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Essential enhancements in Abelian networks:
Continuity and uniform strict monotonicity

Lorenzo Taggi

Abstract

We prove that in wide generality the critical curve of the activated random walk model is a
continuous function of the deactivation rate, and we provide a bound on its slope which is uniform
with respect to the choice of the graph. Moreover, we derive strict monotonicity properties for the
probability of a wide class of ‘increasing’ events, extending previous results of Rolla and Sidoravi-
cius (2012). Our proof method is of independent interest and can be viewed as a reformulation of
the ‘essential enhancements’ technique – which was introduced for percolation – in the framework
of Abelian networks.

1 Introduction

The activated random walk model (ARW) is a particle system with conserved number of particles.
It is a special case of a class of models introduced by Spitzer in the ’70s and it is not only of great
mathematical interest but also physically relevant due to its connections to self-organised criticality
[7]. The informal definition of the model is as follows. Let G = (V,E) be a infinite undirected vertex-
transitive graph (for example Zd or a regular tree). Each particle can either be of type A (active)
or of type S (sleeping, or inactive). At time zero, the number of particles is sampled according to a
Poisson distribution with parameter µ ∈ [0,∞) independently at every vertex, where µ is the particle
density, and every particle is of type A. An independent exponential clock with rate λ ∈ [0,∞), the
deactivation rate, is associated to every active particle. Every A-particle performs a continuous time
simple random walk independently until its own clock rings. When this happens, the A-particle turns
into the S-state. Every S-particle is at rest. Moreover, whenever a S-particle shares the vertex with an
A-particle, the S-particle is instantaneously activated, i.e, it becomes an A-particle. It follows from this
definition that, almost surely, a particle of type S can be observed only if it does not share the vertex
with other particles.

Let Pλ,µ be the probability measure of the interacting particle system defined informally above, whose
existence on infinite vertex-transitive graphs was proved in [11]. A central and natural question is
whether the dynamics dies out with time or whether it is sustained at all times. More precisely, we say
that the system fixates if for every finite set A ⊂ V there exists a time tA <∞ such that for any time
t > tA no active particle jumps from a vertex of A, and that it is active if it does not fixate. The critical
density is defined as,

∀λ ∈ [0,∞), µc(λ) := inf
{
µ ∈ R≥0 : Pλ,µ(ARW is active ) > 0

}
. (1.1)

It was proved in [9] that the probability that the model is active is either zero or one, that it does not
decrease with µ and does not increase with λ. This ensures the existence of a unique transition point
between the regime of a.s. local fixation and the regime of a.s. activity. In recent years significant effort
has been made for proving basic properties of the critical curve, µ = µc(λ). It is known from [13]
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that µc(λ) ≤ 1 for any λ ∈ [0,∞) in wide generality, it was proved in [15, 17] that µc(λ) < 1 for
any λ ∈ (0,∞) and that µc(λ) → 0 as λ → 0 in any vertex-transitive graph where the random
walk is transient, extending previous results for biased jump distributions on Zd [11, 16]. Moreover, it
was proved in [1, 4] that, on Z, µc(λ) = O(

√
λ ) in the limit as λ → 0. It was proved in [15] that

µc(λ) ≥ λ
1+λ

in any vertex-transitive graphs, generalising and extending a previous result of [14]. It
was proved in [10] that the critical density is universal. Our first main theorem states a new general
property of the critical curve, namely that it is a continuous function of the deactivation parameter λ.

Theorem 1.1. On any vertex-transitive graph the two following properties hold:

(i) µc(λ) is a continuous function of λ in (0,∞),

(ii) for any λ ∈ (0,∞), lim sup
δ→0

µc(λ+δ)−µc(λ)
δ

≤ 1
λ(1+λ)

.

The property of continuity of the critical curve was proved for λ = 0 (more precisely, right-continuity,
namely limλ→0+ µc(λ) = µc(0) = 0) in Zd when d = 1 [4] and d ≥ 3 [15] and, more generally,
in vertex-transitive graphs where the random walk is transient [15]. Our Theorem 1.1 extends such a
continuity property to all positive values of λ and holds for any vertex-transitive graph. Even though
the critical curve is expected to strongly depend on the graph, the second claim of Theorem 1.1
provides a bound on its slope which is uniform with respect to the choice of the graph. Our more
general formulation of Theorem 1.1, Theorem 5.2 below, does not require the assumption that the
graph is vertex-transitive and it involves a more general notion of critical density (see Section 5.2).
Furthermore, such a general formulation of Theorem 1.1 does not require the assumption that all
the particles at time zero are active. For example, our main result also holds if the initial particle
configuration is distributed as a product of Poisson distributions with parameter µ such that only the
particles at the origin are active and all the remaining particles are inactive. Under these assumptions,
the activated random walk model is related to the Frog model [8], which corresponds to the special
case λ = 0.

Monotonicity properties. Our first main theorem is a consequence of our second theorem, which
derives new general monotonicity properties for the probability of a wide class of events called ‘in-
creasing’. This class will be defined later formally and, for example, it includes any event of the form,
A = {∀x ∈ K M(x) ≥ H(x)}, where here K ⊂ V is any finite set of sites, (H(x))x∈K is
any integer-valued vector, and M(x) is the number of times the active particles jump from the ver-
tex x. The derivation of monotonicity properties is very useful and allows a deeper understanding of
the model. From the definition of the activated random walk dynamics it is reasonable to expect that
the probability of any increasing event is non-increasing with respect to λ and non-decreasing with
respect to µ. The proof of this claim is non-trivial and was derived in [9] by employing a graphical
representation. Here we address the following related question: do monotonicity properties hold if we
increase the deactivation rate and the particle density at the same time? This question is challenging
since the increase of the deactivation rate and of the particle density play against each other – higher
deactivation rate implies that the model is ‘less active’, while higher particle density implies that the
model is ‘more active’. Our Theorem 1.2 below provides a positive answer to this question and shows
that, if we increase the deactivation rate and the particle density at the same time and the increase of
the particle density occurs ‘fast enough’, then the probability of any increasing event is also non de-
creasing. More precisely, our theorem states that, if we take an arbitrary point of the phases diagram,
(λ, µ) ∈ R2

>0, and we move up-right along a semi-line line which starts from (λ, µ) and whose slope,
s, satisfies s ≥ 1

λ(1+λ)
, then the probability of the event does not decrease. Remarkably, our estimate

on the minimal slope is uniform not only with respect to the choice of the graph, but also with respect to
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the choice of the event, provided that it is increasing. The monotonicity result of Rolla and Sidoravicius
[9] can thus be viewed as corresponding to the special case s = ∞ of our theorem (the probability
that the system is active is non-decreasing if we move upwards in the phase diagram, namely if we
increase the particle density without varying the deactivation rate).

Theorem 1.2. LetA be any increasing event as in the statement of Theorem 3.2 below. Let (λ, µ) ∈
R2
≥0 be an arbitrary point of the phase diagram, let Cλ,µ be the region above the semi-line with slope
1

λ(1+λ)
which starts from (λ, µ),

Cλ,µ :=
{

(x, y) ∈ R2 : y ≥ 1

λ(1 + λ)
(x − λ) + µ, x ≥ λ

}
. (1.2)

Then, for any pair (λ′, µ′) ∈ Cλ,µ,
Pλ, µ(A) ≤ Pλ′, µ′(A).

We refer to Section 3 for a precise characterisation of the events for which our theorem holds, this is a
general and natural class of events.

Proof method: Essential enhancements. Our proof method can be viewed as a reformulation of
the ‘Essential enhancements’ technique – which was mostly employed in Percolation [2, 3] – in the
framework of Abelian networks and can be employed for the the study of other Abelian models, for
example the frog model [8], oil and water [5, 6], or the stochastic sandpile model [9].

Our proof uses the setting of the Diaconis-Fulton graphical representation [9], where some random
instructions – operators which act on the particle configuration moving active particles to their neigh-
bours or trying to let the A-particle turn into a S-particle – are used to mimic the dynamics without
employing the variable ‘time’. Such a graphical representation fulfils the fundamental Abelian property
which, informally, states that the relevant quantities – for example the number of times the active parti-
cles jumps from a given vertex – do not depend on the order according to which such instructions are
used. Our proof is divided into three main steps.

The first step of the proof is the derivation of a Russo’s formula [12] – which is a classical formula in
percolation – for activated random walks, Theorem 3.2 below. This formula relates the partial derivative
with respect to λ of the probability of increasing events to the expected number of instructions which
are ‘sleeping essential’ for the event. Such instructions will be defined later and, informally, are those
instructions whose removal would cause the occurrence of the event. Similarly, such a formula relates
the partial derivative with respect to µ of the probability of an increasing event to the expected number
of vertices which are ‘particle essential’ for the event, namely vertices such that the addition of one
more particle there would cause the occurrence of the event.

In the second step of the proof we derive the following differential inequality, which holds for increasing
eventsA,

− ∂

∂λ
Pλ,µ(A) ≤ 1

λ(1 + λ)

∂

∂µ
Pλ,µ(A), (1.3)

where Pλ,µ is the law of the initial particle configuration and of the random instructions. The two
following properties of the odometer – a fundamental quantity which counts how many times the active
particles jump from any vertex – are derived and used for the proof of (1.3). The first property is that
the removal of a ‘sleep’ instruction does not affect the value of the odometer, unless such a removed
instruction occupies a very specific location in the array of instructions. Such a property allows us to the
deduce that, on any given vertex, at most one instruction is ‘sleeping essential’. The second property
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is as follows: If removing a sleep instruction lets the event A occur, then also adding a particle at the
same vertex lets the event A occur, provided that A is increasing. This leads to the conclusion that,
if on a vertex we have a sleeping-essential instruction, then the vertex is also particle-essential. Such
two properties combined allow the comparison between the partial derivatives and lead to (1.3).

