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Well-posedness analysis of multicomponent
incompressible flow models

Dieter Bothe, Pierre-Étienne Druet

Abstract

In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the
incompressible case. For a mixture, incompressibility is defined as the independence of average
volume on pressure, and a weighted sum of the partial mass densities of the species stays con-
stant. In this type of models, non solenoidal effects affect the velocity field in the Navier-Stokes
equations and, due to different specific volumes of the species, the pressure remains connected
to the densities by algebraic formula. By means of a change of variables in the transport problem,
we equivalently reformulate the PDE system as to eliminate positivity and incompressibility con-
straints affecting the density, and prove two type of results: the local–in–time well–posedness in
classes of strong solutions, and the global–in–time existence of solutions for initial data sufficiently
close to a smooth equilibrium solution.

1 Multicomponent diffusion in an incompressible fluid

In this paper we study the well-posedness analysis in classes of strong solutions of class-one models1

of mass transport in isothermal, incompressible multicomponent fluids. This investigation is a direct
continuation of results obtained recently concerning the compressible case in [BDb], and the weak
solvability of the incompressible model in [Dru19]. Performing the incompressible limit (the low-Mach
number limit) in models for fluid mixtures and for multicomponent fluids is desirable both from the
practical and the theoretical viewpoint. On the one hand, fluid mixtures occurring in applications are
often incompressible, and the limit passage reduces the stiffness of the models by eliminating the
parameter which is practically infinite. On the other hand, the low-Mach number limit leads to a type of
incompressibility condition which has not yet been studied in the context of mathematical analysis for
fluid dynamical equations.

We are interested in the second type of issue, that is, the theoretical issues of unique solvability and
continuous dependence in classes of strong solutions for the underlying PDEs. The model class for
multicomponent transport in fluids here under study is the one proposed in [BD15], also applied to
mixtures with charged constituents in [DGM13], [DGM18]. Concerning the fundamentals of thermody-
namics for fluid mixtures, the reader is referred to these papers, or to the book [Gio99]. The model for
Mach-number zero (incompressibility constraint) is based on I. Müller’s definition of incompressibility
as invariance of the volume under pressure variations [Mü85], [GMR12]. More directly, we follow the
recent example of [DGM13] (formal limit), and the more general road map proposed in the Section 16
of [BD15]. In [BDa] we propose a derivation of the incompressible limit starting from a few postulates of
mathematical nature about the structure of the Helmholtz free energy. Similar concepts have been ex-
posed and discussed in a few research papers like [Mil66, JHH96, DNB+15]. Incompressible mixtures

1Class-one is a terminology that we adopt from the paper [BD15] to describe the class of multicomponent flow models
with single common velocity and temperature. The concept goes back to the work of C. Hutter.
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D. Bothe, P.-É. Druet 2

are also conceptualised in the book [PS14]. The corner stone of these works is that incompressibility
for a multicomponent system means the invariance of average volume under pressure variations. For
a fluid mixture of N ≥ 2 chemical species A1, . . . ,AN , it assumes the form of a volume constraint

N∑
i=1

ρi V̄i = 1 , (1)

where V̄1, . . . , V̄N > 0 are partial specific volumes of the molecules at reference temperature and
pressure. The relation generalises the assumption of a constant mass density considered in other an-
alytical investigations, a. o. [CJ15], [MT15], [HMPW17], [BP17]. In the present paper we are interested
only in the general case that at least two indices exist such that V̄i1 6= V̄i2 or, in vectorial notation, that
V̄ 6= λ 1N for all λ ∈ R, where V̄ = (V̄1, V̄2, . . . , V̄N) and 1N = (1, 1, . . . , 1) ∈ RN .

Bulk. The convective and diffusive mass transport of these species and the momentum balance are
described by the partial differential equations

∂tρi + div(ρi v + J i) = ri for i = 1, . . . , N , (2)

∂t(% v) + div(% v ⊗ v − S(∇v)) +∇p =
N∑
i=1

ρi b
i(x, t) . (3)

The physical system is assumed isothermal with absolute temperature θ > 0. The partial mass den-
sities of the species are denoted ρ1, . . . , ρN . Throughout the paper we shall use the abbreviation
% :=

∑N
i=1 ρi for the total mass density. The barycentric velocity of the fluid is called v and the ther-

modynamic pressure p. In the Navier-Stokes equations, S(∇v) denotes the viscous stress tensor,
which we assume for simplicity of Newtonian form. The vector fields b1, . . . , bN are the external body
forces. The diffusions fluxes J1, . . . , JN , that are defined to be the non-convective part of the mass
fluxes, must satisfy by definition the necessary side-condition

∑N
i=1 J

i = 0. A thermodynamic consis-
tent Fick–Onsager closure respecting this constraint is assumed. This approach is described in great
generality among others by [BD15], [DGM18] following older ideas by [MR59], [dM63]. The diffusions
fluxes J1, . . . , JN obey

J i = −
N∑
j=1

Mi,j(ρ1, . . . , ρN) (∇µj − bj) for i = 1, . . . , N . (4)

The Onsager matrix M(ρ1, . . . , ρN) is a symmetric, positive semi-definite N × N matrix for every
(ρ1, . . . , ρN) ∈ RN

+ . In all known linear closure approaches, this matrix satisfies

N∑
i=1

Mi,j(ρ1, . . . , ρN) = 0 for all (ρ1, . . . , ρN) ∈ RN
+ . (5)

One possibility to compute the special form of M is for instance to invert the Maxwell-Stefan balance
equations. For the mathematical treatment of this algebraic system, the reader can consult [Gio99],
[Bot11], [JS13], [HMPW17], [MT15]. OrM is constructed directly in the form PTM0 P , whereM0 is a
given matrix of full rank, and P is a projector guaranteeing that (5) is valid. The paper [BDc] establishes
equivalence relations between the Fick–Onsager and the Maxwell-Stefan constitutive approaches,
proposing moreover a novel unifying approach to close the diffusion model.

The quantities µ1, . . . , µN are the chemical potentials from which the thermodynamic driving forces
for the diffusion phenomena are inferred. For an incompressible system, they are related to the mass
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Multicomponent incompressible flow models 3

densities ρ1, . . . , ρN and to the pressure via

µi = V̄i p+ ∂ρik(θ, ρ1, . . . , ρN) . (6)

Here the function k denotes the the positively homogeneous part of the free energy, which is indepen-
dent of thermodynamical pressure. A typical choice discussed in [BD15] is

k(θ, ρ) =
N∑
i=1

µref
i ρi + kB θ

N∑
i=1

ni ln yi , (7)

where ni := ρi/mi are the number densities with the molecular masses m1, . . . ,mN > 0, yi =
ni/
∑N

j=1 nj are the number fractions, and µref
i are reference values of the chemical potentials. For

the mathematical theory in this paper, more general structures in (7) will however be admitted. The
isothermal Gibbs-Duhem equation: dp =

∑N
i=1 ρi dµi defines the intrinsic relationship between (1),

(6), and the pressure field. The paper [BDa] shows that the relation (6) indeed occurs in the limit case
when the bulk free energy density of the system adopts the singular form

%ψ = h∞(θ, ρ) :=

{
k(θ, ρ) if

∑N
i=1 ρi V̄i = 1 ,

+∞ otherwise.
. (8)

The relation (6) is an equivalent expression of µ ∈ ∂h∞(θ, ρ), where ∂ denote the subdifferential of
the convex function h∞(θ, ·), and the function p = −h∞(θ, ρ) +

∑N
i=1 ρi µi can be understood as

a ’Lagrange multiplier’ associated with the constraint (1).

