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On the numerical range of second order elliptic operators with
mixed boundary conditions in Lp

Ralph Chill, Hannes Meinlschmidt, Joachim Rehberg

Abstract

We consider second order elliptic operators with real, nonsymmetric coefficient functions
which are subject to mixed boundary conditions. The aim of this paper is to provide uniform
resolvent estimates for the realizations of these operators on Lp in a most direct way and under
minimal regularity assumptions on the domain. This is analogous to the main result in [7]. Ultra-
contractivity of the associated semigroups is also considered. All results are for two different form
domains realizing mixed boundary conditions. We further consider the case of Robin- instead of
classical Neumann boundary conditions and also allow for operators inducing dynamic boundary
conditions. The results are complemented by an intrinsic characterization of elements of the form
domains inducing mixed boundary conditions.

1 Introduction

The regularity of solutions of elliptic or parabolic operators is a classical subject. Uniform estimates
for resolvents of elliptic operators and for the semigroups generated by them are central instruments
for the study of nonautonomous linear or quasilinear parabolic equations. Much of the theory is stan-
dard nowadays and treated in many comprehensive books on parabolic evolution equations; we refer
exemplarily to [1, Chapter II], [23, Chapter 6.1], [13] or [29].

In this work, we provide uniform resolvent estimates for the Lp-realizations of second order elliptic op-
erators with real, nonsymmetric coefficient functions posed on bounded domains in Rd and subject to
mixed boundary conditions, under minimal regularity assumptions on the domain. In case of smooth
domains and real and symmetric coefficient functions, such uniform resolvent estimates are classi-
cal ([28, Chapter 7.3]) and have been generalized in [16] to non-smooth domains and mixed boundary
conditions. Moreover, the case of non-symmetric coefficient functions has been treated in [7] under
pure Dirichlet or pure Neumann- or Robin conditions.

Our main result is a complement to the main result in [7]. We give an (optimal) estimate for the half
angle θp of the sector containing the numerical range of the Lp-realization of the elliptic operator.
The proof given here differs from the proof in [7] and uses ideas from [9]. The estimate for the nu-
merical range immediately yields resolvent estimates outside the sector with half angle θp, and these
estimates stand in a one-to-one correspondence to the holomorphy of the corresponding semigroup
on a sector with half angle π

2 − θp; see [27, Theorem 1.45] for details. This yields an H∞ functional
calculus,R-sectoriality and maximal parabolic regularity for the associated operators. It is known that
the obtained resolvent estimates estimates are in general optimal [6,20]. We moreover mention ultra-
contractivity and associated properties. The results extend to elliptic operators with mixed Robin- and
Dirichlet boundary conditions, and are also applied to parabolic evolution equations with dynamical
boundary conditions.
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All Lp-realizations of elliptic operators are here defined via sesquilinear forms. It turns out that sec-
toriality of the underlying operator in Lp, the H∞-functional calculus, R-sectoriality and Lp-maximal
regularity solely depend on the properties of the coefficients of the second order elliptic operator and
structural properties of the form domain, but neither on the regularity of the domain nor on the type
of boundary conditions. On the other hand, ultracontractivity of the underlying semigroup and a char-
acterisation of the trace zero property on (parts of) the boundary for elements from the form domain
(see Appendix) solely depend on regularity of the form domain via properties of the domain in Rd and
the type of boundary conditions. They are, however, stable under the passage from mixed Neumann-
and Dirichlet boundary conditions to mixed Robin- and Dirichlet boundary conditions, if the part of the
boundary where Dirichlet boundary conditions are imposed does not change.

For the sake of readability, we consider only pure second order operators. Moreover, it would also
be possible to deal with weighted Lebesgue- and associated Sobolev spaces which would allow for
more general and involved differential operators. Since this is rather involved to combine with mixed
boundary conditions and already incorporated in [7] in the case of non-mixed boundary conditions, we
have decided to not include weighted spaces.

2 Preliminaries

Let Ω ⊆ Rd be a domain. We do not require Ω to be bounded and there are no further regularity
assumptions on Ω until Section 4. Let us denote the usual (complex) Lebesgue spaces by Lp(Ω)
and the corresponding first order Sobolev spaces, given by all Lp(Ω) functions whose first-order
weak derivatives are again in Lp(Ω), by W1,p(Ω).

2.1 Form domain

We first define the considered form domains V. These will be Sobolev spaces incorporating a partially
vanishing trace condition leading to associated evolution equations with mixed boundary conditions.
Let D ⊆ ∂Ω be a closed subset of the boundary of Ω, the Dirichlet boundary part. In all of the
following, let V be either of the following spaces:

V = W1,2
D (Ω) := W1,2

D (Ω)
W1,2

or V = W̃1,2
D (Ω) := C∞

D (Ω)
W1,2

where

W1,2
D (Ω) :=

{
u ∈W1,2(Ω) : dist(supp u, D) > 0

}
and

C∞
D (Ω) :=

{
u ∈ C∞(Ω) : u = v|Ω for v ∈ C∞

c (Rd) with supp v ∩ D = ∅
}

.

Clearly, for D = ∅, the former V = W1,2
D (Ω) is just the usual W1,2(Ω). Note that C∞

c (Ω) ⊂ V
for both choices of V, so either V is dense in L2(Ω). Moreover, both spaces satisfy the following
additional properties:

(V1) V is a sublattice of W1,2(Ω), that is, for every u ∈ V one has (Re u)+ ∈ V, and
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(V2) V is stable under the operation u 7→ (|u| ∧ 1) sign u.

Indeed, these properties are classical for V = W̃1,2
D (Ω) and for W1,2(Ω), see [27, Propositions

4.4 & 4.11]. For V = W1,2
D (Ω) with D 6= ∅, they follow from the W1,2(Ω) case for the dense

subspace W1,2
D (Ω) and then by continuity for the whole W1,2

D (Ω). We mention that in property (V2),
the constant function 1 need not be an element of the form domain V.

