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Radiation conditions for the Helmholtz equation in a half plane

filled by inhomogeneous periodic material
Guanghui Hu, Andreas Rathsfeld

Abstract

In this paper we consider time-harmonic acoustic wave propagation in a half-plane filled by in-
homogeneous periodic medium. If the refractive index depends on the horizontal coordinate only,
we define upward and downward radiating modes by solving a one-dimensional Sturm-Liouville
eigenvalue problem with a complex-valued periodic coefficient. The upward and downward ra-
diation conditions are introduced based on a generalized Rayleigh series. Using the variational
method, we then prove uniqueness and existence for the scattering of an incoming wave mode
by a grating located between an upper and lower half plane with such inhomogeneous periodic
media. Finally, we discuss the application of the new radiation conditions to the scattering matrix
algorithm, i.e., to rigorous coupled wave analysis or Fourier modal method.

1 Introduction

Since Lord Rayleigh’s original work [28] in 1907, time harmonic scattering problems by periodic and
even by biperiodic gratings are well studied in both the physical and mathematical communities. The
theory provides a Rayleigh expansion radiation condition over the half plane filled by homogeneous
material. Using this, the acoustic, elastic and electromagnetic diffraction problems have been studied
extensively concerning theoretical analysis and numerical approximation using integral equation and
variational methods (cf. e.g. [1,14},5}7,/8,110-12,23(31,(36.[37]). We refer to [6,/32-34] for historical
remarks and details of engineering applications, if the cover material in the half spaces above and the
substrate material below the periodic surface structure of the grating is supposed to be homogeneous.
However, special inhomogeneous materials are possible in applications. For instance, in the design of
photonic crystals, the refractive index corresponding to materials of interest is a periodic function in
different spatial directions. This paper is devoted to new radiation conditions for the Helmholtz equation
and the corresponding solvability theory. This theory applies to the analysis of the scattering matrix
algorithm even for the solution of classical scattering problems with homogeneous cover and substrate
material.

To start the analysis, we consider the case of periodic gratings in the two-dimensional space con-
tained in the layer {(z1,z2) € R?: b<wy <d}, where the refractive index (1, z3) "+ ind(z) in
the half planes { (21, 72) "€ R?: d <y} of cover material and { (71, 7o) '€ R?: x5 < b} of substrate
material is independent of the vertical x5 and a periodic function with respect to the horizontal z;. We
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G. Hu, A. Rathsfeld 2

assume ind(z;+p)=ind(z;) with the same period p as for the grating structure. Similarly to the
homogeneous case, the radiation condition for these half planes is defined by expansions into a
Rayleigh series of upgoing and downgoing wave modes. However, the wave modes will be of the
form (21, z2) "+ exp(Az2)h(z1), where \ is an eigenvalue and h an eigenfunction or a linear com-
bination of associated eigenfunctions of a Sturm-Liouville differential operator. Using these natural
conditions, we can show the Fredholm property for the boundary value problem modeling the scatter-
ing of an incoming wave mode by the grating. Uniqueness is shown for the propagating reflected and
transmitted wave modes. The full solution is unique if the grating contains absorbing materials.

Our research is closest to the recent work [26], where a technical outgoing radiation condition was
proposed to analyze the transmission problem between free space and an unbounded photonic crys-
tal. In comparison with [26], we assume that the inhomogeneous material is invariant along the vertical
coordinate x9, leading to more explicit upward and downward radiating modes and stronger unique-
ness and existence results. The methodology used in this work differs from other scattering problems
arising from closed periodic waveguides [14] (see also [13]), infinite periodic cylinders [25] and in
stratified media [24], which rely essentially on Floquet-Bloch transform and the limiting absorption
principle. The materials in the aforementioned works are usually assumed to be periodic inside the
waveguide and to be identical in the exterior, whereas in our settings, the inhomogeneous periodic
material occupies a half plane. We also refer to [2,/3},/19,35] for earlier studies on radiating modes in
open and semi-infinite waveguides.

One of the most popular numerical methods for the classical periodic gratings is the scattering ma-
trix algorithm (SMA), which in its various versions is called rigorous coupled wave analysis (RCWA)
or Fourier modal method (FMM) (cf.e.g. [17}/18,127,130,32,[33]). In the two-dimensional case, the
Helmholtz equation is considered as an ordinary differential equation (ODE) with respect to the height
o over the surface, where the solution takes values in function spaces with respect to the horizontal
variable. A clever numerical algorithm has been designed to integrate the ODE. A partition of the grat-
ing domain into slices (layers) parallel to the surface is introduced, the Helmholtz equation is solved
over each slice, and the coupling through the common boundary of neighbour slices is realized by
a stable recursive iteration. The discretization in the horizontal direction is based on Fourier series
expansions.

Unfortunately, there is no analysis available so far. The technique of ODEs is difficult to apply since
differential operators with piecewise constant coefficients act on the horizontal functions. Instead, the
spaces and theorems for the Helmholtz equations should be used. On the planar upper and lower
boundaries of the slices an expansion into upgoing and downgoing wave modes is used. In other
words, there appear the above mentioned radiation conditions for inhomogeneous media. The S-
matrices appearing in the recursive iteration are nothing else than the discretized boundary potentials
for the Helmholtz solvers over the slice, which map the waves incoming to the slices to the reflected and
transmitted waves. So the following program is the natural approach: The recursive iteration should
be considered on the non-discretized level. The results on boundary values problems including inho-
mogeneous cover or substrate material should be used for the non-discretized S-matrices, to derive
conditions for the applicability of the non-discretized scattering matrix algorithm. Afterwards, the dis-
cretization in form of RCWA or FMM should be discussed. We shall address only a few of the problems.
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Radiation condition in inhomogeneous medium 3

For instance, a reliable numerical algorithm might have to deal with the existence of wave modes in-
cluding associated eigenvalues of rank larger than one. It might have to deal with the case that some
operator, which is discretized and inverted, is only a Fredholm operator.

We introduce the inhomogeneous half spaces with cover and substrate material as well as the cor-
responding boundary value problems in Sect.[2| In Sect.[3] supposing non-absorbing materials, we
define the radiation condition by Fourier series expansion with respect to x; and by solving a function
valued ODE with techniques of the functional analysis. Alternatively, we solve the ODE with operator
valued coefficient by an eigenvalue decomposition for this coefficient operator acting on quasiperiodic
functions with respect to ;. In the Subsects.[4.2)and [4.3|we discuss the eigenvalues, eigenfunctions,
and associated eigenfunctions for the coefficient operator, which is a Sturm-Liouville operator. This
decomposition is used to define upward and downward radiating wave modes and the radiation condi-
tion in Subsect.[4.4] In Sect.[5]we introduce the boundary value problem for gratings between an upper
and lower half space of inhomogeneous media. We present the variational formulation and analyze
the solution. Sect.[g]introduces the scattering matrix algorithm, shows the connection to the boundary
value problems of Sect.[f| and addresses some of the problems for the numerical algorithm.

2 Quasiperiodic boundary value problem in an inhomogeneous
half space

AXZ
Qp
o) b
00) ) ~H
'Qb
2T

Figure 1: The geometry settings.

Denoting the points in two-dimensional space by J]:(Il,l’g)T, we suppose that the lower half
space ), :={x€R?: z9<b} is illuminated by an incoming wave from the upper half space
Qf :={x€R?: zy>b} with the wave number k> 0. In this paper it is assumed that {2, is occu-
pied by an inhomogeneous periodic medium modeled by the squared refractive index qeL‘X’(Q;)
(cf. Fig.[1). Further, ¢ is assumed to be independent of x2 and 27-periodic in z1, i.e.,

q(x) = q(z1), q(xy + 27n) = q(z,) forae. z; € Randalln € Z. (2.1)
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G. Hu, A. Rathsfeld 4

For physical reasons, we suppose that there is a ¢, >0 such that either ¢(x1) > ¢, or Im g(x1) >¢,
fora.e.z; €R.

Then the time-harmonic acoustic wave propagation in €2," is governed by the Helmholtz equation
Au+k*qu=0in Q, , where u=u(x) denotes the acoustic pressure or a component of an elec-
tromagnetic field. Since the lower half space in unbounded, we need a radiation condition of u as
T9 — —00 to ensure well-posedness of the scattering problem. To mathematically formulate the scat-
tering problem, we need the concept of quasiperiodic functions and Sobolev spaces.

Definition 2.1. The function u is called quasiperiodic in x, with the parameter € [0, 1) (that is,
«a-quasiperiodic), if 11— u(x1, o)™ is 2m-periodic in x, for any fixed 5.

Define the quasiperiodic Sobolev spaces on {),” and R by

HY(Q,) = {ue€ H..(Q): uis a-quasiperiodic in z; }
HY*R) = {fe€ H1/2( R): e~ f(xy) is 2m-periodic in x1 }.

loc

Note that our H}. (€2, ) is the space of all functions u over §2; such that, for any radius >0, the
restriction of u to ©, :={x€Q, : |x[<r}isin H'(€,,). If the incoming wave is a plane wave
of the form u™(x) :=exp(ik(z; sin @ — x4 cos 0)) with the incident angle 6 € (—7 /2, 7/2), we set
o :=k sin § and get an a-quasiperiodic function u*™ with « the unique number such that o € [0,1)
and o — «y is an integer. In the case ¢ = 1 in {2,", we recall that a Helmholtz solution u is called
downward radiating if © admits a Rayleigh expansion (see, e.g., [1,/12,123])

u(z) = ch glom@1=Fn(z2=b)) To < b, (2.2)
nez

where the ¢, € C are called Rayleigh coefficients and

k? — o2 it |, <k
n = . Bui=19 5 . ) 2.3
“ n+ao, f { iva2—k2 it |ay,| > k. (@.3)

The existence of coefficients ¢,, with Equ. (2.2) is called the radiation condition for the lower half
plane €2,". The upward radiation condition in Q; filled by a homogeneous medium can be de-
fined analogously. Obviously, the Rayleigh expansion consists of a finite number of propagating
waves corresponding to i with |ozn| <k and an infinite number of evanescent waves for |an| >k,
which decay exponentially when |z5| — 00. It has been widely used in the literature to prove well-
posedness and design numerical schemes for time-harmonic acoustic, elastic and electromagnetic
scattering by periodic surface structures located between half spaces occupied by homogeneous me-
dia [1,14,/5,7,/8,[10-12,21H23,[31]. One of the main subjects of the present paper is to define down-
ward and upward radiation conditions in an inhomogeneous medium, which will generalize the above
Rayleigh expansion from a homogeneous periodic medium to the inhomogeneous case of (2.1).

Consider the boundary value problem in an inhomogeneous half space

2 o . —
BVP): {Au+k qu=>0 in Q,,

u=f on Iy:={z€R? 2y=0}, 24)
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Radiation condition in inhomogeneous medium 5

where fEHclyﬂ(R). We shall define an 'appropriate’ downward radiation condition over €),” and
prove, under some additional assumptions, that the boundary value problem (2.4) combined with the
radiation condition has a unique solution u € H (£2,") for any given f € Hcl/Q(Fb).

To get a first version of a Rayleigh expansion in an inhomogeneous medium, we look at the Fourier
expansion of the solution. Since u is a-quasiperiodic, it admits the expansion

e ry(wy, xe) = E Up (T0)e™ ) 19 < b,
nez
or equivalently,

u(xy, x9) = Zun(xg)eia""“, oy < b. (2.5)
ne”Z

Inserting (2.5) into the Helmholtz equation we find that

Z [UZ(@) + (kQQ(l"l) - 0‘2) Un($2)] e = (. (2.6)
neEL
Thus the coefficients u,, are solutions of v/ (x3)+ (k?q(x1)—a?) u,(z2)=0. In other words, in
the inhomogeneous case we have to replace the Rayleigh modes ' (*n#1=Fn(2-0)) in (2.2) by
e@n®1y,, (x5) with u,, the solution of a second-order ODE.

3 Radiation condition for real-valued potentials

In this section we suppose that the squared refractive index function ¢ with ¢(z)=g¢(x;) and with
q€ L>(0,2m) is real-valued. Now we shall show that the Helmholtz equation is equivalent to an ODE
in the space of sequences of Fourier coefficients.

In order to introduce norms for the trace of the solution to the boundary value problem (2.4), we may
expand the Dirichlet data f = u|r, into the Fourier series

fle) =Y fade™, feC.

neL

We introduce the weighted ¢? space of sequences

X = {a = (anhnez : 3 (14 n?)']anf? < o0}

neL

endowed with the inner product and norm

(a,b), := Z(l +n2)%ay by, |al|xs = Z(l + n?)%|a,|?.

nez ne”L

DOI 10.20347/WIAS.PREPRINT.2726 Berlin 2020



G. Hu, A. Rathsfeld 6

Then X* is a Hilbert space for any s € R. The Fourier coefficients of f satisfy

HfHHé/?(Fb) = HfHXl/2 <00, t:=(fu)nez

Applying Fourier expansion to the refractive index function, we have

g(@1) =) qme™™, gm €C.

mEZ

Obviously, we would have g = q if the medium of {2, is homogeneous. Inserting the above expansion
into (2.6), it follows that

Z [(uﬁ(xg) - aiun(x2)> ot + k? Z Gme" T, (1) | =0, z € Q.

nez mEZ

Multiplying the previous equation by e~*“?! and integrating over (0, 27) with respect to x; lead to

u;-’ — onQ-uj + k? Z Gj—mUm =0, J € Z.

meZ
We set U(xza):=(---,u_1(z2),uo(xs), us(z2), ). Since the function z1+—u(xy,xs2) is in
HS/Q(R) for any x4 <b, it holds that U (x5) € X'/2 for any fixed x5 <b. The previous equations can
be rewritten as a second-order ODE in the form

U”(l‘g) + AU(I‘Q) =0, x2< b, (3.1)

where A:=(a;m);mez is an infinite dimensional matrix, whose entries are given by

k2(]j—m if .] 7£ m,
jry 1=
’ —oz? +k2qy it j=m.

