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On the spatially asymptotic structure of time-periodic solutions
to the Navier-Stokes equations

Thomas Eiter

Abstract

The asymptotic behavior of weak time-periodic solutions to the Navier—Stokes equations with
a drift term in the three-dimensional whole space is investigated. The velocity field is decomposed
into a time-independent and a remaining part, and separate asymptotic expansions are derived
for both parts and their gradients. One observes that the behavior at spatial infinity is determined
by the corresponding Oseen fundamental solutions.

1 Introduction

We study the behavior for |z| — oo of time-periodic solutions to the Navier—Stokes equations

ou—Au—Nohu+u-Vu+Vp=Ff inT xR,
divu=0 inTXR3, (1_1)

lim u(t,z) =0 fort e T,

|z| =00
which model the flow of a viscous incompressible fluid. Here f: T x R3 — R3 is an external force,
andu: T x R® — R?®and p: T x R3> — R denote velocity and pressure fields of the fluid flow.
The torus group T := R/TZ serves as time axis and encodes that all involved functions are time
periodic with prescribed period 7 > 0. In this paper, we consider the case A # 0, which models a
non-vanishing inflow velocity A e; at infinity. Asymptotic properties in the case A = 0 are different and
shall not be treated here.

For A # 0 the pointwise decay of time-periodic solutions to (1.1) was studied by GALDI and SOHR [10]
and by GALDI and KYED [12]. By [12] a weak solution w to (1.1) satisfies

u(t,z) = Fo)‘(x) . /11‘ g f(s,y)dyds + Z(t, x), (1.2)

where F(;\ is the fundamental solution to the steady-state Oseen system

{—Av —ANow+Vp=f inR? 1.3)

dive =0 inR?,

and the remainder term satisfies | Z(t, z)| < C|z|™*/*™. In particular, shows that the asymp-
totic behavior of the velocity field u is, in general, determined by the steady-state Oseen fundamental
solution FOA. Moreover, coincides with the anisotropic expansion of weak solutions to the corre-
sponding steady-state problem, which is due to FINN [8, 9], BABENKO [1] and GALDI [11] and may be
seen as a special case of the time-periodic setting.
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T. Eiter 2

The main theorem of this paper, Theorem below, extends the results from [12] in several ways.
Firstly, we improve the pointwise estimate of Z(t,x) in such a way that it reflects the anisotropic
structure of the solution. Secondly, we derive an asymptotic expansion for Vu by establishing point-
wise estimates of V.Z(t, x). Thirdly, we decompose u into its time mean over one period Pu and a
time-periodic remainder P, u = u — Pu, for which we derive separate asymptotic expansions. We
shall observe that the asymptotic properties of the steady-state part Pu are governed by the steady-
state fundamental solution FOA, while those of the purely periodic part P, u are determined by ™7,
the (faster decaying) purely periodic part of the fundamental solution I to the time-periodic Oseen
system

{8tu—Au—)\81u+Vp:f in T x R®, )

divu=0 inT x R3.

In particular, this shows that the purely periodic part P, u decays faster than the steady-state part Pu
as |z| — oo.

This paper is structured as follows. After introducing the basic notation in Section |2, we recall the
fundamental solution to the time-periodic Oseen equations and collect related results in Section (3] In
Section [4] we present and prove our main theorems.

2 Notation

In general, we denote points in T x R3 by (¢,7) and call t € T time variable and € R? spatial
variable, respectively. For a sufficiently regular function u: T x R3 — R3 we write Oju = 0y;u,
and we set Au = 0;0;u and divu = 0;u,. As in this definition, we use Einstein’s summation
convention frequently. If U: T x R3 — R3*3 is matrix valued, the vector field div U is defined by
(le U)j = 8kUjk

ForR >r > 0andz € R®we set Bg(z) = {y € R® | |[r —y| < R}, BR(x) = {y €
R® | |z —y| > R} and B, g(x) == B"(z) N Br(z). If z = 0, we simply write Bz := Bg(0),
Bft .= Bf(0) and B, r := B, r(0). For vectors a, b € R? their tensor product a ® b is defined by
((l X b)jk = ajbk.