In the third step we derive our monotonicity theorem by using the differential inequality, (1.3), and we
derive our main continuity theorem by using our monotonicity theorem.

We conclude with some natural questions which might be answered by further developing such a
framework. To begin, the derivation of the inverse of the inequality (1.3) (with some other positive
and bounded constant uniformly in A in place of 1

λ(1+λ)
) would allow us to answer the following open

question.

Open Question 1. Prove that µc(λ) is strictly increasing with respect to λ.

A further central open problem for the ARW model is proving that µc(λ) → 0 as λ → 0, which was
not proved in the general case yet. Since µc(0) = 0, answering the following question would lead to
the solution of this problem in great generality.

Open Question 2. Extend the continuity property of Theorem 1.1 to λ = 0+.

Organisation. This paper is organised as follows. In Section 2 we recall the properties of the Diaconis-
Fulton representation and present some new definitions and basic lemmas. In Section 3 we derive
the equivalent of Russo’s formula for activated random walk. In Section 4 present the proof of (1.3). In
Section 5 we present the proof of our main theorems, Theorem 1.1 and 1.2, and the generalisation of
our main continuity theorem, Theorem 5.2.

Notation

G = (V,E) infinite locally-finite undirected graph
o ∈ V a reference vertex, called origin
dx degree of the vertex x
η = (η(x))x∈V particle configuration
τ = (τx,j)x∈V,j∈N array of instructions
H× I set of realisations, with η ∈ H and τ ∈ I
s sleep instruction
τxy instruction ‘jump from x to y’
Jx,`τ `th jump instruction of τ at x

tx,`τ index of the `th jump instruction of τ at x, namely τx,t
x,`
τ = Jx,`τ

mK,η,τ odometer
MK,η,τ jump-odometer
Sx,`τ number of sleep instructions between the `− 1th and the `th jump instruction at x
η(x,k) particle configuration obtained from η by setting to k the number of particles at x
Γx,`− (τ) array with no sleep instr. between the `− 1th and the `th jump instr.
Γx,`1 (τ) array with one sleep instr. between the `− 1th and the `th jump instr.
ν = ν(µ) distribution of the initial particle configuration
νj = νj(µ) probability that a site hosts j ∈ N particles at time zero.
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2 Definitions and graphical representation

In this section we introduce the Diaconis-Fulton graphical representation for the dynamics of ARW,
following [9], and we introduce the main definitions.

Graph. To begin, we fix a graph G = (V,E), which is always assumed to be undirected, infinite
and locally finite. For any x ∈ V , we denote by dx the degree of the vertex x, which corresponds to
the number of vertices which are connected to x by an edge. We choose one vertex of G arbitrarily,
o ∈ V , and we call it origin. We write x ∼ y when x and y are neighbours, i.e, {x, y} ∈ E.

Particle configuration and array of instructions. The set of particle configurations is denoted by
H = {0, ρ, 1, 2, 3, . . .}V , where a vertex being in state ρ denotes that the vertex has one S-particle,
while being in state i ∈ {0, 1, 2, . . .} denotes that the vertex contains i A-particles. We employ the
following order on the states of a vertex: 0 < ρ < 1 < 2 < · · · . In a configuration η ∈ H, a vertex
x ∈ V is called stable if η(x) ∈ {0, ρ}, and it is called unstable if η(x) ≥ 1. We denote by I the set
of arrays of instructions, i.e, each element of I is an array of instructions τ =

(
τx,j
)
x∈V,j∈N, where

for each x ∈ V and j ∈ N,
τx,j ∈ {s} ∪ {τxy : y ∼ x},

where τxy and s, called jump and sleep instruction respectively, are operators acting on the particle
configuration which are defined as follows. Given any configuration η such that x is unstable, perform-
ing the instruction τxy in η yields another configuration η′ such that η′(z) = η(z) for all z ∈ V \{x, y},
η′(x) = η(x) − 1{η(x) ≥ 1}, and η′(y) = η(y) + 1{η(x) ≥ 1}. We use the convention that
1 +ρ = 2. Similarly, performing the instruction s to η yields a configuration η′ such that η′(z) = η(z)
for all z ∈ V \ {x}, and if η(x) = 1 we have η′(x) = ρ, otherwise η′(x) = η(x).

Using instructions and stabilising a set. Fix a particle configuration η ∈ H and an instruction array
τ ∈ I . We say that the instruction τx,j is legal for η if x is unstable in η, otherwise it is illegal. We say
that we use the instruction (x, j), x ∈ V , j ∈ N, of the array τ for η, or that we use the instruction
τx,j for η, when we act on the current particle configuration η through the operator τx,j . Let α be a
sequence

α =
(
(x1, n1), (x2, n2), . . . , (xk, nk)

)
,

define the operator Φα,τ as
Φα,τ := τxk,nk . . . τx2,n2 τx1,n1 ,

and for 1 ≤ ` ≤ k define the subsequence α(`) :=
(
(x1, n1), (x2, n2), . . . , (x`, n`)

)
. We say that

α is a legal sequence for η if the two following properties hold:

(i) for any i ∈ {1, . . . k − 1}, let j := inf{` > i : x` = xi}. If j <∞, then nj = ni + 1,

(ii) for any i ∈ {1, . . . , k}, τxi,ni is legal for ηi−1 := Φα(i−1),τ η.

Letmα =
(
mα(x)

)
x∈V be given by,mα(x) =

∑
i∈{1,...,k} 1xi = x, the number of times the vertex

x appears inα. LetMα,τ =
(
Mα,τ (x)

)
x∈V be given by,Mα,τ (x) =

∑
i∈{1,...,k} 1xi = x, τxi,ni 6= s,

the number of jump instructions of α. Let K be a finite subset of V . A configuration η is said to be
stable in K if all the vertices x ∈ K are stable. We say that α is contained in K if xi ∈ K for any
i ∈ {1, . . . , k}. We say that α stabilizes η inK if every x ∈ K is stable in Φαη. The following lemma
gives a fundamental property of the Diaconis-Fulton representation. For the proof we refer to [9].

Lemma 2.1 (Abelian Property). Given anyK ⊂ V , if α and β are both legal sequences for η that are
contained in K and stabilize η in K , then mα = mβ . In particular, Φαη = Φβη.
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Figure 2.1: An example of array of instructions τ when G = Z, with ty,3τ = 7, Sy,0τ = 2, Sy,1τ = 0,
Sy,3τ = 2 (recall that the index of the ‘first’ instruction on a vertex is zero). In the figure we assume
that the instructions below the bold profile are those which have been used for the stabilisation of η
in K , where K = {0, . . . L} and η is some particle configuration, thus MK,η,τ (y) = 3. The array
of instructions Γy,n− (τ), with n = MK,η,τ (y), is obtained from τ by ‘removing’ the two dark sleep
instructions above the vertex y, which are located between the n− 1 th and the n th jump instruction
(recall again that the index of the ‘first’ jump instruction on a vertex is zero).

Odometers. For any subset K ⊂ V , any x ∈ V , any particle configuration η, and any array of
instructions τ , we denote by mK,η,τ (x) the number of times that x is toppled in the stabilization of K
starting from configuration η and using the instructions in τ . Note that, by Lemma 2.1, we have that
mK,η,τ is well defined. We refer to mK,η,τ as the odometer function, or simply odometer. Moreover,
we define a function which counts the number of jump instructions which are used at each vertex for
the stabilization of a set. More precisely, for any K ⊂ V , η ∈ H, τ ∈ I , x ∈ V , we define,

MK,η,τ (x) :=
∣∣∣ { j ∈ N : τ j,x 6= s and j < mK,η,τ (x)

}∣∣∣. (2.1)

We refer to the function MK,η,τ as jump-odometer.

Definition of the counters tx,mτ , Jx,mτ and Sx,mτ . Fix an array of instructions τ ∈ I , a vertex
x ∈ V and an integer m ∈ N. We let Jx,mτ be the m-th jump instruction at x of τ and tx,mτ be its
corresponding index. More precisely, we define tx,−1

τ := −1, and, for any m ∈ N, we define

tx,m+1
τ := min{n > tx,mτ : τx,n 6= s} Jx,mτ := τx,t

x,m
τ . (2.2)

Moreover, for anym ∈ N we let Sx,mτ be the number of sleep instructions of τ at x between them−1
th and the m th jump instruction,

Sx,mτ :=
∣∣∣N ∩ ( tx,m−1

τ , tx,mτ )
∣∣∣, (2.3)

(which is well-defined also when m = 0). See Figure 2.1 for an example.

Partial orders and monotonicity properties. We now introduce a partial order between particle
configurations and arrays of instructions. Given two particle configurations η, η′ ∈ H, we write η′ ≥ η
if η′(x) ≥ η(x) for all x ∈ V . Given two arrays τ, τ ′, we write τ ′ ≥ τ if

∀x ∈ V, ∀m ∈ N, Jx,mτ = Jx,mτ ′ Sx,mτ ≥ Sx,mτ ′ .