Remark 2.1. The above definitions of V imply a certain, implicit zero trace property on D for its
elements in an abstract way. It is possible to obtain more explicit characterisations of zero traces,
at least under certain regularity assumptions. Indeed, in the appendix, we show that under natural,
very mild assumptions on D and ∂Ω and the regularity of the relative boundary of D within ∂Ω
(Assumption 6.1), the space W1,2

D (Ω) can be characterized by the set of all u ∈ W1,2(Ω) which
satisfy a Hardy-type inequality w.r.t. D or which satisfy

lim
r↘0

1
|Br(x)|

∫
Br(x)∩Ω

|u| = 0

for Hd−1-a.e. x ∈ D. Under stronger conditions, W1,2
D (Ω) and W̃1,2

D (Ω) in fact coincide and can
then be characterized intrinsically as mentioned. We refer to e.g. [15, Theorem 2.1]. (We assume
such a setup in Section 5 below, see Assumption 5.1.) See moreover also [4, Theorem 8.7 (iii)] in the
context of (ε, δ)-domains.

2.2 Coefficient function and form

Let a = (aij) ∈ L∞(Ω; Rd×d) be a real, uniformly elliptic coefficient function, that is, Re〈a(x)ξ, ξ〉 ≥
η‖ξ‖2 for every x ∈ Ω, ξ ∈ Cd and some ellipticity constant η > 0. Here 〈·, ·〉 denotes the usual
Hermitian inner product in Cd. It follows from the boundedness and the uniform ellipticity that a is in
addition uniformly sectorial, that is, there exists an angle θ2 ∈ [0, π

2 [ such that

〈a(x)ξ, ξ〉 ∈ Σθ2 (x ∈ Ω, ξ ∈ Cd), (1)

where Σθ = {r eiϕ : r ∈ ]0, ∞[ and ϕ ∈ ]−θ, θ[} is the open sector of half-angle θ if θ ∈ ]0, π
2 [

and Σ0 = [0, ∞[ is the positive real axis. Equivalently, the sectoriality means that

∣∣Im〈a(x)ξ, ξ〉
∣∣ ≤ tan θ2 · Re〈a(x)ξ, ξ〉 (x ∈ Ω, ξ ∈ Cd). (2)

We define the sesquilinear form a : W1,2(Ω)×W1,2(Ω)→ C by

a[u, v] =
∫

Ω
〈a∇u,∇v〉 (u, v ∈W1,2(Ω)).

Due to the properties (V1) and (V2) of V, and by the assumptions on the coefficient function a, the
restriction aV of a to V ×V is a sub-Markovian form. This means that aV is closed, continuous, and
accretive, and the associated operator A2 on L2(Ω) given by

dom A2 :=
{

u ∈ L2(Ω) : u ∈ V and there exists f ∈ L2(Ω) such that

for all v ∈ V : a[u, v] =
∫

Ω
f v̄
}

,

A2u := f ,
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is the negative generator of a positive, analytic, contraction C0-semigroup T2 on L2(Ω) which is in
addition L∞-contractive, see [27, Thms. 1.54, 4.2 and 4.9].) The semigroup T2 extrapolates consis-
tently to a positive contraction semigroup Tp on Lp(Ω) for every p ∈ [1, ∞[, and the semigroup Tp
is analytic if p > 1 ([27, Proposition 3.12, p.56/57&96]). Denote by Ap the negative generator of Tp.

Remark 2.2. (a) Both choices for V lead to realizations Ap on Lp(Ω) of the second order elliptic
operator−div(a∇·) equipped with Dirichlet boundary conditions on D ⊆ ∂Ω and Neumann

boundary conditions on ∂Ω \ D. In general, W1,2
D (Ω) induces a stronger form of Neumann

conditions on ∂Ω \ D for functions in the domain of A2. This can be seen for example in the
case where Ω is a disc around the origin from which the positive x-axis is removed to form a
slit. Then u ∈ dom A2 satisfies

∂ν↓u = ∂ν↑u = 0 if V = W1,2(Ω)

and [
∂νu
]
= ∂ν↓u− ∂ν↑u = 0 if V = W̃1,2

D (Ω)

along the slit, where the arrows stand for the conormal derivatives w.r.t. a taken from either side.

(b) There is the nomenclature good Neumann boundary conditions for V = W̃1,2
D (Ω) and Neu-

mann boundary conditions for V = W1,2
D (Ω), see [27, Chapter 4], related to the former space

being a smaller, i.e., more regular subspace of W1,2(Ω). For example, the form aV with good
Neumann boundary conditions has the advantage of being a regular Dirichlet form, in the sense
that C(Ω) ∩V is dense in V.

3 The numerical range

We next determine a sector which includes the numerical range of A2. First, a preliminary lemma.

Lemma 3.1. For every p ∈ [1, ∞[, the space dom A2 ∩ dom Ap ∩ L∞(Ω) is a core for Ap, that
is, it is dense in dom Ap equipped with the graph norm.

Proof. The semigroups T2 and Tp are consistent, that is, T2 = Tp on L2(Ω) ∩ Lp(Ω). By taking

Laplace transforms, (I + A2)
−1 = (I + Ap)−1 on L2(Ω) ∩ Lp(Ω). The two resolvents thus

also coincide on the smaller space L1(Ω) ∩ L∞(Ω), which is dense in Lp(Ω). The resolvent (I +
Ap)−1 being an isomorphism between Lp(Ω) and dom Ap (the latter space being equipped with

the graph norm), it maps dense subspaces to dense subspaces. Since (I + Ap)−1 maps L1(Ω) ∩
L∞(Ω) onto a subspace of dom A2 ∩ dom Ap ∩ L∞(Ω), it follows that the latter space is dense
in dom Ap.

The next lemma paves the road for the actual estimation of the numerical range.

Lemma 3.2. For every u ∈ W1,2(Ω) ∩ L∞(Ω) and every α ≥ 1, the functions |u|α and |u|α−1u
belong to W1,2(Ω) ∩ L∞(Ω) and

∇|u| = Re(
ū
|u|∇u),

∇|u|α = α|u|α−1∇|u|,
∇(|u|α−1u) = (α− 1)|u|α−2u∇|u|+ |u|α−1∇u.
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Proof. For ∇|u|, see [27, Proposition 4.4]. The remaining assertions follow readily by the chain rule
and smooth approximation.

The following result is a central one for this work. It is contained in the proof of Theorem 1.1 in [7],
where the authors establish an estimate of the angle of analyticity of the semigroup Tp. (Compare with
Corollary 3.8 below.) We give here an alternative proof to the one in [7].

Theorem 3.3. For every u ∈W1,2(Ω) ∩ L∞(Ω) and every p ∈ [2, ∞[,

a
[
u, |u|p−2u

]
∈ Σθp ,

where

tan θp =

√
(p− 2)2 + p2 tan2 θ2

2
√

p− 1
,

and θ2 is as in (1) or (2).