By L4(€2) and W*4(£2) we denote classical Lebesgue and Sobolev spaces, and we set

. ———|| V-2
< (RY) = {p € CP(RP? | divp =0},  DE2(R®) = O, (R9) .

Observe that G := T x R? is a locally compact abelian group and that its dual group can be identified

with G = 7 x R3, the elements of which we denote by (k, &) € Z x R3. We equip the group T with
the normalized Haar measure given by

1 T
Vf € C(T) : /f(t) dt = —/ (1) dt.
T T Jo
and GG with the corresponding product measure. Moreover, .% denotes the Fourier transform on
G with inverse .#'. Then Z¢ is an isomorphism Z¢: .'(G) — &'(G), where .#'(G) is the

space of tempered distributions on (&, which was introduced by BRUHAT [2]; see also [3]. Moreover,
for f: T x R3 — R we set

Pf(x) :—/Tf(t,x)dt, P.f=f—-Pf
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On the spatially asymptotic structure of time-periodic solutions to the Navier—Stokes equations 3

suchthat f = P f+ P, f.Since Pf is time independent, we call P f the steady-state part and P, f
the purely periodic part of f. A straightforward calculation shows

Pf=Z: 0z(k)Zclfl],  Pof =25 [(1—0z(k)Zclf]],

where 07 is the delta distribution on Z.

By the letter C' we denote generic positive constants. In order to specify the dependence of C' on
quantities a, b, . . ., we write C'(a, b, . . .).

3 The time-periodic fundamental solution

In this section, we consider a fundamental solution I™* to the time-periodic problem (T.4) such that
the velocity field is given by u = I'* * f, where the convolution is taken with respect to the group
G =T x R3. Such a fundamental solution was recently introduced in [12, 4] and is given by

M=relr+ I, (3.1)
where
A, o3 3x3 A 1 e
FU 'R \ {0} — R , FO,jZ('r) = m [(SJ[A — ajag] /0 - dT, (3.2)
=7 — ! ,_ZiZ(k) ([ - §®2§)1. (3.3)
€17 +i(Fk — A&) €]

Here the symbol 11 denotes the constant 1 distribution on T, and
s(x) = |x| + 1.

The function FOA is the fundamental solution to the steady-state Oseen problem (1.3); see [11}, Section
VI1.3]. Its anisotropic behavior is reflected by the pointwise estimates

la]

Va € NjVe >03C >0V|z| >c: |D*I3(z)| < C[lz|(1+ s()\x))Tl*T; (3.4)

see [5, Lemma 3.2]. The examination of convolutions of FOA with functions satisfying similar estimates
was carried out by FARWIG [B} 6] in dimension n = 3, and later by KRACMAR, NOVOTNY and POKORNY
[13] in the general n-dimensional case. The following theorem collects some of their results.

Theorem 3.1. Let A € [2,0), B € [0,00) and g € L>=(R?) such that |g(x)] < M(1+]z])~(1+
s(z))~B. Then there exists C' = C'(A, B, \) > 0 with the following properties:

1 If A+ min{l, B} > 3, then
113 * g(2)] < OM[(1 + [2]) (1 + s(Ax))] .
2 IfA+min{l, B} >3and A+ B > 7/2, then

IV * g(x)| < CM[(1+ |z])(1+ s()\x))}_gﬂ.
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T. Eiter 4

3 IfA+min{l,B} =3 and A+ B > 7/2, then
IV IR g(x)| < CM[(1+ |a)) (1 + s(Ax))] " max{1, log |«|}.
4 IfA+ B < 3, then
IVTR] * g(2)] < CM(1+ |a]) U2 (14 s(A))~WHP7D2

Proof. These are special cases of [13, Theorems 3.1 and 3.2]. O

In order to derive a similar result to control convolutions with the purely periodic part I'?', we recall the
following theorem established in [4].

