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Sparse optimal control of a phase field system with singular
potentials arising in the modeling of tumor growth

Jürgen Sprekels, Fredi Tröltzsch

Abstract

In this paper, we study an optimal control problem for a nonlinear system of reaction-diffusion
equations that constitutes a simplified and relaxed version of a thermodynamically consistent
phase field model for tumor growth originally introduced in [13]. The model takes the effect of
chemotaxis into account but neglects velocity contributions. The unknown quantities of the gov-
erning state equations are the chemical potential, the (normalized) tumor fraction, and the nutrient
extra-cellular water concentration. The equation governing the evolution of the tumor fraction is
dominated by the variational derivative of a double-well potential which may be of singular (e.g.,
logarithmic) type. In contrast to the recent paper [10] on the same system, we consider in this
paper sparsity effects, which means that the cost functional contains a nondifferentiable (but con-
vex) contribution like the L1−norm. For such problems, we derive first-order necessary optimality
conditions and conditions for directional sparsity, both with respect to space and time, where the
latter case is of particular interest for practical medical applications in which the control variables
are given by the administration of cytotoxic drugs or by the supply of nutrients. In addition to these
results, we prove that the corresponding control-to-state operator is twice continuously differen-
tiable between suitable Banach spaces, using the implicit function theorem. This result, which
complements and sharpens a differentiability result derived in [10], constitutes a prerequisite for
a future derivation of second-order sufficient optimality conditions.

1 Introduction

Let Ω ⊂ R3 denote some open, bounded and connected set having a smooth boundary Γ = ∂Ω and
unit outward normal n. We denote by ∂n the outward normal derivative to Γ. Moreover, we fix some
final time T > 0 and introduce for every t ∈ (0, T ] the sets Qt := Ω× (0, t) and Σt := Γ× (0, t),
where we put, for the sake of brevity, Q := QT and Σ := ΣT . We then consider the following optimal
control problem:

(CP) Minimize the cost functional

J((µ, ϕ, σ),u) :=
β1

2

∫
Q

|ϕ− ϕ̂Q|2 +
β2

2

∫
Ω

|ϕ(T )− ϕ̂Ω|2 +
ν

2

∫
Q

|u|2 + κ g(u) , (1.1)
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J. Sprekels, F. Tröltzsch 2

subject to the state system

α∂tµ+ ∂tϕ−∆µ = (Pσ − A− u1)h(ϕ) in Q , (1.2)

β∂tϕ−∆ϕ+ F ′(ϕ) = µ+ χσ in Q , (1.3)

∂tσ −∆σ = −χ∆ϕ+B(σs − σ)− E σh(ϕ) + u2 in Q , (1.4)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ , (1.5)

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω , (1.6)

and to the control constraint
u = (u1, u2) ∈ Uad . (1.7)

Here, the constants β1, β2 are nonnegative, while ν and κ are positive. Moreover, ϕ̂Q and ϕ̂Ω are
given target functions, and g : U → [0,+∞) is a nonnegative and convex, but not necessarily
differentiable, functional on the control space

U := L∞(Q)2. (1.8)

Moreover, Uad is a suitable bounded, closed and convex subset of U. Since we are interested in
sparse controls in this note, typical (nondifferentiable) examples for the functional g are given by

g(u) = ‖u‖L1(Q) =

∫
Q

|u(x, t)| dx dt, (1.9)

g(u) =

∫ T

0

(∫
Ω

|u(x, t)|2 dx
)1/2

dt, (1.10)

g(u) =

∫
Ω

(∫ T

0

|u(x, t)|2 dt
)1/2

dx. (1.11)

The functionals in (1.10) and (1.11) are associated with the notion of directional sparsity (with respect
to t and to x, respectively). Since we have two control variables in our system, we could “mix” the
sparsity directions by taking different ones for u1 and u2; also, different weights could be given to the
directions. For the sake of avoiding unnecessary technicalities, we restrict ourselves to the simplest
case here.

The state system (1.2)–(1.6) constitutes a simplified and relaxed version of a thermodynamically con-
sistent phase field model for tumor growth that includes the effect of chemotaxis and was originally in-
troduced in [13]. Indeed, the velocity contributions in [13] were neglected, and the two relaxation terms
α∂tµ are β∂tϕ have been added. We note that a different thermodynamically consistent model was
introduced in [14] and studied mathematically in [5–8], where [8] focused on optimal control problems.
In this connection, we also refer to [9].

In all of the abovementioned models, the unknowns µ, ϕ, σ stand for the chemical potential, the nor-
malized tumor fraction, and the nutrient extra-cellular water concentration, in this order. The quantity
σ is usually normalized between 0 and 1, where these values model nutrient-poor and nutrient-rich
cases. The variable ϕ plays the role of an order parameter and is usually taken between the values
−1 and +1, which represent the healthy cell case and the tumor phase, respectively. The capital
letters A,B,E, P, χ denote positive coefficients that stand for the apoptosis rate, nutrient supply
rate, nutrient consumption rate, and chemotaxis coefficient, in this order. In addition, let us point out
that the contributions χσ and χ∆ϕ model pure chemotaxis. Furthermore, the nonlinear function h
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Sparse optimal control for phase field tumor growth model 3

has been considered in [13] as an interpolation function satisfying h(−1) = 0 and h(1) = 1, so that
the mechanisms modeled by the terms (Pσ − A − u1)h(ϕ) and Eσh(ϕ) are switched off in the
healthy tissue (which corresponds to ϕ = −1) and are fully active in the tumorous case ϕ = 1. More-
over, the term σs is a nonnegative constant that models the nutrient concentration in a pre-existing
vasculature.

Very important for the evolution of the state system is the nonlinearity F , which is assumed to be a
double-well potential. Typical examples are given by the regular and logarithmic potentials, which are
given, in this order, by

Freg(r) =
1

4

(
1− r2

)2
for r ∈ R, (1.12)

Flog(r) = (1 + r) ln(1 + r) + (1− r) ln(1− r)− kr2 for r ∈ (−1, 1), (1.13)

where k > 1 so that Flog is nonconvex. Observe that Flog is very relevant in the applications, where
F ′log(r) becomes unbounded as r → ±1.

In this paper, we work with two source controls that act in the phase equation and in the nutrient equa-
tion, respectively. The control variable u1 in the phase equation models the application of a cytotoxic
drug into the system; it is multiplied by h(ϕ) in order to have the action only in the spatial region where
the tumor cells are located. On the other hand, the control u2 can model either an external medication
or some nutrient supply. In this connection, sparsity of the control is highly desirable: indeed, if a dis-
tributed cytotoxic drug is to be administered, this should be done only where it does not harm healthy
tissue, which calls for directional sparsity with respect to space; on the other hand, and even more
importantly, cytotoxic drugs should only be applied for very short periods of time, in order to prevent
the tumor cells from developing a resistance against the drug. This, of course, calls for a directional
sparsity with respect to time.

Optimal control problems for the system (1.2)–(1.6) have recently been studied in [10], where the
cost functional, while containing some additional quadratic terms, did not have a nondifferentiable
contribution, i. e., we had g ≡ 0. However, besides existence of optimal controls, it was shown in
[10] that the control-to-state operator is Fréchet differentiable between suitable function spaces, and
first-order necessary optimality conditions in terms of the adjoint state variables were derived. The
Fréchet differentiability was shown “directly” without using the implicit function theorem, and therefore
the existence of higher-order derivatives was not proved. Note that the existence of second-order
derivatives forms a prerequisite for deriving second-order sufficient optimality conditions and efficient
numerical techniques. To pave the way for such an analysis (which shall not be given in this paper),
we have decided to include a proof of the Fréchet differentiability of the control-to-state operator via
the implicit function theorem.

Another novelty of this paper is the discussion of optimal controls that are sparse with respect to the
time. Since the seminal paper [21], sparse optimal controls have been discussed extensively in the
literature. Directional sparsity was introduced in [16,17] and extended to semilinear parabolic optimal
control problems in [2]. Sparse optimal controls for reaction-diffusion equations were investigated in
[3,4].

Although the main techniques of the analysis for sparse controls are known from the abovementioned
papers, a discussion of sparsity for the control of the system of reaction-diffusion equations (1.2)–(1.6)
seems to be worth investigating in view of its medical background. In this connection, temporal sparsity
is particularly interesting. It means that drugs are not needed in certain time periods. For the control
of the class of reaction-diffusion equations (1.2)–(1.6), the investigation of sparse controls is new.
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J. Sprekels, F. Tröltzsch 4

The paper is organized as follows: in the subsequent Section 2, we give the general setting of the prob-
lem, and recall known well-posedness results for the state system (1.2)–(1.6). Moreover, we employ
the implicit function theorem to show that the control-to-state is twice continuously Fréchet differen-
tiable between suitable Banach spaces, thereby sharpening the differentiability result of [10]. Section 3
then deals with first-order necessary optimality conditions for the problem (CP), and the final Section
4 brings a discussion of the sparsity of optimal controls.