In other words, either τ ′ = τ or τ ′ is obtained from τ by removing some sleep instruction.
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Lemma 2.2 (Monotonicity). If K1 ⊂ K2 ⊂ V , η ≤ η′, τ ≤ τ ′, then mK1,η,τ ≤ mK2,η′,τ ′ and
MK1,η,τ ≤MK2,η′,τ ′

By monotonicity, given any growing sequence of subsets V1 ⊆ V2 ⊆ V3 ⊆ · · · ⊆ V such that
limm→∞ Vm = V , the limits

mη,τ := lim
m→∞

mVm,η,τ , Mη,τ := lim
m→∞

MVm,η,τ ,

exist and do not depend on the particular sequence {Vm}m.

Probability measure. We now introduce a probability measure on the space of particle configurations
and arrays of instructions. The distribution of the initial particle configuration is supported in NV ⊂ H
and will be denoted by ν. Precise assumptions on ν will be made later. We also introduce a probability
measure on the set of arrays of instruction, I . We denote by Pλ,µ the probability measure according
to which, for any x ∈ V and any j ∈ N, Pλ,µ(τx,j = s) = λ

1+λ
and Pλ,µ(τx,j = τxy) = 1

dx (1+λ)

for any y ∈ V neighboring x, where dx is the degree of the vertex x ∈ V the τx,j are independent
across different values of x or j. Finally, we denote by Pνλ,µ = Pλ,µ ⊗ ν the joint law of η and τ ,
where ν is a distribution on H giving the law of η. Let Pνλ,µ denotes the probability measure induced
by the ARW process when the initial distribution of particles is given by ν. The following lemma relates
the dynamics of ARW to the stability property of the representation. In [9], Lemma 2.3 was proved for
G = Zd and holds for vertex-transitive graphs.

Lemma 2.3 (Zero-one law, activity and fixation). Let G = (V,E) be an undirected vertex-transitive
graph and let x ∈ V be any given vertex. Then,

Pνλ,µ(ARW fixates) = Pνλ,µ(mη,τ (x) <∞) = Pνλ,µ(Mη,τ (x) <∞) ∈ {0, 1}. (2.4)

We shall often omit the dependence on ν by writing Pλ,µ and P instead of Pνλ,µ and Pν . Moreover,
when we average over η and τ using the measure Pλ,µ, we will simply write mK instead of mK,η,τ

and we will do the same for the other quantities that will be introduced later.

2.1 Stabilisation of a domain

Fix a finite set K ⊂ V and consider a function Z =
(
Z(x)

)
x∈K such that Z(x) ∈ N or Z(x) =∞

for any x ∈ K . The stabilisation of a domain is a stabilisation procedure which stops toppling any
site x whenever a certain number of instructions, Z(x), has been used and will serve as technical
tool in several proofs. Fix a particle configuration η ∈ H and an array of instructions τ ∈ I . Let
α =

(
(x1, n1), (x2, n2), . . . , (xk, nk)

)
be a legal sequence of instructions of τ which is contained

in K . Recall that mα(x) =
∑

`∈{1,...,k} 1{x` = x} is the number of times the vertex x appears
in the sequence. We say that α is contained in (K,Z) if it is contained in K and for any x ∈ K ,
mα(x) ≤ Z(x). Let η′ = Φα,τη ∈ H be the particle configuration which is obtained using the
instructions of α. We say that α stabilises η in (K,Z) if α is contained in (K,Z) and for every vertex
x ∈ K , either (1) η′(x) ∈ {0, ρ}, or (2) η′(x) 6∈ {0, ρ} and mα(x) = Z(x).

Remark 2.4. If Z(x) = ∞ for any x ∈ K , then the stabilisation of (K,Z) is equivalent to the
stabilisation of K .

Note that the Abelian property holds for the stabilisation of (K,Z) as well, with no change in the
proof. Hence, we denote by m(K,Z),η,τ (x) the number of times that x is toppled in the stabilisation
of (K,Z) and by M(K,Z),η,τ (x) =

∣∣{j ∈ N : j < m(K,Z),η,τ (x) and τx,j 6= s}
∣∣ the number
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of jump instructions which are used at x during the stabilisation of (K,Z). Note that, by the Abelian
property, such functions are well defined. The next lemma states the monotonicity properties for the
stabilisation of (K,Z), whose proof is analogous to the proof of Lemma 2.5.

Lemma 2.5 (Monotonicity). If K1 ⊂ K2 ⊂ V , Z1 =
(
Z(x)

)
x∈K1

, Z2 =
(
Z(x)

)
x∈K2

, η1, η2 ∈ H,

τ1, τ2 ∈ I are such that Z1(x) ≤ Z2(x) for any x ∈ K1, τ1 ≤ τ2, η1 ≤ η2, then

m(K1,Z1),η1,τ1 ≤ m(K2,Z2),η2,τ2 and M(K1,Z1),η1,τ1 ≤M(K2,Z2),η2,τ2 .

3 Essential pairs and partial derivatives

The goal of this section is to state and prove Theorem 3.2 below, which provides an explicit formula
for the partial derivatives with respect to λ and µ of the probability of a wide class of events. To begin,
we introduce the notion of increasing relevant events and of particle-essential and sleeping-essential
pairs.

Increasing, relevant events and domain. Recall that H denotes the set of particle configurations
and that I denotes the set of arrays of instructions. Let S be the smallest sigma-algebra generated by
all the open subsets ofH× I with respect to the natural product topology. In all definitions, K ⊂ V
and Z =

(
Z(x)

)
x∈K is a function such that Z(x) ∈ N∪ {∞} for any x ∈ K . To begin, we say that

an eventA ∈ S is increasing if

(η, τ) ∈ A, η̃ ≥ η, τ̃ ≥ τ =⇒ (η̃, τ̃) ∈ A. (3.1)

Moreover, we say that an eventA ∈ S is relevant if for any η ∈ H ,τ1, τ2 ∈ I satisfying the following
property,

∀x ∈ V, j ∈ N, Jx,jτ1 = Jx,jτ2 and Sx,jτ1 > 0 ⇐⇒ Sx,jτ2 > 0, (3.2)

we have that
(η, τ 1) ∈ A ⇐⇒ (η, τ 2) ∈ A. (3.3)

In other words, relevant events do not depend on the precise number of sleep instructions between two
consecutive jump instructions, but only on whether such a number is zero or strictly positive. We say
that the event A ∈ S has domain (K,Z) if for any η1, η2 ∈ H, τ1, τ2 ∈ I such that η1(x) = η2(x)
for any x ∈ K and τx,j1 = τx,j2 for any j < Z(x), we have that

(η1, τ1) ∈ A ⇐⇒ (η2, τ2) ∈ A.

In other words, an event which has domain (K,Z) depends only on the instructions of the array τ ,
τx,j , such that x ∈ K and j < Z(x). If an event A has domain (K,Z), where |K| < ∞ and
Z(x) <∞ for any x ∈ K , then we say that it has bounded domain.

Particle-essential pair. Let A ∈ S be an arbitrary event, let η ∈ H be an arbitrary particle configu-
ration, let η(x,k) ∈ H be obtained from η as follows,

η(x,k)(y) :=

{
k if y = x,

η(y) if y 6= x.

We define the event {the pair (x, k) is particle-essential for the event A} as the set of realisations
(η, τ) ∈ H × I such that,

(η(x,k), τ) 6∈ A and (η(x,k+1), τ) ∈ A.
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Sometimes, we will write p-essential in place of particle-essential.

Sleeping-essential pair. We introduce two operators, Γy,m− ,Γy,m1 : I 7→ I as follows. For an arbitrary
array τ ∈ I and a pair (y,m) ∈ V × N, we let Γy,m− (τ) ∈ I be the new array of instructions which
is obtained from τ by removing all the sleep instruction between the m − 1th and the mth jump
instruction at y. More precisely, for any k ∈ N, x ∈ V ,

(
Γy,m− (τ)

)x,k
:=


τx,k if x 6= y

τx,k if x = y and k ≤ tx,m−1
τ

τx,k+Sx,mτ if x = y and k > tx,m−1
τ ,

(3.4)

where we recall that the counters Sx,mτ and tx,mτ were defined in Section 2. See Figure 2.1 for an
example. Moreover, given an instruction array τ and a pair (y,m) ∈ V × N, we define a new
instruction array Γy,m1 (τ) ∈ I , which is is obtained from τ by setting to one the number of sleep
instructions between the m − 1th and the mth jump instruction at y. More precisely, for any k ∈ N,
x ∈ V ,

(
Γy,m1 (τ)

)x,k
:=


τx,k if x 6= y

τx,k if x = y and k < tx,m−1
τ

s if x = y and k = tx,m−1
τ

τx,k+Sx,mτ if x = y and k > tx,m−1
τ .

(3.5)

Given an arbitrary eventA ∈ S , vertex y ∈ V , integer k ∈ N, we define the event {the pair (y, k) is
sleeping-essential forA } ∈ A as the set of realisations (η, τ) ∈ H × I such that

(η,Γy,k1 (τ)) /∈ A and
(
η,Γy,k− (τ)

)
∈ A.