The matrix A can be written as A=B+k? C, where B:=(b;,,);mez is the diagonal matrix and
C':=(c¢jm);mez the Toeplitz matrix defined by
o { 0 it j#m,

—a; if 7=m.
Evidently, the operator B: X/2 — X~1/2 is bounded. The embedding theorems together with the
fact that ¢ € L>°(0, 27) imply that the operator C': X /2 — X ~1/2 is compact. Since ¢ is real-valued,
we have ¢,, = G_,. It then follows that the matrix A: X'/?2— X ~1/2 is a linear self-adjoint operator.

Moreover, the spectrum o (A) of A is real.

Now the solution of the ODE (3.1) follows the classical theory of linear ODEs with constant coeffi-
cients. By the spectral theorem, we may express A as an integral over the spectrum with respect to a
projection-valued measure, that is,

A= / A dP.
o(A)

DOI 10.20347/WIAS.PREPRINT.2726 Berlin 2020



Radiation condition in inhomogeneous medium 7

For simplicity assume that 0 Z o(A). We define g+ : R— R to be the characteristic function of the
half line R* and

A* ::/ Yr:(MA APy, VAE ::/ e (A)VEN dPy.
o(A) o(A)

Evidently, we have A=At + A~ and v/A=+/AT+iv/A~. The general solution to 1) is of the
form

Ulzy) = eVAT2aT 4 gmVAT29~
— (ei\/Ajzz _I_e—\/Asz)a-i-_'_ (e—i\/AiﬂU2 _|_€\/Aix2)a_ (3.2)

with a € X1/2 and with e*1V4 22 to be understood as the exponential of an operator. In fact, straight-
forward calculations show that

(ei‘/ﬂmai)" —  _AFeiVATmgE /(A) —xrt(A) AeVFN2 0Py at

= / A dP)\ / XRi<)\)€imx2 dP)\ ai
o(A) a(A)

— —A ei\/Aii:cg ai'
This implies that
U// — (ei\/ﬁzga-i-)// + (ei\/Anga—)// — —Aeim$23+ . Aei\/A*wza— — —AU,

which proves that the function U(x2) given by (3.2) is a solution of the infinite dimensional sys-
tem (3.1). Since w should be downward radiating, we require u not to contain upgoing plane waves
eVAT 225+ and to be bounded for x5 < b, i.e., aT = 0. Recalling u|r, = f, it follows from (3.2) that

a” =cVA, f:=(f,)nez. This implies that

U(l‘g) — efi\/AT(ngb)f'

Definition 3.1. If ¢(x) = q(x1) and g € L*(0, 27) is real-valued, then u € H} (Y, ") is said to be a
downward radiating solution to the Helmholtz equation if

u(;pth) — Z |:e—i\/AT(ﬂc2—b)g ez‘anm, Ty < b,

n
neZ

for some g€ X '/2. Here the notation [-],, stands for the nth entry of an infinite dimensional vector.

The above radiation condition allows us to express the solution to the boundary value problem (2.4)
as

u(zy, x0) = Z [e_“Af(“_b)f et gy < b,
n
nez

DOI 10.20347/WIAS.PREPRINT.2726 Berlin 2020



G. Hu, A. Rathsfeld 8

Remark 3.2. If ¢ = qo = 1, all the off-diagonal terms of A vanish and the diagonal terms take the
form a,, =k*—a? for alln € Z. This implies that (v/ A~ )., = B, where 3, € C is defined in .
Hence, we have

[e_i\/f?(xg_b) f] — B (22-b) A
n Y
that is, u takes the same form as (2.2). The new radiation condition in Def.[3.1 is a generalization of
the classical radiation condition for periodic gratings with homogeneous cover and substrate material.

We remark that, the real-valued bounded index function ¢ gives rise to a self-adjoint operator A and
particularly excludes eigenvalues with generalized eigenfunctions in the spectrum of A. This has sig-
nificantly simplified the arguments in comparison to the complex-valued potentials, which will be pre-
sented below.

4 Radiation condition for complex-valued potentials

Assume that q(z)=q(z1), where g€ L>(0,27) is complex-valued. We shall derive a different
Rayleigh expansion into wave modes of the form e’\“h(xl) instead of the e*(@n#1=Fn(z2-b)) i or
the e'*n®1q,,(15) in . The functions A will be quasiperiodic eigenfunctions of a special ODE with
respect to x1, and the \ will be the corresponding eigenvalues. We shall consider the Helmholtz equa-
tion in €2, as a second-order ODE with respect to 2 € (00, b), where the solution takes the function
R>uxy »—>u(:c1, .CL’Q) as values at x5. As usually, the second-order ODE is equivalent to a linear first-
order 2-by-2 ODE system. The coefficient M, an ordinary differential operator with respect to x, is
independent of x5. Using the eigenvalues and generalized eigenfunctions of M, we can represent any
solution as a Rayleigh series of wave modes, where, roughly speaking, each mode is the product of a
generalized eigenfunction depending on z; times an exponential e*2 with \ the eigenvalue. In other
words, in this section we write the Helmholtz equation as a linear second-order ODE with constant
operator coefficient L. In Subsect.[4.1] we shall derive the equivalent first-order ODE with operator
coefficient M. This 2-by-2 operator contains L in one of its entries. We shall analyze eigenvalues and
eigenfunctions for L and M and special wave modes in Subsects.|4.2/and[4.3] Finally, we shall define
the wave modes for the Rayleigh series and the radiation conditions in Subsect.[4.4]

4.1 Ordinary differential equation with respect to x;

To get an equivalent first-order ODE, we set O;u=0u/0x; (j=1,2), vi=0u, and W:=(u,v)".
Clearly, introducing the second-order ordinary differential operator
d*f(z1)
(Lf)(x1) == B TR kK q(x) f (1), (4.1)
1

the Helmholtz equation (A+k2q1)u:0 is equivalent to the function-valued second-order ODE
O3u(-, xy)— Lu(-, 25) =0, or equivalently, d,v = Lu. Hence, the Helmholtz equation can be written
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Radiation condition in inhomogeneous medium 9

in the matrix-vector form

0 I
W =MW, M= (L 0). (4.2)

The domain of L is defined as
D = {f € L*(0,2m): f, f' are absolute continuous and a--quasiperiodic, L f € L*(0, 2%)}.

Note that L is self-adjoint over D if and only if the potential ¢ is real-valued. It is well-known that the
spectrum of L is purely discrete. In the Subsects.4.2/and [4.3|we shall investigate the relation between
the spectra of M and L. The eigenvalues and associated eigenfunctions of L and M are defined as
follows.

Definition 4.1. A number \ € C is called an eigenvalue of the differential operator M combined with
«-quasiperiodic boundary conditions, if the a.-quasiperiodic boundary value problem MW =XW
has at least one non-trivial solution W = (w, v)T €D?. The function W is called eigenfunction corre-
sponding to \. Furthermore, we define associated eigenfunction of rank m > 1 by induction. A function
W €D? is called associated eigenfunction of rank one of M corresponding to \ if it is an eigenfunc-
tion corresponding to \. For m > 1, a function W € D? is called associated eigenfunction of rank m
of M corresponding to \ if W' := (M — \) W is a non-trivial associated eigenfunction of rank m— 1
corresponding to \. Here I denotes the 2-by-2 identity matrix. The functions W) .= (M =AW with
j >0 and WO :=W will be referred to as the chain of associated eigenfunctions generated by W .

Definition 4.2. A number 1 € C is called an eigenvalue of the differential operator L combined with
a-quasiperiodic boundary conditions, if the c-quasiperiodic boundary value problem Lh=p h has
at least one non-trivial solution h € D. The function h is called eigenfunction corresponding to (.
Furthermore, we define associated eigenfunction of rank m >1 by induction. A function h €D is
called associated eigenfunction of rank one of L corresponding to 1 if it is an eigenfunction of L
corresponding to (1. For m>1, a function h € D is called associated eigenfunction of rank m. of L
corresponding to (i if the function h) = (L—pl) h is a non-trivial associated eigenfunction of rank
m— 1 corresponding to ji. The functions h) := (L —pI)7h with j >0 and h'®) := h will be referred
to as the chain of associated eigenfunctions generated by h.

We conclude this subsection presenting an example of eigenvalues and eigenfunctions for L, where
k=1 and q is a piecewise constant function. For the proofs we refer to the techniques in [29]. We fix
numbers g; € C, j=0, 1 and consider the squared refractive-index function

L g f0<zi<m
q(w1) = {ql if m<x<2m

If 1 is sufficiently large, then there are no associated eigenfunctions of rank greater one. For an
eigenvalue 1, the eigenfunction h is given by

S (\/\/qu——I_FZDSl) + cos (mxl) if0<z;<m
h(zy):= 0 ’
. v -2
elo2m {QSID( qi/—i_qu_(f‘; ﬂ-)) —|—COS(w/ql+,LL(.T1 — 271'))} if m<x; <27
1

(4.3)

a = “*" cos (\/ql—i-/mr) — COS (\/qo+,u7r) = h'(0).

DOI 10.20347/WIAS.PREPRINT.2726 Berlin 2020



G. Hu, A. Rathsfeld 10

j | asymptotics of j1; 4 i+ i —

1 -0.43750 -0.51990 -0.36619
2 2.51562 2.4851 2.5457
3 7.50694 7.4901 7.5237
4 14.50391 14.493 14.515
5 23.50250 23.494 23.512
6 34.50174 34.501 34.502
7 47.50128 47.501 47.502
8 62.50098 62.501 62.501
9 79.50077 79.501 79.501
10 98.50062 98.501 98.501

Table 1: First ten eigenvalues for the case a=0, gy =1, and ¢; =2.

Note that it does not matter which sign for the square root \/qo+p and +/q1+p is taken.

Clearly, the formula (4.3) for h requires /q;+/1#0. If \/qo+1=0 or /g1 + =0, then we define
sin(/q;F @ x1)/+/q;+ =1 and the formula remains true. The eigenvalues are those 4 for which
h and h' are a-quasiperiodic function. Thus they are the zeros of the function

det(p) = —1— €7 426 cos(v/qoTuT + g +p7)
_ela2m Siﬂ(\/ Qo+ 7T) Sin(\/ql +u 7r) .
AVt i+ Vo +1)2 G+ i

We obtain the asymptotics for the zeros 115 +, j € Z (cf. a special case in Tab. given by

ot a

pie = (jE£a)? +O(l5177) , 1i] = oo

Here we have k:=1.5for «#1/2 and x:=0.5 else. Moreover, y; 1+ # p; _ for sufficiently large ||.

4.2 Spectra of non-zero eigenvalues

Suppose 1 € C is a non-zero eigenvalue of L. To state the relation between the spectra of L and M,
we need to define the sequence ,,, n € NT recursively by

n—1
1 Z i—1 Vi Vn—j
M=oy T —%, n > 2, (4.4)
where A=\*:==, /11 is non-zero. Obviously,
1 1 5

B g B o 4 e
For the following lemma, recall that A) (j =0, 1, - - - ) is the chain generated by & (see Def.[4.2).
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Radiation condition in inhomogeneous medium 11

Lemma 4.3. The pair (h, i) with n 0 is an eigenpair of rank m > 1 of the differential operator L, if
and only if the eigenpair (W, X) with A\==+,/pi, W = (h,v)" and

m—1

v(xy) := ANh(zy) + Z v; W9 (2).

Jj=1

is an eigenpair of rank m >1 of M.

Proof. We first consider the case m = 1. If (W, \) with W = (w,v) " is an eigenpair of rank one of
M, then it is easy to conclude from MW =AW that Lw = \v and v = \w implying (L —\*I)w=0.
Hence, (h, i) = (w, \?) is an eigenpair of rank one of L. Similarly, it is easy to prove that, if (h, \?)
is an eigenpair of rank one of L, then (W, \) with W = (h, Ah) " is an eigenpair of rank one of M.

Now suppose m=2. If (W, \) with W=(w,v)", is an eigenpair of rank two of M, then

—~

W= (M—-MN)W=:(w, )" #0 is an eigenfunction of rank one of M. This implies that v = \w and
(1, A\?) is an eigenpair of rank one of L. From the definition of 17/, it is easy to obtain that

—Mw+v=w, Lw-—>M =71, (4.5)
MW = AMW + MW = XAW + W) + MW = W + (M + \)W,  (4.6)

L 0
2 _
e (10,

Using © = \w, we deduce from (4.6) that

where

Lw = XNw + (M0 + ) = Nw + 20,
leading to the relations

(L — N1)*w = (L — N*I)(2\0) = 0,
W=7 (L—-NDHw#0, v :=1/(2)).