Theorem 3.2. The purely periodic velocity fundamental solution Fj satisfies
Vg € (1, g) o I e LIYG)*3, (3.5)
Vq € [1,2) Lo e LGP (j=1,2,3), (3.6)
and forallo € N3, r € [1,00) and e > 0 there exists C' > 0 such that
Vla| > e DI, )|l < Claf 7. (3.7)
Proof. See [4, Theorem 1.1]. O

From these properties we conclude the following theorem.

Theorem 3.3. Let A € (0,00) and g € L°°(T x R3) such that |g(t, )] < M(1+ |z|)~*. Then for
any e > 0 there exists C' = C(A, X\, T ,¢) > 0 such that

V|z| > e VI *¢ g(t, )| < CM(L+ |gf)mintAd (3.8)

and, if A > 3,
Vig| >e:  |[I*cglt,x)] < CM(1+|z))~ (3.9)

Proof. Let us focus on the derivation of (3.9). Let x € R?, |z| > ¢ and set R := |z|/2. Then we have
112 % g(t,0)| < M(I+ L + Iy)

with
fo= [ [ 1rNe s =)l 1+ 1) dyds,
T JBg

b= [ [ 15— sa ) 0+ o) dyds,
T J B4R

I = / / DMt — s,z — )] (1 + [y])~ dyds.
T JBR,4r

We estimate these terms separately. Since |y| < Rimplies |z — y| > |z|—|y| > |z]|/2 = R > ¢/2,
we can use to estimate

B0 [ o=y 0ty < Ol [ @l dy < Ol
Br R
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On the spatially asymptotic structure of time-periodic solutions to the Navier—Stokes equations 5

For I3 we note that |y| > 4R implies |z —y| > |y| — |z| > |y| — |yl/2 = |y|/2 > 2R > e.
Therefore, yields

L<cC / o -y P14 ly) A dy < O / Pyl dy < Claf ™
B4R B4R

Furthermore, Halder's inequality with ¢ € (1, 3) and ¢’ = ¢/(q — 1) implies

1/q
13s|o:|—A( [/ 1dyds) VM, < Clel~af*
T J/BRrar

in virtue of (3.5). We now choose ¢ € (1, 3) so small that —A + 3 — % < —3. Collecting these
estimates, we obtain (3.9). A proof of (3.8) can be given in a similar way. O

The next lemma can be used to conclude asymptotic expansions in the linear case, where the velocity
field is given by u = I * f.

Lemma 3.4. Let A # 0 and f € C3°(T x R?) withsupp f C T x Bg,. Let |a| < 1. Then

IDarp « Pf(x)] < o[ + ) (14 s(ha)] T2 (3.10)
DI * PLf(tz)| < C(L+ |af)~*1e, (3.11)
and for |x| > 2R, we have
Dir« Pi(e) - D2Ea) - [ PHu)dy] < Cllelt+sOw)] P @i
]R<
\Dm «PLI(t ) — (Dgrﬂ-,x) s [ Puf(y) dy) <t>) < Cla| 7o (3.13)
R3

Proof. Estimates (3.10) and (3.11) directly follow from Theorem [3.1]and Theorem By the mean
value theorem, we further have

D Pre) = Do) [ Py

1
< / WIIVD2T (& — 6y)|[Pf (y)| d6dy.
Br J0

Since |y| < Ry < |x|/2 implies
[z = Oy| = || = Oly| = |x]/2 = R,
(1 +2|ARo)(1 + s(A(x —0y))) > 1+ 2|A[Ry + s(A(z — Oy)) > 1+ s(Ax),
estimate finally leads to (3.12). Using instead of (3.4), we conclude in the same
way. O

The following auxiliary result treats convolutions of functions with anisotropic decay.