Proof. The case p = 2 follows immediately from the sectoriality assumption on the coefficient function
a (see (1)). So we focus on the case p ∈ ]2, ∞[, here proceeding similarly as in the proof of [9,

Lemma 1]. Let u ∈ W1,2(Ω) ∩ L∞(Ω), and set v := |u|
p−2

2 u. Then, by Lemma 3.2, v and the

functions |v| = |u|
p
2 , |v|

2−p
p v = u and |v|

p−2
p v = |u|p−2u all belong to W1,2(Ω) ∩ L∞(Ω). By

using the identities from Lemma 3.2 one obtains

aN
[
u, |u|p−2u

]
=
∫
Ω

〈
a∇u,∇(|u|p−2u)

〉
=
∫
Ω

〈
a∇
(
|v|

2−p
p v
)
,∇
(
|v|

p−2
p v
)〉

=
∫
Ω

〈a∇v,∇v〉 −
(

1− 2
p

)2 ∫
Ω

〈
a∇|v|,∇|v|

〉

+
(

1− 2
p

)∫
Ω

〈
a

v
|v|∇v,∇|v|

〉
−
∫
Ω

〈
a∇|v|, v

|v|∇v
〉 .

Here we put

φ := Re
( v
|v|∇v

)
= ∇|v| and ψ := Im

( v
|v|∇v

)
. (3)

Then ∫
Ω

〈
a∇v,∇v

〉
=
∫
Ω

〈
a

v
|v|∇v,

v
|v|∇v

〉
=
∫
Ω

〈
a(φ + iψ), φ + iψ

〉
,

and therefore

a
[
u, |u|p−2u

]
=
∫
Ω

〈
a(φ + iψ), φ + iψ

〉
−
(

1− 2
p

)2 ∫
Ω

〈aφ, φ〉

+
(

1− 2
p

)∫
Ω

〈
a(φ + iψ), φ

〉
−
∫
Ω

〈
aφ, φ + iψ

〉
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=
(

1−
(
1− 2

p
)2
) ∫

Ω

〈aφ, φ〉+
∫
Ω

〈aψ, ψ〉

+
2i
p′

∫
Ω

〈aψ, φ〉 − 2i
p

∫
Ω

〈aφ, ψ〉.

Decomposing a into its symmetric and antisymmetric part,

s :=
a + a∗

2
, and t :=

a− a∗

2
,

and noting that 1−
(
1− 2

p
)2

= 4
p p′ , we thus obtain

Re a
[
u, u|u|p−2] = 4

p p′

∫
Ω

[〈aφ, φ〉+ 〈aψ, ψ〉]

=
4

p p′

∫
Ω

[∥∥s
1
2 φ
∥∥2

+
∥∥s

1
2 ψ
∥∥2
]

(4)

and

Im a
[
u, u|u|p−2] = 1

p′

∫
Ω

〈aψ, φ〉 − 1
p

∫
Ω

〈aφ, ψ〉

=
(

1− 2
p

) ∫
Ω

〈
sψ, φ

〉
+
∫
Ω

〈
tψ, φ

〉
. (5)

Hence

Im a
[
u, u|u|p−2] = (1− 2

p

) ∫
Ω

〈
s

1
2 ψ, s

1
2 φ
〉
+
∫
Ω

〈
s−

1
2 t s−

1
2 s

1
2 ψ, s

1
2 φ
〉

=
∫
Ω

〈[(
1− 2

p
)

I + s−
1
2 t s−

1
2

]
s

1
2 ψ, s

1
2 φ
〉

≤ 1
2

∫
Ω

∥∥∥(1− 2
p
)

I + s−
1
2 t s−

1
2

∥∥∥ (∥∥s
1
2 ψ
∥∥2

+
∥∥s

1
2 φ‖2

)
.

Since t is skew-symmetric, so is s−
1
2 ts−

1
2 , and one gets∥∥∥(1− 2

p
)

I + s−
1
2 t s−

1
2

∥∥∥ =

√
(1− 2

p )
2 +

∥∥s−
1
2 t s−

1
2
∥∥2.

Now, by the choice of the angle θ2 (see especially the estimate (2)),

|
〈
s−

1
2 ts−

1
2 s

1
2 Re ξ, s

1
2 Im ξ

〉
| = |〈t Re ξ, Im ξ〉|

=
1
2
| Im〈aξ, ξ〉|

≤ tan θ2

2
Re〈aξ, ξ〉

=
tan θ2

2

[∥∥s
1
2 Re ξ

∥∥2
+
∥∥s

1
2 Im ξ

∥∥2
]

.

This implies ‖s− 1
2 t s−

1
2‖ ≤ tan θ2, which together with the preceding estimate actually yields the

claim.
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Remark 3.4. (a) The ideas of introducing the function v and of using the splitting in (3) in the proof

above are taken from [9], while the use of the operator s−
1
2 ts−

1
2 is borrowed from [7].

(b) It should not come as a surprise that the evaluation of the expression

1
p′
〈a(x)ξ, χ〉 − 1

p
〈a(x)χ, ξ〉 =

(
1− 2

p

) 〈
s(x)ξ, χ

〉
+
〈
t(x)ξ, χ

〉
for ξ, χ ∈ Rd and x ∈ Ω plays a crucial role, cf. (5). It is an artefact of〈

a(x)(χ + iξ), 1
p′χ + i

p ξ
〉
, (6)

namely its imaginary part, thanks to the fact that the coefficient function is supposed to be real
throughout this work. The expression in (6) has turned out to be very important in the case of
complex coefficients; we refer to [5] and [30].

Let A be a closed, linear operator on a Banach space X. The numerical range of this operator is the
set

w(A) :=
{

u∗(Au) : u ∈ dom A, ‖u‖X = 1 and u∗ ∈ J(u)
}

,

where J is the following, a priori set-valued duality map:

J(u) :=
{

u∗ ∈ X∗ : ‖u∗‖X∗ = 1 and u∗(u) = ‖u‖X
}

.

But if X = Lp(Ω) for p ∈ ]1, ∞[ and ‖u‖Lp(Ω) = 1, then J(u) contains only the element

u∗ ∼= |u|p−2u.

We use Theorem 3.3 to determine the numerical range for the operators Ap associated to the form
aV .

