i.d.
elements of Hilbert space with covariance operator V and a centered Gaussian element Y with the
same covariance operator. Then

sup
r>0

∣∣∣∣∣P
{∥∥∥∥∥n−1/2

n∑
i=1

Xi

∥∥∥∥∥ < r

}
− P {‖Y ‖ < r}

∣∣∣∣∣ ≤ R,

where

R := C

(
6∏
i=1

λi(V )

)−1

E
[
‖X1‖2]−3/2 E

[
‖X1‖3]n−1/2.
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E.4 Bernstein matrix inequality

Lemma E.4 (Corollary of Theorem 3.3 [21]). Consider centered i.i.d. matrices X1, X2, .., Xn. Let for
some positive A and B

λ1(Xi) ≤ A,

λ1

(
1

n

n∑
i=1

E
[
X2
i

])
≤ B,

tr

(
1

n

n∑
i=1

E
[
X2
i

])
≤ B.

Then for any t > 0

P

{
λ1

(
1

n

n∑
i=1

Xi

)
>

√
2Bt

n
+
At

3n

}
≤ t

(
et − t− 1

)−1
.

Note, for positive t ≥ 2.6
t
(
et − t− 1

)−1 ≤ e−t/2.
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