Therefore, (w, )\2) is an eigenpair of rank two of L. From the first relation in 1» we obtain

v=Aw+w = +ynw?, w?.=(L-NIw.

Now we treat the general case m > 2 by induction. Suppose the induction hypothesis

The pair (W, \) with W = (w, v)7 is eigenpair of rank m of M
<= (w, \?) is an eigenpair of rank m of L and v= )\w+ZT:_11 v w9, (4.7)

is fulfilled. We have to show that (4.7) holds with m replaced by m+1.
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G. Hu, A. Rathsfeld 12

=: Suppose that (W, \) with W = (w, v)* is an eigenpair of rank m+1 of M. Then (/I/Iv/, A) with
W:=(M—-X)W and W = (w0, )T #0 is an eigenpair of rank m of M. By induction hypotheses
this implies that (w, A\?) is an eigenpair of rank m of L and

m—1
b=+ Y o,
j=1

Combining the previous relation with (4.6) yields (cf. (4.7))

m—1
Lw = Nw + (M0 + 0) = Nw + 2\0 + Z y; oW,
=1
from which we obtain
m—1
wh = (L= NXw = 2\i + Y _ 7). (4.8)

j=1

Since (L—\21)™w =0, it follows that
m—1
(L o )\2[)m+1w _ (L - >\2I)mw(1) — 2)\(L . )\2I)mw + Z v U~}(m+j) -0
j=1

and
(L= X2D)™w = (L — XN2I)™ w® = 2X(L — \2I)™ 1 # 0.

Hence, (w, \?) is an eigenpair of rank m+1 of L. To express v in terms of w, we deduce from (4.8)
that

m—I
w o= (L= XD'w =220+ a1 1=1,2,--- m,
j=1
which form the m xm linear system of equations W =11, W', where W::(w(l), s w™)T
W= (w, @ -, ™7 and
2 o2 Ymet
0 2\ 1 -+ Y2
Ih=1: + = - :
0 0 0 - =
0O 0 0 --- 2X

By the definition (4.4) of 7,,, the inverse of 11 is given by

Y1 Y2 Y3 Tm

0 7 7 ' Yma
=10 0 7% - Ymo

o 0 0 --- "
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Radiation condition in inhomogeneous medium 13

This implies that the first component of W’ is given by

m
i = Z i w@
j=1
Together with the first relation in (4.5) we obtain

=+ = w+ Y yuw?

j=1

«: Suppose that (w, A\?) is an eigenpair of rank m+1 of L and v=Aw+ 7", v;w?. We
have to prove that W = (w,v)T is an eigenfunction of rank m + 1 of M. It suffices to show that
W= (M=) = (w, )Thas the rank m. By the definition of M and the expression of v from our

supposition,
W=-\w+v= Zyj w™, (4.9)
j=1
o =Lw— = (1-I)w AZ% . (4.10)

Recalling the induction hypotheses, we only need to verify the relation

m—1
=M+ Y oW (4.11)
j=1

Using (4.9) and the definition (4.4) of 7,,, straightforward calculations show that
m—1 m m—1 m—j
D + Z v oW = )\ Z 7 w) + Z Vi <Z v w(]-f-l))
j=1 j=1 j=1 =1
m m 7j—1
=AY e + 3wt <Z '7l7j—l>
i=1 =2 =
= A yuw+ Z w? (=2)7;)
j=1

m

= Apw? — )\nyj w™.

Jj=2

Since 2\y; =1 and (4.10), the previous identity confirms the relation (4.11). The proof is completed.
O

The chain W) generated by W is given in Def. the chain ) generated by A in Def. As a
consequence of the proof to Lemma[4.3] we obtain
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G. Hu, A. Rathsfeld 14

Lemma 4.4. (i) Suppose (h, )\2) is an eigenpair of rank m > 1 of L. Then the vector functions

h®
(Ah(w + iy, h(j+l)) , =012 ,m—1,
are the associated eigenfunctions of rank m —1 of operator M corresponding to the eigenvalue .
(ii) Suppose (W, \) is an eigenpair of rank m > 1 of operator M. Write W= (Wl(l), Wél))T for
[=0,1,--- ,m — 1. Then (Wl(l), \?) is an eigenpair of rank m—1 of L and

m—[—1

Wi = + STy (L - 22w
j=1

Proof. Lemma [4.4) follows from Lemma [4.3) and the fact that (W ®, X), (h"), A?) are eigenpairs of
rank m — [ corresponding to M and L, respectively. Note that, in the case of [ =0, the assertions of
Lemma [4.4] coincide with those in Lemma[4.3] O

By Lemma in order to get the spectrum of M, it suffices to investigate the spectrum of the
quasiperiodic differential operator L. We collect properties of the nonself-adjoint operator L in the
subsequent two lemmas.

Lemma 4.5. (i) The spectrum ap(L) of L is a discrete set of eigenvalues and the only accumula-
tion point is infinity.

(i) The geometric multiplicity of each eigenvalue 11 € o, (L) is finite, i.e., dim (ker (L—pl)) < oo.

(ii) The algebraic multiplicity of each eigenvalue . € o,(L) is finite, i.e., dim (A (1)) < 0o, where

Ap(p) = {h € D : thereisanm € N s.t. (4.12)

LthD,jzl,...,m—land(L—M[)mh:O}.

(iv) The eigenvalues can be denoted as fi, = ji,,(«) € 0,,(L) for index n running in Z.

If «#0,1/2, then the algebraic multiplicity of the ., is equal to one for sufficiently large |n|.
Choosing a suitable scaling factor for the rank-one eigenfunction h,, corresponding to i,,, we
get h,(0) =1 and the asymptotics

) k2 2 1
pn() = (n+«) —%/0 q(t)dt+(9<m), (4.13)
ho(xy) = exp(z’(n+a)x)+0 S n ez (4.14)
n\41 1 |7l| ) ) .

as |n| — oo, where the term O(1/|n|) is uniform with respect to 1 € [0, 27].
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Radiation condition in inhomogeneous medium 15

Ifa=0,1/2, then the algebraic multiplicity of the 1, is one or two for sufficiently large |n|. The

eigenvalue asymptotics holds with O(1/|n|) replaced by O(1/|n|'/?). Instead of ,
the eigenfunctions of rank one admit the asymptotic expansion

ho(xz1) = Ci(n)expli(n+ a)z] + C_(n)exp[—i(n + a)x1] + O (ﬁ) , (4.15)
where Cy(n)€C and n€Z with |n|— oco. For normalization, in we may suppose
h,(0)€R and |C, (n)|?+|C_(n)|*=1. Furthermore, for sufficiently large |n| and for eigen-
values i, () = pi_n—24(x) with two linearly independent eigenfunctions of rank one, a pair of
eigenfunctions h,, and h_,,_», can be found satisfying with n set ton and —n—2q,
respectively.

The assertions (i)-(iii) follow from the spectral theory of nonself-adjoint differential equations (see e.g.,
[9,[15./16] and references therein). The asymptotic behavior of the spectrum of L was studied, e.g.,
in [38] for «#£0,1/2, in [15] for «=0,1/2 and in [29] for the general case. The results in the last
assertion were used in the proof of [36, Thm.4.12] to derive uniqueness for the identification of a
periodic medium, which depends only on x5, from near-field measurement data of infinitely many
incoming waves.

Obviously, one has
dim (ker (L — p)) < dim (A (p))

for each p € o, (L), u#0. The set of all eigenfunctions and associated eigenfunctions of p € o,,(L)
form the eigenspace corresponding 1+, which is a closed linear subspace of LQ(O, 27) with dimension
equal to the algebraic multiplicity of 1. For ¢=0 and n € Z, we have u,, = (n-+a)? and all associ-
ated eigenfunctions h,, (1) =exp (i(n—+a)z1) are of rank one. For ¢ #0, the eigenvalues as well as
the eigenfunctions and associated eigenfunctions are obtained by perturbation arguments. Therefore,
we have the same general indices n € Z for the set of all eigenfunctions and associated eigenfunc-
tions. So this covers the case of associated eigenfunctions of rank greater than one. Indeed, in this
case the values 1, might coincide for several n € Z and the corresponding 5., span the space of all
eigenfunctions and associated eigenfunctions.

Since the a-quasiperiodic boundary conditions are non-degenerate, we infer from [29, Thm. 1.3.1], [15}
Thm. 2.1] and [38, Thm. 3] that

Lemma 4.6. The system of eigenfunctions and associated eigenfunctions h,,, n€Z of the «-
quasiperiodic operator L is complete over L*(0, 27). Further, they form a Riesz basis of L*(0, 27) if
a#0,1/2.

Let us comment on the choice of eigenfunctions for a basis. Note that, for « #0, 1/2, each eigenvalue
I, with sufficiently large |n| has an eigenfunction of rank one, which is unique by the normalization
h,(0)=1. A basis transform for the general eigenfunctions with n in a finite set does not change
the Riesz property. For « =0, 1/2, the eigenvalues of multiplicity two have a non-unique basis. If
the two eigenfunctions are both of rank one, then the basis can be fixed by h,,(0)=1 and
without changing the Riesz property. However, if there is a generalized eigenfunction of rank two, then
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G. Hu, A. Rathsfeld 16

the Riesz property might depend on a good choice of generalized eigenfunctions for the basis. In
particular, it might be necessary to choose two eigenfunctions of rank two for some of the eigenvalues
in order to form a Riesz basis. Choosing a chain of generalized eigenfunctions might lead to a system
without Riesz property. We suppose that the system of generalized eigenfunctions h,, is chosen such
that the Riesz property is fulfilled whenever this is possible. Moreover, we assume a special choice of
rank-two eigenfunctions. By /; we denote the set of indices n such that 11, = it _,,_2, has exactly two
rank-two eigenfunctions h,, and h_,,_»,, in the Riesz system. Then, for n € I,

([_82 - qu[] - ,Un)hn = Cn,l,lhn + Cn,l,thanaa (416)
([_82 - quI] - Mn)h—n—Qa = Cn,?,lhn + Cn,Q,Qh—n—Za-

For a linear combination f,,h,+ f—n_2ah—n—24 With fr, f_,_2a € C, we get

Ha? (fnhn+ffn72ah7n72a) H2 ~ <B:~;Bn(fn7 ffn72a)T7 (fna f*’ﬂ*?&)—r> )

B, = (Mn+0n,1,1 Cn 2.1 )

Cn12 fn +Cnoo

By the eigenvalue decomposition of self-adjoint matrices there exists a unitary matrix U,, and non-
negative eigenvalues K, k_,_2, such that B B, = U diag(k,, K—n—24)Un. In other words, apply-
ing a basis transform for the basis functions h,, and h_,,_s,, we may suppose U, =1 and arrive
at

I

HaQ (fnhn+f—n—2o¢h—n—2oz) ~ ’%n|fn|2 + E—n—2a|f—n—2a|2~ (417)

This normalization of pairs of basis functions for « =0, 1/2 will always be supposed in the following. If
a#0,1/2, then we set I1,=0, since, for large |n|, all eigenvalues 11, have algebraic multiplicity one.

The adjoint operator of L over the quasiperiodic functions is the operator L* over quasiperiodic func-
tions, which is defined as L in but with ¢ replaced by the complex conjugate function g. Since the
eigenfunctions and the associated eigenfunctions of L* corresponding to 7z,, are L? orthogonal to the
eigenfunctions and associated eigenfunctions of L corresponding to i, for tt,, # ., (cf.the proof
of [38, Thm. 3]), we conclude that there exists a dual system k., n € Z such that (h},, h,,) =0, , and
(h},, hn) =0m n. The existence of a complete dual system implies that the system h,,, n € Z is total
and minimal. Of course, the scaling for the dual system is different than that in Lemma [4.5] (iv). In
particular, if the algebraic multiplicity of an eigenvalue is greater than one, then the scaling is difficult
to estimate and the Riesz property might get lost.

If «=0,1/2, then the a-quasiperiodic boundary conditions reduce to the periodic boundary condi-
tions and the antiperiodic boundary conditions h(0)=—h(27), h'(0)=—h'(27), respectively. Un-
fortunately, the modified asymptotics does not exclude the identity i, () = pt_p 124 () for
large |n|, which might lead to troubles in estimating the norms of the dual basis. We refer to [15, Thm.
1.2, Cor. 1.5] for necessary and sufficient conditions, under which the eigenfunctions form a Riesz or
Schauder basis over L2(0, 27) in the case of a=0, 1/2.

For general « but real-valued ¢, the operator L over quasiperiodic functions is self-adjoint and the
system h,,, n € Z forms an orthogonal basis in the Hilbert space L?. In this paper we suppose that
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Radiation condition in inhomogeneous medium 17

either « #£0, 1/2, or q is real-valued, or the conditions in [15, Thm. 1.2, Cor. 1.5] hold for « =0, 1/2, so
that the h,,, n € Z always form a Riesz basis. Note that, for the main resultin Thm.[5.7} the Riesz basis
assumption can be replaced by assuming a subexponential bound for the norms of the dual basis.
However, this leads to more involved definitions and proofs, since the convergence of an expansion
with respect to a Riesz basis is to be replaced by density arguments for finite linear combinations of
the h,,, n € Z. With the Riesz basis assumption, for each v we obtain the following equivalence of the
Sobolev norms with weighted ¢ norms of the coefficients with respect to the Riesz basis h,,, n € Z.