Theorem 3.5. Let p ∈ [2, ∞[. Then the numerical range w(Ap) of the operator Ap is contained in

the closed sector Σθp , where

tan θp =

√
(p− 2)2 + p2 tan2 θ2

2
√

p− 1

with θ2 as in (1).

Proof. Let u ∈ dom Ap ∩ dom A2 ∩ L∞(Ω) with ‖u‖Lp(Ω) = 1. We show that |u|p−2u ∈ V.
Since dom A2 ⊂ V, we have u ∈ V ∩ L∞(Ω).

(a) Let first V = W1,2
D (Ω). Then there exists a sequence (un) ⊂ W1,2

D (Ω) such that un →
u in W1,2(Ω). Thus, up to a subsequence, un → u pointwise almost everywhere. Due to
u ∈ V ∩ L∞(Ω), we can arrange that the approximating sequence is uniformly bounded in
L∞(Ω), ‖un‖L∞(Ω) ≤ ‖u‖L∞(Ω) + 1. Since the supports are unchanged, (|un|p−2un) ⊆
W1,2

D (Ω) ∩ L∞(Ω) and the sequence is uniformly bounded in W1,2(Ω), recall Lemma 3.2.
Thus |un|p−2un ⇀ |u|p−2u in W1,2(Ω) along a subsequence. This implies |u|p−2u ∈ V.

DOI 10.20347/WIAS.PREPRINT.2723 Berlin 2020
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(b) Consider next V = W̃1,2
D (Ω). Again, there exists a sequence (un) ⊂ C∞

D (Ω) such that

un → u in W1,2(Ω). As before, it follows that (|un|p−2un) ⊂ W1,2
D (Ω) ∩ L∞(Ω) and

|un|p−2un ⇀ |u|p−2u in W1,2(Ω) along a subsequence. It remains to show that in fact
(|un|p−2un) ⊂ V. Let n be fixed. By construction, there is a function v ∈ C∞

c (Rd) such
that v|Ω = un and supp v ∩ D = ∅. Now choose a mollifier family (φk) and let vk :=
|v|p−2v ∗ φk. Then vk ∈ C∞

c (Rd) and, for k large enough, supp vk ∩ D = ∅. Moreover,
vk|Ω → |un|p−2un in W1,2(Ω). Hence |un|p−2un ∈ V.

Now, with |u|p−2u ∈ V, we finally have

u∗(Apu) =
∫

Ω
(Apu)|u|p−2u =

∫
Ω
(A2u)|u|p−2u = a(u, |u|p−2u),

so that, by Theorem 3.3, u∗(Apu) ∈ Σθp . The set dom Ap ∩ dom A2 ∩ L∞(Ω) being a core for
Ap by Lemma 3.1, the claim follows from an approximation argument.

Remark 3.6. Interestingly, the above calculations for the nonsymmetric coefficient function a also
reproduce the estimates for the numerical range in case of a symmetric coefficient function, see [27,
Theorem 3.9]. In this case, θ2 = 0, and hence tan θp = p−2

2
√

p−1
.

From Theorem 3.5 we immediately deduce several corollaries in a standard way; compare with [28,
Ch. 1, Theorem 3.9].

Corollary 3.7. For every p ∈ ]1, ∞[ the spectrum of Ap is contained in the closed sector Σθp and,

for every z ∈ C \ Σθp , ∥∥(z− Ap)
−1∥∥

L(Lp(Ω))
≤ 1

dist(z, Σθp)
(7)

with θp as in Theorem 3.5.

Proof. Let p ∈ [2, ∞[. By Theorem 3.5, for every z ∈ C \ Σθp and every u ∈ dom Ap with

‖u‖Lp(Ω) = 1,

‖(z− Ap)u‖Lp(Ω) = ‖(z− Ap)u‖Lp(Ω) ‖u∗‖Lp(Ω)∗

≥
∣∣z u∗(u)− u∗(Apu)

∣∣
=
∣∣z− u∗(Apu)

∣∣
≥ dist(z, Σθp) ‖u‖Lp(Ω).

This inequality shows that z− Ap is injective and has closed range. Since −1 ∈ $(Ap), a connect-

edness argument yields C \ Σθp ⊆ $(Ap), and then the resolvent estimate follows from the above

estimate. The case p ∈ ]1, 2[ follows by duality.

Corollary 3.8. For every p ∈ ]1, ∞[, the semigroup generated by −Ap extends to an analytic
contraction semigroup on the sector Σ π

2−θp , where θp is as in Theorem 3.5.

Proof. The claim for p ≥ 2 follows from Corollary 3.7 and the Lumer-Phillips theorem (see [27,
Theorem 1.54]), and the case p ≤ 2 follows by duality.
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Remark 3.9. It was already observed in [7] that the angle θp in the foregoing corollary is optimal.
Therefore, also Theorem 3.5 and Corollary 3.7 above are optimal as far as the angle is concerned.
An example showing the optimality is provided by the Ornstein-Uhlenbeck semigroup on the weighted
space Lp(Rd; µ), where µ is the associated invariant Gaussian measure (see [6]).

Corollary 3.10 ([21, Corollary 10.16]). For every p ∈ ]1, ∞[, the operator Ap has a bounded H∞-
functional calculus on a sector of angle < π

2 .

Remark 3.11. Regarding Corollary 3.10, see also [19]. If θp(H∞) denotes the optimal (so, smallest)
angle for the H∞-functional calculus, then, by [21, Corollary 10.12], θ2(H∞) ≤ θ2, and by [21,
Theorem 12.8], θp(H∞) = θp(R), where the latter is the optimal angle of R-sectoriality. For Ω =

Rd it follows from [21, Theorem 14.4] that θp(H∞) ≤ θp, and the previous remark then again shows
that this estimate is optimal.

From Corollary 3.10, we also immediately obtain maximal Lq regularity for the operators Ap. We refer
to [21, Theorem 1.11], or to [22] for a different approach. Let us emphasize that there is no regularity
requirement on Ω.

Corollary 3.12. For every 1 < p, q < ∞, the operator Ap has Lq-maximal regularity.

4 Ultracontractivity and compact resolvents

We next consider ultracontractivity of the semigroups Tp generated by −Ap and associated proper-
ties. This requires an assumption on Ω, which is as follows:

Assumption 4.1. The form domain V embeds continuously into Lβ(Ω) for some β > 2.