Lemma 3.5. Let A € (—2,2], B € (1,2]. Then there exists C = C(A, B) > 0 such that for all
z € R3\ {0} it holds

LI+ =g+ st = )] 1+ )+ s) P dy
< C(1+|z))~ (1 + s(z)" 8 max{l, log (%) }

Proof. This is a consequence of the calculations in [13] Section 2]. O
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T. Eiter 6

4 Main resulis

We consider weak solutions to (1.1) in the following sense.
Definition 4.1. Let f € L (T x R*)3. A functionu € Li (T x R*)? is called weak solution to ({{-1)
if

i. u € L*(T; Dyi2(R%)),

ii. Pru € L>(T;L*(R3))?,

iii. the identity
/ [—u-atgo—i-Vu:Vgo—)\alu-<p+(u-Vu)-cp]d(t,x):/ fpd(t x)
TxR3 TxR3

holds for all test functions ¢ € C§%, (T x R?).

Remark 4.2. The existence of a weak solution with the above properties has been shown in [14],
Theorem 6.3.1] for any f € L?(T; D, "*(IR?))3. Therefore, this class seems to be a natural outset
for further investigation. Nevertheless, at first glance, instead of |ii.l one would expect the condition
u € L*°(T;L3(2))3, which naturally appears for weak solutions to the Navier—Stokes initial-value
problem. However, this property cannot be expected for general time-periodic data f. As was shown
by KYED [14}, Theorem 5.2.4], for smooth data f € Cg°(TxR?)? one has u € L>°(T; L?(R?))?if and
only if foRS fd(t,x) = 0. An analogous property was established by FINN [7] for the corresponding
steady-state problem.

As our main result, we establish the following asymptotic expansions.

Theorem 4.3. Let A\ # 0 and f € C*(T x R?)3, and let u be a weak time-periodic solution to ({-1)
in the sense of Definition[4.1, which satisfies

Jr € (5,00): Piuc L(T x R¥)3. (4.1)
Then
Pua) = I@) - [ Pry)dy+ Aula). “2)
Q
Plu(t,av) :Fi\(-,x) *T/PLf(-,y)dy—i—:%’l(t,x) (4.3)
Q
such that there exists C' > 0 such that for allt € T and |x| > 4 it holds
[%0()] < C[l2] (1 + s(Ax))] " log Ja]. (4.4)
-2 ||
< =t
V% (x)| < C[lz|(1 + s(\z))] max{l, log (1 " s()\x)) }, (4.5)
%, (t, )] < Clz| ™", (4.6)
V%, (t,z)| < Clz| (1 + s(\z)) /2 (4.7)
In particular,
ut) = 13- [ [ fit.g) dpde + (0. “9)
TJo
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On the spatially asymptotic structure of time-periodic solutions to the Navier—Stokes equations 7

with
2 (t,2)] < C[la|(1+ ()]~ log ], (4.9)

_ x|

VZ(t,x)| < Cllz|(1+ s(A\x ? max 1,1o ’— ) 4.10

V(1. 7)] < Cll](1+ s(A)) ] ¢ (10w (410

Remark 4.4. As explained in [12], assumption (4.1) merely appears for technical reasons. It ensures
additional local regularity but does not improve spatial decay of the solution.

One main observation is that the asymptotic behavior of u and Vu for |z| — oo is governed by
the time-periodic Oseen fundamental solution I™. In particular, the purely periodic part P, u decays
faster than the steady-state part Pu. As a direct consequence of Theorem 4.3} we obtain the following
pointwise estimates, which we shall derive as intermediate results on the way to a proof of Theorem
4.3]

Theorem 4.5. Under the assumptions of Theorem[4.5 there is C' > 0 such that for allt € T and
x € R3 the function u satisfies

Pu(z)] < C[(1+ |2])(1+s(\x))] (4.11)
|VPu(z)| < C[(1+\x|)(1+s(>\a:))}‘%, (4.12)
PLu(t, )| < C(1+|]) 7, (4.13)
VP ut,z)| < C(1 4+ |2) " (4.14)

In order to prove these theorems, we recall the following regularity result.