Lemma 4.7. Suppose h,,, n€Z is a Riesz basis in L*(0,27). For each s fixed with —2<s<2,
there exists a constant c; > 0 such that, for all sequences f,, € C and for the k,, from (4.17),

> fahn > fuhn

nez nez

2 2

1
Cs

< 3PS S (U < e

H§(0,27T) nEZ\Id nely

HZ,(0,2)

Note, by a coarse estimate, we have k,, <O(|n|?).

Proof. For s=0 the norm equivalence is a well-known fact for any kind of Riesz basis. If s=2 and all
eigenfunctions with eigenvalue p.,, > ng are of rank one, then

2 2 2
> fahn ~ > by, + 1> fahn (4.18)
nez H2(0,27) nez L2(0,27) nez L2 (0,2m)
2
~ Z fn<ﬂn+k2Q)hn +Z|fn|2
n€Z:|n|>ng LZ,(0,2m) neZ

Using g € L*°(0, 27) and the fact that 1, ~|n|? for n — 00 (see Lemma[4.5] (iv)) we continue

anhn Z (:unfn)hn +Z|fn|2

neZ n€Z:|n|>ng LZ(0,2m) nez

~ D Pl D 1

nez nel

~ D (LD Sl

ne”L

2 2

2

HZ(0,2r)

Hence, the assertion holds for s =2, and the norm of the dual space H;Q(O, 27) is equivalent to dual
of the weighted ¢? space, i.e., the assertion is true for s = —2. By interpolating the spaces, we obtain
the assertion for any s with —2 <s<2.

The proof in the general case follows analogously, if we apply % = (i, +k?q)h,+g, instead of
h!' = (i1, +k*q)h,, to (4.18) and if we use (4.17). It remains to show the estimate of the r,,. If n.€ I,
then we get (4.16). We denote the rank-one eigenfunction on the right-hand side of (4.16) by g,.
Fixing a suitable co > 0, the operator [(—0%—k?ql)+cyl] is invertible and its inverse is the compact
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G. Hu, A. Rathsfeld 18

resolvent operator B := [(—0%—k?*qI)+coI]~. Hence, the property (—0* —k?*qI) g, = pin gy of the
rank-one eigenfunction g,, leads us to

[(—82 — ]{?QQI) + Col]hn - (,un + C())hn = UGn,
(,Un + C(l)ilhn — Bh, = (,Un + 00)729717
Gn = (ftn + co)hn — (ftn + c0)* Bhy,.

Here || (ttn +co)hn||=O(|n|?), and B is a bounded operator in L2. Thus ||g, || =O(|n|*) such that
cn1j=0(In|*), =1, 2. Similarly, ¢, 2 ;= O(|n|*), j=1, 2, and the non-negative singular value ,,
is at most O(|n|?). O

By Lemma the set of eigenfunctions and associated eigenfunctions of L is complete over
L*(0,2m) for any a€[0,1). To consider eigenfunctions of higher ranks, we denote by (A, ., fin)
with A, .., € AL () an eigenpair of rank m > 1 of L. However, we should always keep in mind that
the system (R, m, 1) coincides with the previously used notation (hy,, pt,,). By Lemmawe may
construct eigenpairs (W=, . A\E) of rank m > 1 of M as follows:

hn (1’1)
-1

+ _ + _ , +
Ay =2, Wo(r1) = NE hyn(1) + vfnh%(xl) e Ap(X), (419

n,

3

)

3

J=1

where the fyfn are defined the same way as ~y; with \ replaced by A7, (see (4.4)). Here, the func-

tions hﬁfzn = (L— pinI)? . m represent the chain generated by h,, ., and the set Aj;(\) denotes the
eigenspace of the operator M corresponding to the eigenvalue A, that is (cf. (4.12)),

Ay (p) = {g € D? : thereisanm € Nsit,

Mjg€D2,jzl,...,m—land(M—/\I)mgzo}.

As will be seen later, we shall switch between the indices 4+ and — to define upward and downward
radiating wave modes for x5 > b and x5 <b, respectively.

Lemma 4.8. Suppose (g, \) with g= (g1, g2) '€ Apr()) is an eigenpair of rank m > 1 of M. Then
the unique solution W (z1, 1) = (u(x1, x2),v(x1,12)) " to the quasiperiodic initial boundary value
problem

RW =MW, W(,b) =g, (4.20)

is given by

T2 g™ () (29 — b
W (xy,29) = M2 Z g 1)n(! 2~ 9) ,

=0

3

where { g(") :n=1,---,m} denotes the chain generated by g as defined for generator h in Def.
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Radiation condition in inhomogeneous medium 19

Proof. Without loss of generality we suppose that b=0. Obviously, W (x1, x2) :=exp(Mx2)g(z1) is
the unique solution to (4.20). For m = 1, we have (M — \I)g=0, implying that M’g = Mg for any
7 €N. Hence, by the definition of the exponential function of a matrix we obtain

W(xy,x9) = exp(Mxzy)g(x1) = Z ﬁM]g = Z j_' g=e"2g.
J=0 7" j=0

Next we will verify the lemma in the general case of ™ > 1. From the definition of g(”), using an
induction argument we see

min{j,m—1}

Mg = Z N (n> (n).(j_n>!n!. (4.21)

n=0

Note that in deriving (4.21), we have used the relation M g™ = \g(™ 4 ¢g(**+1)_ We split the function
eM?®2 g into the sum of

J >© L J

QM]g—i—E T2 ppig (4.22)
e gl
Jj=m

—_

3

exp(Mxzs)g(xy) = A ?

J

I
=)

The first sum on the right-hand side of the previous identity can be rewritten using (4.21) as

m—1 j m—1 45 ] . m—1 J N
Yonri, — T2 j—n ) (] g™
> Ty = XS e (1) = XY
7=0 7=0 n=0 j= n=
LN w1 A
- ! G-—m)!
n=0 ’ j=n J ’

where the summation over the indices 7 and m has been interchanged in the last step. Analogously,

o J m—1 . o0 J—n yj-n
Ty Ty (n) xy A
E —M’g = —9 E . :
= 4! — n! it (j—n)!

The previous two identities together with (4.22) imply

- 3 G x%Aj A m_lxg (n)

< — T2 2 (n

RTTIAYES DE TN Dok 1) B g PO
n=0 §=0 n=0

O

Theorem 4.9. Suppose (hy, m, fin) With hy, . € AL (1) is an eigenpair of rank m > 1 of L and define
AEand W, asin . Consider the boundary value problem for c.-quasiperiodic solutions .

Au+Kqu=0 in R? U= hym on I}, (4.23)
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(i) The solution u=u,,,, € H} where

ic(R?) can be represented by tup,,=Ctu}  +C u,
C*eC and

n,m’

+ A (w2—b) J 2
u, (a:l,xg EO I (4.24)
j=

Here (W5, )9 denotes the first component of the chain (WiE,) ) generated by W, . Furthermore,
for 0 <5 <m—1, the associated eigenfunction (Wnim) 7) of the operator M with the corresponding
eigenvalue )\f is of rank m—j and can be represented as

m—1 m—1
WEI =3 AP R0, wWENY =3B RY, 0<j<m—1, (425
=0 =0

with the coefficients Al(j — Ali’(j ), 0<I<m -1 and Bl(j — Bli Y ), 0<1<m —1 given by the recur-
sion

AY =1, B =25, AY =0, BY =1, 0<l<m—1, (4.26)

AT = \EAD + B BUTY = AV 4y, AV —AEBY 0<i<m—1, (@427)

where (i, = [\]% and A(ﬁ = 0.
(ii) It holds that .
Doty (1, 0) = Ay hy (1) Z Vi h9) (

Js M

Jj=1

n,m?

M are of rank m. Hence the u m, are solutions of the a-quasiperiodic boundary value problem 1;
if and only if W+ = 82u .,) satisfy the a-quasiperiodic ODE systems

Proof. Suppose Af and W, are defined by (4.19). By Lemma | the eigenpairs (W5, \E) of
( nm’
HLW*E = MW?* in R W*=W;,, on T,

By Lemma[4.8] we get the solutions

x9 — b)?
WE(zy, 29) = — i (@2-b) Z VVi ) (z (2]—|) (4.28)

Recall from that
(W5 = Wik = o,

m—1
(4.29)
(VVi )0)—)‘i nm_’_z%n
7=1
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The expression of u>, follows from the flrst component of 1) and consequently, 82unm|pb co-
incides with the second component of W/ |1"b Fmally, the initial condition 1; follows from (4 ;
and the recursion (4.27) for the coefﬂments in (4.25) from

NI
= — n
(M=X,T) ((L—unI)JrunI —A;EJ)'

As a consequence of Thm.[4.9] we present the solutions for eigenvalues of rank two.

Corollary 4.10. Suppose (h, \?) with h € A1 (\?) is an eigenpair of L of rank two. Then the solution
€ H? (RQ) of the boundary value problem can be represented by u=C ut+C~u~, where

loc

CiE(C and

1
—~(z2=b)h (1) |, zeR

ui(xl,xg):ei’\(”_b) h(zy) £ )

where h) = (L —\21)h#0. In particular, we have

1
82u (l’l, ) j:)\h(xl) + ﬁh(l)(l’l) for T = b.

Proof. The assertion follows from Theorem [4.9]with the following replacement

1 1
m=2 \-= iA%n:EE:iﬁ,u@:uimgzn

4.3 The eigenvalue zero

In this subsection we suppose that ;= 0 is an eigenvalue of L with the eigenfunction h. If (h, 0)T
is an eigenpair of rank one, by Thm.[4.9| the solution u to the quasiperiodic boundary value problem
(4.23) takes the form

u(z) = h(zy), =€ R? (4.30)

implying that dou(z1, 29)=0 for any (1, z2). For higher ranks m > 2, however, Thm.[4.9]is not
meaningful because the coefficients 7y;, 7 > 1 (cf. (4.4)) are not well defined for eigenvalue zero.

Lemma 4.11. Suppose \=0 is an eigenvalue for M of rank 2m—1 or 2m with m > 1. Then the
corresponding eigenspace of rank 2m— 1 consists of vector functions of the form (u,y,, vm_l)T, while
the eigenspace of rank 2m consists of functions of the form (u,y,, vm)T. Here the u.,, Uy, and v, 1
(vo = 0) are eigenfunctions of L with respect to the eigenvalue ;=0 of rank m and m—1, respec-
tively.
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Proof. Denote by W = (u, U)T the eigenfunction of M that corresponds to the eigenvalue A=0. It is

easy to see
0 1 U v
MW = (L O) () _ (Lu) @a1)

Hence, (W, 0) is an eigenpair of rank one if and only if v =0 and Lu =0, thatis W = (u, 0), where
the eigenvector u of L corresponding to the eigenvalue zero is of rank one. Analogously, (W, 0) is
an eigenpair of rank two if and only (v, Lu)T is an eigenfunction of rank one, which implies that v is
of rank one and Lu = 0, that is both v and u are of rank one. This proves Lemma[4.11]in the cases
m=1 and m=2. The general case m >3 can be proved easily via induction and using (4.31). O

Theorem 4.12. Suppose (hgm,0), hom € AL(0) is an eigenpair of operator L with rank m>1.
Then the solution u € H? (R2) to the quasiperiodic boundary value problem takes the form

loc

u=CTuf +C~u,, where C*€C and

2m—1
Up, (21, T2) = Z wh (1) (w2 — )7 /5! T2 € R,
j=0
where, for n=0,1,--- ,m—1,
wpr* () = hi (@), Wl (@) = o) (@), Wi (@) = oy (). 432)

Here v,,,v,,—1 (vo = 0) are arbitrary eigenfunctions of L of rank m and m — 1, respectively, and

vﬁff )= L™v,, denotes the chain generated by v,,, corresponding to operator L and eigenvalue zero.

In particular, it holds that
02uj,'l(m1, b) = vn(x1), Oou,,(x1,0) = vp_1(x1),

Proof. By Lemma4.11| the vector functions Wt := (h,,, v)T, W, := (A, Um_1)T are of rank 2m

m

and 2m— 1, respectively. Now, consider the quasiperiodic boundary value problems
W= = MW= W b)=W2,
where W* = (uZ, 0yut ). By Lemmal4.8| we have the solution

W) = 3 (WD (a) (22— bP /51,

J=0

where (W)W = MIW:* denotes the chain generated by 1. By the definition of M, we get

Um

+1(2n) hgﬁf) +\(2n+1) vﬁff)
(Wm) = (n) s (Wm) = h(n+1) s n:O71,"' ,m—l.
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The first component of (W), j=0,1,---,2m—1 gives the definition of w/:* in (4.32). Analo-
gously, we can get

—\(2n) hiy) —\(2n+1) o
(Wm) "= (n) ) (Wm) " = h(ﬁh) 9 nzovlv"' ,m—l,

UmZ1

which imply the expressions of w{{. The representation of agu; on x5 = b follows from the expression
of u and definition of w*. O

In the case of m=1, we have
uf () = hi(@1) + (22 = D)ui(z1), uy (21) = ha(21).