In fact, Assumption 4.1 is equivalently an assumption on ultracontractivity of the semigroups Tp gen-
erated by −Ap:

Proposition 4.2 ([2, Theorem 7.3.2]). Assumption 4.1 holds true if and only if the consistent semi-
group family Tp generated by −Ap is ultracontractive, that is, for all 1 ≤ p < q ≤ ∞ there exists a
constant c > 0 such that

‖Tp(t)‖L(Lp(Ω)→Lq(Ω)) ≤ ct−
β

β−2 (
1
p−

1
q ) (0 < t ≤ 1). (8)

Note that by a scaling argument we necessarily have β ≤ 2? := 2d
d−2 in Assumption 4.1, the first-

order Sobolev exponent associated to 2. In this case, in the exponent in (8), β
β−2 = d

2 .

Corollary 4.3. Suppose that Assumption 4.1 holds true and that |Ω| < ∞. Then the following holds
true for p ∈ ]1, ∞[:

(a) The embedding V ↪→ L2(Ω) is compact.

(b) The resolvents (z + Ap)−1 are compact operators on Lp(Ω) for every z ∈ $(−A2).

(c) The semigroups Tp(t) are compact operators on Lp(Ω) for every t > 0.
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(d) σ(A2) = σ(Ap) and the spectral projections corresponding to the nonzero eigenvalues are
independent of p.

Proof. (a) follows from V ↪→ Lβ(Ω) as in [11, Lemma 7.1]. Thus, (λ + A2)
−1 is a compact

operator on L2(Ω). By compactness propagation via interpolation as in [12, Theorem 1.6.1], (λ +
Ap)−1 is compact for every λ ∈ $(−A2), which is (b). Ultracontractivity implies that T2(t) is a

Hilbert-Schmidt integral operator and thus compact on L2(Ω) for t > 0. Thus, (c) can be seen from
factoring Tp(t) through L2(Ω), see [2, Proposition 7.3.3]. Finally, (d) is [12, Corollary 1.6.2].

Ω

Figure 1: Example of a (non-Sobolev-extension) domain Ω satisfying Assumption 4.1

Remark 4.4. In the case V = W1,2(Ω), so the largest of the form domains considered in this
work, Assumption 4.1 is exhaustively discussed in [24, Section 6.3.4]. See Figure 1 for the exemplary,
two dimensional domain Ω = {x ∈ R2 : 0 < x2 < 1, |x1| ≤ x3

2} which satisfies Assump-
tion 4.1 for β ≤ 4 ([25]). As visible there, such a domain Ω may have outward cusps, hence it need
be neither a d-set (see (9) below) nor a homogeneous space (see [10, Section 2]). Therefore Ω
will in general not admit a continuous linear extension operator E : W1,2(Ω)→W1,2(Rd) such that
(Eu)|Ω = u ([17]). There may however be an continuous linear extension operator V →W1,2(Rd),
see e.g. [14, Sect. 6]. The existence of either extension operator would imply the optimal β in Assump-
tion 4.1. Note moreover that there might exist bounded extension operators W1,2(Ω) → W1,r(Rd)
for r < 2 or even W1,2(Ω) → Wα,2(Rd) for α < 1 for domains satisfying Assumption 4.1.
Conversely, for r or α sufficiently large, the existence such an extension operator would imply As-
sumption 4.1. We refer to [33] and the references therein.

5 An extension to Robin and dynamical boundary conditions

We next show how the generality of the foregoing results, in particular Theorem 3.3, can be used to
obtain uniform resolvent estimates for differential operators attached to more sophisticated problems.
To this end, we need some regularity assumption on Ω and the boundary part D in order to have a
well defined trace-type operator. We assume that Ω is bounded throughout this section. The regularity
assumption is as follows.

Assumption 5.1. (i) For every point x ∈ Γ := ∂Ω \ D, there is an open neighbourhood Ux
of x such that Ux ∩Ω is connected and there exists a continuous linear extension operator
E : W1,2(Ux ∩Ω)→W1,2(Rd); that is, (Eu)|Ux∩Ω = u for every u ∈W1,2(Ux ∩Ω).

(ii) The set Γ is a (d− 1)-set.
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Recall that a Borel set E ⊂ Rd is an N-set or N-regular if there exists a constant c > 0 such that

crN ≤ HN
(
E ∩ Br(x)

)
≤ c−1rN (x ∈ E, r ≤ 1) (9)

whereHN denotes the N-dimensional Hausdorff measure. We refer to [18, Ch. II.1] for more details.

Remark 5.2. The regularity assumption on Γ = ∂Ω \ D in Assumption 6.1 is very mild. The required
Sobolev extension property is a deeply researched subject. Note that while there D need only be
closed, there is a condition on the the relative boundary ∂D of D within ∂Ω, so the transition region
between Dirichlet and Neumann boundary parts. Particular cases in which Assumption 6.1 is satisfied
include the one where there are Lipschitz charts available around Γ, or, more generally, when Ω is
locally an (ε, δ)-domain around Γ. The latter is in fact optimal for d = 2. We refer to [14, Section 6.4]
for more information.

The immediate consequences of Assumption 5.1 needed in the following are as follows:

(a) There is a bounded linear extension operator which extends both W̃1,2
D (Ω) and W1,2

D (Ω) to

W1,2
D (Rd) ([14, Theorem 6.9]). In particular, these spaces coincide.

(b) There is a well defined trace map tr : W1,2
D (Ω)→ Lβ(Γ;Hd−1), where β > 2 ([3]).

Hence, for nonnegative b ∈ L∞(Γ;Hd−1), the form b : V ×V → C given by

b(u, v) := a(u, v) +
∫

Γ
b (tr u)(tr v) dHd−1 (u, v ∈ V),

is well defined, continuous, closed and accretive. In fact, it is even a sub-Markovian form. The operator
B2 on L2(Ω) associated with this form is the negative generator of an analytic contraction semigroup
S2 which extends consistently to contraction semigroups Sp on all Lp(Ω)-spaces, p ∈ [1, ∞[. The
negative generator of Sp is denoted by Bp. All these properties follow as in Section 2.

The operators Bp are realizations of the second order elliptic operator−div(a∇·) with mixed Dirich-
let and Robin boundary conditions. The corresponding parabolic evolution problem associated with Bp
is formally

ut − div(a∇u) = f in (0, ∞)×Ω,
u = 0 on (0, ∞)× D,

〈a∇u, ν〉+ bu = 0 on (0, ∞)× (∂Ω \ D),
u(0, ·) = u0 in Ω,

where ν is the unit outer normal. That is, one has Dirichlet boundary conditions on D and Robin
boundary conditions on ∂Ω \ D, which reduce to Neumann boundary conditions on the set [b = 0].