We notice that, multiplying the equations (2) with the constants V̄i and summing up, the local change
of volume is described by the equation

div v = − div(
N∑
i=1

V̄i J
i) +

N∑
i=1

V̄i ri . (9)

Effects like diffusion and chemical reactions will induce a local change in the molecular composition,
implying a net local change of the volume, independent of a mechanical compression or expansion.

Concerning the presence of reaction terms in (2), we have to mention in respect with the compressible
systems considered in [BDb] a subtle difference of the incompressible models. For the compressible
case, the reactions densities ri in (2) are allowed to be general functions ri = ri(ρ1, . . . , ρN), without
influencing qualitatively the well–posedness results or the mathematical methods. This is different in
the incompressible case. At first, the restriction (1) implies that µ does not depend on ρ only, so
that the structure r = r(ρ) does not comply with standard thermodynamically consistent reaction
terms. At second, the ’elliptic equation’ (9) defines a differential operator acting on a certain relative
chemical potential (variable ζ , details below). This elliptic operator is linear for the pure diffusion case,
but turns to non-linear in the presence of reactions of the general form r = r(µ). In this paper, we
treat incompressible multicomponent diffusion in itself. We shall address the specific problems raised
by chemical reactions in further research. Thus, allowing – as we shall do – for certain source terms
r = r(ρ) in (2) means a bit more mathematical generality, but it remains clear that realistic models of
chemical reactions require non trivial modifications of the methods used here.

As to the stress tensor S we shall restrict for simplicity to the standard Newtonian form with constant
coefficients. We, however, present methods which are sufficient to extend the results to the case of
density and composition dependent viscosity coefficients.
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D. Bothe, P.-É. Druet 4

Boundary and initial conditions. We investigate the problem (2), (3) in a cylindrical domain QT :=
Ω×]0, T [ where T is a finite time and Ω ⊂ R3 a bounded domain. It is possible to treat the case
Ω ⊂ Rd for general d ≥ 2 with similar methods. We consider initial conditions

ρi(x, 0) = ρ0
i (x) for x ∈ Ω, i = 1, . . . , N , (10)

vj(x, 0) = v0
j (x) for x ∈ Ω, j = 1, 2, 3 . (11)

For simplicity, we consider the linear homogeneous boundary conditions

v = 0 on ST := ∂Ω×]0, T [ , (12)

ν · J i = 0 on ST for i = 1, . . . , N . (13)

As a matter of fact, these simplifying choices oblige us to make a further restriction. To see this, we
recall the relation (9), that we integrate over Ω. If there is no mass flux through the boundary, we see
that

∫
Ω

∑N
i=1 V̄i ri(x, t) dx = 0. This condition cannot be enforced for a general r = r(ρ), unless

we assume that r takes values in {V̄ }⊥. Recalling that realistic models for chemical reactions are to
be treated in an upcoming paper, we here restrict to the case that r(ρ) · V̄ = 0 for all ρ.

2 State of the art and our main result

2.1 A review of prior investigations and our method

Up to few exceptions, models for incompressible multicomponent fluids have not been investigated in
mathematical analysis. For a mathematical treatment in the case of the constraint % = const, which
corresponds to choosing V̄1 = . . . = V̄N in (1), the reader might consult the papers [CJ15] and
[MT15] (global weak solution analysis) and [HMPW17], and [BP17] (local–in–time well-posedness).2

From the viewpoint of the mathematical structure, the case % = const exhibits profoundly different
features than the general relation (1). The principal difference is that (4), (5) and (6) imply the decou-
pling of the pressure and of the diffusion fluxes. The Navier-Stokes equations reduce to their single
component solenoidal variant and can be solved independently. Of course, this does not mean that
% = const cannot be a good approximation under special circumstances. In [BS16] for instance,
a class of multicomponent mixtures has been introduced for which the use of the incompressible
Navier-Stokes equation is realistic: Incompressibility is assumed for the solvent only, and diffusion is
considered against the solvent velocity. See also the discussion in the paragraph 4.8 of [PS14] on
incompressible mixtures.

In the case that V̄ is not parallel to 1N , (4) implies that the pressure affects the diffusion fluxes via the
chemical potentials. A corollary of this fact is that if we multiply the equations (2) with the constants V̄i
and sum up, we obtain (9) for the local change of volume. Moreover,

(a) the viscous stress tensor does not simplify to the symmetric velocity gradient;

(b) the total mass density is calculated from the continuity equation ∂t%+ div(% v) = 0;

(c) the pressure remains partly connected to the other variables by an algebraic formula.

2In the latter paper the phase change liquid/gas is actually in the focus. All references are based on the equivalent
Maxwell-Stefan structure for the diffusion fluxes, rather than the Fick-Onsager one.
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Multicomponent incompressible flow models 5

Our main method to approach the PDE problem is a switch of variables in the transport problem as
already applied in [BDb]. Instead of the original variables (ρ1, . . . , ρN) and (p, v1, v2, v3), we re-
gard N − 1 linear combinations of the chemical potentials (µ1, . . . , µN), the mass density % and
the velocity field as main variables. After the transformation we obtain for the new free variables
(%, q1, . . . , qN−2, ζ, v1, v2, v3) – instead of (2), (3) – the equations (here without external forcing
and chemical reactions)

∂tRk(%, q) + div(Rk(%, q) v − M̃k,`(%, q)∇q` − Ak(%, q)∇ζ) = 0 for k = 1, . . . , N − 2 ,

div(v − A(%, q) · ∇q − d(%, q)∇ζ) = 0 ,

∂t%+ div(% v) = 0 ,

∂t(% v) + div(% v ⊗ v − S(∇v)) +∇P (%, q) +∇ζ = 0 .

The nonlinear field R and the function P , the vector field A, the positive matrix M̃ , and the positive
coefficient function d will be constructed below, combining certain linear projection operators with the
inverse map for the algebraic equations µ = V̄ p + ∇ρk(ρ). We are then faced with a nonlinear
PDE system of mixed parabolic–elliptic–hyperbolic type. All variables are unconstrained, but for the
restriction %min < % < %max on the total mass density. Here, the constants 0 < %min < %max < +∞
are the thresholds of the total mass for states ρ1, . . . , ρN that satisfy the constraint (1):

%min := min{
N∑
i=1

ρi : ρi ≥ 0,
N∑
i=1

ρi V̄i = 1} =
1

max V̄
,

%max := max{
N∑
i=1

ρi : ρi ≥ 0,
N∑
i=1

ρi V̄i = 1} =
1

min V̄
.