Throughout this paper, we make repeated use of Hölder’s inequality, of the elementary Young’s in-
equality

a b ≤ γ|a|2 +
1

4γ
|b|2 ∀ a, b ∈ R, ∀ γ > 0, (1.14)

as well as the continuity of the embeddings H1(Ω) ⊂ Lp(Ω) for 1 ≤ p ≤ 6 and H2(Ω) ⊂ C0(Ω).
Notice that the latter embedding is also compact, while this holds true for the former embeddings only
if p < 6. Moreover, throughout the paper, for a Banach space X we denote by ‖ · ‖X the norm in
the spaceX or in a power of it, and by X∗ its dual space. The only exemption from this rule applies to
the norms of the Lp spaces and of their powers, which we often denote by ‖ · ‖p, for 1 ≤ p ≤ +∞.
As usual, for Banach spaces X and Y we introduce the linear space X ∩ Y which becomes a
Banach space when equipped with its natural norm ‖u‖X∩Y := ‖u‖X + ‖u‖Y , for u ∈ X ∩ Y .

2 General setting and properties of the state system

In this section, we introduce the general setting of our control problem and state some results on the
state system (1.2)–(1.6). To begin with, we recall the definition (1.8) of U and introduce the spaces

H := L2(Ω) , V := H1(Ω) , W0 := {v ∈ H2(Ω) : ∂nv = 0 on Γ}. (2.1)

By ( · , · ) we denote the standard inner product in H .

For the potential F , we generally assume:

(F1) F = F1+F2, where F1 : R→ [0,+∞] is convex and lower semicontinuous with F1(0) = 0.

(F2) There exists an interval (r−, r+) with −∞ ≤ r− < 0 < r+ ≤ +∞ such that the restriction
of F1 to (r−, r+) belongs to C4(r−, r+).

(F3) F2 ∈ C4(R), and F ′2 is globally Lipschitz continuous on R.

(F4) It holds limr→r± F
′(r) = ±∞.

It is worth noting that both (1.12) and (1.13) fit into this framework with the choices (r−, r+) = R and
(r−, r+) = (−1, 1), respectively, where in the latter case we extend Flog by Flog(±1) = 2 ln(2)−k
and Flog(r) = +∞ for r 6∈ [−1, 1].

For the initial data, we make the following assumptions:

(A1) ϕ0, µ0, σ0 ∈ W0, and r− < minx∈Ω ϕ0(x) ≤ maxx∈Ω ϕ0(x) < r+.

Notice that (A1) entails that F (ϕ0), F ′(ϕ0), F ′′(ϕ0) ∈ C0(Ω). This condition can be restrictive for
the case of singular potentials; for instance, in the case of the logarithmic potential Flog we have
r± = ±1, so that (A1) excludes the pure phases (tumor and healthy tissue) as initial data.

For the other data and the target functions, we postulate:
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Sparse optimal control for phase field tumor growth model 5

(A2) h ∈ C3(R) ∩W 3,∞(R), and h is positive on (r−, r+).

(A3) α, β, χ are positive constants, while P,A,B,E, σs are nonnegative constants.

(A4) β1, β2 are nonnegative, and ν, κ are positive.

(A5) ϕQ ∈ L2(Q) and ϕΩ ∈ L2(Ω).

Observe that (A2) entails that h, h′, h′′ are Lipschitz continuous on R. We now assume for the set of
admissible controls:

(A6) Uad = {u = (u1, u2) ∈ U : ui ≤ ui ≤ ûi a.e. in Q, i = 1, 2} ,
where ui, ûi ∈ L∞(Q) satisfy ui ≤ ûi a.e. in Q, i = 1, 2.

Notice that Uad is a nonempty, closed and convex subset of U = L∞(Q)2. In the following, it will
sometimes be convenient to work with a bounded open superset of Uad. We therefore once and for all
fix some R > 0 such that

UR :=
{
u = (u1, u2) ∈ L∞(Q)2 : ‖u‖∞ < R

}
⊃ Uad. (2.2)

The following result concerning the wellposedness of the state system has been shown in [10, Thm. 2.2].

Theorem 2.1. Suppose that the conditions (F1)–(F4), (A1)–(A3), (A6), and (2.2) are fulfilled. Then
the state system (1.2)–(1.6) has for every u = (u1, u2) ∈ UR a unique solution (µ, ϕ, σ) with the
regularity

µ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0) ∩ C0(Q), (2.3)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W0) ∩ C0(Q), (2.4)

σ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0) ∩ C0(Q). (2.5)

Moreover, there exists a constant K1 > 0, which depends on Ω, T, R, α, β and the data of the
system, but not on the choice of u ∈ UR, such that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L2(0,T ;W0)∩C0(Q)

+ ‖µ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0)∩C0(Q)

+ ‖σ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0)∩C0(Q) ≤ K1 . (2.6)

In addition, there are constants r∗, r∗, which depend on Ω, T, R, α, β and the data of the system, but
not on the choice of u ∈ UR, such that

r− < r∗ ≤ ϕ(x, t) ≤ r∗ < r+ for all (x, t) ∈ Q. (2.7)

Finally, there is some constant K2 > 0, which depends on Ω, T, R, α, β and the data of the system,
but not on the choice of u ∈ UR, such that

max
i=0,1,2,3

∥∥h(i)(ϕ)
∥∥
C0(Q)

+ max
i=0,1,2,3,4

∥∥F (i)(ϕ)
∥∥
C0(Q)

≤ K2 . (2.8)

Remark 2.2. If the initial data µ0, ϕ0, σ0 ∈ W0 also belong to the Sobolev–Slobodeckii space
W 5/3,6(Ω), then the solution enjoys additional regularity.
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Indeed, by the above bounds, we have µ+χσ−F ′(ϕ) ∈ L6(Q), in particular. We thus may employ
the maximal regularity result from [11, Thm. 2.1] with p = 6 to the parabolic initial-boundary value
problem satisfied by ϕ, which shows that ϕ ∈ W 1,6(0, T ;L6(Ω)) ∩ L6(0, T ;W 2,6(Ω)). But then
(Pσ−A−u1)h(ϕ)−∂tϕ ∈ L6(Q), and [11, Thm. 2.1] implies that also µ ∈ W 1,6(0, T ;L6(Ω))∩
L6(0, T ;W 2,6(Ω)). Finally, we also have that u2 + B(σs − σ) − Eσh(ϕ) − χ∆ϕ ∈ L6(Q), and
thus σ ∈ W 1,6(0, T ;L6(Ω)) ∩ L6(0, T ;W 2,6(Ω)), again by virtue of [11, Thm. 2.1].

Remark 2.3. The separation condition (2.7) is particularly important for the case of singular potentials
such as Flog. Indeed, it guarantees that the phase variable always stays away from the critical values
r−, r+ that usually correspond to the pure phases. In this way, the singularity is no longer an obstacle
for the analysis; however, the case of pure phases is then excluded, which is not desirable from the
viewpoint of medical applications.

Owing to Theorem 2.1, the control-to-state operator S : u = (u1, u2) 7→ (µ, ϕ, σ) is well defined
as a mapping between U = L∞(Q)2 and the Banach space specified by the regularity results (2.3)–
(2.5).

We now discuss the Fréchet differentiability of S, considered as a mapping between suitable Banach
spaces. We remark that in [10, Thm. 2.6] Fréchet differentiability was established betweenL2(Q)2 and
(C0([0, T ];H) ∩ L2(0, T ;V ))×(H1(0, T ;H)∩L∞(0, T ;V ))×(C0([0, T ];H) ∩ L2(0, T ;V )).
The proof was a direct one that did not use the implicit function theorem. The result was strong enough
to derive meaningful first-order necessary conditions, but it did not admit the derivation of second-order
sufficient conditions, since these require the control-to-state operator to be twice continuously Fréchet
differentiable. To show such a result, it is more favorable to employ the implicit function theorem, be-
cause, if applicable, it yields that the control-to-state operator automatically inherits the differentiability
order from that of the involved nonlinearities. For this, some functional analytic preparations are in
order. We first define the linear spaces

X := X ×X ×X, where

X := H1(0, T ;H) ∩ C([0, T ];V ) ∩ L2(0, T ;W0) ∩ C0(Q), (2.9)

which are Banach spaces when endowed with their natural norms. Next, we introduce the linear space

Y :=
{

(µ, ϕ, σ) ∈ X : α∂tµ+ ∂tϕ−∆µ ∈ L∞(Q), β∂tϕ−∆ϕ− µ ∈ L∞(Q),

∂tσ −∆σ + χ∆ϕ ∈ L∞(Q)
}
, (2.10)

which becomes a Banach space when endowed with the norm

‖(µ, ϕ, σ)‖Y := ‖(µ, ϕ, σ)‖X + ‖α∂tµ+ ∂tϕ−∆µ‖L∞(Q) + ‖β∂tϕ−∆ϕ− µ‖L∞(Q)

+ ‖∂tσ −∆σ + χ∆ϕ‖L∞(Q) . (2.11)

Finally, we fix constants r̃−, r̃+ such that

r− < r̃− < r∗ ≤ r∗ < r̃+ < r+, (2.12)

with the constants introduced in (F2) and (2.7). We then consider the set

Φ :=
{
ϕ, µ, σ) ∈ Y : r̃− < ϕ(x, t) < r̃+ for all (x, t) ∈ Q

}
, (2.13)

which is obviously an open subset of the space Y.
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Sparse optimal control for phase field tumor growth model 7

We first prove an auxiliary result for the linear initial-boundary value problem

α∂tµ+ ∂tϕ−∆µ = λ1 [Pσh(ϕ) + (Pσ − A− u1)h′(ϕ)ϕ]− λ2k1h(ϕ) + λ3f1 in Q,
(2.14)

β∂tϕ−∆ϕ− µ = λ1 [χσ − F ′′(ϕ)ϕ] + λ3f2 in Q, (2.15)

∂tσ −∆σ + χ∆ϕ = λ1 [−Bσ − Eσh(ϕ)− Eσh′(ϕ)ϕ] + λ2k2 + λ3f3 in Q, (2.16)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ, (2.17)

µ(0) = λ4µ0, ϕ(0) = λ4ϕ0, σ(0) = λ4σ0, in Ω, (2.18)

which for λ1 = λ2 = 1 and λ3 = λ4 = 0 coincides with the linearization of the state equation at
((u1, u2), (µ, ϕ, σ)). We will need this slightly more general version later for the application of the
implicit function theorem.