In other words, the event ‘the pair (y, k) is sleeping essential for A’ is defined as the set of config-
urations (η, τ) such that, if one considers the new array τ ′ which is defined as the array which is
obtained from τ by setting to zero the number of sleep instruction between the k − 1th and the kth
jump instruction at y, then (η, τ ′) ∈ A, while if one considers a new array τ ′′ which is is obtained from
τ by setting to one the number of sleep instructions between the k− 1th and the kth jump instruction
at y, then (η, τ ′′) 6∈ A. Sometimes, we will write s-essential in place of sleeping-essential.

Remark 3.1. It follows from the definitions of particle-essential and sleeping-essential pairs that, given
an arbitrary event A ∈ S , vertex y ∈ V , and integer k ∈ N, the event {(y, k) is a particle-essential
pair for A} is independent from the initial number of particles at y,η(y), and that the event {(y, k) is
a sleeping-essential pair forA} is independent from the variable Sy,kτ .

We now present the main theorem of this section. In the statement of the theorem, we consider the
probability of an event A ∈ S , Pλ,µ(A), as a function of (λ, µ) in the domain [0,∞) × [0,∞). For
the sake of generality we state the theorem not only for product of Poisson distributions, but for a wide
class of initial particle (product) distributions ν satisfying the following assumptions.

Assumptions on ν. We assume (1) that ν = ν(µ) is a product of identical distributions which are
functions of the parameter µ and have some domain D ⊂ R, possibly D = R, and (2) that the pa-
rameter µ corresponds to the expected number of particles per vertex, also called the particle density.
For any j ∈ N, we denote by νj = νj(µ) the probability that a single vertex hosts j particles. This
probability does not depend on the vertex by assumption. We define ν>j := ν>j(µ) =

∑∞
`=j+1 ν`,

the probability that a given vertex hosts more than j particles. Finally, we assume (3) that for any
j ∈ N, ν>j = ν>j(µ) is non-decreasing with respect to µ and that it is differentiable with respect to µ
for any µ ∈ D and we let ν ′>j := ∂

∂µ
ν>j(µ) be its derivative. Such assumptions are fulfilled for a wide
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class of particle distributions, including Poisson and Bernoulli. For example, if ν is a product of Poisson
distributions, then D = R≥0 and νj = µj

j!
e−µ, while, if ν is a product of Bernoulli distributions, then

D = (0, 1), ν0 = 1− µ, ν1 = µ and νj = 0 for all j ≥ 2.

Theorem 3.2. Let A be any increasing relevant event with bounded domain or an event of the form
A = {(η, τ) ∈ H × I : MK,η,τ (x) ≥ H(x)}, for some finite K ⊂ V and H ∈ NK . Assume
that ν satisfies the assumptions above and that µ′ ∈ D, λ′ ∈ R>0. Then, the function Pλ,µ(A) is
differentiable at (λ′, µ′) and its partial derivatives satisfy,

∂

∂λ
Pλ,µ

(
A
)∣∣∣
λ′,µ′

=− (
1

1 + λ′
)2

∑
y∈V,j∈N

Pλ′,µ′
(
(y, j) is sleeping-essential forA

)
, (3.6)

∂

∂µ
Pλ,µ

(
A
)∣∣∣
λ′,µ′

=
∑

y∈V,j∈N

Pλ′,µ′
(
(y, j) is particle-essential forA

)
ν ′>j(µ

′). (3.7)

The remainder of this section is devoted to the proof of Theorem 3.2, which is divided into three
subsections. In Section 3.1 we introduce a coupling which allows the comparison of ARW-systems
with different values of the parameters µ and λ. In Sections 3.2 and 3.3 we will use such a coupling
to present the proof of (3.6) and (3.7) respectively. From now on, we will write ∂

∂λ
Pλ,µ

(
A
)

in place of
∂
∂λ′
Pλ′,µ′

(
A
)∣∣
λ,µ

, sometimes we will write ∂λ for ∂
∂λ

, and we will do the same for the partial derivative
with respect to µ.

3.1 Probability space for coupled activated random walk models

We now introduce a new probability space which allows us to couple activated random walk systems
corresponding to different values of µ ∈ D and λ ∈ R≥0. This new probability space will be denoted
by (Σ,F ,P). To begin, let

(
Xx

)
x∈V ,

(
Yx,m

)
x∈V,m∈N, and

(
Ax,m

)
x∈V,m∈N be three sequences of

independent random variables in (Σ,F ,P) which are distributed as follows. The variables
(
Xx

)
x∈V

and
(
Yx,m

)
x∈V,m∈N have uniform distribution in [0, 1], while the variables

(
Ax,m

)
x∈V,m∈N are such

that, for each x ∈ V , and m ∈ N, Ax,m takes values in {τxy : x ∈ V, y ∼ x} (recall from Section
2 that τxy is the instruction which lets a particle jump from x to y), and has distribution

P(Ax,m = τxy) =
1

dx
.

The variables (Xx)x∈V will be used to sample the initial particle configurations, the variables (Yx,m)x∈V,m∈N
will be used to sample the sleep instructions, and the variables (Ax,m)x∈V,m∈N will correspond to the
jump instructions. We start with the construction of the initial particle configuration. Recall thatH de-
notes the set of particle configurations and define the ηµ : Σ→ H, which is parametrised by the pa-
rameter µ ∈ D. For any x ∈ V , let k ∈ N be the unique integer such thatXx ∈ [ν<k(µ), ν<k+1(µ)).
Then, ηµ(x) := k. Note that, it follows by construction that,

∀µ ∈ D, ∀x ∈ V, P
(
ηµ(x) = k

)
= νk(µ), (3.8)

and that the variables
(
ηµ(x)

)
x∈V are independent. We now construct the array of instructions. Recall

that I denotes the space of instructions and, for any m ∈ N and x ∈ V , we define the functions
Rx,m
λ : Σ→ N, which represent the number of sleep instructions between the m− 1-th and the mth

jump instruction at x and depend on the parameter λ ∈ [0,∞),

Rx,m
λ :=

{
` if Yx,m ∈

(
( λ

1+λ
)`+1, ( λ

1+λ
)`
]

0 otherwise.
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Note that, by construction,

∀λ ∈ R≥0, ∀x ∈ V, ∀m ∈ N, ∀` ∈ N, P
(
Rx,m
λ = `

)
=

1

1 + λ

( λ

1 + λ

)`
, (3.9)

and that the variables
(
Rx,m
λ

)
x∈V,m∈N are independent. Moreover, we define the function τλ : Σ→ I ,

which represents the instruction array for the coupled activated random walk systems as the unique
array of instructions such that

∀x ∈ V, ∀m ∈ N, Jx,mτλ := Ax,m and Sx,mτλ := Rx,m
λ ,

(recall that, for any τ ∈ I , Jx,mτ corresponds tomth jump instruction at x and Sx,mτ corresponds to the
number of sleep instructions between them−1th and themth jump instruction at x). By construction,
we proved the following proposition.

Proposition 3.3. Let λ ∈ [0,∞) and µ ∈ [0,∞). Sample the pair (η, τ) ∈ H×I according toPνλ,µ
and let ηλ : Σ → H and τλ : Σ → I be the random variables in the probability space (Σ,F ,P)
which have been defined above. We have that,

(η, τ)
d
= (ηµ, τλ),

where ‘
d
=’ denotes equality in distribution. From this, we deduce that, for any eventA ∈ S ,P

(
(ηµ, τλ) ∈

A
)

= Pµ,λ
(
(η, τ) ∈ A

)
.

In the next two subsections we will use this coupling to prove equations (3.6) and (3.7).

3.2 Proof of equation (3.6)

We will first consider an eventAwith bounded domain. To begin note that, ifA is has bounded domain,
then the quantity Pλ,µ(A) is a polynomial of finite degree in λ and, for this reason, it is differentiable
with respect to λ. In the whole proof, we let (K,Z) be the domain of the event A ∈ S , with K ⊂ V
finite and Z ∈ NK . To begin, we deduce from Proposition 3.3 and from the fact thatA is an increasing
event that, for any δ > 0,

Pλ,µ
(
A
)
− Pλ+δ,µ

(
A
)

= P
(

(ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A
)
. (3.10)

Recall the coupling construction which was defined in Section 3.1 and recall the definition of the
functions Ry,j

λ , where y ∈ V , and j ∈ N. For arbitrary (y, j) ∈ (K,Z), we define the events in the
probability space P ,

By,j,+ := {Ry,j
λ+δ > 0} ∩ {Ry,j

λ = 0}, (3.11)

By,j,− :=
{
∀(y′, j′) ∈ (K,Z) : (y′, j′) 6= (y, j), Ry′,j′

λ+δ > 0 ⇐⇒ Ry′,j′

λ > 0
}
, (3.12)

B2 :=
⋃

(y,j),(y′,j′)∈(K,Z):
(y,j)6=(y′,j′)

{
Ry,j
λ+δ > 0, Ry′,j′

λ+δ > 0, Ry,j
λ = 0, Ry′,j′

λ = 0
}
. (3.13)

Informally, the event By,j,+ occurs iff an increase by δ of the parameter λ turns the variable Ry,j
λ from

zero to a strictly positive number, the event By,j,− occurs iff such an increase does not turn from zero
to a positive number any variable Ry′,j′

λ such that (y′, j′) is in the domain of A and (y′, j′) 6= (y, j),
the event B2 occurs iff at least two variables Ry,j

λ turn from zero to a strictly positive number as λ is
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increased by δ. Since the event A ∈ S is relevant and has domain (K,Z), we obtain, by using the
conditional probability formula and summing over the probability of disjoint events, that