Comparing with the paper [BDb] on compressible class-one models based on a similar reformulation,
we see that the incompressible limit corresponds structurally to the case that one of the relative chem-
ical potentials is subject to an elliptic – instead of a parabolic – equation, and the total mass density is
confined to a bounded interval.

For an overview of possible methods to study the transformed PDE system, we refer to our study
[BDb]. We shall follow here the same principal road map, but profound transformations are necessary
to deal with the constraint on %, since it implies that the nonlinear functions occurring in the transformed
system possess singularities for dist(%, {%min, %max}) → 0. The solution operator to the continuity
equation, however, does not ’see’ these thresholds, which is the source of additional problems when
we attempt to linearise. Moreover, we must construct a solution operator for the parabolic–elliptic sub-
system of general form for (q, ζ), while the reduced transport problem in [BDb] was purely parabolic.
Nontrivial extensions of the method are therefore necessary to deal with the incompressible case.

We shall study the problem in the class proposed in the paper [Sol80] for Navier-Stokes: W 2,1
p with

p larger than the space dimension for the components of the velocity and W 1,1
p,∞ for the density. For

the variable q1, . . . , qN−2, we also choose the parabolic setting of W 2,1
p . For the elliptic component ζ ,

we choose the state space W 2,0
p . In these classes, we are able to prove the local existence for strong

solutions. In general, we obtain only a short–time well–posedness result, and boundedness in the
state space is not sufficient to guarantee that the solution can be extended to a larger time interval.
This is due to the constraint %min < % < %max: A strong solution with bounded state space norm
might break down if the density reaches the thresholds. However, it is to note that for choices of the
tensor M reflecting the physically expected behaviour that, in the dilute limit, a diffusion flux is linearly
proportional with the mass density of the vanishing species, we are able to show that a sufficiently
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smooth solution (p > 5) bounded in the state space cannot reach the critical values in finite time.
Thus, a kind of maximum principle is available for the system.

We shall also prove the global existence under the condition that the initial data are sufficiently near to
an equilibrium (stationary) solution. However, since this result relies on stability estimates in the state
space, we need to assume higher regularity of the initial data in order to obtain some stability from the
continuity equation. Therefore, these solutions exist on arbitrary large time intervals, but do not enjoy
the extension property. We shall not make use of the Lagrangian coordinates but employ the approach
of controlled growth in time of the solution by means of a priori estimates.

Let us finally mention also the paper [FLM16], devoted to binary mixtures. Starting from different
modelling principles in the spirit of [JHH96], the authors derive for N = 2 a similar PDE system. The
variable q does not occur, and the coefficient d is assumed constant. The authors prove for this system
the global existence of weak solutions if the singularity of P (%) at the thresholds is sufficiently strong.

The weak solution analysis for the general system is considered in the paper [Dru19].

2.2 Main results

We denote Q = QT = Ω×]0, T [ with a bounded domain Ω ⊂ R3 and T > 0 a finite time. We use
the standard Sobolev spaces Wm,p(Ω) for m ∈ N and 1 ≤ p ≤ +∞, and the Sobolev-Slobodecki
spaces W s

p (Ω) for s > 0 non-integer. If Ω is a domain of class C2, the spaces W s
p (∂Ω) are well

defined for 0 ≤ s ≤ 2.

With a further index 1 ≤ r ≤ +∞, we use the parabolic Lebesgue spaces Lp,r(Q) (space index
first: Lp(Q) = Lp,p(Q)). For ` = 1, 2, . . . and 1 ≤ p ≤ +∞ we introduce the parabolic Sobolev
spaces

W 2`,`
p (Q) :={u ∈ Lp(Q) : Dβ

t D
α
xu ∈ Lp(Q)∀ 1 ≤ 2 β + |α| ≤ 2 `} ,

‖u‖W 2`,`
p (Q) :=

∑
0≤2β+|α|≤2 `

‖Dβ
t D

α
xu‖Lp(Q) ,

and, with a further index 1 ≤ r <∞, the spaces

W 1
p,r(Q) = W 1,1

p,r (Q) :={u ∈ Lp,r(Q) :
∑

0≤β+|α|≤`

Dα
x D

β
t u ∈ Lp,r(Q)} ,

‖u‖W `,`
p,r(Q) :=

∑
0≤β+|α|≤`

‖Dβ
t D

α
xu‖Lp,r(Q) .

In these notations, the space integrability index always comes first. For r = +∞, W `,`
p,∞(Q) denotes

the closure of C`(Q) with respect to the norm above and, thus,

W 1,1
p,∞(Q) :={u ∈ Lp,∞(Q) :

∑
0≤β+|α|≤1

Dα
x D

β
t u ∈ C([0, T ]; Lp(Ω))} .

We also encounter, for ` = 1, 2 and 1 ≤ p < +∞,

W `,0
p (Q) :={u ∈ Lp(Q) :

∑
0≤|α|≤`

Dα
xu ∈ Lp(Q)} ,

‖u‖W `,0
p (Q) :=

∑
0≤|α|≤`

‖Dα
xu‖Lp(Q) .

DOI 10.20347/WIAS.PREPRINT.2720 Berlin 2020



Multicomponent incompressible flow models 7

We denote C(Q) = C0,0(Q) the space of continuous functions over Q and, for α, β ∈ [0, 1], we
define the spaces of Hölder continuous functions via

Cα, β(Q) :={u ∈ C(Q) : [u]Cα,β(Q) < +∞} ,

[u]Cα, β(Q) = sup
t∈[0, T ], x,y∈Ω

|u(t, x)− u(t, y)|
|x− y|α

+ sup
x∈Ω, t,s∈[0, T ]

|u(t, x)− u(s, x)|
|t− s|β

.

Some brief remarks on notation:

(1) All Hölder continuity properties are global. For the sake of notation we identify Cα, β(Q) with
Cα, β(Q).

(2) Whenever confusion is impossible, we shall also employ for a function f of the variables x ∈ Ω
and t ≥ 0 the notations fx = ∇f for the spatial gradient, and ft for the time derivative.

(3) For R, M̃ , etc. which are functions of % and q, the derivatives are denoted by R%, M̃q etc.

Due to (5), the matrix M(ρ) possesses only N − 1 positive eigenvalues that moreover might de-
generate for vanishing species. The orthogonal projection on the N − 1 dimensional linear space
span{1N}⊥ in RN is defined via

P{1N}⊥ : RN → {1N}⊥, P{1N}⊥ = IdRN −
1

N
1N ⊗ 1N .

The vector V̄ occurring in (1) defines another singular direction in the model preventing parabolicity.
We denote by P{1N , V̄ }⊥ the orthogonal projection onto the N − 2 dim. space {1N , V̄ }⊥. We also
introduce the notations

RN
+ :={ρ = (ρ1, . . . , ρN) ∈ RN : ρi > 0 for i = 1, . . . , N} ,

RN

+ :={ρ = (ρ1, . . . , ρN) ∈ RN
+ : ρi ≥ 0 for i = 1, . . . , N} ,

S1 :={ρ = (ρ1, . . . , ρN) ∈ RN
+ :

N∑
i=1

ρi = 1} ,

SV̄ :={ρ = (ρ1, . . . , ρN) ∈ RN
+ :

N∑
i=1

V̄i ρi = 1} .