Lemma 2.4. Suppose that λ1, λ2, λ3, λ4 ∈ {0, 1} are given and that the assumptions (F1)–(F4),
(A1)–(A3), (A6), and (2.2) are fulfilled. Moreover, let ((u1, u2), (µ, ϕ, σ)) ∈ UR × Φ be arbitrary.
Then the linear initial-boundary value problem (2.14)–(2.18) has for every (k1, k2) ∈ L∞(Q)2 and
every (f1, f2, f3) ∈ L∞(Q)× (H1(0, T ;H) ∩ L∞(Q))× L∞(Q) a unique solution (µ, ϕ, σ) ∈
Y. Moreover, the linear mapping

((k1, k2), (f1, f2, f3), (µ0, ϕ0, σ0)) 7→ (µ, ϕ, σ)

is continuous from L∞(Q)2 ×
(
L∞(Q)× (H1(0, T ;H) ∩ L∞(Q))× L∞(Q)

)
×W 3

0 into Y.

Proof. We use a standard Faedo–Galerkin approximation. To this end, let {λk}k∈N and {ek}k∈N
denote the eigenvalues and associated eigenfunctions of the eigenvalue problem

−∆y + y = λy in Ω, ∂ny = 0 on Γ,

where the latter are normalized by ‖ek‖2 = 1. Then {ek}k∈N forms a complete orthonormal system
in H which is also dense in V . We put Vn := span {e1, . . . , en}, n ∈ N, noting that

⋃
n∈N Vn is

dense in V . We look for functions of the form

µn(x, t) =
n∑
k=1

u
(n)
k (t)ek(x), ϕn(x, t) =

n∑
k=1

v
(n)
k (t)ek(x), σn(x, t) =

n∑
k=1

w
(n)
k (t)ek(x),

that satisfy the system

(α∂tµn(t), v) + (∂tϕn(t), v) + (∇µn(t),∇v) = (zn1(t), v) ∀ v ∈ Vn, for a.e. t ∈ (0, T ),
(2.19)

(β∂tϕn(t), v) + (∇ϕn(t),∇v)− (µn(t), v) = (zn2(t), v) ∀ v ∈ Vn, for a.e. t ∈ (0, T ),
(2.20)

(∂tσn(t), v) + (∇σn(t),∇v)− χ(∇ϕn(t),∇v) = (zn3(t), v) ∀ v ∈ Vn, for a.e. t ∈ (0, T ),
(2.21)

µn(0) = λ4Pnµ0, ϕn(0) = λ4Pnϕ0, σn(0) = λ4Pnσ0, (2.22)

where Pn denotes the H1(Ω)–orthogonal projection onto Vn, and where

zn1 = λ1 [Pσnh(ϕ) + (Pσ − A− u1)h′(ϕ)ϕn]− λ2k1h(ϕ) + λ3f1, (2.23)

zn2 = λ1 [χσn − F ′′(ϕ)ϕn] + λ3f2, (2.24)

zn3 = λ1 [−Bσn − Eσnh(ϕ)− Eσh′(ϕ)ϕn] + λ2k2 + λ3f3 . (2.25)
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J. Sprekels, F. Tröltzsch 8

Insertion of v = ek, for k ∈ N, in (2.19)–(2.21), and substitution for the second summand in (2.19) by
means of (2.20), then lead to an initial value problem for an explicit linear system of ordinary differential
equations for the unknowns u

(n)
1 , . . . , u

(n)
n , v

(n)
1 , . . . , v

(n)
n , w

(n)
1 , . . . , w(n)

n , in which all of the coeffi-
cient functions belong to L∞(0, T ). Hence, by virtue of Carathéodory’s theorem, there exists a unique
solution in W 1,∞(0, T ;R3n) that specifies the unique solution (µn, ϕn, σn) ∈ W 1,∞(0, T ;H2(Ω))3

to the system (2.19)–(2.22), for n ∈ N.

We now derive some a priori estimates for the Faedo–Galerkin approximations. In this procedure,
Ci > 0, i ∈ N, will denote constants that are independent of n ∈ N and the data ((f1, f2, f3),
(µ0, ϕ0, σ0)), while the constant M > 0 is given by

M :=λ2 ‖(k1, k2)‖L∞(Q)2 + λ3 ‖(f1, f2, f3)‖L∞(Q)×(H1(0,T ;H)∩L∞(Q))×L∞(Q)

+ λ4 ‖(µ0, ϕ0, σ0)‖H2(Ω)3 . (2.26)

Moreover, (µ, ϕ, σ) ∈ Φ, and thus it follows that σ, h(ϕ), h′(ϕ), F ′′(ϕ) ∈ C0(Q). Hence, there is
some constant C1 > 0 such that, for a.e. (x, t) ∈ Q and for all n ∈ N,(

|zn1|+ |zn2|+ |zn3|
)
(x, t) ≤ C1

(
λ1(|ϕn|+ |σn|)(x, t) + λ2(|k1|+ |k2|)(x, t) (2.27)

+ λ3(|f1|+ |f2|+ |f3|)(x, t)
)

≤ C1

(
λ1(|ϕn|+ |σn|)(x, t) + M

)
. (2.28)

FIRST ESTIMATE. We insert v = µn(t) in (2.19), v = ∂tϕn(t) in (2.20), and v = σn(t) in (2.21),
and add the resulting equations, whence a cancellation of two terms occurs. Then, in order to re-
cover the full H1(Ω)−norm below, we add to both sides of the resulting equation the same term
1
2
d
dt
‖ϕn(t)‖2

2 =(ϕn(t), ∂tϕn(t)). Integration over [0, τ ], where τ ∈ (0, T ], then yields the identity

1

2

(
α‖µn(τ)‖2

2 + ‖ϕn(τ)‖2
V + ‖σn(τ)‖2

2

)
+

∫ τ

0

∫
Ω

(
|∇µn|2 + |∇σn|2

)
+ β

∫ τ

0

∫
Ω

|∂tϕn|2

=
λ2

4

2

(
α‖Pnµ0‖2

2 + ‖Pnϕ0‖2
V + ‖Pnσ0‖2

2

)
+

∫ τ

0

(µn(t), zn1(t)) dt +

∫ τ

0

(σn(t), zn3(t)) dt

+

∫ τ

0

(∂tϕn(t), zn2(t) + ϕn(t)) dt + χ
∫ τ

0

(∇ϕn(t),∇σn(t)) dt =:
5∑
i=1

Ji, (2.29)

with obvious notation. We estimate the terms on the right-hand side individually. First observe that
‖y‖V ≤ ‖y‖H2(Ω) for all y ∈ H2(Ω), and thus, for all n ∈ N,

|J1| ≤ C2 λ
2
4 ‖(Pnµ0, Pnϕ0, Pnσ0)‖2

V×V×V ≤ C2 λ
2
4 ‖(µ0, ϕ0, σ0)‖2

V×V×V ≤ C2M
2. (2.30)

Moreover, by virtue of (2.28) and Young’s inequality,

|J2|+ |J3| ≤ C3M
2 + C4

∫ τ

0

∫
Ω

(
|µn|2 + |ϕn|2 + |σn|2

)
. (2.31)

Likewise,

|J4| ≤
β

2

∫ τ

0

∫
Ω

|∂tϕn|2 +
C5

β
M2 +

C6

β

∫ τ

0

∫
Ω

(
|µn|2 + |ϕn|2 + |σn|2

)
. (2.32)
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Finally, we have that

|J5| ≤
1

2

∫ τ

0

∫
Ω

|∇σn|2 +
χ2

2

∫ τ

0

∫
Ω

|∇ϕn|2. (2.33)

Combining the estimates (2.29)–(2.33), where we subtract the first integral in (2.32) from the associ-
ated term on the left-hand side of (2.29), we have shown that

1

2

(
α‖µn(τ)‖2

2 + ‖ϕn(τ)‖2
V + ‖σn(τ)‖2

2

)
+

∫ τ

0

∫
Ω

(
|∇µn|2 +

1

2
|∇σn|2

)
+
β

2

∫ τ

0

∫
Ω

|∂tϕn|2

≤ C7M
2 + C8

∫ τ

0

(
‖µn(t)‖2

2 + ‖ϕn(t)‖2
V + ‖σn(t)‖2

2

)
dt .