For m > 1, the functions ui(xl, x2) are polynomials with respect to x5 of order 2m—1 and 2m —2,
respectively. Since uf and uii (m > 2) are unbounded as x5 — 00, these wave modes are physi-
cally not meaningful. Hence, in this paper we make the assumption that the rank of =0 of L is one
and the corresponding eigenfunction is given by u=w; = hy(x1), which coincides with the solution
obtained by Thm.[4.9| by formally setting s, =0 and m =1 (cf. (4.30)). Note that for complex-valued
periodic potential ¢ € L>°(IR), one cannot exclude, in general, that zero has an associated eigenfunc-
tion of rank m > 2.

4.4 Upward and downward radiation conditions

Suppose the operator L in (4.1) is defined with a function ¢ € L>°(R). We introduce the following
assumption on L.

Definition 4.13. We shall say that Assumption RC(q) is fulfilled if the system of eigenfunctions corre-
sponding to L (cf.Lemma forms a Riesz basis and if either there is no eigenvalue zero of L or
any eigenfunction v of eigenvalue zero is of rank one, i.e., L*u=0 implies Lu=0.

We suppose the space is filled with material, the refractive index ¢() of which is equal to ¢ (1)
and to ¢~ (z1) in an upper and lower half space, respectively. Denote the operator L of with
q= qi by L*. In this and the following sections we shall assume the Assumptions RC(g™). For qg= q*
and L= L*, the Riesz basis {h,,: n€Z} can be denoted by {/,,,n: fin €0p(L), hpm € AL (fin) }
with a finite subset A% (fi,,) C AL (fi,,). Whereas the eigenvalues i,,, n €Z in Lemma point (iv)
need not to be different for different indices n, the eigenvalues ji,,, n € N in the new notation satisfy
fin < fig<fi3< ---.Setting Z:={(n,m): neN, me A (u,)}, we can even write the system as
{hnm: (n,m)€L}. The subscript m > 1 indicates the rank m of eigenfunction A, ,,,, and the corre-
sponding set of eigenpairs is { (A m, fin) : (1, m)€ZL}. To simplify notation we even write 1, for the
new fi,,. Furthermore, suppose u:,,, is given by and let A and W7, be defined as in (4.19).
Set

[ Vi, it Reypn, <0 or Re/p, =0, Im /i, >0, (4.33)
"\ —/in  otherwise. '
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It is clear that we always have either Re (\,,) < 0 or Re (A,,) = 0 and Im (),,) > 0. Similarly, define

W _{ij it Rey/t, <0 or Re./u, =0, Im ./, >0,

’ W.m  otherwise.

Note that, for \, = 0, we have m = 1 and Wom= Wy1=(hn1,0)T, where h, 1 = h; denotes the
eigenfunction of rank one that corresponds to the eigenvalue zero and operator L.

Definition 4.14. An upward (resp. downward) radiating mode u%U% (resp. ugD% ) Iis defined as

m—1 . ( . b)]
UglUm = e)m(:cz—b) (Wn,m)(lj)(xl) 2 ) ) X2 2 b7
, prt gl
m—1 e ( . b)]
ulB) = e ST, )P () 2w < b
) g
() (D)

We shall call the modes uy, ,m and un.m propagating wave mode if Re 5\n =0, i.e., if it is not decaying
exponentially for xo — 0o and x5 — —00, respectively.

Remark 4.15. Each upward and downward radiating mode belongs to HZ, .(R?). For «#0,1/2 and
for |n| sufficiently large, by Lemma (iv) the eigenpair (h.,, p,) of L has the rank one. Together
with Theorem[4.9, this implies that

unl,]m = uglU) — e;\n(xZ*b) hn7 un,Dm — ule) — eij‘n(m2*b)hn.
Independent on whether the rank is one or two, for large |n| the function u,(lU) (resp. U%D) ) decays
exponentially as x4 — +00 (resp. xo — —00), due to the definition of \,, and the asymptotics of \,,
shown in Lemmal[4.5 (iv).

Definition 4.16. The a-quasiperiodic function u€ H}. () (resp.u€ H} (")) is called an up-

ward (resp. downward) radiating solution if u is a linear combination of the upward (resp. downward)
radiating modes, that is,

Z nm nm )

(n,m)el

(resp.) u(x) Z m nm (),

(n,m)el

for some sequence of coefficients Ci;,, € C. The sums converge in H}, (%) (resp. H, .(Q})).

Recall our definition of Hlloc(Qbi) as the space of all functions v over Qbi such that, for any radius >0,
the restriction of v to ijr ={reQf: |z|<r}isin Hl(Q,j'fT). Note that the functions u € H}. (i)

of Def.[4.16| satisfy the Helmholtz equation Au(z1, 72)+k2q(w1)u(zy, 29) =0 for (v1, 72) € QF.
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If ¢(x) =gqo € C, the upward and downward propagating modes defined in Definitions and
are exactly the Rayleigh modes occurring in a homogeneous periodic medium. In fact, the spectrum
(n, hy,) of the differential operator L is given by

fn = a2 —k’q €C,  hy(z1) = exp(ic,71), n € Z.

In particular, each eigenvalue p,, is of rank one and there is no associated eigenfunctions of rank
m > 2 (see the arguments below). Correspondingly, the spectrum (A, W,,) of the matrix differential
operator M can be represented as (see Lemma |4.3)

ME=4/a2 — k2, WF = exp(ia,r) (j: ! ) :

Oé% — ]{EQQO

Note that the branch of 1/a is taken such that Im \/a>0 for a € C. By the definition (4.33), the
parameter \,, € C turns out to be

;\ e Y, Oé% - k2q0 if |an’2 > |k2CI0’7
VE2q — a2 it |an|* < |k qol.

Hence, the upward and downward going modes take the form

n -

ul! (2:) — ezanxﬁ»)\n(zsz)’ To > b7

UnD)(ZE) _ eianm—)\n(mg—b) T < b

9 —

In the special case ¢(x) =1, it holds that

5 __{ —va2 —k? it |a,| >k,

ik -2 it o, <k,

which coincides with i 3,, for any n € Z (cf. (2.3)). If i, =0 is an eigenvalue of L, we have either a,, = k
or a,, = —k, that is, the dimension of the eigenspace JL(O) is at most two, with the eigenfunctions
et These eigenmodes can be regarded as both upward and downward going modes. When
o, =0 for some n € Z, it holds that u'y () = ™2 and u'l (z) = =2, which are 27-periodic

wave modes in the zo-direction.

Next we show that the rank of the eigenvalue s, of the operator L=—(0? + k*qol) with go€C
is at most one. For this purpose, it suffices to prove that, for any given n €N, there do not exist
«a-quasiperiodic solutions to the ordinary differential equation

w'(x1) + 2w(r;) = ", 7 €R. (4.34)

If o, # 0, a general solution to (4.34) takes the form

w(ry) = e fcmeT ™ L y(n), ¢ eC,
1 S ,
v(r) = a_/ sin (an(xl —yl))emnyl dyy
n Jo
_eiocnan —i2anT .
=~ (e — 1 + 20,71 . (4.35)
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It is easy to see
ie

T1
! = — onyL oy —
v' (1) /0 cos (an(r1 —y1))e U Ta

and v(0)=1v'(0) =0. The function w is a-quasiperiodic in z; if w(0) = w(27)e "™ and w'(0) =
w’(27r)e_i2m. Since e!“n?! is a-quasiperiodic, we get conditions on ¢~ and can assume ¢t =0.
The first condition together with o, = + n leads us to (¢~ +v(0))e ™ = (c~e " +0(27)) i.e.,
to the formula 2isin(a2m)c™ =v(27). Similarly, the second condition for the derivatives implies
2isin(a2m)c” :tv’(%r). In other words, an existence of a quasiperiodic solution requires

T T

(e‘ﬂo‘"“ —1- i20znm1) (4.36)

v(2m) = S-v'(2). Substituting 21 = 27 into the formulas and , we get «v, =0, which is
a contradiction to the assumption «,, # 0 for our case. If ov,, =0, it holds that &= —n for some n € Z,
implying that the solution w to the ordinary equation w” = 1 must be 27-periodic. A general solution
of (4.34) is given by w(z;)=1/2 z3+ax; +b with a, b € C. However, such general solutions cannot
be 2m-periodic. In summary, eigenvalues for constant potentials cannot be of rank m > 2.

5 Solvability of grating diffraction problems in an inhomoge-
neous periodic medium

The results on the solvability of the boundary value problem, modeling the scattering of an incom-
ing wave by the grating structure between inhomogeneous media, goes along the same lines as in
the case of homogeneous cover and substrate materials. In Subsect.[5.1] we shall define Dirichlet-
to-Neumann (DtN) mappings over the lower boundary line of the cover material and over the upper
boundary of the substrate. Mapping properties of these DN operators will be investigated in Lemmata
and In particular, definiteness and strong ellipticity of the quadratic forms corresponding
to the two Dirichlet-to-Neumann mappings are presented. In Section we formulate the scattering
problem as a quasiperiodic boundary value problem. An equivalent variational formation is given by
enforcing the Dirichlet-to-Neumann mappings on an artificial boundary inside the inhomogeneous ma-
terial, and the strong ellipticity of the corresponding sesqui-linear form is proved. The definiteness of
the quadratic forms imply the uniqueness of the scattered far-field, namely the reflected and transmit-
ted propagating wave modes. By Fredholm’s alternative, we obtain unique solvability of the scattering
problem for absorbing materials and also existence of solutions in non-absorbing materials for special
incoming waves.

5.1 Dirichlet-to-Neumann mappings

Again (cf. Subsect., in contrast to the notation h,,, n€Nj for the system of eigenfunctions
and associated eigenfunctions used in Subsect.[4.2] (cf.Lemma [4.6), we denote the system by
Bom, (n,m)€Z with the new index set Z:={(n,m): neN, me Al (1,)}. The index m de-
notes the rank of the associate eigenfunction 7, ,, EAL(un) for the eigenvalue p,, introduced af-
ter Lemma In the subsequent sections we identify the straight line I', with the finite sec-
tion over a single period {(x1,b): 21 €(0,27)}. For d>b, we define the rectangular domain
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Ryq:={x¢€ R?: b<zo<d, 0<zy<27}. Hence, ', U T, is a subset of the boundary of Ry 4.

Lemma 5.1. The system h,, ,, (n, m) €L is complete in H}/Q(Fb). If it is a Riesz basis in L*(T'),
then a scaled version of the system is a Riesz basis in H'> (Tp).

Proof. In accordance with Lemma the linear span of the system h,, ,, (n,m)€Z is dense in
L?(Ty). Using that L?(T') is a dense subspace in H'(T';), we conclude that the span of sys-
tem Ny m, (n,m)€Z is dense in H,'(T';) as well. Now, knowing that ¢ € L*°, we can choose a
real number ~ such that A:=L+xI: HL(T,)— H_'(T}) is invertible. Then the span of system
A hym, (n,m) €T is dense in H!(T;). However, the h,, ,,, are eigenfunctions or associate eigen-
functions of operator A. Consequently, the span of system A‘lhmm, (n, m) €Z coincides with the
span of the system h,, ., (n,m) €Z. In other words, the span of system P, ms (n,m)€Z is dense

in HY(T',). Since H.(T',) is dense in Hy/*(T';), the span of system Ay, , (n,m) €T is dense in
HCI/Q(D,). The Riesz basis property follows from Lemma O

In the following definition, we suppose Assumption RC(q) of Def. and extend ¢ from €2, to R? by
setting ¢(z) = q(z1) for all x € R?.

Definition 5.2. The Dirichlet-to-Neumann maps 7;* for upward and downward radiating solutions are
defined as

T, (f) == £(0u)Ir,, f € H*(T),
where u’° are the upward and downward radiating solutions to the Dirichlet boundary value problem

Au +kquit =0 for a3 >b (29 <b),  u¥|p, = [. (5.1)

Given f € HOI/Q(Fb) C L:(T), by Lemmasand we may expand f into the series

f: Z fn,m hn,m) fn,m = <f7 hz,m> € (Cu (5.2)
(n,m)ez
where {h;, .} is the dual system of {%,,,,}. Recall the equivalent norm (cf. Lemma [4.7] valid for the
Riesz basis hy, i, (n,m)€T)
2 N 2 1/2 2
||f||Hé/2(Fb) Z (1 + |n|) ‘fn,m| + Z (1 + ’{n,m) |fn,m| : (5.3)

(n,m)ex (n,m)€Zy

Using Theorem the solution u%S € Hlloc(Qbi) to the boundary value problem (5.1) takes the form

uf = > famull), w2 >0, (5.4)
(n,m)eT

W= Y famuih, 22 < (5.5)
(n,m)eT
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Lemma 5.3. Suppose Assumption RC(q) given in Def.[4.13 Then the sums in (5.4) and (5.5) converge
in HY (9, and the mappings T, are continuous from Hy/ *(Ty) to Hay Y *(T).