Since ∫
Γ

b (tr u)(tr |u|p−2ū) dHd−1 =
∫

Γ
b tr(|u|p) dHd−1 ≥ 0

for every u ∈ V ∩ L∞(Ω), by Theorem 3.3, the numerical range of the operator Bp is contained
in the same sector as the numerical range of the operator Ap. From Theorem 3.5 and the proof of

Corollary 3.8, we thus obtain the following result. (Ultracontractivity is inferred from the W1,2-extension
property of V, see Remark 4.4, and Proposition 4.2.)
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Theorem 5.3. For every p ∈ [2, ∞[, the numerical range of Bp is contained in the sector Σθp , where

θp is as in Theorem 3.5. Moreover, for every p ∈ ]1, ∞[,

∥∥(z− Bp)
−1∥∥

L(Lp(Ω))
≤ 1

dist(z, Σθp)
(10)

for every z ∈ C \ Σθp and the semigroup generated by −Bp extends to an analytic contraction
semigroup on the sector Σ π

2−θp and is ultracontractive.

It is also possible to treat dynamical boundary conditions in this approach. Fix a measurable subset
S ⊆ Γ. Then the embedding j : V → L2(Ω) × L2(S;Hd−1) defined by u 7→ (u, tr u) is con-
tinuous, injective and has dense range, see [31, Lemma 2.10]. Via this embedding, the form (b, V)
induces also an operator B̂2 on the Hilbert space H = L2(Ω) × L2(S;Hd−1). By [31, Proposi-
tion 2.16], the form b is sub-Markovian, so that −B̂2 generates an analytic contraction semigroup
Ŝ2 which extends consistently to contraction semigroups Ŝp on all Lp(Ω)× Lp(S;Hd−1)-spaces,

p ∈ [1, ∞[. The negative generator of Ŝp is denoted by B̂p.

The corresponding parabolic evolution problem associated with B̂p is formally

ut − div(a∇u) = f in (0, ∞)×Ω,
u = 0 on (0, ∞)× D,

ut + 〈a∇u, ν〉+ bu = g on (0, ∞)× S,
〈a∇u, ν〉+ bu = 0 on (0, ∞)× (∂Ω \ (D ∪ S)),

u(0, ·) = u0 in Ω,

that is, one has Dirichlet boundary conditions on D, dynamical boundary conditions on S, and Robin
boundary conditions on ∂Ω \ (D ∪ S), which reduce to Neumann boundary conditions on the set
[b = 0]. Since B̂p is again fundamentally linked to the form a, the result about the numerical range
transfers immediately from Theorem 3.3. Regarding ultracontractivity, we refer to continuity of the trace
operator tr : V → Lβ(S;Hd−1) where β > 2 and the reasoning in [31, Lemma 2.19].

Theorem 5.4. For every p ∈ [2, ∞[, the numerical range of B̂p is contained in the sector Σθp , where

θp is as in Theorem 3.5. Moreover, for every p ∈ ]1, ∞[,

∥∥(z− B̂p)
−1∥∥

L(Lp(Ω))
≤ 1

dist(z, Σθp)
(11)

for every z ∈ C \ Σθp and the semigroup generated by −B̂p extends to an analytic contraction
semigroup on the sector Σ π

2−θp and is ultracontractive.

Remark 5.5. It would also be possible to include a (d − 1)-regular hyperplane Σ ⊂ Ω in S in a
straightforward manner. This would then lead to a dynamic “jump condition”

ut +
[
〈a∇u, νΣ〉

]
= h on (0, ∞)× Σ.

We refer to [31].
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6 Appendix: Intrinsic characterization for the form domain

In this section, we give a completely intrinsic characterization for V = W1,2
D (Ω), corresponding to

the philosophy in [32], see especially Remark 4 there. In fact, we do so for the full scale W1,p
D (Ω)

with p ∈ ]1, ∞[. We suppose that Ω is bounded and let p ∈ ]1, ∞[ be fixed throughout this section.
The characterization is given under following very mild assumption on ∂Ω and D which we assume
to hold for the rest of this appendix:

Assumption 6.1. (i) For every point x ∈ ∂D, the relative boundary of D within ∂Ω, there is an
open neighbourhood Ux of x such that Ux ∩Ω is connected and there exists a continuous
linear extension operator E : W1,p(Ux ∩Ω) → W1,p(Rd); that is, (Eu)|Ux∩Ω = u for all

u ∈W1,p(Ux ∩Ω).

(ii) The boundary ∂Ω and the set D itself are (d− 1)-sets.

Remark 6.2. Comparing to Assumption 5.1—which we do not suppose to hold for this section—, the
Sobolev extension condition is required only on the relative boundary ∂D of D within ∂Ω. Thus, the
remaining part of ∂Ω \ ∂D might be highly irregular in a topological sense. We do however suppose
the measure-theoretic condition that ∂Ω and D are (d− 1)-regular in Assumption 6.1, which is not
included in Assumption 5.1 and which effectively means that Γ = ∂Ω \ D is also (d− 1)-regular.

For closed E ⊆ ∂Ω, we define the spaces

W1,p
E (Ω) :=

{
u ∈W1,p(Ω) : dist(supp u, E) > 0

}
,

and
C∞

E (Ω) :=
{

u ∈ C∞(Ω) : u = v|Ω for v ∈ C∞
c (Rd), supp v ∩ E = ∅

}
,

and their closures in W1,p(Ω):

W1,p
E (Ω) := W1,p

E (Ω)
W1,p(Ω)

and W̃1,p
E (Ω) := C∞

E (Ω)
W1,p

.

We have already seen the latter two spaces in the previous sections in the special case p = 2. The

characterization of W1,p
D (Ω) is as follows. (We use distD(x) := dist(x, D).)

Theorem 6.3. Let u ∈W1,p(Ω). The following are equivalent.

(i) u ∈W1,p
D (Ω).

(ii) u/ distD ∈ Lp(Ω).

(iii) ForHd−1-almost every x ∈ D,

lim
r↘0

1
|Br(x)|

∫
Br(x)∩Ω

|u| = 0.