Lemma 4.6. Let u be a weak solution as in Theorem[4.3 Thenu € C*>(T x R?)3 and

Wr € (1,00), ¢ € (1,2) : V*Pu € L'(RY), VPu € L1 (R%), Pu € L=1(R?),
Vg € (1,00) : Pru € LY(T; W>4(R?)) N WhHe(T; LY(R?),

and there is a pressure functionp € C>(T x R3) such that (1.1) is satisfied pointwise.

Proof. We refer to [12, Lemma 5.1]. O

We also need a uniqueness statement for solutions to the linear problem (1.4).

Lemma 4.7. Let (u,p) € 7' (G)*"! be a solution to (T-4) for the right-hand side f = 0. Then, Pu
is a polynomial in each component and P u = 0.

Proof. An application of the Fourier transform .% on G to (1.4), yields
(iZk+[¢]* —ir&)T+ip =0

with 7 .= F¢[u] and p := F¢[p]. Multiplying this equation with ¢ and using div u = 0, we obtain
—|€]%p = 0, so that supp p C Z x {0}. Then, the above equation yields

supp [(227’% + ¢ - iAG)u] = supp [ —i&p] C Z x {0}.
Because the only zero of (k, &) +— (z%’rk + \5]2 — X&) is (k, &) = (0,0), we conclude supp u C
{(0,0)}. Thus we obtain P, u = 0 and that Pu is a polynomial. O
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These lemmas enable us to derive the following representation formulas.

Proposition 4.8. Let u be a weak solution as in Theorem[4.3. Then
D%y = DO % [f —u - V] (4.15)
for all « € N3 with || < 1. In particular, v :== Pu and w := P, u satisfy

Dv =Dl * [Pf—v-Vo—Pw- Vw)], (4.16)
D;‘w:Dij*[Plf—szw—quv—PL(w'Vw)]. (4.17)

Moreover, we havd]

w=T"%f— VI (u®u), (4.18)
v:FO)‘*Pf—VFOA*[U®U+P(w®w)], (4.19)
w=It*Pif—VIts«v@w+wev+P (wew). (4.20)

Proof. From Lemmal4.6|we conclude u - Vu € L¢(T x R?) forall ¢ € (1, 00). Therefore, U := " %
(f —u-Vu) is well defined as a classical convolution integral, and we have 9;U = ;1" (f —u-Vu)
for 7 = 1,2, 3 by the dominated convergence theorem. Since both U and u satisfy the time-periodic
Oseen system for suitable pressure functions p, Lemma implies Pu = P U and that
Pu—PU is a polynomial in each component. With Young’s inequality we obtain PU € L¢(R?) since
I} € L?/5(R3) by [12, Lemma 5.4]. Hence, Pu — PU € LS(IR®). This leads to Pu = PU and
thus © = U, which yields (4.15). The remaining formulas now follow from

v=Pu= (I3 ®1y)* [f—u-Vu] =TIy * [P(f—u-Vu)],

w=Pu=I1x[f—u-Vu| =T [P.(f—u- Vu)]

together with the identity u - Vu = div(u ® u) and integration by parts. O
Based on these formulas, we can now prove Theorem 4.5/ and Theorem[4.3

Proof of Theorem[4.5. We split u = v + w into steady-state part v := Pu and purely periodic part
w = Pu. By [12, Theorem 2.2] we have (.8) with |Z(t,x)| < C|x|75/4. In virtue of (3.4) and
u € C®(T x R?)3, this implies

o(z)| < (1 + |=) (1 + s(Az)) ", (4.21)
lw(t,z)| < C(1 4+ |z|)~>4 (4.22)
forallt € T and = € R>. This leads to
lv® v+ Plwew]|(z) < C(1L+[z])2(1 + s(Ax)) /2
Therefore, (4.19), and Theorem [3.1]yield
()| < |13 * Pfl(z) + |VIG * [v@v+ Plwewl]|(z) < Cl(1+ |z))(1+ s()\x))}_l,

which is the desired estimate (4.11). Now (4.11) together with (4.22) leads to

v @ w+w v+ PLlwe w]|(t, z) < C(1+ |z)~94. (4.23)