(14)

The surface SV̄ is the domain of existence for the incompressible state. It is readily seen that ρ ∈ SV̄
implies for the variable % :=

∑N
i=1 ρi the inequalities

%min =
1

maxj=1,...,N V̄j
< % < %max =

1

minj=1,...,N V̄j
for all ρ ∈ SV̄ . (15)

Our first main result is devoted to the short-time existence of a strong solution. (In order to avoid
notational confusion with the pressure field, the integrability index is called s in the next statements.)

Theorem 2.1. We fix s > 3 and T > 0 and assume that

(a) Ω ⊂ R3 is a bounded domain of class C2;

(b) M : RN
+ → RN×N is a mapping of class C2(RN

+ ; RN×N) into the positive semi-definite matri-
ces of rank N − 1 with constant kernel 1N = {1, . . . , 1};

DOI 10.20347/WIAS.PREPRINT.2720 Berlin 2020
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(c) k : RN
+ → R is of class C3(RN

+ ), positively homogeneous, convex in its domain RN
+ , and

lim infm→+∞ |∇ρk(ym)| = +∞ for all sequences {ym} ⊂ S1 approaching the relative bound-
ary of S1;

(d) r : RN
+ → RN is a mapping of class C1(RN

+ ) into the orthogonal complement of span{1N , V̄ };

(e) The external forcing b satisfiesP{1N}⊥ b ∈ W 1,0
s (QT ; RN×3) and b−P{1N}⊥ b ∈ Ls(QT ; RN×3).

For simplicity, we assume ν(x) · P{1N}⊥ b(x, t) = 0 for x ∈ ∂Ω and λ1−almost all t ∈]0, T [.

(f) The initial data ρ0
1, . . . ρ

0
N : Ω → SV̄ are positive measurable functions satisfying the following

conditions:

� The initial total mass density %0 :=
∑N

i=1 ρ
0
i is of class W 1,s(Ω);

� The vector defined via e0 := ∂ρk(θ, ρ0
1, . . . ρ

0
N) satisfies P{1N , V̄ }⊥ e0 ∈ W 2− 2

s
s (Ω; RN);

� The compatibility condition ν(x) · P{1N , V̄ }⊥∇e0(x) = 0 is valid in W
1− 3

s
s (∂Ω; RN) in the

sense of traces;

(g) The initial velocity v0 belongs to W
2− 2

s
s (Ω; R3) with v0 = 0 in W

2− 3
s

s (∂Ω; R3).

Then, there exists T ∗ ∈ (0, T ] such that the problem (2), (3) with closure relations (4), (6), incom-
pressibility constraint (1) and boundary conditions (10), (11), (12), (13) possesses a unique solution
(ρ, p, v) of class

ρ ∈ W 1
s (QT ∗ ; SV̄ ), p ∈ W 1,0

s (QT ∗), v ∈ W 2,1
s (QT ∗ ; R3) ,

such that µ := p V̄ +∂ρk(θ, ρ) satisfies P{1N}⊥µ ∈ W 2,0
s (QT ∗ ; RN). The solution can be uniquely

extended to a larger time interval whenever the two following conditions are fulfilled:

(i) %min < inf{%(x, t) : x ∈ Ω, t ∈ [0, T ∗[} and sup{%(x, t) : x ∈ Ω, t ∈ [0, T ∗[} < %max;

(ii) There is α > 0 such that the quantity

‖P{1N , V̄ }⊥µ‖Cα,α2 (Qt)
+ ‖∇P{1N , V̄ }⊥µ‖L∞,s(Qt) + ‖v‖Lz s,s(Qt) +

∫ t

0

[∇v(τ)]Cα(Ω) dτ <∞

stays finite as t↗ T ∗. Here z = z(s) is defined via z = 3
s−2

for 3 < s < 5, z > 1 arbitrary for
s = 5 and z = 1 if s > 5.

It is to note that the possibility to extend the solution is not – like in the compressible case – reducible
to the smoothness criterion (ii). If (i) is failing, even a smooth solution can break down if its total mass
density reaches the critical values {%min, %max}. This singularity plays an important role also in the
context of the weak solution analysis (see [Dru19]). However, we provide an important complement for
physically motivated choices of the mobility matrix M and of the function k. Here the boundedness in
the natural state space norm is sufficient to guarantee the extension property.

Theorem 2.2. In the situation of Theorem 2.1 we assume, in addition, that s > 5 and that k is the
function defined in (7). We define a matrix Bi,j(ρ) := Mi,j(ρ)/ρj for i, j = 1, . . . , N , and we

assume that there is a continuous function C = C(|ρ|), bounded on compact subsets of RN

+ \ {0},
such that

|Bi,j(ρ)|+ ρk |∂ρkBi,j(ρ)| ≤ C(|%|) for all i, j, k ∈ {1, . . . , N} and all ρ ∈ RN
+ .
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Then the strong solution of Theorem 2.1 can be extended beyond T ∗ whenever

lim
t↗T ∗

‖P{1N , V̄ }⊥µ‖W 2,1
s (Qt;RN ) + ‖P{1N}⊥ µ‖W 2,0

s (Qt;RN ) + ‖v‖W 2,1
s (Qt;R3) < +∞ .

Our second main result concerns global existence under suitable restrictions on the data. An equilib-
rium solution for (2), (3) is defined as a vector (ρeq

1 , . . . , ρ
eq
N , p

eq, veq
1 , v

eq
2 , v

eq
3 ) of functions defined

in Ω such that

ρeq ∈ W 1,s(Ω; SV̄ ), peq ∈ W 1,s(Ω), veq ∈ W 2,s(Ω; R3) ,

the vector µeq := peq V̄ +∇ρk(θ, ρeq) satisfies P{1N}⊥ µeq ∈ W 2,s(Ω; RN) and the relations

div(ρeq
i v

eq −
N∑
j=1

Mi,j(ρ
eq) (∇µeq

j − bj(x))) =0 for i = 1, . . . , N (16)

and

div(%eq veq ⊗ veq − S(∇veq)) +∇peq =
N∑
i=1

ρeq
i b

i(x) (17)

are valid in Ω. The boundary conditions are

veq = 0 and ν(x) ·Mi,j(ρ
eq) (∇µeq

j − bj(x)) = 0 on ∂Ω .

We show that the problem (2), (3) possesses a unique strong solution on an arbitrary large, but finite
time interval if the distance of the initial data to an equilibrium solution is sufficiently small, and if both
initial conditions and equilibrium solution are smooth enough.