Therefore, invoking Gronwall’s lemma, we conclude that, for all n ∈ N,

‖µn‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕn‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖σn‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C9M.
(2.34)

SECOND ESTIMATE. Next, we insert v = ∂tµn(t) in (2.19) and integrate over [0, τ ], where τ ∈
(0, T ], to obtain the identity

1

2
‖∇µn(τ)‖2

2 + α

∫ τ

0

‖∂tµn(t)‖2
2 dt

=
λ2

4

2
‖∇Pnµ0‖2

2 +

∫ τ

0

(∂tµn(t), zn1(t)) dt −
∫ τ

0

(∂tµn(t), ∂tϕn(t)) dt.

Applying Young’s inequality appropriately, where we make use of (2.28) and (2.34), we conclude the
estimate

‖µn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C10M. (2.35)

THIRD ESTIMATE. At this point, we insert v = −∆µn(t) in (2.19) and v = −∆ϕn(t) in (2.20), add,
and integrate over [0, τ ] where τ ∈ (0, T ]. We then obtain that

α

2
‖∇µn(τ)‖2

2 +
β

2
‖∇ϕn(τ)‖2

2 +

∫ τ

0

‖∆µn(t)‖2
2 dt +

∫ τ

0

‖∆ϕn(t)‖2
2 dt

=
αλ2

4

2
‖∇Pnµ0‖2

2 +
βλ2

4

2
‖∇Pnϕ0‖2

2 −
∫ τ

0

(∆µn(t), zn1(t)) dt

−
∫ τ

0

(∆ϕn(t), µn(t) + zn2(t)) dt ,

whence, using (2.28)–(2.35) and Young’s inequality,∫ T

0

(
‖∆µn(t)‖2

2 + ‖∆ϕn(t)‖2
2

)
dt ≤ C11M

2 ∀n ∈ N. (2.36)

At this point, we invoke a classical elliptic estimate (see, e.g., [20, Chap. 2, Thm. 5.1]): there is a
constant CΩ > 0, which only depends on Ω, such that, for every v ∈ H2(Ω),

‖v‖H2(Ω) ≤ CΩ

(
‖∆v‖L2(Ω) + ‖v‖H1(Ω) + ‖∂nv‖H1/2(Γ)

)
. (2.37)
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In view of the zero Neumann boundary condition satisfied by µn and ϕn, we thus conclude from (2.34),
(2.35), and (2.36), that

‖µn‖L2(0,T ;H2(Ω)) + ‖ϕn‖L2(0,T ;H2(Ω)) ≤ C12M ∀n ∈ N. (2.38)

With the estimate (2.38) at hand, we may (by first taking v = ∂tσn(t) in (2.21) and then v =
−∆σn(t)) infer by similar reasoning that also

‖σn‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω)) ≤ C13M ∀n ∈ N. (2.39)

At this point, we can conclude from standard weak and weak-star compactness arguments the ex-
istence of a triple (µ, ϕ, σ) such that, possibly only on a subsequence which is again indexed by
n,

µn → µ, ϕn → ϕ, σn → σ,

all weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)).

Standard arguments, which need no repetition here, then show that (µ, ϕ, σ) is a strong solution to
the system (2.14)–(2.18). Moreover, recalling (2.34)–(2.39), and invoking the weak sequential lower
semicontinuity of norms, we conclude that there is some C13 > 0 such that

‖(µ, ϕ, σ)‖(H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω)))3 ≤ C13M. (2.40)

Next, we claim that (µ, ϕ, σ) ∈ C0(Q)3 and that, with a suitable C14 > 0,

‖(µ, ϕ, σ)‖C0(Q)3 ≤ C14M. (2.41)

It is easy to argue for the solution component ϕ. Indeed, we have (cf. (2.15))

β∂tϕ−∆ϕ = µ+ λ1(χσ − F ′′(ϕ)ϕ) + λ3f2 =: g,

that is, ϕ solves a linear parabolic equation with zero Neumann boundary condition and with a right-
hand side g which, by virtue of the estimates shown above, is known to be bounded in L∞(0, T ;H)
by an expression of the form C15M . Moreover, we have ϕ0 ∈ W0. Therefore, we may invoke the
classical results from [19, Chap. 7] to conclude the validity of the claim for ϕ.

For the other solution components µ and σ, a similar argument is not yet possible, since the ex-
pressions ∂tϕ and ∆ϕ occurring in (2.14) and (2.16), respectively, are so far merely known to be
bounded in L2(Q). In order to prove the claim by the above argument also for µ and σ, we are now
going to show corresponding bounds for ∂tϕ and ∆ϕ in L∞(0, T ;H).

To this end, notice that

∂tg = ∂tµ+ λ1

(
χ∂tσ − F ′′(ϕ)∂tϕ− F ′′′(ϕ)∂tϕϕ

)
+ λ3∂tf2, (2.42)

where, owing to Hölder’s inequality, (2.8), and the continuity of the embedding V ⊂ L4(Ω),∫ T

0

∫
Ω

|F ′′′(ϕ)∂tϕϕ|2 ≤ K2
2

∫ T

0

‖∂tϕ(t)‖2
4 ‖ϕ(t)‖2

4 dt ≤ K2
2 ‖∂tϕ‖2

L2(0,T ;V ) ‖ϕ‖2
L∞(0,T ;V ).
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Therefore, invoking (2.6) and (2.40),

‖∂tg‖L2(Q) ≤ C16M. (2.43)

At this point, we consider the linear parabolic initial-boundary value problem

β∂tz −∆z = ∂tg in Q, (2.44)

∂nz = 0 on Σ, (2.45)

z(0) = β−1(∆ϕ0 + g(0)) in Ω, (2.46)

where g(0) = µ0 + λ1(χσ0 − F ′′(ϕ0)ϕ0) + λ3f2(0) ∈ L2(Ω). Since also ∂tg ∈ L2(Q), it follows
from a classical argument that the above system admits a unique weak solution z ∈ H1(0, T ;V ∗)∩
C([0, T ];H) ∩ L2(0, T ;V ), and since ∂nϕ0 = 0, it is easily checked that the function

w(x, t) := ϕ0(x) +

∫ t

0

z(x, s) ds for a.e. (x, t) ∈ Q

coincides with ϕ, that is, in particular, we have z = ∂tϕ. Moreover, standard estimates and (2.40),
(2.43) show that

‖∂tϕ‖H1(0,T ;V ∗)∩C([0,T ];H)∩L2(0,T ;V ) ≤ C17

(
‖∆ϕ0 + g(0)‖2 + ‖∂tg‖L2(Q)

)
≤ C18M. (2.47)

By comparison in (2.15), we then readily see that also

‖∆ϕ‖L∞(0,T ;H) ≤ C19M, (2.48)

and the elliptic estimate (2.37) shows that also

‖ϕ‖L∞(0,T ;H2(Ω)) ≤ C20M. (2.49)

Since we now have available the L∞(0, T ;H)−bounds for ∂tϕ and ∆ϕ, we can apply the classical
results from [19, Chap. 7] to the equations (2.14) and (2.16) to infer that µ, σ ∈ C0(Q) and that (2.41)
actually holds true. The above claim is thus shown.

It then immediately follows that (µ, ϕ, σ) ∈ Y, as well as

‖(µ, ϕ, σ)‖Y ≤ C21M.

With this, the existence of a solution with the asserted properties is shown. It remains to prove
the uniqueness. To this end, let (µi, ϕi, σi) ∈ Y, i = 1, 2, be two solutions to the system. Then
(µ, ϕ, σ) := (µ1, ϕ1, σ1)− (µ2, ϕ2, σ2) solves the system (2.14)–(2.18) with zero initial data, where
the terms λ2ki, i = 1, 2, and λ3fi, i = 1, 2, 3, on the right-hand sides do not occur. By the definition
of Y (recall (2.9) and (2.10)), and since (µ, ϕ, σ) ∈ Y, all of the generalized partial derivatives oc-
curring in (2.14)–(2.16) belong to L2(Q). Therefore, we may repeat – now for the continuous problem
– the a priori estimates performed for the Faedo–Galerkin approximations that led us to the estimate
(2.34). We then find analogous estimates for (µ, ϕ, σ), where this time the constant M from (2.26)
equals zero. Thus, (µ, ϕ, σ) = (0, 0, 0). With this, the uniqueness is shown, which finishes the proof
of the assertion.
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Remark 2.5. As it follows from the above proof, the solution component ϕ enjoys the additional
regularity ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W0).