Proof. Without loss of generality we consider the case of 4 and upgoing waves. Any approximation
of 7", defined by a finite section of the index set, is obviously continuous. Thus, due to Lemma
(iv), we may suppose that all h,,, are eigenfunctions of rank one or two for eigenvalues /i, with
Re p,, > 0. First we assume that all these eigenfunctions are of rank one. We fix a small ep > 0. If
hy, ; is a function in the dual system, then

Toof(11) = uf(zi,b+ep) = D (.l )uly (w1, b+ ep).

n

We assume that the sum contains only a finite number of terms. From Lemma (iv) and
U .
Uim) (21, 22) =exp (= /fin(22—b)) b1 (1), we obtain

w10+ ep)l < e I fllewy exp[-Revimen] < el fll g,

Similarly, we can estimate |02 (21, b+ep)| if we use that h,, 1 is an eigenfunction of L. We arrive
at

HTCOfHHé/Q(Fb):||uic|rb+aD |Hc1>/2(Fb) < CHfHHé/Q(Fb)'

Now we use the continuity of the Dirichlet problem for a-quasiperiodic Helmholtz solutions in the
rectangle Ry p+-,. For sufficiently small ep, the variational form (u, v) — — [ Vu -Vo+k* [ qud of
the quasiperiodic Dirichlet problem

Au(z) + kK q(z)u(r) =0, € Ryprey, ulr, = f, ulp,,. = f2 (5.6)

is coercive over the space of functions u € H (Ry ;. ., ) with u|r, =0 and u|pb+ED =(. We denote the
solution of (5.6) by U[f, f2] and get

||U[f7f2]HHé(Rb,b+aD) < CHfHHé/Q(Fb)+C||f2|lHé/2(

FbJreD) ’

as well as U[f, fo] =u¥|g,,,., - We conclude

175 Fl-vy < UL Teofllmma < {1y + 1Tof e, }
< CHfHHép(Fb)'
Consequently, we can extend 7;* to a continuous operator over Hol/z(l“b), and the sum (5.4) con-

verges in H.(Rpp1e,). Similarly, we get convergence and boundedness in H(Ryiep, pi2ep ), I
L ; 1 +
H_ (Rp+2, b+3¢p ), @and so on. In other words, we get convergence in H,,.(£2,").

If there exist rank-two eigenfunctions in the sum, then we can proceed similarly. We only have to use
Cor.}4.10| together with (4.16) and ¢, x ;= O(|n|*), k, j=1,2, which has been shown at the end of
the proof to Lemma[4.7] O
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Below we investigate other properties of 7;*. In contrast to the orthogonal basis ¢***! (identical with
its dual system) for a homogeneous medium, the Riesz bases h,, ,,, in our case may not be orthogonal.
The following two lemmas for the homogeneous case were justified in a straightforward manner by the
definition of DIN mappings. As we shall show, their generalization to media with non-constant but real-
valued ¢ is easy. In this paper we shall make use of variational arguments to prove them even for
complex-valued gq.

Lemma 5.4. Suppose Assumption RC(q) given in Def. and let f € Y 2(Fb) be given by
with coefficients f,, ,, € C.

(i) For real-valued q, each mode u&U)n (resp. u%D% ) corresponds to associate eigenfunctions of
rank one, i.e., m=1. Furthermore, we have

Im [ TAff > 0 foral feHY*(T). (5.7)

Ty

If the equality sign in holds, then we have f, 1 =0 for all n with Im 5\n >0, that is, the
solution to the boundary value problem has no propagating wave mode with Re A, =0
and Im \,, > 0.

(ii) If Im q>c,>0 on a subdomain, then there is no propagating mode. Moreover, the inequality
still holds, and, in the case of equality sign, we have f,, ,,, =0 for all (n,m) €Z.

Proof. We consider 7;* and the upward radiating modes only. The case of 7, can be treated analo-
gously.

(i) For real-valued ¢, we have a self-adjoint operator, and there is no h,, ,,, with rank m greater than
one. Moreover, the eigenfunctions are orthogonal. Choosing a sufficiently large ny and substituting

(T, 1) @) = D da for hna(z)

nel

into 1| the assertion follows from Im \,, >0 and the identity

2
Im [ T,tffds= Z(Im ) [ foal? / | A1 (1) |? dvy > 0.
Iy 0

nez

(ii) Now consider the boundary value problem (2.4) in x5 > b and suppose Im ¢ > 0 on a set of positive
measure. Equ. (5.4) together with Green’s formula leads us to

/7Z+ffd8 = / 8z2uj_cufds+/ {Kq|usf — |[Vus )} da. (5.8)
Fb Fd Rb,d

To prove that there is no propagating mode, we only need to consider a propagating mode of rank
one. Taking f:=h,, with Re \,, =0, we get Im )\, >0 and

ui(r) = eAn(@2—b) B (1), in 9 >0,

Ou’f(z) = A et (d=0) ho(x1), on xg=d.
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Taking the imaginary part of (5.8) and using ¢=¢(z1) we get

T+ﬁnads = k2 Im (q)|uf °|2 dg + Tm () h,|? ds
’ R
b,d

Ty Ly

27 27
— k?(d—b)/ Im(q)|hn\2dxl+1m(An)/ |\h|? day,
0 0

for any d>b. Since the right-hand side should be independent of d>0, we conclude that

" Im (q)| |2 dzy =0. Hence, Ay, (1) =0 over the subdomain where Im g(z:) >c,. This fur-
ther yields u5° = 0 in x5 > b by unique continuation of the elliptic equation (see e.g., [20, Theorem
17.2.6, Chapter XVII]) and thus ﬁnEO.

Next we shall prove the inequality (5.7) for complex-valued ¢(x1). For f= frnmBn.m, the solu-
n,m ) ’

tion u?’ is given by (5 .» As d — oo, the exponentially decaying terms u%UT)n(xl, d) with Re Ap =0
tend to zero, and only the propagating modes remain. Hence

w(xy,d) — > A famul)(x1,d) =0, as d— oo.

n,m

(n,m)E€T:Re Ap =0
In the last step, we have used the vanishing of the propagating modes, that is, uq(lU% =0if Re 5\n =0.

Similarly, one can prove that 82u+ (x1,d) — 0 as d — oo. Taking the imaginary part of 1; and
letting d — 0o, we obtain

T, d—o00

Im [ T,'f fds= lim {/ k?[Im ¢ |uf|2d1‘} > 0.
Ry q

In the case of equality sign, we must have u%° =0 and thus f;, ., =0 for all (n,m) € L. O

Lemma 5.5. Suppose there holds Assumption RC(q) given in Def.[4.13 Then there exists a compact
operatorT 1/2(Fb) H,'? (T'y) such that

2m
[T T G 2l @0

In other words, —7? can be decomposed into the sum of a coercive operator and a compact operator.

Proof. The assertions for 7;+ and 7, follow analogously. So we only consider the case of 7;*. For
d > b, the identity (5.8) can be decomposed into two parts:

—/ T, ffds = / {IVuP + Jus \}dw—/ﬁ%ffds (5.9)
Iy
where 7, HY*(Ty)— Ha 2 (T,) is defined as

Thfgds= | {(Q+~Qucaryde+ | o wtds, ge HYX(T,).
r, Rp.a I,
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U
Xy uin 1Tm I(ln’)l]
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Q,
X =X1
[frmuD)]

Figure 2: The geometry settings for the boundary value problem.

Here wffeHl(Rb 4) is the unique radiating solution to the boundary value problem (5.1) with the
Dirichlet data w3 = g on I';. The operator T is compact, because the mappings

Gy HY*(T)) = HY*(Ty),  Galg) == w¥lr,,
GQ: H;/Q(Fb) %Li(Rb,d% GQ(g) = w—l— |Rbd7

are both compact. On the other hand, by (5.9) it is clear that T++TO is a coercive operator on
HY(Ty). O

5.2 Well-posedness of the transmission problem

Next we consider the boundary value problem for the simulation of waves scattered at a grat-
ing located between the two inhomogeneous half spaces Q:{ and €, with b<d (cf. Fig..
In particular, we assume G L°°(R?) such that §(x)=q"(x;) for 23>d and G(x)=q (x;)
for 9 <Db. In other words, the univariate function previously denoted by ¢ is now changed to
g*. Of course, for the refractive index, we suppose there is a constant ¢y >0 such that either
q(r)>c, or Img(x)>c,. By Lyq we denote the layer {x €R?*: b<xzy<d} and, as before,
by Ry 4 the rectangle {r €R?*: b<zy<d,0<z;<27}. For any given functions ngHé/Q(Fd),
fle HJI/Q(Fd), foe HY*(T,), and fb € HOTI/Q(FI,), we look for a triple of a-quasiperiodic field
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solutions u€ H} (Lyq), ut € HY |, .(QF), andue H} |, .(Q ) of

,loc ,loc

u(r) +kG(r) u(x) = 0, x€ Ly,
Azﬁ(x)—l—k2 Haput(x) = 0, z€Qf,
Au~(2) + k¢ (z)u (z) = 0, z€Q,,
ule, = ule, + fp, Owulr, = o |n, + fR, (5.10)
ulr, = wle, + fp,  Oeulr, = dhuT|r, + f,
* is an upward radiating wave in (2},

u~ is a downward radiating wave in 2, .

Suppose that umEH1 loc(Q+) is a downward incoming wave satisfying the Helmholtz equation
(A+K*q¢TTu™=0 in Q+ Then the wave solution of (5.10) with f& = u™|r,, f& = Oy, u™|r,,
fbD =0, and fN = (0 is the wave scattered by the gratlng, i.e., uT is the reflected wave, u~ the
transmitted wave, and u the wave induced inside the grating.

Clearly, the weak formulation of (5.10) is the variational equation

a(u,v) = F(v), Yo € H.(Ryaq), (5.11)
a(u,v) = {-Vu-Vo+kquo}de+ | T, fuvds+ [ T, uvds,
Ry q T'gq Iy
Flo) = /F T — g4 @ds+/r [T 5 + £4] ods
d b

The variational solution ueHé(Rb d) can be extended to (O} and ), as follows. If u is the
weak solution, then we get u|r, — an h,.m With coefficients f € C and the eigen-

function hnm—hnm(Q+) for the domam STr We get the solution for x2>d by the extension

ut=%" o f . (U).. For 5 < b, we get ulr, = fH =" m frmnltnm with f,- € C and the eigen-

function h,, , = hn’m(Qb ) for €. The solution for 5 <b is the extension u™ =3 f,- ud),
Now we prepare the solvability theorem by

Lemma 5.6. Suppose the Assumptions RC(q*) introduced in Def.4.13 hold. The sesqui-linear form
a: HY(Ryq4) % HL(Ryq) — R is bounded. Moreover, it is strongly elliptic, i.e., there exists a compact
operator Ty.: H:(Ry4) — H ' (Ry4) and a constant cs. >0 such that, for allu€ H (R 4),

ja(u, w) + (Teeu, u)| 2 caellulliyr, )

where (v, u) denotes the duality pairing between H,, ' ( Ry 4) and H (R, 4), which is equal to the L*
scalar product for v € L*( Ry, 4). The right-hand side functional F': H!(Ry, 4) — 0 is continuous.

Proof. The boundedness follows from Lemmal5.3] the strong ellipticity from Lemmal5.4] The continuity
of F'is a consequence of Lemma O

Theorem 5.7. Suppose the Assumptions RC(q™) introduced in Def[4.13 hold.
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(i) The space of all weak solutions to the homogeneous boundary value problem with
fd=fo=fd=f% =0 has a finite dimension. The space of homogeneous solutions of the
adjoint differential operator, i.e.,

ker = {ve Hy(Rpq): a(w,v) =0, Vw e Hy(Ryq)}

has the same finite dimension. There exists a weak solution of if and only if, for any
v€Eker, the condition F'(v)=0 holds. If this solvability condition is satisfied and if u, is a
particular solution of (5.10), then the general weak solution is u=wu,+uy, with u, a weak
solution of the homogeneous boundary value problem (5.10).

(i) Assume the function q* is real-valued and let 5\n0 :5\,10(9:{) be defined as in such
that Re A, =0, Im A, >0. Suppose that the incoming wave u™ in QO is the propagating

downward radiating mode u™ n[()))l(Q+) Then there exists a weak solution of (5.10) with

fD*Um‘Fd’ fN:an‘Fd ande = fh=

(iii) For real-valued squared refractive index qi, the propagating upward (resp. downward) radiat-
ing modes in 0 (resp. 0, ) with Re A, =0 and Tm \, >0 for the general boundary value
problem are uniquely determined.

(iv) Suppose that Im G(x) > ¢z >0 over a subdomain Dy C Ry, 4 or that Im ¢* (1) > c,+ >0 over
a subinterval of [0, 27|. Then there exists a unique weak solution v of (5.10), and for a constant
C, >0 independent of the boundary data f%, f&, % and f% , we get

lull iz () + 1T Irall vz + 107 el e,

<C ”fDHHl/QF +HfN||H_1/2 +||fD||H1/2 +||f]lif||H_1/2F
d @ ( b)

Proof. (i) Clearly, part (i) is a simple consequence of Fredholm’s alternative applied to the varia-
tional equation (5.77), the sesqui-linear form of which is strongly elliptic due to Lemma 5.6}

(i) We apply (i). Suppose v € ker is a solution of the homogeneous adjoint equation. Then we get
Ima(v,v) =0. Using Im [ k*Guo >0 and Lemma over €, we get Im [, 7,"vv=0. In the
case of real-valued ¢, the elgenfunctlons have rank one and form an orthogonal basis. There is a
finite number of eigenvalues /\ with Re )\ = 0, and the remaining eigenvalues satisfy Re /\ > 0.
Thus, for v = Z fnihn 1 it follows from Lemma 4| (i) that all propagating modes must vanish, i.e.,

fna =0 for Im>\ > (. In particular, we have f,, 1 = 0. Hence, by the choice of the fD, fN, fD fN
and the orthogonality of /2,, ,,, we obtain

2
F(U) = / [7:1+hn071 — hno,l} T)dS = (/\no — 1)fn0,1/ |hn071|2dl’1 = 0
Ty 0

The solution exists by Fredholm’s alternative in part (i) of the lemma.