P
(
(ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A

)
=∑

(y,j)∈K×Z

P
(
{(ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A} ∩ By,j,−

∣∣∣ By,j,+ )P(By,j,+ ) +

P
(
{ (ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A} ∩ B2

)
. (3.14)

The first term in the right-hand side equals the probability that the event in the left-hand side occurs and
that an increase by δ of the parameter λ turns precisely one variable Ry,j

λ (and not more than one!)
from zero to a strictly positive number, while the second term in the right-hand side is the probability
that the event in the left-hand side occurs and that at least two variables Ry,j

λ turn from zero to a
strictly positive number as λ is increased by δ. We now re-write each term in the right-hand side of the
previous expression in a more convenient form. First, observe that, in the limit as δ → 0,

P(By,j,+ ) = P
(
Yy,j ∈

( λ

1 + λ
, 1
]
\ (

λ+ δ

1 + λ+ δ
, 1
])

= δ
( 1

1 + λ

)2
+O(δ2). (3.15)

Since A has bounded domain and since the event B2 requires that at least two variables Ry,j
λ turn

from zero to a strictly positive value as λ is increased by δ, we also deduce from (3.15) and by the
mutual independence of the variables (Yy,j)y∈V,j∈N that, in the limit as δ → 0,

P
(
{ (ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A} ∩ B2

)
= O(δ2). (3.16)

Finally, using independence, the definition of sleeping-essential pair and the important Remark 3.1 for
the first inequality and the fact that limδ→0 P(By,j,−) = 1 for the second inequality, we obtain that,

lim
δ→0

P
(
{(ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A} ∩ By,j,−

∣∣∣ By,j,+ ) =

lim
δ→0

P
(
{(ηµ,Γy,j,−(τλ)) ∈ A, (ηµ,Γy,j,+(τλ+δ)) /∈ A} ∩ By,j,− ) =

Pλ,µ
(
(y, j) is s-essential forA

)
. (3.17)

In the previous expression we also used the fact that the event A depends only on whether the
variables (Ry,j

τλ
)y∈V,j∈N are zero or strictly positive, since it is relevant by assumption. For the second

identity in the next expression we use (3.10), for the third identity we use (3.14), (3.15), (3.16) and
(3.17), obtaining,

∂λPλ,µ
(
A
)

= lim
δ→0

Pλ+δ,µ(A)− Pλ,µ(A)

δ

= − lim
δ→0

P
(

(ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A
)

δ

= −
( 1

1 + λ

)2
∑

(y,j)∈(K,Z)

Pλ,µ
(
(y, j) is s-essential forA

)
= −

( 1

1 + λ

)2
∑

(y,j)∈V×N

Pλ,µ
(
(y, j) is s-essential forA

)
,

which concludes the proof of (3.6) for increasing relevant events A with bounded domain. Consider
now the event A = {(η, τ) ∈ H × I : MK,η,τ ≥ H} for some finite K ⊂ V and H ∈ NK . Let
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L ∈ N be an arbitrary integer, define the function Z ∈ NK as Z(x) := L for any x ∈ K , and define
the event,AL = {(η, τ) ∈ H×I : M(K,Z),η,τ ≥ H}. Note that, by the Abelian property and by the
fact that K is finite,

lim
L→∞

Pλ,µ(AL) = Pλ,µ(A), (3.18)

and, moreover, for any (x, j) such that x ∈ K and j ∈ N,

lim
L→∞

Pλ,µ((x, j) is s-essential forAL) = Pλ,µ((x, j) is s-essential forA). (3.19)

Note also that, by the Abelian property, bothAL andA are relevant and that, by Lemmas 2.2 and 2.5,
they are also increasing. Using also the fact that by monotonicity, Lemma 2.5, (η, τ) ∈ AL implies
that (η, τ) ∈ A, we deduce that,

Pλ,µ
(
A
)
− Pλ+δ,µ

(
A
)

= P
(

(ηµ, τλ) ∈ A, (ηµ, τλ+δ) /∈ A
)

= P
(

(ηµ, τλ) ∈ AL, (ηµ, τλ+δ) /∈ AL
)

+ P
(

(ηµ, τλ) ∈ A, (ηµ, τλ) 6∈ AL, (ηµ, τλ+δ) /∈ A
)
.

(3.20)

Now note that, since for any finite L ∈ N the event AL has bounded domain, from (3.6), (3.19) and
(3.20) we deduce that, for any ε > 0 there exists L finite and large enough such that,( 1

1 + λ

)2
∑

(y,j)∈V×N

Pλ,µ
(
(y, j) is s-essential forAL

)
≤

lim sup
δ→0

Pλ,µ
(
A
)
− Pλ+δ,µ

(
A
)

δ
≤( 1

1 + λ

)2
∑

(y,j)∈V×N

Pλ,µ
(
(y, j) is s-essential forAL

)
+ ε.

Since ε > 0 was arbitrary, since the previous formula holds also with the lim sup replaced by the
lim inf and using (3.19), we deduce that (3.6) also holds for the event A = {(η, τ) ∈ H × I :
MK,η,τ ≥ H} and this concludes the proof.

3.3 Proof of equation (3.7)

We now turn to the proof of the second equality. LetA be an arbitrary event satisfing the assumptions
of the theorem. From Proposition 3.3, by the fact that A is increasing and by monotonicity, Lemma
2.2, we obtain that,

Pλ,µ+δ(A)− Pλ,µ(A) =
∑
η̃∈H

P
(
(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, ηµ = η̃

)
. (3.21)

We proceed similarly to the proof of equation (3.6), namely we identify the terms of order O(δ) in the
right-hand side of the previous expression. To begin, we define the sets,

Ex,+ := {ηµ+δ(x) = ηµ(x) + 1},
Ex,− := {∀y ∈ K \ {x}, ηµ+δ(y) = ηµ(y)},
E2 := {∃x1, x2 ∈ K : x1 6= x2 and ηµ+δ(x1) = ηµ(x1) + 1, ηµ+δ(x2) = ηµ(x2) + 1 },
Exη̃ := {∀y ∈ K \ {x} ηµ(y) = η̃(y)},
NL := {η ∈ H : ∀y ∈ K η(y) < L}, L ∈ N,
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where the first four sets are elements of the sigma-algebra F and the last set is a subset of H. To
begin, from Proposition 3.3 and from a simple computation we deduce that, in the limit as δ → 0,

P
(
ηµ+δ(x) = k + 1, ηµ(x) = k

)
= P

(
Xx ∈ [ν≤k−1(µ), ν≤k(µ)) ∩ [ν≤k(µ+ δ), ν≤k+1(µ+ δ)]

)
= δ ν ′>k + o(δ), (3.22)

from which we deduce that

P(E2) = o(δ) (3.23)

P
(
N c
L, (ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A

)
≤ δ |K|P

(
ηµ(o) ≥ L

)
, (3.24)

where c denotes the complementary of the event and for the last inequality we used the union bound.
Each term in the sum in the right-hand side of (3.21) can be written as follows,

P
(

(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, ηµ = η̃
)

=

P
(

(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, Ex,−, Exη̃
∣∣∣ Ex,+, ηµ(x) = η̃(x)

)
P
(
Ex,+, ηµ(x) = η̃(x)

)
+

P
(

(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, E2
)
. (3.25)

Since limδ→0 P
(

(ηµ+δ, τλ) ∈ Ex,−
)

= 1, we deduce from the definition of particle-essential pair
and from Remark 3.1 that the first factor in the first term in the right-hand side of the previous expres-
sion satisfies,

lim
δ→0

P
(

(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, Ex,−, Exη̃
∣∣∣ Ex,+, ηµ(x) = η̃(x)

)
=

P
(

(ηµ, τλ) ∈ {(x, η̃(x)) is p-essential forA
}
∩ Exη̃

)
. (3.26)

Substituting (3.22), (3.23), (3.24), and (3.26) in (3.25) and substituting (3.25) in (3.21) we obtain that,
for any arbitrary small ε > 0, there exists L0 = L0(ε) <∞ such that for any L > L0,

lim sup
δ→0

1

δ

∑
η̃∈H

P
(
(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, ηµ = η̃

)
≤ lim sup

δ→0

1

δ

[
δ |K|P(ηµ(0) ≥ L) +

∑
η̃∈NL

P
(

(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, ηµ = η̃
)]

≤ ε+
∑
η̃∈NL

∑
x∈K

P
(

(ηµ, τλ) ∈ {(x, η̃(x)) is p-essential forA
}
∩ Exη̃

)
ν ′>η̃(x)

= ε+
∑
x∈K

∑
η̃∈NL

P
(

(ηµ, τλ) ∈ {(x, η̃(x)) is p-essential forA
}
∩ Exη̃

)
ν ′>η̃(x)

= ε+
∑
x∈K

∞∑
k=0

∑
η̃∈NL:
η̃(x)=k

P
(

(ηµ, τλ) ∈ {(x, k) is p-essential forA
}
∩ Exη̃

)
ν ′>k

= ε+
∑
x∈K

L∑
k=0

P
(
(ηµ, τλ) ∈ {(x, k) is p-essential forA

}
∩NL

)
ν ′>k. (3.27)
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Since ε > 0 was arbitrary, taking the limit L→∞ and using that limL→∞P(NL) = 1,

lim sup
δ→0

1

δ

∑
η̃∈H

P
(
(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, ηµ = η̃

)
≤

∑
x∈K

∞∑
k=0

Pλ,µ
(
{(x, k) is p-essential forA}

)
ν ′>k. (3.28)

Proceeding similarly for the lower bound, we obtain that

lim inf
δ→0

1

δ

∑
η̃∈H

P
(
(ηµ+δ, τλ) ∈ A, (ηµ, τλ) 6∈ A, ηµ = η̃

)
≥

∑
x∈K

∞∑
k=0

P
(
{(x, k) is p-essential forA}

)
ν ′>k, (3.29)

and thus, combining the two previous bounds, we conclude the proof of (3.7).