With Lemma 2.4 shown, we are in a position to prepare for the application of the implicit function
theorem. For this purpose, let us consider two auxiliary linear initial-boundary value problems. The
first,

α∂tµ+ ∂tϕ−∆µ = f1 in Q, (2.50)

β∂tϕ−∆ϕ− µ = f2 in Q, (2.51)

∂tσ −∆σ + χ∆ϕ = f3 in Q, (2.52)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ, (2.53)

µ(0) = ϕ(0) = σ(0) = 0, in Ω, (2.54)

is obtained from (2.14)–(2.18) for λ1 = λ2 = λ4 = 0, λ3 = 1. Thanks to Lemma 2.4, this system has
for each (f1, f2, f3) ∈ L∞(Q)×

(
H1(0, T ;H)∩L∞(Q)

)
×L∞(Q) a unique solution (µ, ϕ, σ) ∈ Y,

and the associated linear mapping

G1 :
(
L∞(Q)×

(
H1(0, T ;H) ∩ L∞(Q)

)
× L∞(Q)

)
→ Y; (f1, f2, f3) 7→ (µ, ϕ, σ), (2.55)

is continuous. The second system reads

α∂tµ+ ∂tϕ−∆µ = 0 in Q, (2.56)

β∂tϕ−∆ϕ− µ = 0 in Q, (2.57)

∂tσ −∆σ + χ∆ϕ = 0 in Q, (2.58)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ, (2.59)

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0, in Ω. (2.60)

For each (µ0, ϕ0, σ0) ∈ W 3
0 , it also enjoys a unique solution (µ, ϕ, σ) ∈ Y, and the associated

mapping
G2 : W 3

0 → Y; (µ0, ϕ0, σ0) 7→ (µ, ϕ, σ), (2.61)

is linear and continuous as well.

In addition, we define on the open set A := (UR × Φ) ⊂ (U× Y) the nonlinear mapping

G3 : UR × Φ→
(
L∞(Q)×

(
H1(0, T ;H) ∩ L∞(Q)

)
× L∞(Q)

)
;

((u1, u2), (µ, ϕ, σ)) 7→ (f1, f2, f3), where

(f1, f2, f3) = ((Pσ − A− u1)h(ϕ), χ σ − F ′(ϕ), B(σs − σ)− Eσh(ϕ) + u2) . (2.62)

The solution (µ, ϕ, σ) to the nonlinear state equation (1.2)–(1.6) is the sum of the solution to the
system (2.50)–(2.54), where (f1, f2, f3) is chosen as above (with (µ, ϕ, σ) considered as known),
and of the solution to the system (2.56)–(2.60). Therefore, the state vector (µ, ϕ, σ) associated with
the control vector (u1, u2) is the unique solution to the nonlinear equation

(µ, ϕ, σ) = G1

(
G3((u1, u2), (µ, ϕ, σ)

)
+ G2(µ0, ϕ0, σ0). (2.63)

Let us now define the nonlinear mapping F : A→ Y,

F((u1, u2), (µ, ϕ, σ)) = G1(G3((u1, u2), (µ, ϕ, σ)) + G2(µ0, ϕ0, σ0)− (µ, ϕ, σ). (2.64)
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With F, the state equation can be shortly written as

F((u1, u2)(µ, ϕ, σ)) = (0, 0, 0). (2.65)

This equation just means that (µ, ϕ, σ) is a solution to the state system (1.2)–(1.6) such that ((u1, u2),
(µ, ϕ, σ)) ∈ A. From Theorem 2.1 we know that such a solution exists for every (u1, u2) ∈ UR. A
fortiori, any such solution automatically enjoys the separation property (2.7) and is uniquely deter-
mined.

We are going to apply the implicit function theorem to the equation (2.65). To this end, we need the
differentiability of the involved mappings.

Observe that, owing to the differentiability properties of the involved Nemytskii operators (see, e.g.,
[22, Thm. 4.22]), the mapping G3 is twice continuously Fréchet differentiable, and for the first partial
derivatives at any point ((u1, u2), (µ, ϕ, σ)) ∈ A, and for all (u1, u2) ∈ U and (µ, ϕ, σ) ∈ Y, we
have the identities

D(u1,u2)G3((u1, u2), (µ, ϕ, σ))(u1, u2) = (−u1h(ϕ), 0, u2), (2.66)

D(µ,ϕ,σ)G3((u1, u2), (µ, ϕ, σ))(µ, ϕ, σ) = ((Pσ − A− u1)h′(ϕ)ϕ+ Pσh(ϕ), χσ − F ′′(ϕ)ϕ,

−Bσ − Eσh(ϕ)− Eσh′(ϕ)ϕ). (2.67)

It follows from the that F is twice continuously Fréchet differentiable from UR × Φ into Y, with the
first-order partial derivatives

D(u1,u2)F((u1, u2)(µ, ϕ, σ)) = G1 ◦D(u1,u2)G3((u1, u2), (µ, ϕ, σ)), (2.68)

D(µ,ϕ,σ)F((u1, u2)(µ, ϕ, σ)) = G1 ◦D(µ,ϕ,σ)G3((u1, u2), (µ, ϕ, σ))− IY, (2.69)

where IY denotes the identity mapping on Y.

At this point, we introduce for convenience abbreviating denotations, namely,

u := (u1, u2), u := (u1, u2), y := (µ, ϕ, σ), y := (µ, ϕ, σ),

y0 := (µ0, ϕ0, σ0), 0 := (0, 0, 0). (2.70)

With these denotations, we want to prove the differentiability of the control-to-state mapping u 7→ y
defined implicitly by the equation F(u,y) = 0, using the implicit function theorem. Now let u ∈ UR

be given and y = S(u). We need to show that the linear and continuous operator DyF(u,y) is a
topological isomorphism from Y into itself.

To this end, let v ∈ Y be arbitrary. Then the identity DyF(u,y)(y) = v just means that
G1 (DyG3(u,y)(y))− y = v, which is equivalent to saying that

w := y + v = G1 (DyG3(u,y)(w))− G1 (DyG3(u,y)(v)) .

The latter identity means that w is a solution to the system (2.14)–(2.18) for λ1 = λ3 = 1, λ2 =
λ4 = 0, with the specification (f1, f2, f3) = −G1 (DyG3(u,y)(v)) ∈ Y. By Lemma 2.4, such a
solution w ∈ Y exists and is uniquely determined. We thus can infer that DyF(u,y) is surjective.
At the same time, taking v = 0, we see that the equation DyF(u,y)(y) = 0 means that y is the
unique solution to (2.14)–(2.18) for λ1 = 1, λ2 = λ3 = λ4 = 0. Obviously, y = 0, which implies that
DyF(u,y) is also injective and thus, by the open mapping principle, a topological isomorphism from
Y into itself.

DOI 10.20347/WIAS.PREPRINT.2721 Berlin 2020



J. Sprekels, F. Tröltzsch 14

At this point, we may employ the implicit function theorem (cf., e.g., [1, Thms. 4.7.1 and 5.4.5] or [12,
10.2.1]) to conclude that the mapping S is twice continuously Fréchet differentiable from UR into Y

and that the first Fréchet derivative DS(u) of S at u ∈ UR is given by the formula

DS(u) = −DyF(u,y)−1 ◦DuF(u,y). (2.71)

Now let k = (k1, k2) ∈ U be arbitrary and y = (µ, ϕ, σ) = DS(u)(k). Then,

DyF(u,y)(y) = −DuF(u,y)(k),

which is obviously equivalent to saying that

y = G1 (DyG3(u,y)(y)) + G1(−k1h(ϕ), 0, k2).

This, in turn, means that y is the unique solution to the problem (2.14)–(2.18) for λ1 = λ2 = 1, λ3 =
λ4 = 0.

In summary, we have shown the following result.

Theorem 2.6. Suppose that the conditions (F1)–(F4), (A1)–(A3), (A6) and (2.2) are fulfilled, let u =
(u1, u2) ∈ UR be arbitrary and (µ, ϕ, σ) = S(u). Then the control-to-state operator S is twice
continuously Fréchet differentiable at u as a mapping from U into Y. Moreover, for every (k1, k2) ∈
U, the Fréchet derivative DS(u) ∈ L(U,Y) of S at u is given by the identity DS(u)(k1, k2) =
(µ, ϕ, σ), where (µ, ϕ, σ) is the unique solution to the linear system (2.14)–(2.18) with λ1 = λ2 =
1, λ3 = λ4 = 0.

3 First-order necessary optimality conditions

In this section, we aim at deriving associated first-order necessary optimality conditions. To this end,
we define the (control) reduced objective functional J̃ by

J̃(u) = J(S(u),u), (3.1)

where we recall that S(u) = (µ, ϕ, σ) is the unique solution to the state system associated with u.

The functional J̃ is the sum of a nonconvex functional J1 and the convex functional κ g, namely

J̃ = J1 + κg,

where

J1(u) =
β1

2

∫
Q

|ϕu − ϕ̂Q|2 +
β2

2

∫
Ω

|ϕu(T )− ϕ̂Ω|2 +
ν

2

∫
Q

|u|2. (3.2)

Here, g is one of the functionals (1.9)–(1.11), and we denote by ϕu the second component of S(u).