Remark 6.4. If one and thus all of the conditions in Theorem 6.3 hold true, then we have a Hardy

inequality for elements of W1,p
D (Ω):(∫

Ω

∣∣∣∣ u
distD

∣∣∣∣p)
1
p

. ‖u‖W1,p(Ω) (u ∈W1,p
D (Ω)).
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In particular,

u 7→ ‖u‖W1,p(Ω) +

∥∥∥∥ u
distD

∥∥∥∥
Lp(Ω)

is an equivalent norm on W1,p
D (Ω).

A consequence of the characterization of W1,p
D (Ω) in Theorem 6.3 is that the constant one function

1 is not an element of that space if D 6= ∅. The proof follows after the one of Theorem 6.3 below.

Corollary 6.5. Let 1 ∈W1,p(Ω) denote the constant one function. If D 6= ∅, then 1 /∈W1,p
D (Ω).

We next prove a preliminary geometric lemma which will allow us to prove Theorem 6.3 by reducing it
to a similar characterization theorem in a more regular situation, Proposition 6.8 below. It says that a
subset of a regular set can be extended to a regular set in an arbitrarily small manner. We state and
prove it for a general bounded N-regular set Λ. The proof relies on a sort of dyadic decomposition for
regular sets established by David and refined by Christ and is given at the very end of the paper.

Lemma 6.6. Let Λ ⊂ Rd be bounded and N-regular. Let further Ξ ⊆ Λ and ρ > 0. Then there
exists an N-set Ξ• such that Ξ ⊆ Ξ• ⊆ Λ and sup{dist(x, Ξ) : x ∈ Ξ• \ Ξ} ≤ ρ.

Corollary 6.7. There exists a closed (d− 1)-set Υ ⊆ ∂Ω such that dist(Υ, D) > 0 and for every

point x ∈ ∂Ω \ (D ∪ Υ) there is an open neighbourhood Ux of x such that Ux ∩Ω is connected
and there exists a continuous linear extension operator E : W1,p(Ux ∩Ω)→W1,p(Rd).

Proof. By Assumption 6.1, for every x ∈ ∂D there exists an open W1,p-extension neighbourhood
Ux of x. The family (Ux)x∈∂D is then an open covering of ∂D. By compactness, it thus admits a
finite subcovering (Uxj)j.

Now choose ε > 0 such that {x ∈ Rd : dist(x, ∂D) < 3ε} ⊆ ⋃j Uxj , and set C := {x ∈ ∂Ω \
D : dist(x, ∂D) ≥ 2ε}. Clearly, for every x ∈ ∂Ω \ (D ∪ C) there is an open W1,p-extension
neighbourhood. Let C• be a (d− 1) regular set containing C with sup{dist(x, C) : x ∈ C• \C} ≤
ε and define Υ := C•; such a set exists by Lemma 6.6. Then Υ has the required properties; for the
(d− 1) property, see [18, Ch. VIII Proposition 1].

With the foregoing result, we can now make use of the characterisation of a zero trace property for a
more regular situation in [15] which we quote adapted to our setting:

Proposition 6.8 ([15, Theorem 2.1]). Let Υ ⊆ ∂Ω be a closed (d − 1)-set such that for every

point x ∈ ∂Ω \ (D ∪ Υ) there is an open neighbourhood Ux of x such that Ux ∩Ω is connected
and there exists a continuous linear extension operator E : W1,p(Ux ∩Ω) → W1,p(Rd). Let u ∈
W1,p(Ω). Then the following are equivalent:

(i) u ∈ ˜W1,p
D∪Υ(Ω).

(ii) u/ distD∪Υ ∈ Lp(Ω).

(iii) ForHd−1-a.e. x ∈ D ∪ Υ,

lim
r↘0

1
|Br(x)|

∫
Br(x)∩Ω

|u| = 0.
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Proof of Theorem 6.3. Choose Υ ⊆ ∂Ω as in Corollary 6.7 and a cut-off function η ∈ C∞
c (Rd) such

that supp η ∩ Υ = ∅ and η = 1 in a neighbourhood of D. Write u = (1− η)u + ηu. Clearly,

(1− η)u ∈W1,p
D (Ω), so (1− η)u/ distD ∈ Lp(Ω) and

lim
r↘0

1
|Br(x)|

∫
Br(x)∩Ω

|(1− η)u| = 0.

It is thus sufficient to prove all equivalences for ηu only.

((i) =⇒ (ii)): Let ηu ∈ W1,p
D (Ω). Choose a sequence (uk) ⊂ W1,p

D (Ω) approximating u in
W1,p(Ω). We have ηuk/ distD∪Υ ∈ Lp(Ω) and ηuk → ηu in W1,p(Ω). Proposition 6.8 im-
plies that the set of v ∈ W1,p(Ω) satisfying v/ distD∪Υ ∈ Lp(Ω) is closed in W1,p(Ω). Hence
ηu/ distD ∈ Lp(Ω).

((ii) =⇒ (i)): Let ηu/ distD ∈ Lp(Ω). Then ηu/ distD∪Υ ∈ Lp(Ω) and ηu ∈ ˜W1,p
D∪Υ(Ω) by

Proposition 6.8. In particular, ηu in W1,p(Ω) can be approximated by a sequence of functions from

C∞
D∪Υ(Ω). But C∞

D∪Υ(Ω) ⊂W1,p
D (Ω), so ηu ∈W1,p(Ω).

((ii) ⇐⇒ (iii)): Apply Proposition 6.8 to ηu.

Proof of Corollary 6.5. Suppose that 1 ∈W1,p
D (Ω). Then, by Theorem 6.3,

lim
r↘0

1
|B(y, r)|

∫
B(r,y)∩Ω

1 = lim
r↘0

|B(y, r) ∩Ω|
|B(y, r)| = 0 (12)

forHd−1-almost every y ∈ D. We will show that this leads to a contradiction.

Let x ∈ ∂D, the relative boundary of D within ∂Ω. By Assumption 6.1, there exists an open neigh-
bourhood Ux of x such that Ux ∩ Ω has the W1,p-extension property. A domain with the W1,p-
extension property is necessarily d-regular by a fundamental result by Hajłasz, Koskela and Tuomi-
nen [17], so there is a constant c > 0 such that

|B(y, r) ∩Ω ∩Ux| ≥ crd (y ∈ Ω ∩Ux, r ≤ 1).