4 The key differential inequality

The goal of this section is to state and prove Theorem 4.6 below, which provides a precise formulation
of the differential inequality (1.3). We start with the following question. Let (η, τ) ∈ H × I be an
arbitrary realisation, let K ⊂ V be a finite set, define a new instruction array τ ′ ∈ I , which is
obtained from τ ∈ I by removing one sleep instruction ‘somewhere’. Does such a removal affect the
number of times the particles jump from the vertices of the graph? More precisely, is it the case that
MK,η,τ ′(x) > MK,η,τ (x) at some vertex x ∈ K or do we have that MK,η,τ ′ = MK,η,τ? Our Lemma
4.1 below shows that ‘typically’ (but not always) the answer to the second question, and not to the first
one, is positive. This property will be key for the derivation of the differential inequality. Before stating
the lemma, we introduce the setW of pairs (η, τ) ∈ H × I such that, for any finite K ⊂ V and
any x ∈ K , mK,η,τ (x) < ∞. Any (η, τ) ∈ W is such that the stabilisation of any finite set of sites
requires the use of a finite number of instructions and, clearly, Pλ,µ(W) = 1.

Lemma 4.1. Consider a pair (η, τ) ∈ W , let K ⊂ V be a finite set, fix an arbitrary vertex y ∈ K .
For any n ∈ N such that n 6= MK,η,τ (y), we have that

MK,η,τ = MK,η,Γy,n− (τ).

Proof. The proof of the lemma uses the Abelian property in several places. Fix (η, τ) ∈ W , y ∈ K
and n ∈ N. Recall that ty,nτ is the index of the n-th jump instruction at y, see also Figure 2.1. For
a lighter notation we use τ ′ for Γy,n− (τ) and u for Sy,nτ , moreover we assume that u > 0, otherwise
the claim is trivial. We distinguish between two cases. First case. Suppose that n > MK,η,τ (y)
and let α =

(
(x1, n1), . . . , (xk, nk)

)
be a sequence of instructions of τ which stabilises η in K .

Since we assumed that n > MK,η,τ (y), we deduce that τxi,ni = τ ′xi,ni for any i ∈ {1, . . . , k}.
Thus, α is also a sequence of instructions of τ ′ which stabilises η in K and the claim thus follows
from the Abelian property. Second case. Suppose that n < MK,η,τ (y). The goal is to define a legal
sequence of instructions α =

(
(x1, n1), . . . , (xk, nk)

)
of the array τ which stabilizes η in K and a

legal sequence of instructions α′ =
(
(x′1, n

′
1), . . . , (x′k′ , n

′
k′)
)

of the array τ ′ which stabilizes η in K
and to show that, for any z ∈ K ,∣∣∣{ i ∈ {1, . . . , k} : xi = z, τxi,ni 6= s

}∣∣∣ =
∣∣∣{i ∈ {1, . . . , k′} : x′i = z, τ ′

x′i,n
′
i 6= s

}∣∣∣, (4.1)

DOI 10.20347/WIAS.PREPRINT.2722 Berlin 2020



L. Taggi 16

namely that the number of jump instructions used at any site is the same for both sequences, which
proves the claim by the Abelian property. We define α in two steps. In the first step, we define Z =
(Z(x))x∈K as Z(x) := ∞ for any x ∈ K \ {y} and Z(y) := ty,n−1

τ + 1 and we stabilise η in
(K,Z). By our choice of Z , the stabilisation of (K,Z) is ‘forced to stop’ right before using the first of
the u sleep instructions which are located between the n− 1th and the nth jump instruction at y. We
let η′ ∈ H be the particle configuration which is obtained after such a step. The crucial observation is
that it is necessarily the case that,

η′(x)

{
≥ 2 if x = y,

∈ {0, ρ} if x 6= y.
(4.2)

The fact that η′(x) ∈ {0, ρ} for any x 6= y follows from the definition of stabilisation of a domain
and our choice of Z . The fact that η′(y) ≥ 2 will be now proved by contradiction. Indeed, suppose
that this was not true, namely that either (a) η′(y) ∈ {0, ρ} or (b) η′(y) = 1. If (a) was true, then
we would have stabilized η in K using n < MK,η,τ (y) jump instructions at y, contradicting our
assumption. Similarly, if (b) was true, then by using one more instruction at y for η (which is a sleep
instruction since u > 0 by assumption!) we would have stabilized η in K using n < MK,η,τ (y) jump
instructions, contradicting again our assumptions. Hence, we conclude that η′(y) ≥ 2 and conclude
the proof of (4.2) ass desired. In the second step, we complete the stabilisation of η in K by first
using the next u = Sy,nτ instructions at y of the array τ , which by assumption are sleep instruction –
noting that such u sleep instructions produce no effect on the particle configuration since η′(y) ≥ 2
– and then by following an arbitrary order. Since such u sleep instructions produce no effect, they can
be removed from the sequence α and from the array τ without affecting the jump odometer and the
particle configuration. This leads to a new array τ ′ and to a new legal sequence of instructions of τ ′,
α′, which stabilises η in K and satisfies (4.1). By the Abelian property, the proof of is concluded.

In all the next statements and until the end of the section, the set K ⊂ V is arbitrary and finite. This
will not be recalled any more.

Lemma 4.2. Consider an arbitrary integer-valued vector, H ∈ NK , and the event, A :=
{

(η, τ) ∈
H × I : MK,η,τ (x) ≥ H(x)

}
. For any y ∈ K , n ∈ N,{

(y, n) is s-essential forA
}
∩
{

(η, τ) ∈ W : MK,η,τ (y) 6= n and Sy,nτ > 0
}

= ∅. (4.3)

Proof. Suppose that the pair (η, τ) is such that (y, n) is s-essential for A and Sy,nτ > 0. We will
show that it is necessarily the case that MK,η,τ (y) = n, thus implying (4.3). To begin, we deduce by
definition of sleeping-essential pair and by the fact that Sy,nτ > 0 that,

(η, τ) 6∈ A and (η,Γy,n− (τ)) ∈ A. (4.4)

Suppose that MK,η,τ (y) 6= n. This will lead to a contradiction. Indeed, by Lemma 4.1 we deduce that
MK,η,τ = MK,η,Γy,n− (τ). SinceA only depends on the jump-odometer by assumption, we deduce that

(η,Γy,n− (τ)) 6∈ A.

This, however, contradicts (4.4), and, thus, it implies that MK,η,τ (y) = n, as desired. This concludes
the proof.

The next proposition provides an alternative formula for the partial derivative with respect to λ which
appears in Theorem 3.2. The difference with respect to the formulation in Theorem 3.2 is that the
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infinite sum over j ∈ N is replaced by only one (random) term. Such a replacement is possible in light
of Lemma 4.1 and Lemma 4.2. In the next statements we write {(y,MK(y)) is s-essential forA} for
the set of pairs (η, τ) ∈ H × I which belong to the event ‘(y, n) is s-essential for A’ and such that
n = MK,η,τ (y). Similarly, we use {Sy,MK(y) > 0} for the set of pairs (η, τ) ∈ H × I such that
Sy,nτ > 0 and n = MK,η,τ (y).

Proposition 4.3. Under the same assumptions as in Lemma 4.2, we deduce that, for any λ ∈ (0,∞),

∂

∂λ
Pλ,µ

(
A
)

= − 1

λ(1 + λ)

∑
y∈K

Pλ,µ
(
{(y,MK(y)) is s-essential forA} ∩ {Sy,MK(y) > 0}

)
(4.5)

Proof. We write that ‘(y, j) is s-essential’ as a short form for ‘(y, j) is s-essential for A’. Below we
use Remark 3.1 for the first identity and Lemma 4.2 for the third identity, obtaining that, for any y ∈ K ,

∞∑
j=0

Pλ,µ
(
(y, j) is s-essential

)
=

1 + λ

λ

∞∑
j=0

Pλ,µ
(
{(y, j) is s-essential

}
∩ {Sy,j > 0}

)
=

1 + λ

λ
Eλ,µ

( ∞∑
j=0

1{(y,j) is s-essential}∩{Sy,j>0}
)

=
1 + λ

λ
Eλ,µ

( ∞∑
j=0

1{(y,j) is s-essential}∩{Sy,j>0}∩{j=MK(y)}
)

=
1 + λ

λ
Pλ,µ

(
{(y,MK(y)) is s-essential} ∩ {Sy,MK(y) > 0}

)
,

whereEλ,µ denotes the expectation with respect to Pλ,µ. By using the previous formula and Theorem
3.2, we conclude the proof.

Now we will state some preparatory lemmas which will allow the comparison of the partial deriva-
tive with respect to λ and of the partial derivative with respect to µ. We denote by ηy the particle
configuration which is obtained from η ∈ H by adding one more particle at y, i.e.,

∀x ∈ V ηy(x) :=

{
η(x) if x 6= y

η(x) + 1 if x = y.