Theorem 2.3. We adopt the assumptions of Theorem 2.1, but assume moreover that r ≡ 0 and b =
b(x) does not depend on time with b ∈ W 1,s(Ω; RN×3). In addition, we assume that an equilibrium
solution (ρeq, peq, veq) ∈ W 1,s(Ω; SV̄ ) ×W 1,s(Ω) ×W 2,s(Ω; R3) is given. The associated total
mass %eq :=

∑N
i=1 ρ

eq
i and the velcocity possess the additional regulartiy %eq ∈ W 2,s(Ω) and veq ∈

W 3,s(Ω; R3). Assume that the initial data satisfies %0 ∈ W 2,s(Ω) and v0 ∈ W 2,s(Ω; R3). Then, for
every 0 < T < +∞, there exists R1 > 0, depending on T and all data in their respective norms,
such that under the condition

‖P{1N , V̄ }⊥ (e0 − µeq)‖
W

2− 2
s

s (Ω;RN )
+ ‖%0 − %eq‖W 1,s(Ω) + ‖v0 − veq‖

W
2− 2

s
s (Ω;R3)

≤ R1

the problem (2), (3) with incompressibility constraint (1), closure relations (4), (6) and the initial and
boundary conditions (10), (11), (12), (13) possesses a global unique solution of the same class as in
Theorem 2.1.

2.3 Road map

In sections 3 and 4 we show how to reformulate the original system such that it becomes easier to
tackle via functional analytic methods. The functional setting is discussed in section 5. In section 6, we
introduce two ways to linearise the PDE system and reformulate the initial–boundary–value problem as
a fixed point problem in the state space. Both fixed point equations exploit the parabolic substructure
for the variables (q, v) and treat the linear equations for (ζ, %) as side conditions. In the first method,
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used to prove the short-time well posedness, all lower–order nonlinearities are frozen. For the proof
of Theorem 2.3 on small perturbations, a somewhat more elaborated linearisation principle is used in
order to exhibit some stability estimates.

The estimates for the linearised principal part of the system are presented in section 7. Here we
can rely partly on our work in [BDb] for the compressible system, but have to discuss the additional
problems caused by the presence of an elliptic equation and of a density constraint in the continuity
equation. Section 8 shows the self mapping estimate for the first fixed point equation, which yields the
well posedness result in section 9. The extension criteria proved for the solution in the same section
9 deserve attention in their own right. The proof of the global well-posedness result for small data, or
rather small perturbations, is given in section 10. Finally, some reminder, tools, and purely technical
statements are compiled in the Appendix.

3 The singular free energy function and its conjugate

In comparison to the analysis of compressible models in [BDb], a main specificity of the incompressible
model concerns the bulk free energy density and the definition (6) of the chemical potentials. With
k : RN

+ → R given, we introduce a bulk free energy density defined for ρ ∈ RN
+ of the form

h∞(ρ) :=

{
k(ρ) if

∑N
i=1 ρi V̄i = 1 ,

+∞ otherwise.

The function h∞ is singular, but the subdifferential ∂h∞ is non-empty for every ρ satisfying the incom-
pressiblity constraint

∑N
i=1 ρi V̄i = 1. If the function k is continuously differentiable, it can be shown

that µ ∈ ∂h∞(ρ) if and only if there exists p ∈ R such that µi = p V̄i + ∂ρik(ρ) for i = 1, . . . , N . It
can easily be verified that the number p can be characterised as follows:

p = sup
ρ∈RN+

{µ · ρ− h∞(ρ)} = sup
ρ∈RN+ ,

∑N
i=1 ρi V̄i=1

{µ · ρ− k(ρ)} = (h∞)∗(µ) ,

where (h∞)∗ is the convex conjugate of h∞. For systematic discussions and a proof of these elemen-
tary statements, we refer to [BDa].

Our approach essentially relies on the properties of the dual free energy function f := (h∞)∗ on RN .
We shall recall three statements of the paper [BDa]. Proofs are provided in the Appendix, Section A
for the reader’s convenience. In the special case that the gradient of k is explicitly invertible on S1

(see (14)), the statements can also be proved by direct algebraic computations yielding in many cases
explicit formulae; see the Section 4 in [Dru19] for a complete characterisation of the example (7).

Lemma 3.1. We assume that k : RN
+ → R is a positively homogeneous convex function of class

C3(RN
+ ). We moreover assume that the restriction of k to the surface S1 is essentially smooth, mean-

ing that |∇ρk(ym)| → +∞ for sequences {ym}m∈N ⊂ S1 such that mini=1,...,N y
m
i → 0 as

m → +∞. For µ ∈ RN , we define f(µ) := supρ∈SV̄ {µ · ρ − k(ρ)}. Then the function f belongs

to C3(RN), and∇µf maps onto SV̄ .

Lemma 3.2. We adopt the same assumptions as in Lemma 3.1. Then

(1) f(µ+ s V̄ ) = f(µ) + s and∇µf(µ+ s V̄ ) = ∇µf(µ) for all µ ∈ RN and all s ∈ R;

(2) The Hessian D2f(µ) is positive semi-definite for all µ ∈ RN , with ker(D2f(µ)) = span{V̄ };
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The next Lemma is a main tool for our reformulation of the PDE system.

Lemma 3.3. We adopt the assumptions of Lemma 3.1. If µ ∈ RN , ρ ∈ SV̄ and p are related via (6),
then p = f(µ) and ρ = ∇µf(µ).

4 Change of variables for the incompressible model

We propose a reformulation of the equations (2), (3) subject to the constitutive equations (4), (6) and
to the volume constraint (1) in order to eliminate the positivity constraints on ρ, the singularity due
to M 1N = 0 (cf. (5)), and the singularity direction due to the incompressibility (1) – equivalently,
the fact that the function f , interpreted as the dual of the free energy, is affine in the direction of
V̄ (D2f V̄ = 0, Lemma 3.2). Like in the investigations in [DDGG17], [BDb], [Dru19], the idea is to
invert the algebraic relations (6) for µ, p, ρ and to combine this procedure with appropriate linear
projections.

4.1 General ideas

We choose a basis of RN : {ξ1, . . . , ξN−2, ξN−1, ξN} with ξN = 1N and ξN−1 = V̄ . We then
choose η1, . . . , ηN to be the dual basis, i. e. ξi · ηj = δij for i, j = 1, . . . , N . We define variables
q1, . . . , qN−2 and ζ via

q` := η` · µ :=
N∑
i=1

η`i µi for ` = 1, . . . , N − 2 , (18)

ζ(= qN−1) := ηN−1 · µ =
N∑
i=1

ηN−1
i µi . (19)

For ρ ∈ RN
+ such that

∑N
i=1 ρi V̄i = 1, we want to invert the relation µi = V̄i p + ∂ρik(ρ) for

i = 1, . . . , N . We exploit the result of Lemma 3.3 saying that (6) implies ρi = ∂µif(µ1, . . . , µN) for
i = 1, . . . , N . The vector µ is then decomposed according to

µ =
N−2∑
`=1

q` ξ` + ζ V̄ + µ · ηN 1N

into its projection onto {1N}⊥, expressed by the variables q and ζ , and its projection on span{1N}.
Next, the last coordinate µ · ηN is eliminated using the equation

% =
N∑
i=1

ρi = 1N · ∇µf(µ1, . . . , µN) = 1N · ∇µf(
N−2∑
`=1

q` ξ
` + ζ V̄ + (µ · ηN) 1N) .