Since, owing to [10, Thm. 2.6], the control-to-state mapping is Fréchet differentiable from L2(Q)2

into L2(Q) × C0([0, T ];L2(Ω)) × L2(Q), in particular, the functional J1 is a Fréchet differentiable
mapping from L2(Q)2 into R. Therefore, the chain rule shows that, for every u = (u1, u2) ∈ L2(Q)2

and k = (k1, k2) ∈ L2(Q)2, it holds that

DJ1(u)(k) = β1

∫
Q

(ϕu − ϕ̂Q)ϕ + β2

∫
Ω

(ϕu(T )− ϕ̂Ω)ϕ(T ) + ν

∫
Q

u · k, (3.3)
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where ϕ is the second component of the solution (µ, ϕ, σ) to the linearized system (2.14)–(2.18)
with λ1 = λ2 = 1, λ3 = λ4 = 0, and where ” · ” stands for the euclidean inner product in R2.

Now assume that u = (u1, u2) is a locally optimal control for (CP). Then it is easily seen that the
variational inequality

DJ1(u)(u− u) + κ(g(u)− g(u)) ≥ 0 ∀u ∈ Uad (3.4)

is satisfied. Indeed, if u ∈ Uad and t ∈ (0, 1) are given, then we can infer from the convexity of g
that

0≤ J1(u + t(u− u)) + κg(u + t(u− u))− J1(u)− κg(u)

≤ J1(u + t(u− u))− J1(u) + κ t(g(u)− g(u)),

whence, dividing by t > 0 and then taking the limit as t ↘ 0, (3.4) follows. But (3.4) implies that u
solves the convex minimization problem

min
u∈L2(Q)2

(
Φ(u) + κg(u) + IUad

(u)
)
,

with Φ(u) = DJ1(u)u, and where IUad
denotes the indicator function of Uad. Hence, denoting by

the symbol ∂ the subdifferential mapping in L2(Q)2, we have that

0 ∈ ∂
(
Φ + κg + IUad

)
(u).

At this point, we anticipate that we shall see in the next section that ∂g(u) ⊂ L2(Q)2 for all of
our choices of g. Therefore, we may infer from the well-known rules for subdifferentials of convex
functionals that

0 ∈ {DJ1(u)}+ κ∂g(u) + ∂IUad
(u).

In other words, there are λ ∈ ∂g(u) and λ̂ ∈ ∂IUad
(u) such that

0 = DJ1(u) + κλ+ λ̂. (3.5)

But, by the definition of ∂IUad
(u), we have λ̂(u−u) ≤ 0 for every u ∈ Uad. Hence, thanks to (3.5),

0 ≤ DJ(u)(u− u) + κλ(u− u) ∀u ∈ Uad.

We have thus shown the following result (where we identify λ with the corresponding element of
L2(Q)2 according to the Riesz isomorphism).

Lemma 3.1. If u ∈ Uad is a locally optimal control for (CP), then there is someλ ∈ ∂g(u) ⊂ L2(Q)2

such that

DJ1(u)(u− u) + κ

∫
Q

λ(x, t) · (u(x, t)− u(x, t)) dx dt ≥ 0 ∀u ∈ Uad. (3.6)

Remark 3.2. The idea for the proof of the above lemma goes back to [15] and to the papers [3, 4],
where it has been worked out for control problems with semilinear reaction-diffusion equations. The
concrete form of ∂g depends on the particular choice of g and will be presented below.
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Next, we aim to simplify the expression DJ1(u)(u − u) in (3.6) by introducing an adjoint state. To
this end, we consider the following adjoint system:

− α∂tψ1 −∆ψ1 = ψ2 in Q, (3.7)

− ∂t(ψ1 + βψ2)−∆(ψ2 − χψ3) = β1(ϕ− ϕQ) + (Pσ − A− u1)h′(ϕ)ψ1

− F ′′(ϕ)ψ2 − Eσh′(ϕ)ψ3 in Q, (3.8)

− ∂tψ3 −∆ψ3 = Ph(ϕ)ψ1 + χψ2 −Bψ3 − Eh(ϕ)ψ3 in Q, (3.9)

∂nψ1 = ∂nψ2 = ∂nψ3 = 0 on Σ, (3.10)

ψ1(T ) = ψ3(T ) = 0, βψ2(T ) = β2(ϕ(T )− ϕΩ), in Ω. (3.11)

According to [10, Thm. 2.8], the adjoint system (3.7)–(3.11) has under the general assumptions (F1)–
(F4) and (A1)–(A6) a unique weak solution ψ = (ψ1, ψ2, ψ3) with the regularity

ψ1 ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0), (3.12)

ψ2, ψ3 ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ). (3.13)

We have the following result.

Theorem 3.3. (Necessary optimality condition) Suppose that (F1)–(F4) and (A1)–(A6) are fulfilled,
and let u ∈ Uad be a locally optimal control of (CP) with associated state (µ, ϕ, σ) = S(u) and
adjoint state ψ = (ψ1, ψ2, ψ3). Then, there exists some λ = (λ1, λ2)> ∈ ∂g(u) such that∫

Q

(
d(x, t) + κλ(x, t) + νu(x, t)

)
· (u(x, t)− u(x, t)) dxdt ≥ 0 ∀u ∈ Uad, (3.14)

where d ∈ L2(Q)2 is defined by

d(x, t) =

(
−ψ1(x, t)h(ϕ(x, t))

ψ3(x, t)

)
for a.e. (x, t) ∈ Q.

Proof. Using the adjoint state ψ, we obtain the representation

DJ1(u)(u− u) =

∫
Q

(
d + νu

)
· (u− u) dx dt.

This follows from the proof of [10, Thm. 2.9], where the notation ψ = (p, q, r) and u = (u,w) is
used. The claim is now an immediate consequence of (3.6).

4 Sparsity of optimal controls

The convex function g in the objective functional accounts for the sparsity of optimal controls, i.e.,
the optimal control can vanish in some region of the space-time cylinder Q. The form of this region
depends on the particular choice of the functional g, while its size depends on the sparsity parameter
κ. These sparsity properties can be deduced from the variational inequality (3.14) and the particular
form of the subdifferential ∂g.

Therefore, we first provide known results on the subdifferential and apply them to the analysis of an
auxiliary variational inequality.
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4.1 Preliminaries

Let us begin with the subdifferential of the L2-norm,

γ(v) = ‖v‖L2(Ω) =

(∫
Ω

|v(x)|2 dx
)1/2

,

which is given by (see, e.g., [18])

∂γ(v) =

{
{z ∈ L2(Ω) : ‖z‖2

L(Ω) ≤ 1} if v = 0

v/‖v‖L2(Ω) if v 6= 0
(4.1)

In order to have directional sparsity with respect to time, we use the functional

gT : L1(0, T ;L2(Ω))→ R,

gT (u) =

∫ T

0

(∫
Ω

|u(x, t)|2 dx
)1/2

dt =

∫ T

0

γ(u(t)) dt. (4.2)

The associated subdifferential is given by (cf., [17])

∂gT (u) = {λ ∈ L∞(0, T ;L2(Ω)) : λ(·, t) ∈ ∂γ(u(·, t)) for a.a. t ∈ (0, T )},

that is,

∂gT (u) =

{
λ ∈ L∞(0, T ;L2(Ω)) :

{
‖λ(·, t)‖L2(Ω) ≤ 1 if u(·, t) = 0

λ(·, t) = u(·, t)/‖u(·, t)‖L2(Ω) if u(·, t) 6= 0

}
,

(4.3)
where the properties above are satisfied for a.a. t ∈ (0, T ).

Directional sparsity with respect to space is obtained from the functional

gΩ : L1(Ω;L2(0, T ))→ R,

gΩ(u) =

∫
Ω

(∫ T

0

|u(x, t)|2 dt
)1/2

dx =

∫
Ω

‖u(x, ·)‖L2(0,T ) dx . (4.4)

Interchanging the roles of t and x, we get

∂gΩ(u) =

{
λ ∈ L∞(Ω;L2(0, T )) :

{
‖λ(x, ·)‖L2(0,T ) ≤ 1 if u(x, ·) = 0

λ(x, ·) = u(x, ·)/‖u(x, ·)‖L2(0,T ) if u(x, ·) 6= 0

}
(4.5)

where the properties above have to be fulfilled for a.a. x ∈ Ω.