(iii) As shown in the proof of (ii), it follows from the variational formulation for the homogeneous bound-
ary value problem that

Im [ T ututds+Im [ T, u u ds =0,
Ty Iy
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which together with Lemma 5.4 (i) proves the assertion.

(iv) We have to show that any weak solution u of the homogeneous problem is identically zero. From
the variational equation (5.11) we conclude Im a(u,u)=0 and thus

0=TIma(u,u) > / k*TIm g |ul® dz + Im / T, uuds + Im / T, uuds > 0.

Do Fd 1—‘b
Applying Lemma [5.4| gives u=0 over Dy if Im q(x)>c;>0in Dy. Hence, by unique continuation
we get u=0 over Ry, 4 (see [20, Theorem 17.2.6, Chapter XVII]). The case of Im ¢* (1) > ¢, >0

over a subinterval of [0, 2] can be proved analogously by applying Lemma 5.4 (ii). O

Remark 5.8. Equivalently, we could have formulated the theorem with the data [, f& and f%, f%
restricted to the subspace of traces v‘|p e 82U_’p , of downward radiating waves v~ and to the
subspace of traces v+|pb, —8gv+]pb of upward radiating waves v, respectively (cf.the subse-
quent Lemma|6.1). Indeed, the problem is linear such that the solution for general data is the su-
perposition of solutions corresponding to the data given as traces of upward and downward radi-
ating waves. However, the solution for f&,=0=f% and f&=v"|p,, f&=0v"|r, with v™ an up-
ward radiating wave is simply u=0=u" and u*=v". Similarly, the solution for f&=0= f¢ and
f2=v"|r,, f&=0v"|r, withv™ a downward radiating wave is simply u=0=u" andu™=v".

6 Scattering matrix algorithm without discretization

6.1 Splitting into upward and downward radiating functions

In this section, we shall introduce the scattering matrix algorithm on a continuous level, i.e., without
discretization by truncated Fourier and wave-mode expansion. We shall consider the boundary value
problem and introduce the slicing, which is a partition into horizontal layers. Over each boundary
line between two such slices we shall define a splitting of the wave functions into upgoing and down-
going parts in this subsection. Using this splitting, in Subsect.[6.2) we shall define a simple integration
algorithm for the function valued ODE equivalent to the Helmholtz equation. Of course, this T-matrix
algorithm is unstable. However, based on the T-matrix algorithm, we shall define the stable scattering
matrix algorithm, the S-matrix algorithm. Note that the S-matrix on the continuous level, used for the
algorithm, is nothing else than a solution operator of Thm.[5.7] (cf. Rem.[5.8), i.e., it maps the incom-
ing waves modes to the reflected and transmitted wave solutions. In the classical case of the RCWA
method, the material in each slice is supposed to have a refractive index independent of the vertical
coordinate . For this case, we shall look at the operator entries in the T- and S-matrix in Subsect.
Unfortunately, the S-matrix algorithm relies on the inversion of entries in the T-matrix. As we shall
see in Subsect.[6.3] the existence of the inverse is not known. Therefore, in Subsect.[6.4] we shall in-
troduce a modification, where the invertibility of a corresponding matrix can be shown under natural
conditions. We shall not analyze the discretization of the S-matrix algorithm, though the analysis of
the continuous method is the right starting point for a numerical analysis.

Now consider the boundary value problem (5.10) with ¢ >0 and f& =u™"|r,, f&=0,,u™|r,, &=
0, and f]’{, =0, where u™ is a propagating downward radiating wave mode U%Dn)l We choose a slicing
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h Ny U slice n+1
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h5-0 uT; N\ / ut,

period

Figure 3: The geometric settings of the scattering matrix algorithm.

of the underlying domain Ry, 4 (cf. Fig.[3), i.e., we fix a partition hg:=b<h; < ---<hp,_1 <h,:=d
and write thflahj for the jth slice of the partition of I?;, 4. Formally, the zeroth slice is defined as the
infinitesimally thin slice 2, o n,+o filled with the material of the squared refractive index ¢:=¢~, and
the (n+1)th slice is Rj,, o

At the lower boundary Fj,l::Fh of the jth slice, we consider a splitting of the space of

Helmholtz solutions in the space BJr , of upward radiating solutions Z + u£m2 and the space

B’ , of downward radiating solutions nmufm) Here the u%l) and u;%) are the wave

modes defined on Q+_1 and with the univariate ¢ replaced by x1»—>q(3:1,hj 140). More pre-
cisely, over the lower boundary line of the slice FJ 1 we split the space for the boundary values
(ulp,_ys Oyulr,_,) forue Hy(Ry,_, n,) in Bj_ Hcl,/z(l“- )xHal/Q(Fj_ ). We split this space
as B —B;F_I@B 4 (cf.the subsequent Lemma , Where

n,m

Bj'[—l = {(fD7:l:7;$_1fD): fp € Hi/Q(ijl)},

i.e., the space Bi 1 contains all boundary data of Helmholtz solutions bounded over the half space
ij_l satisfying the radiation condition. However, if there is an eigenvalue )\no =0, then a slight mod-

ification is needed. For S\no, we define

() o e (@) (A [2 = hya]) O <j<n
ng(T1,22) 1= { Pg .1 (1) ifj=n+1" 6
(D) ._ o (€1)(1 = [22 — hj—]) #0<j<n+1 '
ng 1 (T1,72) 1= { g1 (1) if j =0

These functions are bounded wave modes in the slices, and the wave modes radiating into the half
spaces are bounded and physically meaningful.
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Lemma 6.1. Suppose, for function q defined as q(x1):=q(z1, hj—1+0), there holds Assumption
RC(q) introduced in Def. Then the Hilbert space B;_; is the direct sum of the subspaces B;-[l
and B

7j—1

Proof. First we show that the intersection B,” ;N B; | is the trivial space {(0,0)}. If there is a pair
of boundary data (up,un) € Bj ;N B;_, over I';_1, then we can extend function u to a Helmholtz
solution u over Qiq (cf. the extensions in Def.. Thus u is a uniformly bounded Helmholtz solution

with refractive index ¢;_1(x1, z2) = G(x1, h;—1+0) defined over R2. Suppose A, m, (n,m) €T is
the corresponding system of eigenfunctions and A (n,m)€Z the dual system. Then we can

n,m?

show that the functions o+ f, m(22) := [ u(z1, l'z)h 1 (z1)dxy with rank m =1 take the form

fom(@2)=cf e ™24 e e~ 72 with constants ¢, € C. Indeed, for a smooth function ¢ () with

bounded support, the Helmholtz equation for u and the eigenfunction property L*h;‘h1 :[S\n]Qh:’l
imply

0 = <vu V(hnlgp)> k2<q}f1u,h2,w>
_ / { / Oyu(a) it (21) Bap (o)
+ / [alu(x)alh;J(xl)@(:@) —quj,1u<x>m] dxl}dxz
_ / {32 / w(@)hi (1) dz1 Dap(ws) + A2 / u(x)hz,l(xl)dxlsﬁ(fUz)}dl‘%

which is the weak formulation of 82fn 1+[ ] fn 1=0. Consequently, the well-known formula for
the general ODE solution yields f,,1(z2) =c¢;/ e eAne2 +c, 1€ —MnT2 For gz, > h;_1, Def.[4.14/and
imply ¢, ; = Oand, for x5 < h;_1, we similarly get c:[’l = 0. Hence f,, 1 = 0. Using this fact and the
same arguments as above, we get f,, » =0, and by induction f,, ,,, =0 for any rank m. In other words,
up = ulr,_, is orthogonal to the system h; .. (n,m)€Z, and Lemma leads us to u = 0. Since
the extension of up under the radiation condition is unique (cf. Def.[5.2), we get uy =0.

It remains to prove that any boundary data (up, uy) with up € Hé/z(l“] 1) and uy € H_l/z(l“j_l)
can be represented as the sum of data from Bjtl and B;_,. Here B;Ll and B;_, are closed disjoint
subspaces of the Hilbert space B;_;. Clearly, it suffices to prove that data in the dense subset of finite
linear combinations of the system functions h,, ,,, admits such a splitting. Equivalently, we have to give
the splitting for the boundary data (., ,,, 0) and (0, k). If A,y = 0, then restricting to';_4
implies the representations

1 1 1 oy 1 5
(hn(),la O) = §(hn0,17 hno,l) + §(hno,17 _hn(),l) = 5( no,1’ aQU ) ) + 5( no,1’ 82“20’) )

1 1
(07 hno,l) = §<h’n0,17 hnml) - §(hno,1> _hnoJ)'
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Similarly, if \,, # 0, then we arrive at

1 1 .
(hn,la 0) = 5( hn,l) + §(hn,1> _)\nhn,l)a
1 - 1 -
(Oa hn,l) - 5\ (hn 1 )\nhn,l) - E(hn,la _Anhn,l)-

For rank m > 1, we can reduce the rank recursively by (cf. Def.|4.14| and (4.25), and observe that
AP =0for j>1)

1 1 R
(hnm,0) = 5( hn,m) + §(hn7m, —Anhnm) + rank (m—1) terms,
1 - 1 N
0, hpm) = * (P AnPonm) — K(hn’m’ —AnPnm) + rank (m—1) terms.

Altogether, any finite linear combination of the (A, ,,,, 0) and (0, A, ,,,) can be split by explicit formulas.
The resulting parts in Bi 1 are again such finite linear combinations. O

Of course, there exists a continuous projection Pf_l of Bj_; onto BJr , along B, ;, and
P :=1-P" i is the continuous projection of B;_; onto B, along BJ“_1 Note that a bound-
ary value pair (fD, fN) EBi | is usually given by the coefﬂments f €Cof fD an Porms

since fy=>_, . fiF 8x2unn)1 and fy=> . fn’mazgun,m. Spllttlng into the finite sum of eigen-

functions with rank m > 1 and the remaining infinite sum, we get

f]t = Z f:m oo U nm+2fnl)\ hnl

n,m:m>1

(6.2)
f]\_/ = Z fnm T2 nm anl/\ hnl
n,m:m>1
In other words, we identify
(/5. fN) € By < [peBi,. (6.3)

With this identification we get B | = Ha/*(I';_;). Using the identification (6.3), we even shall write
1/2
PE L fpe Ha*(Tjoy).

The identification 1; and the projection Pf_l applied to the Dirichlet data fp, however, is
only meaningful if there is a rule to determine fy for fp. E.g., for fp=fh+fp, the fx
and fy=fx+fy might be given by 1» or, better, by fﬁ—iﬁilf[, Then P+1fD s
However, in the case, fp=f/p+/fip with fiy iTi “p» we have P fp= [, but, gen-

erally, P;" 1fD7é . To get P+1fD, we really have to form (fp, fn= f]TD—f—fJTD), to apply
the splitting (fD,fN) (o )+ (i 1D7f] LN and then to restrict to the Dirichlet
part PJr Jp= f 1.p- More precisely, this means fD S in.mltnm mMight be given for the jth
basis {hnm ],mm} defined by the eigenfunctions of L based on ¢(x;) :=q(z1, h;+0). We form
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=> Mmamuﬁm and fy=>_ [, &Ezumm with respect to the jth basis. Thus fy =

7,n,m

fN+fN Applying a basis transform from the jth basis to the (j — 1)th basis, we expand

D
(fDafN) - Z ]nm( 7,1, a:2 jnm) Z ]nm( jn,m>ax2u§‘,n?m>
U) D
= Zf]ﬂ_—l,n,m<hj—1vnam7al’2u§ lnm> Zf] 1nm< Jj— 17“71781’2 g )lnm>

n,m

with respect to the (j —1)th basis. Finally, we get P;" | fp =3 f;*, . .. Jinm for the (j—1)th basis
{hpnm="j_1,nm} defined by the eigenfunctions of L based on ¢(z1) :=§(x1, hj_1+0).

6.2 The T- and S-matrix algorithms

Now we are in the position to introduce iterative algorithms for the solution of the boundary value
problem (56.10). The Helmholtz equation can be looked at as an ordinary differential equation with
respect to xs, but defined for functions with values, which are functions with respect to x;. So it is
natural to solve the equation like an initial value problem of . Given the boundary data u;_1 =
(uj—1,p,uj—1,n) over I';_, the solution at I';:=T',; is u; = (u;p,u;n). For functions u;_; on
I';_1, we use the identification based on (6.2). For functions u; on I';, we use the identification
(6.3) with 7 —1 replaced by j based on with 7 —1 replaced by j. Using the splitting of Lemma

we get u; :u;r+uj_ and write the corresponding operator T';, 7 = 0,1, --- , n of integration of
the Helmholtz equation as a matrix (cf. Fig.[3).
+ T T T
(“J_) ~= T, (“ﬂ:l), T, = (TJ_JF TJ__), (6.4)
U; Ui j j

Similarly, we introduce the accumulated T-matrices.
ul u+1
3 -1

We assume that the local operators T'; are available. For instance, if ¢ is independent of x,
then T'; can be represented with an exponential function of an operator acting on x; dependent
functions. Equivalently, an expansion of the boundary functions with respect to the wave modes
hnm:hn.m(Qi_ ) can be computed. Then the solution of the Helmholtz equation is given by the

(D) (U)

corresponding expansion with respect to the wave modes uy,, ,» and uy,

like the Runge-Kutta method can be employed.