The gradient∇µf is invariant in the direction V̄ (cf. Lemma 3.2) and, therefore, the variable ζ decou-
ples from the latter equation, that now reads

%− 1N · ∇µf(
N−2∑
`=1

q` ξ
` + (µ · ηN) 1N) = 0 .
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This representation is an algebraic equation F (µ · ηN , q1, . . . , qN−2, %) = 0. In view of Lemma 3.2,
note that ∂µ·ηNF (µ · ηN , q1, . . . , qN−2, %) = −D2f(µ)1N · 1N < 0, due the fact that 1N is not
parallel to V̄ . Thus, the last component µ · ηN is defined implicitly as a differentiable function of % and
q. We call this function M and obtain the equivalent formulation

µ =
N−2∑
`=1

q` ξ
` + ζ V̄ + M (%, q1, . . . , qN−2) 1N ,

ρ =∇µf(
N−2∑
`=1

q` ξ
` + M (%, q1, . . . , qN−2) 1N) =: R(%, q) , (20)

where only the total mass density % and the relative chemical potentials q1, . . . , qN−2 and ζ occur
as free variables. Note, moreover, that ζ and ρ decouple. Similarly, we obtain a representation of the
pressure as

p = f(µ) =f(
N−2∑
`=1

q` ξ
` + ζ V̄ + M (%, q1, . . . , qN−2) 1N)

=f(
N−2∑
`=1

q` ξ
` + M (%, q1, . . . , qN−2) 1N) + ζ =: P (%, q) + ζ .

(21)

All this is summarised in the following Lemma, the proof of which is direct in view of the Lemmas 3.1
and 3.3.

Lemma 4.1. We adopt the assumptions of Theorem 2.1 for the function k. Let I =]%min, %max[
with %min = mini=1,...,N 1/V̄i and %max = maxi=1,...,N 1/V̄i. Then there exist a function M ∈
C2(I ×RN−2) and a field R ∈ C2(I ×RN−2; SV̄ ) such that the equations ρ = ∇µf(µ) are valid
if and only if there are % ∈ I , q ∈ RN−2 and ζ ∈ R such that

N∑
i=1

ρi = %, ρ = R(%, q), µ =
N−2∑
j=1

qj ξ
j + ζ V̄ + M (%, q) 1N =: µ(%, q, ζ) .

If, moreover, µ = V̄ p+ ∂ρk(ρ) then p = P (%, q) + ζ with P ∈ C2(I × RN−2) defined by (21).

In order to deal with the right-hand side (external forcing), we define in the same spirit:

b̃`(x, t) :=
N∑
i=1

bi(x, t) η`i for ` = 1, . . . , N − 2 ,

b̂(x, t) :=
N∑
i=1

bi(x, t) ηN−1
i , b̄(x, t) :=

N∑
i=1

bi(x, t) ηNi .

This allows to express

bi(x, t) :=
N−2∑
`=1

b̃`(x, t) ξ`i + b̂(x, t) V̄i + b̄(x, t) for i = 1, . . . , N .

For the reaction terms, we define r̃`(%, q) :=
∑N

i=1 ξ
`
i ri(R(%, q)) for ` = 1, . . . , N − 2.
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4.2 Reformulation of the partial differential equations and of the main theorem

The relation (5) and the equivalence of Lemma 4.1 show that

J i = −
N∑
j=1

Mi,j(ρ1, . . . , ρN) (∇µj − bj)

= −
N∑
j=1

Mi,j(ρ1, . . . , ρN)

[
N−2∑
`=1

ξ`j (∇q` − b̃`) + V̄j (∇ζ − b̂) + (∇M (%, q)− b̄)

]

= −
N−2∑
`=1

N∑
j=1

Mi,j(ρ1, . . . , ρN) ξ`j (∇q` − b̃`)−
N∑
j=1

Mi,j(ρ1, . . . , ρN) V̄j (∇ζ − b̂) .

If we introduce the rectangular projection matrix Πj,` = ξ`j for ` = 1, . . . , N − 2 and j = 1, . . . , N ,

then J = −M Π(∇q − b̃)−M V̄ (∇ζ − b̂). Thus, we consider equivalently

∂tρ+ div(ρ v −M Π (∇q − b̃)−M V̄ (∇ζ − b̂)) = r ,

∂t(% v) + div(% v ⊗ v − S(∇v)) +∇P (%, q) +∇ζ = ρ · b .

In the latter system, we have ρ = R(%, q) and (%, q1, . . . , qN−2, ζ, v1, v2, v3) are the independent
variables. Next, we define for k = 1, . . . , N − 2 the maps

Rk(%, q) :=
N∑
j=1

ξkj ρj = ΠT ρ

=
N∑
j=1

ξkj fµj(
N−2∑
`=1

q` ξ
` + M (%, q1, . . . , qN−2) 1N) .

Multiplying the mass transfer equations with ξki , we obtain that

∂tRk(%, q) + div
(
Rk(%, q) v − [ΠTM(ρ) Π]k,` (∇q` − b̃`)− [ΠTM(ρ) V̄ ]k (∇ζ − b̂)

)
= r̃ .

It can be checked easily that the matrix ΠTM(ρ) Π ∈ R(N−2)×(N−2) is symmetric and strictly positive
definite on all states ρ ∈ SV̄ . The Jacobian

Rq = ΠTD2f Π− ΠTD2f1N ⊗ ΠTD2f1N

D2f1N · 1N
,

of size (N − 2)× (N − 2) is also strictly positive definite. Indeed, vectors of the form Π a in RN with
nonzero a ∈ RN−2 can by construction never belong to span{1N , V̄ }. We next multiply the mass
balance equations with V̄i. Making use of the constraint (1) yields

div(v − V̄ ·M(ρ) Π (∇q − b̃)− V̄ ·M(ρ) V̄ (∇ζ − b̂)) = V̄ · r = 0 ,

where we use the additional assumption that r maps into {V̄ }⊥. Using that ρ = R(%, q), we define

M̃(%, q) :=ΠTM(R(%, q)) Π ∈ R(N−2)×(N−2) , (22)

A(%, q) :=ΠTM(R(%, q)) V̄ ∈ RN−2 , (23)

d(%, q) :=V̄ ·M(R(%, q)) V̄ . (24)
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Overall, we get for the variables (%, q1, . . . , qN−2, ζ, v) – instead of (2), (3) – the equations

∂tR(%, q) + div(R(%, q) v − M̃(%, q)∇q − A(%, q)∇ζ) =

r̃(%, q)− div(M̃(%, q) b̃+ A(%, q) b̂) , (25)

div(v − A(%, q) · ∇q − d(%, q)∇ζ) = − div(A(%, q) · b̃+ d(%, q) b̂) , (26)

∂t%+ div(% v) = 0 , (27)

∂t(% v) + div(% v ⊗ v − S(∇v)) +∇P (%, q) +∇ζ =

R(%, q) · b̃(x, t) + b̂(x, t) + % b̄(x, t) . (28)

The problem (P ′) consisting of (25), (26), (27) and (28) for the variables (%, q, ζ, v) might seem to
exhibit more nonlinearities than the original problem for ρ, p and v. However, it has the advantage
that – up to the restriction on the total mass density %min < % < %max – it is completely free of
constraints. Furthermore, the differential operator is linear in the variable ζ , which occurs only under
spatial differentiation.