In the case of full sparsity, i.e., for

gQ : L1(Q)→ R, gQ(u) =

∫
Q

|u(x, t)| dx dt, (4.6)

the subdifferential is classical. We have (see [18])

∂gQ(u) =

λ ∈ L∞(Q) : λ(x, t) ∈


{1} if u(x, t) > 0
[−1, 1] if u(x, t) = 0
{−1} if u(x, t) < 0

for a.e. (x, t) ∈ Q

 . (4.7)

DOI 10.20347/WIAS.PREPRINT.2721 Berlin 2020



J. Sprekels, F. Tröltzsch 18

Here, we will concentrate on directional sparsity in time, since this seems to be the most important
sparsity for medical applications. In this case, if an application to medication is considered, directional
sparsity will allow to stop the administration of drugs in certain intervals of time. To this end, we now
discuss the following auxiliary variational inequality:∫

Q

(d(x, t) + κλ(x, t) + νu(x, t))(v(x, t)− u(x, t)) dx dt ≥ 0 ∀ v ∈ C, (4.8)

where λ ∈ ∂gT (u) and

C = {v ∈ L∞(Q) : u ≤ v(x, t) ≤ û a.e. in Q} (4.9)

with given real numbers u < 0 < û, κ > 0, ν > 0, and a given function d ∈ L2(Q). Obviously, (4.8)
just means that u is the L2(Q)−orthogonal projection of − 1

ν
(d+ κλ) onto the closed and convex

subset C of L2(Q), which is well known to be given by the formula

u(x, t) = P[u,û](−ν−1(d(x, t) + κλ(x, t))) for a.e. (x, t) ∈ Q, (4.10)

where we denote by P[u,û] : R→ [u, û] the pointwise projection function

P[u,û](s) = min{û,max{u, s}}. (4.11)

Moreover, it is well known that the following pointwise relations hold true for almost all (x, t) ∈ Q:

d(x, t) + κλ(x, t) + νu(x, t) > 0 =⇒ u(x, t) = u

d(x, t) + κλ(x, t) + νu(x, t) < 0 =⇒ u(x, t) = û.
(4.12)

The next result is already known from [2,17]. Nevertheless, we present a proof for the readers’ conve-
nience.

Lemma 4.1. (Sparsity) Let u ∈ C be a solution to the variational inequality (4.8). Then, for a.e.
t ∈ (0, T ),

u(·, t) = 0 ⇐⇒ ‖d(·, t)‖L2(Ω) ≤ κ, (4.13)

as well as

λ(·, t)


∈ B(0, 1) if ‖u(·, t)‖L2(Ω) = 0

=
u(·, t)

‖u(·, t)‖L2(Ω)

if ‖u(·, t)‖L2(Ω) 6= 0
, (4.14)

where B(0, 1) = {v ∈ L2(Ω) : ‖v‖L2(Ω) ≤ 1}.

Proof. (i) We first show that, for a.e. t ∈ (0, T ), the condition ‖u(·, t)‖L2(Ω) = 0 implies that
‖d(·, t)‖L2(Ω) ≤ κ. So consider the set E = {t ∈ (0, T ) : ‖u(·, t)‖L2(Ω) = 0}. Then (4.12) yields
that

d(·, t) + κλ(·, t) + 0 = 0,

for a.e. t ∈ E, since otherwise the set of points x ∈ Ω, where u(x, t) = u or u(x, t) = û, would
have positive measure, which contradicts the assumption that ‖u(·, t)‖L2(Ω) = 0.

From the equation above, we deduce that d(·, t) = −κλ(·, t), and thus

‖d(·, t)‖L2(Ω) = κ‖λ(·, t)‖L2(Ω) ≤ κ,
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thanks to the form of ∂gT (u).

(ii) Next, we confirm that the reverse implication

‖d(·, t)‖L2(Ω) ≤ κ =⇒ ‖u(·, t)‖L2(Ω) = 0

holds true for almost every t ∈ (0, T ). To this end, let

E = {t ∈ (0, T ) : ‖d(·, t)‖L2(Ω) ≤ κ and ‖u(·, t)‖L2(Ω) 6= 0}.

We have to show that the Lebesgue measure |E| of E is zero. We denote by Ω+(t) and Ω−(t)
the sets of points x ∈ Ω where u(x, t) > 0 and u(x, t) < 0, respectively. Now recall that the
implications (4.12) must be satisfied. Since, by assumption, u < 0 < û, we readily deduce that

d(x, t) + κλ(x, t) + νu(x, t) ≤ 0 for a.e. x ∈ Ω+(t),

d(x, t) + κλ(x, t) + νu(x, t) ≥ 0 for a.e. x ∈ Ω−(t). (4.15)

In E, we have ‖u(·, t)‖L2(Ω) 6= 0, and therefore, by (4.1), λ(·, t) = u(·, t)/‖u(·, t)‖L2(Ω). Now the
upper inequality in (4.15) implies that

d(x, t) ≤ −κ u(x, t)

‖u(·, t)‖L2(Ω)

− νu(x, t) for a.e. x ∈ Ω+(t).

Since both summands on the right-hand side are negative, we have

|d(x, t)| > κ
u(x, t)

‖u(·, t)‖L2(Ω)

for a.e. x ∈ Ω+(t).

In the same way, we deduce from the lower inequality in (4.15) that

d(x, t) ≥ −κ u(x, t)

‖u(·, t)‖L2(Ω)

− νu(x, t) for a.e. x ∈ Ω−(t),

where both summands on the right-hand side are positive. This, in turn, yields that

|d(x, t)| > κ
|u(x, t)|

‖u(·, t)‖L2(Ω)

for a.e. x ∈ Ω−(t).

Since u(·, t) vanishes on Ω \ (Ω+(t) ∪ Ω−(t)), we thus can infer that

‖d(·, t)‖L2(Ω) ≥
(∫

Ω+(t)∪Ω−(t)

|d(x, t)|2 dx
) 1

2

> κ

(∫
Ω+(t)∪Ω−(t)

|u(x, t)|2

‖u(·, t)‖2
L2(Ω)

dx

) 1
2

= κ

(∫
Ω

|u(x, t)|2

‖u(·, t)‖2
L2(Ω)

dx

) 1
2

= κ.

The last inequality contradicts the assumption that ‖d(·, t)‖L2(Ω) ≤ κ in E unless |Ω+(t) ∪
Ω−(t)| = 0 for almost every t ∈ E. This proves that ‖u(·, t)‖L2(Ω) = 0 almost everywhere in
E. With (i) and (ii) proved, the equivalence relation (4.13) is shown.

The representation (4.14) for λ follows immediately from the formula for the subdifferential of gT .
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4.2 Directional sparsity in time for the optimal control problem

The results of the last subsection will now be applied to derive sparsity properties of optimal controls
from the variational inequality (3.14). For directional sparsity in time, we use the convex continuous
functional

g(u) = g(u1, u2) := gT (u1) + gT (u2) = gT (I1u) + gT (I2u), (4.16)

where Ii denotes the linear and continuous projection mapping Ii : u = (u1, u2) 7→ ui, i = 1, 2,
from L1(0, T ;L2(Ω))2 to L1(0, T ;L2(Ω)).

Since the convex functional gT is continuous on the whole space L1(0, T ;L2(Ω)), we obtain from the
sum and chain rules for subdifferentials (see, e.g., [18, Sect. 4.2.2, Thm. 1 and
Thm.2]) that

∂g(u) = I∗1 ∂gT (I1u) + I∗2 ∂gT (I2u) = (I, 0)>∂gT (u1) + (0, I)>∂gT (u2),

with the identical mapping I ∈ L(L1(0, T ;L2(Ω))). Therefore, we have

∂g(u) = {(λ1, λ2) ∈ L∞(0, T ;L2(Ω))2 : λi ∈ ∂gT (ui), i = 1, 2}.

The variational inequality (3.14) is equivalent to two independent variational inequalities for u1 and u2

that have to hold jointly, namely,∫
Q

(
−ψ1h(ϕ) + κλ1 + ν u1

)
(u− u1) dx dt ≥ 0 ∀u ∈ C1, (4.17)∫

Q

(
ψ3 + κλ2 + ν u2

)
(u− u2) dx dt ≥ 0 ∀u ∈ C2, (4.18)

where the sets Ci, i = 1, 2, are defined by

Ci = {u ∈ L∞(Q) : ui(x, t) ≤ u(x, t) ≤ ûi(x, t) for a.a. (x, t) ∈ Q},

and where λi, i = 1, 2, obey for almost every t ∈ (0, T ) the conditions

λi(·, t)


∈ B(0, 1) if ‖ui(·, t)‖L2(Ω) = 0

=
ui(·, t)

‖ui(·, t)‖L2(Ω)

if ‖ui(·, t)‖L2(Ω) 6= 0
. (4.19)

Applying Lemma 4.1 to each of the variational inequalities (4.17) and (4.18) separately, we arrive at
the following result:

Theorem 4.2. (Directional sparsity in time) Suppose that the general assumptions (F1)–(F4) and
(A1)–(A6) are fulfilled, and assume in addition that ui, ûi are constants satisfying ui < 0 < ûi, for
i = 1, 2. Let u = (u1, u2) be an optimal control of the problem (CP) with sparsity functional g
defined in (4.16), and with associated state (µ, ϕ, σ) = S(u) solving (1.2)–(1.6) and adjoint state
ψ = (ψ1, ψ2, ψ3) solving (3.7)–(3.11). Then, there are functions λi, i = 1, 2, that satisfy (4.19) and
(4.17)–(4.18). In addition, for almost every t ∈ (0, T ), we have that

‖u1(·, t)‖L2(Ω) = 0 ⇐⇒ ‖ψ1(·, t)h(ϕ(·, t))‖L2(Ω) ≤ κ, (4.20)

‖u2(·, t)‖L2(Ω) = 0 ⇐⇒ ‖ψ3(·, t)‖L2(Ω) ≤ κ. (4.21)
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Moreover, if ψ and λ1, λ2 are given, then the optimal controls u1, u2 are obtained from the projection
formulas

u1(x, t) = P[u1(x,t),û1(x,t)]

(
−ν−1

(
−ψ1(x, t)h(ϕ(x, t)) + κλ1(x, t)

))
,

u2(x, t) = P[u2(x,t),û2(x,t)]

(
−ν−1

(
ψ3(x, t) + κλ2(x, t)

))
, for a.e. (x, t) ∈ Q.