. Alternatively, an ODE solver

T-matrix algorithm: If the local operators T'; are available, then we can compute the matrices 7; re-
cursively for j=0, 1, - - - , n by the second equation in (6.5). We arrive at the matrix equation for
J=mn.Inthis system, v, is the given incoming wave and ufl =0 since no wave is arriving from below.
The unknowns are the reflected wave ;7 and the transmitted wave u_, . We get these diffracted waves
solving the system. Knowing these functions, even the solution for hy < x5 < h, can be computed. We
start from j = —1 and compute the uj and u; recursively for j=0, 1, --- ,n—1using . Even the
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values for h;_; < x5 < h; can be computed by the above mentioned integration method leading to T';.

Unfortunately, this T-matrix algorithm is unstable similarly to other ODE integration methods. For in-
stance, the wave-mode expansion with the uSEZL contains exponentials which blow up. To overcome
this trouble, a stable S-matrix algorithm has been designed. Looking at Thm.[5.7]and Rem.[5.8] we
rather have the input of downward radiating waves from above and upward radiating waves from be-
low, and the solution of provides us with the resulting upward radiating reflected wave above
and with the resulting downward radiating transmitted wave below. In other words, we work with the
matrices defined by (cf. Fig.[3)

ul ul St St
J — ) j—1 J— J J
() = s () s -G8 e
(T
Ty )

J

ut\ o [t
(u) _ sj(u;). 67)

Clearly, for the existence and the boundedness of the S-matrices Thm. is useful. To get a recursion
for the matrices &, we form a system of four equations by joining and with j replaced by
7+1. We eliminate u;t and solve the remaining system with respect to u}ﬁrl and u_,. Comparing this
with (6.7), we obtain

. ({T;:l—[T;:s;+T;]AjTj:1}s;+ [Tms;w;mj) o8
A - — AT — > %

Aj = [T, +T;++18j+—]—1.

S-matrix algorithm: The recursion starts with Sy = Sy given by the second equation in (6.6), and
then the matrix S; is computed recursively for j =1,2,--- ,n by . If S,, is computed, then u,"
and u_, can be computed by with j replaced by n. If the intermediate values at x5 = h; are of
interest, one can utilize the systems with respect to uj and u; for j=0,--- ,n—1. Even the

values for h;_1 <2 < h; can be computed by the above mentioned integration method leading to the
T

-
Finally, we note that, for u,, =0, the recursion over j of the four matrices S]ii and S]ijF can be
reduced to a recursion of two matrices and two vectors (compare the subsequent of the modified
algorithm in Subsect.[6.4). A similar recursion can be derived for accumulated S-matrices defined by
(uf,uy) " =8;(uf, u, )" (compare ). In this case, we get a reduced recursion of two matrices

and two vectors for the case u_; =0.

6.3 The structure of the T- and S-matrix for ¢ independent of =5

Now we look at the structure of the matrices Tj and Sj over the jth slice, for which we assume
G(x1,z2) =q(z1) is independent of x5 over the slice. We suppose that the boundary value problem
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(5.10) over the slice admits a unique solution such that the S- matrix is well defined. We denote the
projections of I3; onto Bi along BjF by PjE (cf.the |dent|f|cat|on ). Furthermore, we denote the
transition operator mapplng the boundary data from u EBjE , to the restriction of the Helmholtz
solution to I'; by TrjE In other words, if u satisfies the Helmholtz equation (A+k%Gl)u=0 and
ulr, , =up as well as —9y,ulr, , =ujy (cf. ) then T (up, uy) = (ulr,, Oy,ulr,). Clearly,

we write Tr [ugfmpﬁl] :u&%m and Tr; [uq(@Dn)1 T 1)

—un,m|pj. For the eigenfunction hn,1 of rank
m=1, we get Trih, ;= (*i~hi-Dp, | In general, we can form blocks of all basis functions
h.m With the same eigenvalue 1, and the transition operator over such a block is eFAn(hy—=hj-1)
multiplied by a matrix polynomial in (h;—h;_,) with constant coefficients (cf. Def.[4.14 and (4.25)).

Thus the matrix of T'r with respect to the system h,, ,,,, (n, m) € Z is block diagonal W|th exponential-

polynomial entries. ObV|oust, we get
T+ — prpet  TE — pEp-
i = AT i~ A

On the other hand, any incoming wave uj_lzz fir mhnmeB _, leads to a Helmholtz solution

=>fr unUm over the jth slice such that the downward radlatlng part at I';_y is u;_, =0,
and the upward and downward radiating parts at the line I'; are u PiTrﬂﬁ We arnve at

STt ui  +8] T u; =u) and 87wl +S5Tuy =u; e,
++ +- p—t +t F-p—t ++
s]ft = _S]f*pjfﬂ»;r = —SJ.”T;*_ (6.10)

In view of the diagonal structure of Trj+ and the exponential decay of the diagonal entries (cf. point
(iv) of Lemma , we see that S_Jr is a compact operator. Similarly to the derivation of and

(6.10), starting with an outgoing vector u;_; such that 77 u;_; € HI/Q(FJ») and with uj_l =0, we

getu PiTr Uy, 08

S;ijf* = Sj**Pj*Trj_ = 1. (6.11)

Hence the operator entry Tj__, defined over a natural domain of definition, is invertible from the left,
and the matrix entry Sj" is a one-sided inverse for Tj__. However, using the inverse of Tj", we
do not know the value of S;_ for functions not in the image space of T;_. So the last equation in
is correct only if the image of T" is the full space. Therefore, we start with an arbitrary function
u; € B;" and form the projections P s j—1u; and Pr ju; with P 5. j—1 the projector Pi | shifted
from I';_; to I'; (i.e. P, ;_, is defined over I'; as P;” but with G from the (j+1)th slice replaced by
g from the jth slice.). Solvmg the Helmholtz equatlon over the jth slice with boundary data Pi] 1y
and restricting to I';_;, we get the boundary values [T7;]~' P, u; and [Tr ]~ P ju; . We arrive
at

S;~ = [Ir; ]IP;] 1|B__, (6.12)
Sjt— = [Tr] il P] 1|B_ (6.13)

Note that the operators [Trj_]_l and 7’ r;r correspond to a stable integration from above to below and
from below to above, respectively. The operators [Trj]_l and 7r; are unbounded. Nevertheless, the
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boundedness of S~ implies the boundedness of [T7]~" over the image of P,

s,7—1
(6.9), (6.10), (6.12), and (6.13), we get

g (S}“Jr S;”) B <_[TT;]_1P:j—1Tj+ + TJH [Tr;_]_lp;rj—ﬁBj_)
i Sf‘i’ Sf* -
j J

| 5 Collecting
J

_[Trj_]_lpsjj—lT;Jr [TT]'_]_lpsTj—1|Bj_
(TR P T+ BT (TP |- 614
_[Tr;]_lpsjj—lpjiTT;r [TT;]_lpsTj—JBj_ 7 .

which provides a stable alternative to a computation by the last equation in (6.6).

6.4 Additional assumptions and an alternative recursion

In this subsection we assume that G(x1,x2) = ¢(x1) is independent of x5 over each slice. The
theoretical problem of the S-matrix method of Subsect.is the use of the inverse operators [T;_]*1
and A;, which appear in and . Suppose that the image space of Tj__ is Bj_, ie.,

ij = {Tj”uj’: uj € Bj’_1 st. Tr;u; € Holl/2}~

Then there exists [T; 7]~ and, due to (6.11), S;~ = [T;|~". The operator A; is the inverse
of Tj_+_1{[‘|' S;J;T;ES;F—}. Here S is a compact operator (cf.the arguments in the proof of
Lemma and {I+ S, T;,S; "} is a Fredholm operator of index zero. If we, additionally,
suppose that its null space is trivial, then we arrive at A;= {7+ S;T; /S, }7'[T;;;]7", and

the inverse A; exists.

Finally, we look for an alternative recursion without additional assumptions. Replacing by (6.74),
we do not need [Tj__]*l. It remains to circumvent the troubles with the inverse A;. Recall that g is
independent of x5 in all slices. The left equations in with 7 replaced by j+1 and Equ. (6.7) imply

TSt 00y fun S/
0 I_+ =S5 0w _ | ST | (6.15)
0 =S, I 0 u; Sit
0 0 =8 1) \uj, S tuly

Clearly, there is a solution of the Helmholtz equation over the grating for iy < x5 < h;; with boundary
data u},, and u if and only if there are solutions on the gratings for hg <z <h; and h; <xy <hjq
with boundary data uj, ufl and Ujyqs uj respectively. Using S-matrices, it is natural to assume the
unique solvability of for these three gratings (cf. Thm.[5.7]and RemJ5.8). In other words, Equ.
li with 7 replaced by j+1 holds if is satisfied. The Bji part of the restrictions to I'; of the
grating solution corresponding to are uf Vice versa, if Equ. with j replaced by j+1 is
satisfied and if the u;t are the restrictions to I'; of the grating solution, then 1) holds. In other
words, has a unigque solution, and we get

_S+\ (ut s
(_S[+ S[J ) (uﬂ) - ( ‘SSJU—I ) , (6.16)
j+1 U 141
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which has a unique solution too. From 1; we infer that Sj_jl is compact and that the matrix operator

on the left-hand side is Fredholm with index zero. Consequently, the matrix in (6.16) is invertible, and

its determinant operator D, := (I—Sj_lef_) is invertible too. We get

e U +—p-lg—+ +- -1
—Sjhn 1 D; 8,4 D;

Using this formula to solve (6.16) and (6.15), we finally obtain the recurrence relation

0 St St 0 I =S\ /S0
so= (s )00 5 ) (s T ) (sl
J J J J

(Sjﬁ I+877D; "85S SiatSiAS D) 1Sj+1>
_ e N—lo— e —lo——
S;T+S; DS S S;D;'s

Jj+1

(6.17)

So the S-matrix algorithm can be used with replaced by (6.17) and with by (6.14). Note
that, if the S-matrices are computed directly by FEM (cf. the variational formulation in (5.11)), then the

S-matrix algorithm is a clever version of a non-overlapping domain decomposition method. From all
these arguments we infer

Theorem 6.2. Suppose the grating admits a slicing such that the refractive index function is inde-
pendent of x5 over each slice. Suppose, for the q defined as q(z1) :=q(x1, h;—1£0), there hold the
Assumptions RC(q) introduced in Def.|[4.13 In order to have well-defined S-matrices S;, we sup-
pose that the boundary value prob/ems over the slices {x €R?: h;_; <x9<h;} with indices
j=1,---,n have unique weak solutions for all right-hand sides (cf. Thm.[5.7). Finally, to have well-
defined accumulated S-matrices S;, we suppose that the boundary value problems over the
accumulated slices {x €R?*: hy<xy< h;} with indices j=1,--- ,n have unique weak solutions
for all right-hand sides (cf. Thm.[5.7). Then the recursion of the S-matrix algorithm based on
and yields the operators S+ and S~ of the full grating, i.e., over the union of all slices. For
given incoming waves u", € BT, and u,, € B,,, the reflected and transmitted waves u,’ € B;" and
u”, € B, are given by ur =S ut | +S8Fu,.

In the case that u,, =0, we reduce the scattering matrix algorithm to a recursion over the two
matrices Sf‘ and the two vectors vjt ::Serufl. From the recursion 1; we easily obtain

- e —1lct——
Sim = & Dj S,
+- _ Qt— o Qtt et-p-lg—-—
Sim = SiatSias DS,
- _ i c——p-lq—+,+
Vi = v ST DS
+ _ Qt+ +—p-lg—+1,,+
vin = SHL[T+SIT DS
In other words, in each iteration step of index =0, --- ,n—1 we have to perform the elementary
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steps:
i) Dyt = (I-S;48)7,
i) E; == D;'S;n,
i11) G; = S;F_Ej,
iv) Sin = Sk, (6.18)
WS = SISHG,
vi) w; = D[Sl
vii) vy = v S wy,
viii) vy, = S;hvl 4+ 8w
Starting from vfl = Soi+uf1, in the last iteration step we arrive at u;" =v," and u—, =v,, .

There remain several open questions to be answered by future work. For a numerical analysis the
discretization must be investigated. In particular, a finite-section method reducing Fourier series ex-
pansions into finite sums must be applied to the S- and T-matrices. In this step, the possible existence
of associated eigenfunctions must be taken into account. Note that the eigenvalue decomposition is
not stable if eigenfunctions of rank higher than one appear. Additionally, the S-matrix method might
need a modification if the underlying boundary value problems defining the S-matrices satisfy Fred-
holm’s alternative, but are not uniquely solvable. For the FMM, the case of ¢ depending on x5 must be
analyzed.
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