" Here we set (VI % U); i= O I}y * Ujyy, for an R?*3-valued function U.
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On the spatially asymptotic structure of time-periodic solutions to the Navier—Stokes equations 9

Therefore, (4.20), and Theorem [3.3]imply
lw(t,z)| < [T« PLf|(t2) + VIt [v@w+wv+ PLlwew]|(t )
<SO((T+[z) 7+ 1+ ]=) ) < O+ Jz]) %,
Using this estimate and again, we conclude

v w+w®v+Pilwew)|tz) <L+ |z) (4.24)

Repeating the above argument with (4.24) instead of (4.23), we end up with (4.13).

Now let us turn to the estimates of Vu. Due to u € C(T x R3), it suffices to consider |z| > 2. Let
R := |z|/2 > 1. By Proposition[4.8|we have

O =0T} *Pf—1, Q=0 +«PLf—J
with

I =1+1 ::ajro** [U-Vv] +8jF0)‘>k [P[w-Vw]],
J = J1+J2+J3 ::@Tj* [U'VU)] +(‘3jfj* [w~Vv} +8ij* ['PJ_[UJVU)H

We estimate these terms separately. Clearly,

[1| S Ill + 112 with
Tu(e) = / 0,13 (x — ) llo() Vo) dy,
R

hule) == [ 10,3 = DIV dv.
Since |y| < R implies |z — y| > |z|/2 = R > 1, the pointwise estimate implies
Tu@) < [ [1+le = o3+ st = )] el To(0) dy
R
< C(1+ J2) 22 ollsl[Volls < C(1+ |z)=*/2
in view of Lemma and VI € L17/12(R3) (see [12, Lemma 5.4]) and Lemmayield
La(z) < CIOTR | w2l Vollaz [0lloe(sry < C(L+ J2]) 7

by (@.17). We thus deduce |I;(z)| < C(1 + |z|)~. For I, we proceed similarly to obtain |I(z)| <
(1 + |2|)~3/2. From these estimates and (3.12), we conclude

[Vu(z)| < C(1+ |z|)~". (4.25)

Now let us turn towards Vw. As above, we split ./; and estimate |.J;| < Ji; + Jio with
Ity = [ [ 10,020 = 5.0~ plle(w) Vs, )] dds.
T JBr
Jalte) = [ [ 10,20~ 5.0 = p)llo(o)|[Vuls. )| duds.
TJB

By Holder’s inequality in space and time, from we obtain

8 % 5/2
Jn(t,2) sc( [ = dy) el Vel < Cla|
Br
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T. Eiter 10

due to Lemmal4.6] Moreover, Holder’s inequality and lead to
Tia(t, ) < ClOT N 0l|ee By | Veolloo < Claf ™!

because VI'} € LY(T x R?) by (8:6) and Vw € L=(T x R?) by Lemma[4.6]and Sobolev embed-
dings. In a similar fashion, we can use (4.13) to estimate .J; and .J3 and obtain

_5 — _5
[Jo(t, 2) < C (2|72 lwllal | Volla + |21 [0;2 2 [ Volle) < Cla| 72,
_5 — _5
[J(t,2)] < C (2] 72 lwllal Vells + 2 0L [ Vawloo) < Claf 2.
Collecting the above estimates and combining them with (3.11), we end up with

Vw(t,z)| < C(1+ |z])~" (4.26)

From (4.11), (4.25), (4.13) and (4.26) we now conclude
|v(:c) -Vo(z) + Plw - Vw](:c)} <O+ |z))72(1 + S(Ax))’l/Q,

so that
[I(z)] < C(1+ |=)">*(1 4 s(Az)) =/

by Theorem Together with we thus obtain
Vo)) < C+ [2) (1 + s(h)) /%,

so that from (4.11)), (4.13) and (4.26) we deduce

o) - Vo(@) + Pl - Val(@)] < O+ Jal) (1 + s(ha)) ™.

By another application of Theorem [3.1]and combination with (3.10), we arrive at (4.12).