The next lemma states that, under appropriate assumptions on (η, τ), adding one more particle to the
initial particle configuration increases the jump odometer strictly.

Lemma 4.4. Assume that A is defined the same as in Lemma 4.2, that (η, τ) ∈ W belongs to the

event
{

(y,MK,η,τ (y)) is s-essential forA
}

and that S
y,MK,η,τ (y)
τ > 0. Then,

MK,η,τ (y) < MK,ηy ,τ (y) (4.6)

Proof. Consider a pair (η, τ) as in the assumptions of the lemma and note that, by definition of
sleeping-essential pair,

(η, τ) 6∈ A, (η,Γ
y,MK,η,τ (y)
− (τ)) ∈ A. (4.7)

We define (Z(x))x∈K as follows,

∀x ∈ K Z(x) :=

{
∞ if x 6= y

t
MK,η,τ (y)−1
τ + 1 if x = y,

(4.8)

DOI 10.20347/WIAS.PREPRINT.2722 Berlin 2020



L. Taggi 18

and we let α be a sequence of instructions of τ which stabilises η in (K,Z). The sequence α does not

contain the u := S
y,MK,η,τ (y)
τ > 0 sleep instructions which are located right after theMK,η,τ (y)−1th

jump instruction at y (in the example of Figure 2.1, these instructions are coloured by grey), since,
by definition of stabilisation of (K,Z) and by our choice of Z , the stabilisation procedure is ‘forced
to stop’ right before using such sleep instructions. Call η′ the particle configuration which is obtained
after using the instructions of τ in α. We claim that,

∀x ∈ K η′(x)

{
= 1 if x = y

∈ {0, ρ} if x 6= y.
(4.9)

First note that, since Z(x) = ∞ for any x ∈ K such that x 6= y, by definition of stabilisation of a
domain it is necessarily the case that for any x ∈ K such that x 6= y, η′(x) ∈ {0, ρ}. To prove that
η′(y) = 1, we argue by contradiction. Suppose first that η′(y) ∈ {0, ρ}. Then, α also stabilises η in
K and η′ is stable in K . For this reason, α also stabilises η in K when we use the instructions of the
array Γy,n− (τ), with n = MK,η,τ (y). This in turn implies by the Abelian property that,

MK,η,τ = M
K,η,Γ

y,MK,η,τ (y)

− (τ)
. (4.10)

Hence, by our assumptions on A, by (4.10) and by the fact that (η, τ) 6∈ A, we deduce that

(η,Γ
y,MK,η,τ (y)
− (τ)) 6∈ A, finding the desired contradiction with (4.7). Hence, we conclude that

η′(y) 6∈ {0, ρ}. Suppose now that η′(y) > 1, we look again for a contradiction. We argue the
same as before, namely we use the instructions of τ following sequence α and, after that, we use the
next u instructions at y, which are sleep instructions by assumption. Note that these instructions pro-
duce no effect on the particle configuration since we have more than one active particle at y. Hence,
by arguing the same as in the previous case, we deduce by the Abelian property that (4.10) holds and
this leads to the desired contradiction the same as before. Hence, we proved (4.9), as desired. Define
now the sequence of instructions of τ , α′, in two steps. In the first step, α′ coincides with α and in the
second step the next instruction at y is used. Such a last instruction is of type sleep by assumption,
hence by (4.9) α′ stabilises η in K and Mα,τ = Mα′,τ . Consider now the particle configuration ηy

and define the sequence of instructions of τ , α′′, in two steps. In the first step, α′′ coincides with α.
Call η′′ the particle configuration which is obtained at the end of such a step and note that, by (4.9),

∀x ∈ V η′′(x) =

{
η′(x) + 1 = 2 if x = y,

η′(x) ∈ {0, ρ} if x 6= y .
(4.11)

In the second step, we complete the stabilisation of ηy in K by first using the next u sleep instructions
at y and then following an arbitrary order. Note that the next u sleep instructions at y are ineffective
because of (4.11). Hence, these do not turn any active particle at y into a sleep particle. This implies
that at least one more jump instruction at y is used for the stabilisation of ηy in K (the stabilisation
of K cannot end with two active particles at K by definition of stabilisation!). Hence, by the Abelian
property, MK,ηy ,τ (y) = Mα′′,τ (y) > Mα′,τ (y) = Mα,τ (y) = MK,η,τ (y), and this concludes the
proof.

The next lemma states a crucial inclusion relation between the event that a pair is s-essential and a
pair is p-essential.

Lemma 4.5. Under the same assumptions as in Lemma 4.2, for any j ∈ N,{
(η, τ) ∈ W : (y,MK,η,τ (y)) is s-essential forA, η(y) = j and Sy,MK,η,τ (y)

τ > 0
}

⊂
{

(η, τ) ∈ W : (y, j) is p-essential forA, η(y) = j and Sy,MK,η,τ (y)
τ > 0

}
. (4.12)
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Proof. Let (η, τ) be a realisation which belongs to the event in the left-hand side of (4.12), we will
show that it also belongs to the event in the right-hand side. By definition of sleeping-essential pair
and by our assumptions,

(η, τ) 6∈ A and (η,Γ
y,MK,η,τ (y)
− (τ)) ∈ A. (4.13)

By monotonicity, Lemma 2.2, we have that,

MK,η,τ ≤M
K,η,Γ

y,MK,η,τ (y)

− (τ)
≤M

K,ηy ,Γ
y,MK,η,τ (y)

− (τ)
. (4.14)

By Lemma 4.1 and Lemma 4.4 we have that,

M
K,ηy ,Γ

y,MK,η,τ (y)

− (τ)
= MK,ηy ,τ , (4.15)

Note that the previous identity would not hold true if in the left-hand side MK,η,τ (y) (in the superscript
of the subscript) was replaced by MK,ηy ,τ (y), by (4.6) we have that MK,ηy ,τ (y) 6= MK,η,τ (y). From
(4.13), (4.14) (4.15), and by our assumption onA we deduce that, (ηy, τ ) ∈ A. Summarising, (η, τ)
is such that (1) (η, τ) 6∈ A by (4.13), (2) η(y) = j by assumption, and (3) (ηy, τ ) = (ηy,j+1, τ) ∈ A,
these three facts imply that the pair (η, τ) belongs to the event ‘(y, j) is p-essential for A’. From
this we deduce that (η, τ) belongs to the event in the right-hand side of (4.12). This concludes the
proof.

We are now ready to state the main result of this section.

Theorem 4.6 (Differential inequality). Let G = (V,E) be an undirected locally-finite graph, sup-
pose that the initial particle configuration is distributed as a product of Poisson distributions with pa-
rameter µ, let K ⊂ V be a finite set, let H = (H(x))x∈K be an integer-valued vector, define the
event,A :=

{
(η, τ) ∈ H × I : MK,η,τ (x) ≥ H(x)

}
. Then, for any λ ∈ (0,∞),

− ∂

∂λ
Pλ,µ

(
A
)
≤ 1

λ(1 + λ)

∂

∂µ
Pλ,µ

(
A
)
. (4.16)

Proof. Using Proposition 4.3 for the first step, (4.12) for the second step, Remark 3.1 for the third step,
the fact that for Poisson distributions ν ′>k = νk for the fourth step, Theorem 3.2 for the fifth and last
step, we obtain that,

− ∂

∂λ
Pλ,µ

(
A
)

=
1

λ(1 + λ)

∑
y∈K

∞∑
j=0

Pλ,µ
(
{(y,MK(y)) is s-sessential} ∩ {η(y) = j} ∩ {Sy,MK(y) > 0}

)
≤ 1

λ(1 + λ)

∑
y∈K

∞∑
j=0

Pλ,µ
(
{(y, j) is p-essential} ∩ {η(y) = j}

)
=

1

λ(1 + λ)

∑
y∈K

∞∑
j=0

Pλ,µ
(
{(y, j) is p-essential}

)
νj(µ)

=
1

λ(1 + λ)

∑
y∈K

∞∑
j=0

Pλ,µ
(
{(y, j) is p-essential}

)
ν ′>j(µ)

=
1

λ(1 + λ)

∂

∂µ
Pλ,µ

(
A
)
.

This concludes the proof.
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5 Proof of Theorems 1.1 and 1.2

Recall the definition of the curve Cλ,µ which was provided in (1.2). We will start with the proof of
Theorem 1.2.

Proof of Theorem 1.2. Consider any eventA satisfying the assumptions of Theorem 3.2. Let (λ, µ) ∈
(0,∞) × (0,∞) be an arbitrary point in the phase diagram, take any arbitrary point (x, y) ∈ Cλ,µ,
we assume that x > λ (when x = λ, the result is already known from [9]). Let (X(t), Y (t))t∈[λ,∞)

be a curve such that X(0) := λ, Y (0) := µ, and for any t ∈ [λ,∞),{
X(t) := t,

Y (t) := s(t− λ) + µ,

where s ∈ R is such that there exists a positive T ∈ R such that X(T ) = x, Y (T ) = y. In other
words, (X(t), Y (t)) is a semi-line in R2 with slope s starting from (λ, µ) ∈ R2, where s is chosen
in such a way that X(T ) = x, Y (T ) = y for some positive T ∈ R. Note that it is necessarily the
case that s ∈ [ 1

λ(1+λ)
,∞) because of our assumptions. From the fundamental theorem of calculus

we deduce that,

Px,y(A) = Pλ,µ(A) +

∫ x

λ

dt ∇PX(t),Y (t)(A) ·
(
∂tX(t), ∂tY (t)

)
=

= Pλ,µ(A) +

∫ x

λ

dt
(
∂λPλ,µ(A)

∣∣
λ=t,µ=Y (t)

+ s ∂µPλ, µ(A)
∣∣
λ=t,µ=Y (t)

)
≥ Pλ,µ(A) +

∫ x

λ

dt 0

≥ Pλ,µ(A),

where for the first inequality we used Theorem 4.6 and the fact that s ≥ 1
λ(1+λ)

≥ 1
t(1+t)

for any
t ≥ 0. This concludes the proof.