Our first aim is now to show that, at least locally in time, the system (25), (26), (27) and (28) for the
variables (%, q1, . . . , qN−2, ζ, v) is well posed. We consider initial conditions

q(x, 0) = q0(x) , %(x, 0) = %0(x) , v(x, 0) = v0(x) for x ∈ Ω . (29)

Due to the preliminary considerations in section 4.1, prescribing these variables is completely equiv-
alent to prescribing initial values for the mass densities ρi and the velocity. It suffices to define
q0
k = ηk · ∂ρk(ρ0) for k = 1, . . . , N − 2.

For simplicity, we consider the linear homogeneous boundary conditions

v = 0 on ST , (30)

ν · ∇ζ, ν · ∇qk = 0 on ST for k = 1, . . . , N − 2 . (31)

The conditions (31) and (13) are equivalent, because we assume throughout that the given forcing b
satisfies ν(x) · P{1N}⊥ b(x, t) = 0 for x ∈ ∂Ω (see assumption (e) in the statement of Theorem
2.1).

Under the assumptions of Theorem 2.1 for the function k, the coefficient functions R, M̃, A, d and
P are of class C2 in the domain of definitions I ×RN−2 as shown in the Lemma 4.1. We reformulate
the Theorem 2.1 for the new variables. Since the thermodynamic pressure does not occur explicitly
as a variable, we now switch to denoting p > 3 the integrability exponent (denoted s in the statement
2.1).

Theorem 4.2. Assume that the coefficient functions R, M̃ , A, d and P are of class C2, and r̃ is of
class C1 in the domain of definition I × RN−2. Let Ω be a bounded domain with boundary ∂Ω of
class C2. Suppose that, for some p > 3, the initial data are of class

q0 ∈ W
2− 2

p
p (Ω; RN−2), %0 ∈ W 1,p(Ω), v0 ∈ W

2− 2
p

p (Ω; R3) ,

satisfying %min < %0(x) < %max in Ω and the compatibility conditions ν(x)·∇q0(x) = 0 and v0(x) =
0 on ∂Ω. Assume that b̃ ∈ W 1,0

p (QT ; R(N−2)×3), b̂ ∈ W 1,0
p (QT ; R3) and b̄ ∈ Lp(QT ; R3). Then

there is 0 < T ∗ ≤ T , depending only on these data, such that the problem (25), (26), (27) and (28)
with boundary conditions (29), (30) and (31) is uniquely solvable in the class

(q, ζ, %, v) ∈ W 2,1
p (QT ∗ ; RN−2)×W 2,0

p (QT ∗)×W 1,1
p,∞(QT ∗ ; SV̄ )×W 2,1

p (QT ∗ ; R3) .
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The solution can be uniquely extended within this class to a larger time interval whenever at least one
of the following holds:

(1) p > 5 and the state space norm stays finite as t↗ T ∗;

(2) The two following conditions are valid as t↗ T ∗

� %min < %(x, t) < %max for all x ∈ Ω;

� ‖q‖
Cα,

α
2 (Qt)

+ ‖∇q‖L∞,p(Qt) + ‖v‖Lz p, p(Qt) +
∫ t

0
[∇v(τ)]Cα(Ω) dτ < +∞, with α > 0

and z = z(p) defined by Theorem 2.1,

5 Functional analytic approach

For functions q1, . . . , qN−2, ζ , % and v1, v2, v3 defined in Ω× [0, T ], we introduce

A (q, ζ, %, v) =(A 1(q, ζ, %, v), A 2(q, ζ, %, v), A 3(%, v), A 4(q, ζ, %, v)) ,

A 1(q, ζ, %, v) :=∂tR(%, q) + div(R(%, q) v)

− div(M̃(%, q) (∇q − b̃(x, t)) + A(%, q) (∇ζ − b̂))− r̃(%, q) ,
A 2(q, ζ, %, v) := div(v − d(%, q) (∇ζ − b̂)− A(%, q) · (∇q − b̃)) ,

A 3(%, v) :=∂t%+ div(% v) ,

A 4(q, ζ, %, v) :=% (∂tv + (v · ∇)v)− div S(∇v) +∇P (%, q) +∇ζ
−R(%, q) · b̃− b̂− % b̄ .

Recall that b̃, b̂ and b̄ are given coefficients.

To get rid of the highest-order coupling in the time derivative of %, we shall employ the same approach
as in [BDb], which is sketched below. Consider a solution u = (q, ζ, %, v) to A (u) = 0. Computing
time derivatives in the equation A 1(u) = 0, we obtain that

R% (∂t%+ v · ∇%) +
N−1∑
j=1

Rqj (∂tqj + v · ∇qj) +R div v − div(M̃ ∇q) + A∇ζ)

= − div(M̃ b̃+ A b̂) + r̃ .

Here the nonlinear functions R, R%, Rq, A and M̃ , r̃ etc. are evaluated at (%, q). Under the side-
condition A 3(%, v) = 0, the equation A 1(u) = 0 is equivalent to

Rq(%, q) ∂tq − div(M̃(%, q)∇q + A(%, q)∇ζ) = (R%(%, q) %

−R(%, q)) div v −Rq(%, q) v · ∇q − div(M̃(%, q) b̃+ A(%, q) b̂) + r̃(%, q) . (32)

We introduce Ã (q, ζ, %, v) := (Ã 1(q, ζ, %, v), A 2(q, ζ, %, v), A 3(%, v), A 4(q, ζ, %, v)),
the first component being the differential operator defined by (32). Clearly, A (u) = 0 if and only

if Ã (u) = 0.

The functional setting was introduced in Section 2.2. Similar spaces were used in [BDb] to study
the compressible system and, in order to save room, we shall refer to this paper for the trace and
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embedding theorems needed in the present analysis. For p > 3 and α := 1
2

+ 3
2p

, we recall the
interpolation inequality (see [Nir66], Theorem 1)

‖∇f‖L∞(Ω) ≤C1 ‖D2f‖αLp(Ω) ‖f‖1−α
Lp(Ω) + C2 ‖f‖Lp(Ω) , (33)

valid for any function f in W 2,p(Ω), with certain constants C1, C2 depending only on Ω. We consider
the operator (q, ζ, %, v) 7→ A (q, ζ, %, v) acting on

XT := W 2,1
p (QT ; RN−2)×W 2,0

p (QT )×W 1,1
p,∞(QT )×W 2,1

p (QT ; R3) . (34)

The natural trace space at time zero is denoted TrΩ×{0}XT . The functional setting does not allow to
introduce traces for the variable ζ . Therefore, u(0) ∈ TrΩ×{0}XT means that (q(0), %(0), v(0)) ∈
W

2− 2
p

p (Ω; RN−2)×W 1,p(Ω)×W
2− 2

p
p (Ω; R3). We denote 0XT the space of functions fulfilling zero

initial conditions. This only makes sense, of course, for the variables having traces at Ω× {0}. Thus