For the derivation of (4.14) we proceed with a similar bootstrap argument. From (4.11), (4.12), (4.13)
and (4.26) we deduce

lv-Vw+w-Vo+ Py [w- Vul|(t,z) < C(1+ |z])7?,

so that Theorem [3.3|implies | J (¢, z)| < C(1 + |z|)~2. Combining this with (-71), we conclude
Vw(t,z)| < C(1+ |z]) 72 (4.27)

We now repeat this argument with (4.27) instead of (4.26), which leads to an improved decay rate for
Vw. lterating this procedure, we finally arrive at (4.14). O

Proof of Theorem|[4.3. We keep the notation from the previous proof. We have
v @+ Plw @ w)|(z) < C[(1+ |2)(1 + s(\z))] (4.28)

by Theorem 4.5 which, by Theorem 3.1} implies

O3+ [v@ v+ Plwe w]] (@) < C[(1+ ) (1 + s(\2))] ™ log]al.

In virtue of the representation formula (4.19) and the identity

Zo(x) = PR(x) = v(w) — I} (2) g Pf(y)dy,
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this estimate and (3.12) imply (4.4). Moreover, by Theorem [4.5we have
v@w+wev+PLwewl|Etz) <O1+ |z])7,

so that
;I * [vew+wev+PLlwewl](tz)] <O+ |z))™

by Theorem [3.3] Now (4.6) is a consequence of this estimate and (3.13).
To show (4.5), at first observe that Theorem [4.5]implies

—5/2

lv(z) - Vu(z) + Plw - Vw)(z)| < C[(1+ |z])(1 + s(Az))] (4.29)
Let x € C5°(R?) such that x(x) = 1for |z| < 1and x(x) = 0 for |z| > 2. We decompose
I = [xO;I}] * [v-Vo+Pw-Vw)] + [(1 = x)0; 3] * [v- Vv +P(w- Vw)| = K; + K.
Then

K <C | |0, = y)][(1+ (1 +s0w)] 7 dy

Ba(z)

by (#:29). As in the proof of Lemma (3.4} from |z — y| < 2 < |z|/2 we conclude |y| > |z|/2 > 2
and (1 +4/M\)(1+s(\y)) > 1+ s(/\x) Since VI € LL _(R3), this implies

loc

K| < O+ ) (1 + s(hx))] / ILEILY

< C[(1+ ) (1 +s(Ax)] 2
By integration by parts and (3.4) and (@.28), we further obtain
Kl <C [ 1=t =)l[0,9 e = )| |0+ Pl s ul] () dy
0 [ 9=l 1w = )o@ v+ Plo s ul|) dy
<0 [ Tl s =) [0 D+ O] dy
+C / el s )] [+ )+ s0w)))  dy.

For the first integral we use Lemma|3.5] and for the second one we argue as for /; to deduce
Rl < C((1+ a1+ 5000 mac{ Llog (15 )
-2 —3/2
+C[(1+ [2) (1 + s(Ar))] /B o [z = |1+ s(Mz — )] ™" dy
1,2(®

< C((1+ 21+ s(Az))) max{l,log (H|+(|M)) }

Combining the estimates of /1 and K5 with (3.12), from formula (4.16) we obtain (4.5).

Furthermore, Theorem [4.5implies

‘U -Vw+w-Vo+P, [w . Vw] |(t,:c) <C(1+ \37’)79/2(1 + 3()\5’7))73/2-

DOI 10.20347/WIAS.PREPRINT.2727 Berlin 2020
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With an argument similar to before, we now deduce

B1 X

e / 9,0 (e — )| (1 + [y])" (1 + s(\y) > dy
Bl(x)

<o+l s S0, + [

Bl(z

el ) dy)

<O+ 2)) (1 + s(Aa)

where we used (3.6). Combining this estimates with (3.13), formula (4.17) implies (4.7).

Finally, the asymptotic expansion with the asserted estimates of Z (¢, x) is a direct consequence
of these results and the pointwise estimates of [’ j from (3.7). O
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