We now provide a more general definition of critical density,

∀λ ∈ [0,∞) ζc(λ) := inf
{
µ ∈ R≥0 : Pλ,µ(m(o) =∞) > 0

}
. (5.1)

By monotonicity, the random variable mη,τ (o), which was introduced in Section 2, is well defined for
every infinite graphG. Note that, whenever Lemma 2.3 holds, ζc(λ) = µc(λ). From now on we will say
that ARW fixates if m(o) <∞ and that it is active otherwise. By Lemma 2.3, such a notion of activity
and fixation reduces to the one which has been introduced in Section 1 if the graph is vertex-transitive.
The next proposition is an immediate consequence of Theorem 1.2.

Proposition 5.1. For any (λ, µ) ∈ (0,∞)× (0,∞), (λ′, µ′) ∈ Cλ,µ, we have that,

Pλ,µ(ARW active) ≤ Pλ′,µ′(ARW active).

Proof. Define BL := {x ∈ V : d(x, o) ≤ L} as the ball of radius L centred at the origin, where
d(·, ·) is the graph distance, and o ∈ V is the origin, let H ∈ N be arbitrary, define the event
AL,H := {MBL(o) > H}. Hence, from Theorem 1.2 we deduce that, for any L,H ∈ N,

Pλ,µ(AL,H) ≤ Pλ′,µ′(AL,H). (5.2)
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Thus,

Pλ,µ(ARW active) = lim
H→∞

lim
L→∞

Pλ,µ(AL,H) ≤ lim
H→∞

lim
L→∞

Pλ′,µ′(AL,H) = Pλ′,µ′(ARW active),

(5.3)
concluding the proof.

5.1 Proof of Theorem 1.1

Proof. In the whole proof we use the fact that it is known from [13] that on vertex-transitive graphs the
critical density is finite for any λ ∈ [0,∞) (and, more precisely, it is at most one). We start with the
proof of (ii). We use an argument by contradiction. Consider an arbitrary λ ∈ (0,∞) and suppose
that,

ϕ(λ) := lim sup
δ→0+

ζc(λ+ δ)− ζc(λ)

δ
>

1

λ(1 + λ)
. (5.4)

Note that from (5.4) it follows that we can find a small enough ∆ > 0 such that there exists an infinite
sequence (δn)n∈N convergent to zero with n such that, for any large enough n,

ζc(λ+ δn) ≥ ζc(λ) + δn(
1

λ(1 + λ)
+ ∆). (5.5)

The sequence (δn)n∈N and the value ∆ > 0 will now be kept fixed. Thus, for any ε > 0 and
t ∈ [λ,∞) define, {

X(t) := t,

Yε(t) := ζc(λ) + ε+ 1
λ(1+λ)

(t− λ).

From Proposition 5.1 and from the definition of the critical density, we deduce that for any ε > 0,
∀t ∈ [λ,∞), ζc(t) ≤ Yε(t), from which we deduce that,

∀ε > 0, ∀n ∈ N, ζc(λ+ δn) ≤ Yε(λ+ δn) = ζc(λ) + ε + δn
1

λ(1 + λ)
.

This contradicts (5.5) and concludes the proof of (ii) for δ → 0+. Note that the proof of (ii) for δ → 0−

is analogous, hence the proof of (ii) is concluded. We now prove (i). We will use the fact that, by [9],

ζc(λ) is non decreasing w.r. to λ. (5.6)

Let λ∗ ∈ (0,∞) be an arbitrary point, define µ1 := limλ→λ−∗ ζc(λ) and µ2 := limλ→λ+∗ ζc(λ).
These limits are well defined because of (5.6). Suppose that µ1 6= µ2. We will look for a contradiction.
First note that, by (5.6), it can only be that µ1 < µ2. Let ε > 0 be arbitrary, consider the following
curve, for t ∈ [λ− ε,∞), {

X(t) := t,

Yε(t) := µ1 + ε+ (t− λ+ ε) 1
λ(1+λ)

By definition of critical particle density, by our assumptions and by (5.6), we deduce that ARW with
sleeping rate λ − ε and particle density µ1 + ε is active with some positive probability pε > 0. By
Proposition 5.1, ARW with sleeping rate t and particle density Yε(t) is active with probability at least
pε > 0 for any t ≥ λ − ε. In particular, by choosing t = λ + ε, we deduce that ARW with sleeping
rate λ + ε and particle density Yε(λ + ε) is active with probability at least pε > 0. This holds true for
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any ε > 0. However, note that if ε is small enough, then Yε(λ + ε) < µ2. Thus, we concluded that
ARW with sleeping rate λ+ ε and particle density strictly below µ2 is active. By by (5.6), this violates
the definition of critical density and leads to the desired contradiction. Thus, we proved that ζc(λ) is a
continuous function of λ at λ = λ∗. Since λ∗ was an arbitrary point in (0,∞), we proved that ζc(λ)
is a continuous function of λ in (0,∞).

5.2 Extensions

While the assumption that the initial number of particles at any vertex has Poisson distribution indepen-
dently is necessary for our main theorem, the assumptions that all the particles at time zero are active
and that the graph is vertex-transitive are not. In this section we provide a more general formulation of
our main theorem.

We represent the initial particle configuration as a pair, (η, ϕ) ∈ NV×{0, 1}V ,where η(x) represents
the initial number of particles in x ∈ V (these might be of type A or S); moreover, if ϕ(x) = 1, then
all the particles which start from x are of type S, while if ϕ(x) = 0, then all the particles which start
from x are of type S. The definition of the model remains the same as before, namely A-particles
perform a continuous time simple random walk, they turn into the S-state with rate λ and, whenever
a A-particle visits a vertex where one or more than one S-particles are located, such S-particles turn
into the A-state immediately and simultaneously. It follows from this definition that the particles located
on any vertex are either all of type A or all of type S almost surely. We define the activity function,
ξ ∈ [0, 1]V , and, for any x ∈ V , we assume that ϕ(x) is an independent Bernoulli variable with
parameter ξ(x), and that η(x) has Poisson distribution with parameter µ ∈ [0,∞) independently.
The Diaconis-Futon representation can be adapted to this setting, Lemma 2.1,holds as well, Lemma
2.2 can be adapted, the critical density (5.1) is well defined, and the results presented in the previous
sections do not require the assumptions that all the particles at time zero are active, as long as the
activity function ξ does not depend on the parameters µ and λ. When the activity function satisfies
ξ = δx,o, and, additionally, λ = 0, such a setting corresponds to the Frog model [8].

Our general theorem states a dichotomy: either (a): ζc(λ) = ∞ for any λ ∈ (0,∞), or (b): ζc =
ζc(λ) is finite and continuous in the whole interval (0,∞) and, moreover, a general upper bound on
its slope (corresponding to the point (ii) of the theorem) also holds.

Theorem 5.2. Let G = (V,E) be an arbitrary undirected infinite locally-finite graph, suppose that
the initial number of particles per vertex has independent Poisson distribution with parameter µ, let
ξ ∈ [0, 1]V be an arbitrary activity function. Then, either ζc(λ) = ∞ for any λ ∈ (0,∞), or the
properties (i) and (ii) below hold:

(i) ζc(λ) is a finite continuous function of λ in (0,∞),

(ii) for any λ ∈ (0,∞), lim sup
δ→0

ζc(λ+δ)−ζc(λ)
δ

≤ 1
λ(1+λ)

.

In particular, our theorem implies that, if the critical density is finite for a – even arbitrarily small (but
positive) – value of λ, then it is finite for any – even arbitrarily large – value of λ ∈ (0,∞). As far as
we know, proving the finiteness of the critical density is a non-trivial open problem when the activity
function satisfies ξ = δo,x and the graph G is non-amenable, a solution to this problem has been
provided in the special case of trees and λ = 0, corresponding to the Frog model [8]. Instead, when
the activity function is identically one, it is easy to deduce that the critical density is finite for any value
of λ ∈ (0,∞) at least on every graph with bounded degree by using the technique of ghost walks
[13].
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Proof of Theorem 5.2. Fix an arbitrary activity function ξ ∈ [0, 1]V and suppose that the first claim in
the theorem does not hold, namely there exists λ′ ∈ (0,∞) such that ζc(λ′) < ∞. Then, the ARW
model with particle density µ = ζc(λ

′) + ε and deactivation rate λ′ is active with some probability
pε > 0. By Proposition 5.1, this implies that for any (λ′′, µ′) ∈ Cλ′,ζc(λ′)+ε, the activated random walk
is active with probability at least pε, namely ζc(λ′′) < ∞. By monotonicity, (5.6), we deduce that the
critical density is finite for any for any λ′′ ∈ [0,∞). The proof of (i) and (ii) is now the same as the
proof of Theorem 1.1, where finiteness is used. This concludes the proof.
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