Remark 4.3. In the medical context, where the controls u1, u2 have the meaning of medications or
of nutrients supplied to the patients, it does not seem to be meaningful to allow for negative controls,
unfortunately.

It is to be expected that the support of optimal controls will shrink with increasing sparsity parameter
κ. Although this can hardly be quantified or proved, it is useful to confirm that optimal controls vanish
for all sufficiently large values of κ. We are going to derive a corresponding result now.

For this purpose, let us indicate for a while the dependence of optimal controls, optimal states, and
the associated adjoint states, on κ by an index κ. An inspection of the conditions (4.20) and/or (4.21)
reveals that u1,κ = 0 holds true for all κ > κ1, if

κ1 := sup
κ>0

sup
t∈(0,T )

‖ψ1,κ(·, t)h(ϕκ(·, t))‖L2(Ω) <∞, (4.22)

and u2,κ = 0 holds true for all κ > κ2, if

κ2 = sup
κ>0

sup
t∈(0,T )

‖ψ3,κ(·, t)‖L2(Ω) <∞. (4.23)

These boundedness conditions hold simultaneously for κ > κ0 = max{κ1, κ2}. The existence of
such a constant κ0 will be confirmed next. In order to avoid an overloaded notation, we omit the index
κ in the following.

First, we derive bounds for the adjoint state variables ψ1, ψ3 (the function h(ϕ) is globally bounded by
(A2)). To this end, recall the global estimates (2.6)–(2.8) from Theorem 2.1, which have to be satisfied
by all possible states (µ, ϕ, σ) corresponding to controls u ∈ Uad. It follows that also the “right-hand
sides” β1(ϕ − ϕQ) and β2(ϕ(T ) − ϕΩ) are uniformly bounded, independently of κ. It remains to
show that this implies the boundedness of all possible adjoint states.

To this end, recall that by virtue of (3.12), (3.13) we know that ψ1 ∈ C0([0, T ];V ) and ψ3 ∈
C0([0, T ];H). Now indeed, a closer look at the proof of [10, Thm. 2.8] reveals that the bounds derived
there are in fact uniform with respect to the choice of u ∈ Uad. Therefore, there is some κ0 > 0 such
that uκ = 0 for every κ ≥ κ0. For the reader’s convenience, we now give some insight how such
bounds can be derived.

In the following, we argue formally, noting that in a rigorous proof the following arguments would have
to be carried out on a Faedo–Galerkin system approximating the weak form of the adjoint system
(3.7)–(3.11) satisfied by the adjoint variables (ψ1, ψ2, ψ3) = (ψ1, ψ2, ψ3). The arguments are similar
to those in the proof of Lemma 2.4.

Indeed, we (formally) multiply (3.7) by −β∂tψ1, (3.8) by ψ2, and (3.9) by δψ3, where δ > 0 is yet to
be specified. Then we add the three resulting equations, whence a cancellation of two terms occurs,
and integrate the result over Qt := Ω × (t, T ), where t ∈ [0, T ). Using formal integration by parts
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and the endpoint conditions, we then obtain the identity

αβ

∫
Qt

|∂tψ1|2 +
β

2
‖∇ψ1(t)‖2

2 +
β

2
‖ψ2(t)‖2

2 +
δ

2
‖ψ3(t)‖2

2

+

∫
Qt

(
|∇ψ2|2 + δ|∇ψ3|2

)
+

∫
Qt

F ′′1 (ϕ)|ψ2|2

=
β2

2

2β

∫
Ω

|ϕ(T )− ϕΩ|2 + χ
∫
Qt

∇ψ2 · ∇ψ3 + β1

∫
Qt

(ϕ− ϕQ)ψ2 −
∫
Qt

F ′′2 (ϕ)|ψ2|2

+

∫
Qt

(Pσ − A− u1)h′(ϕ)ψ1ψ3 −
∫
Qt

Eσh′(ϕ)ψ2ψ3 − δ

∫
Qt

(Eh(ϕ) +B)|ψ3|2

+ δ

∫
Qt

(Ph(ϕ)ψ1 + χψ2)ψ3. (4.24)

Since F ′′1 ≥ 0, all of the terms on the left-hand side are nonnegative. Moreover, Young’s inequality
implies that

χ
∫
Qt

∇ψ2 · ∇ψ3 ≤
1

2

∫
Qt

|∇ψ2|2 +
χ2

2

∫
Qt

|∇ψ3|2.

Hence, invoking the known bounds for the state variables, and applying Young’s inequality appropri-
ately to the terms on the right-hand side, we obtain from (4.24) the estimate

αβ

∫
Qt

|∂tψ1|2 +
β

2
‖∇ψ1(t)‖2

2 +
β

2
‖ψ2(t)‖2

2 +
δ

2
‖ψ3(t)‖2

2

+
1

2

∫
Qt

|∇ψ2|2 +
(
δ − 1

2
χ2
) ∫

Qt

|∇ψ3|2

≤ C1 + C2(1 + δ)

∫
Qt

(
|ψ1|2 + |ψ2|2 + |ψ3|2

)
, (4.25)

with constants C1, C2 that depend neither on Uad nor on κ.

Next observe that ψ1(T ) = 0 and thus 1
2
‖ψ1(t)‖2

2 = −
∫ T
t

(∂tψ1(s), ψ1(s)) ds. Hence, owing to
Young’s inequality,

1

2
‖ψ1(t)‖2

2 ≤
αβ

2

∫
Qt

|∂tψ1|2 +
1

2αβ

∫
Qt

|ψ1|2 . (4.26)

Now we add (4.25) and (4.26) and choose δ = χ2. Using Gronwall’s lemma backward in time, it then
easily follows that, in particular,

‖ψ1‖L∞(0,T ;V ) + ‖ψ3‖L∞(0,T ;H) ≤ C3,

where C3 > 0 is independent of both Uad and κ. Then,

‖ψ1h(ϕ)‖L∞(0,T ;H) + ‖ψ3‖L∞(0,T ;H) ≤
(
1 + ‖h‖L∞(R)

)
C3 =: κ0.

The asserted existence of the constant κ0 is thus shown.

4.3 Spatial directional sparsity and full sparsity

Let us briefly sketch the other types of sparsity that are obtained from the choices g = gΩ and
g = gQ, respectively.
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With the functional gΩ, we obtain regions in Ω where the optimal controls are zero for a.e. t ∈
(0, T ). The theory is analogous to that of directional sparsity in time: indeed, it is obtained by simply
interchanging the roles of t and x. For instance, instead of the equivalences (4.20), (4.21), one obtains
for a.e. x ∈ Ω that

‖u1(x, ·)‖L2(0,T ) = 0 ⇐⇒ ‖ψ1(x, ·)h(ϕ(x, ·))‖L2(0,T ) ≤ κ,

‖u2(x, ·)‖L2(0,T ) = 0 ⇐⇒ ‖ψ3(x, ·)‖L2(0,T ) ≤ κ.

For the choice g = gQ, the equivalence relations

u1(x, t) = 0 ⇐⇒ |ψ1(x, t)h(ϕ(x, t))| ≤ κ,

u2(x, t) = 0 ⇐⇒ |ψ3(x, t)| ≤ κ,

can be deduced for almost every (x, t) ∈ Q. We refer to the discussion of the variational inequality
(4.8) in [3]. Therefore, the optimal controls vanish in certain spatio-temporal subsets of Q.

Moreover, in this case a usually unexpected property of the function λ ∈ g(u) is obtained: λ is
unique, that is, for an optimal control, the subdifferential is a singleton; we again refer to [3]. This fact
can easily be explained. Consider, e.g., the function λ2 ∈ ∂gQ(u2):

Thanks to (4.7), it holds that

λ2(x, t) =

{
1 if u2(x, t) > 0
−1 if u2(x, t) < 0

Therefore, the only points, at which λ2(x, t) might not be uniquely determined, are those where
u2(x, t) vanishes. At these points, however, u2(x, t) = 0 is away from the thresholds, and hence the
reduced gradient must be zero, i.e.,

0 = ψ3(x, t) + κλ2(x, t) + ν · 0.

This implies that λ2(x, t) = −κ−1ψ3(x, t) at these points. With a little more effort, finally the projec-
tion formula

λ2(x, t) = P[−1,1]

(
−1

κ
ψ3(x, t)

)
results. By similar reasoning, the identity

λ1(x, t) = P[−1,1]

(
1

κ
ψ1(x, t)h(ϕ(x, t))

)
can be derived.
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