This property also holds for y ∈ ∂Ω ∩ Ux ⊂ ∂(Ω ∩ Ux). Indeed, let r ≤ 1 and choose z ∈
B(y, r/2) ∩Ω ∩Ux. Then B(z, r/2) ∩Ω ∩Ux ⊂ B(y, r) ∩Ω ∩Ux, hence

|B(y, r) ∩Ω ∩Ux| ≥ c2−drd (y ∈ ∂Ω ∩Ux, r ≤ 1). (13)

Now let 0 < r0 ≤ 1 be such that B(x, 2r0) ⊂ Ux. Consider y ∈ B(x, r0) ∩ D. Then B(y, r0) ⊂
Ux, so there is a constant c0 > 0 such that

|B(y, r) ∩Ω|
|B(y, r)| =

|B(y, r) ∩Ω ∩Ux|
|B(y, r)| ≥ c0 > 0

for all r ≤ r0 by (13). By (12), this is only possible if Hd−1(B(x, r0) ∩ D) = 0. But D is (d− 1)-
regular, soHd−1(B(x, r0) ∩ D) > 0. This is the contradiction.

Proof of Lemma 6.6

In this final subsection, we prove Lemma 6.6. As already mentioned above, the proof relies on the
following Christ decomposition for regular sets:
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Theorem 6.9 ([8, Theorem 11]). Let Λ ⊂ Rd be bounded and N-regular. Then there exists a collec-
tion of open sets {Qk

α ⊆ Λ : k ∈ N0, α ∈ Ik}, where Ik is an index set for every k ∈ N0, and
constants δ ∈ ]0, 1[, a0 > 0, c1 < ∞ such that the following hold true:

(i) HN
(
Λ \⋃α∈Ik

Qk
α

)
= 0 for every k ∈N0,

(ii) if `, k ∈N0 and ` ≥ k, then for every α ∈ Ik and β ∈ I`, either Q`
β ∩Qk

α = ∅ or Q`
β ⊆ Qk

α,

(iii) if k ∈N0 and α, β ∈ Ik, then Qk
β ∩Qk

α = ∅,

(iv) for every k ∈N0 and α ∈ Ik, there holds diam(Qk
α) ≤ c1δk,

(v) for every k ∈N0 and α ∈ Ik, there is zk
α ∈ Λ such that B(zk

α, a0δk) ∩Λ ⊆ Qk
α.

Remark 6.10. It will be useful to observe that by property (v) of the Christ decomposition in Theo-
rem 6.9 and N-regularity of Λ, there is a constant c > 0 such that

HN(Qk
α) ≥ HN

(
B(zk

α, a0δk) ∩Λ
)
≥ c(a0δk)N (α ∈ Ik) (14)

for all k ∈N0 such that a0δk ≤ 1.

In fact, the Christ decomposition as established in [8, Theorem 11] has some more properties and
is valid for locally doubling metric measure spaces in general; the “locally” part is due to Morris [26,
Proposition 4.2]. We have just extracted the necessary bits needed to prove Lemma 6.6 which we
repeat:

Let Λ ⊂ Rd be bounded and N-regular. Let further Ξ ⊆ Λ and ρ > 0. Then there exists an N-set
Ξ• such that Ξ ⊆ Ξ• ⊆ Λ and sup{dist(x, Ξ) : x ∈ Ξ• \ Ξ} ≤ ρ.

Proof of Lemma 6.6. Consider the Christ decomposition of Λ and its data as stated in Theorem 6.9.
Let M ∈N0 be so large that c1δM ≤ ρ ∧ 1 and define

Ξ• := Ξ ∪
{

QM
α : α ∈ IM, QM

α ∩ Ξ 6= ∅
}

.

By the choice of M and property (iv) of the Christ decomposition, we already have sup{dist(x, Ξ) : x ∈
Ξ• \ Ξ} ≤ ρ. We show that Ξ• is N-regular. Since Ξ• ⊆ Λ and the latter is N-regular, the upper
estimateHN(Ξ• ∩ B(x, r)) . rN for all x ∈ Ξ• and r ≤ 1 as in (9) is for free.

For the lower estimate, let x ∈ Ξ•. If there is α ∈ IM such that x ∈ QM
α , then QM

α ⊆ Ξ• due to
property (iii) of the Christ decomposition. Thus it is enough to show the lower estimate for N-regularity
for QM

α . (Of course, we thereby prove that QM
α is N-regular since the upper estimate is again for

free.)

In fact, we can assume even that x is an element of a member of every generation k ∈N0, i.e.,

x ∈ Υ :=
{

y ∈ Λ : for every k ∈N0 there is α ∈ Ik such that y ∈ Qk
α

}
.

Indeed, suppose we want to show a lower N-regularity estimate for z ∈ Λ \ Υ. The set Λ \ Υ is
of HN-measure zero by property (i) of the Christ decomposition. For every r ≤ 1, the intersections
Λ ∩ B(z, r/2) have positive HN-measure by N-regularity of Λ, hence they cannot be subsets of
Λ \ Υ. This implies that for every r ≤ 1, there is x ∈ Υ ∩ B(z, r/2). Since B(z, r) contains
B(x, r/2), it is thus enough to prove the lower estimate for N-regularity for x ∈ Υ.
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So, let x ∈ Υ and let α ∈ IM be such that x ∈ QM
α .

First suppose that c1δM < r ≤ 1. Then, by property (iv) of the Christ decomposition, QM
α ∩

B(x, r) = QM
α . So, using (14),

HN
(
QM

α ∩ B(x, r)
)
= HN(QM

α ) ≥ c(a0δM)N ≥ c(a0δM)NrN.

Next, let r ≤ c1δM. Choose ` ∈ N0 such that c1δ` ≤ r ≤ c1δ`−1. Clearly, ` > M. Due to
x ∈ Υ, there exists β ∈ I` such that x ∈ Q`

β and we have Q`
β ⊆ QM

α by property (ii) of the Christ

decomposition. Again, from property (iv) of the Christ decomposition and the choice of ` we have
Q`

β ∩ B(x, r) = Q`
β. Using (14) and the choice of `,

HN
(
QM

α ∩ B(x, r)
)
≥ HN

(
Q`

β ∩ B(x, r)
)
= HN(Q`

β)

≥ c(a0δ`)N ≥ c(a0δ/c1)
NrN.

This completes the proof.

Acknowledgment. We wish to thank Pertti Mattila (University of Helsinki) and Moritz Egert (Université
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