0XT := {ū = (r, χ, σ, w) ∈ XT : r(0) = 0, σ(0) = 0, w(0) = 0} . (35)

Since the coefficients of A are defined only if % has range in I , the domain of the operator is contained
in the subset

XT,I := W 2,1
p (QT ; RN−2)×W 2,0

p (QT )×W 1,1
p,∞(QT ; I)×W 2,1

p (QT ; R3) . (36)

We shall moreover make use of a reduced state space containing only the parabolic components
(q, v), namely

YT := W 2,1
p (QT ; RN−2)×W 2,1

p (QT ; R3) . (37)

The operator A is the composition of differentiation, multiplication and Nemicki operators. Therefore,
the properties of the coefficients R, M̃ etc. allow to show that A is continuous and bounded from
XT,I into

ZT = Lp(QT ; RN−2)× Lp(QT )× Lp,∞(QT )× Lp(QT ; R3) . (38)

Since the coefficients R, M̃, A, d and P are twice continuously differentiable in their domain of
definition I × RN−2, the operator A is even continuously differentiable at every point of XT,I . We
spare the proof of these rather obvious statements.

6 Linearisation and reformulation as a fixed-point equation

We shall present two different manners to linearise the equation A (u) = 0 for u ∈ XT with initial
condition u(0) = u0 in TrΩ×{0}XT . They correspond to the two main Theorems 2.1, 2.3 respectively.

In both cases, we start considering the problem to find u = (q, ζ, %, v) ∈ XT,I such that Ã (u) = 0
and u(0) = u0, which after permuting rows, possesses the following structure

∂t%+ div(% v) =0 , (39)

Rq(%, q) ∂tq − div(M̃(%, q)∇q + A(%, q)∇ζ) =g(x, t, q, %, v, ∇q, ∇%, ∇v) , (40)

− div(d(%, q)∇ζ + A(%, q)∇q − v) =− div h(x, t, %, q) , (41)

% ∂tv − div S(∇v) +∇ζ =f(x, t, q, %, v, ∇q, ∇%, ∇v) . (42)
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The functions g, h and f stand for the following expressions:

g :=(R%(%, q) %−R(%, q)) div v −Rq(%, q) v · ∇q
− div(M̃(%, q) b̃+ A(%, q) b̂) + r̃(%, q) , (43)

h :=d(%, q) b̂+ A(%, q) b̃ , (44)

f :=− P%(%, q)∇%− Pq(%, q)∇q − % (v · ∇)v +R(%, q) · b̃+ b̂+ % b̄ . (45)

These expressions are independent on the component ζ . We can regard g, h and f as functions of
x, t and of the vectors u and Dxu and write g(x, t, u, Dxu).

6.1 The first fixed-point equation

For (q∗, v∗) given in W 2,1
p (QT ; RN−2) ×W 2,1

p (QT ; R3) and for unknowns u = (q, ζ, %, v), we
consider the following system of equations

∂t%+ div(% v∗) =0 , (46)

Rq(%, q
∗) ∂tq − div(M̃(%, q∗)∇q + A(%, q∗)∇ζ) =g(x, t, q∗, %, v∗, ∇q∗, ∇%, ∇v∗) , (47)

− div(d(%, q∗)∇ζ + A(%, q∗)∇q) =− div(v∗ + h(x, t, q∗, %)) , (48)

% ∂tv − div S(∇v) +∇ζ =f(x, t, q∗, %, v∗, ∇q∗, ∇%, ∇v∗) , (49)

together with the initial conditions (29), (29), (29) and the homogeneous boundary conditions (30),
(31). Note that the continuity equation can be solved independently for %. Once % is given, we solve the
linear parabolic–elliptic system (47), (48) for q and ζ . Here we must be careful, since the coefficients
of this system are only defined as long as %(x, t) takes values in I . Thus, the solution (q, ζ) might
exist only on a shorter time interval. We can solve the problem (49), which is linear in v, under the
same restriction.

We will show that the solution map (q∗, v∗) 7→ (q, v), denoted T , is well defined from YT into itself
for T fixed and suitably small. The solutions are unique in the class YT . Clearly, a fixed point of T is
a solution to Ã (q, ζ, %, v) = 0.

6.2 The second fixed-point equation

Here we construct the fixed-point map comparing the solutions to a given reference vector (q̂0, v̂0) ∈
YT that extends the initial data. We assume that q̂0 and v̂0 satisfy the initial compatibility conditions.
In order to find an extension for %0 ∈ W 1,p(Ω), we solve the problem

∂t%̂0 + div(%̂0 v̂
0) = 0, %̂0(0) = %0 . (50)

For this problem, Theorem 2 of [Sol80] establishes unique solvability in W 1,1
p,∞(QT ) and, in particular,

the strict positivity %̂0 ≥ c0(Ω, ‖v̂0‖W 2,1
p (QT ;R3)) infx∈Ω %0(x).

We find the extension ζ̂0 by solving, for all values of t such that the coefficients b̃(t) and b̂(t) are
defined, the elliptic problem

− div(d(%̂0, q̂0)∇ζ̂0) = div(−v̂0 − d(%̂0, q̂0) b̂(t) + A(%̂0, q̂0)∇(q̂0 − b̃(t))) , (51)

with homogeneous Neumann boundary conditions and zero mean–value side–condition.
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Consider a solution u = (q, ζ, %, v) ∈ XT to Ã (u) = 0. We introduce the differences r := q− q̂0,
χ = ζ − ζ̂0, w := v − v̂0 and σ := %− %̂0, and their vector ū := (r, χ, σ, w). Clearly, ū belongs
to the space 0XT of homogeneous initial conditions. Recall that this does not imply a trace condition
for χ, cp. (35). The equations Ã (u) = 0 mean, equivalently, that Ã (û0 + ū) = 0. The vector
ū = (r, χ, σ, w) satisfies

Rq ∂tr − div(M̃ ∇r + A∇χ) =g1 := g −Rq ∂tq̂
0 + div(M̃ ∇q̂0 + A∇ζ̂0) , (52)

− div(d∇χ+ A∇r − w) =− div h1 := − div(h+ v̂0 − d∇ζ̂0 − A∇q̂0) , (53)

∂tσ + div(σ v) =− div(%̂0w) , (54)

% ∂tw − div S(∇w) +∇χ =f 1 =: f − %∂tv̂0 + div S(∇v̂0)−∇ζ̂0 . (55)

Herein, all non-linear coefficients R, Rq, etc. are evaluated at (%, q), while g, h and f correspond to
(43), (44) and (45).

We next want to construct a fixed-point map to solve (52), (53), (54), (55) by linearising g1, h1 and f 1

defined in (52), (53) and (55). First, we expand as follows:

g = g(x, t, u∗, Dxu
∗) +

∫ 1

0

{(gq)θ (q − q∗) + (g%)
θ (%− %∗) + (gv)

θ (v − v∗) (56)

+ (gqx)
θ · (qx − q∗x) + (g%x)

θ (%x − %∗x) + (gvx)
θ · (vx − v∗x)} dθ .

Here, (·)θ applied to a function of x, t, u and D1
xu stands for the evaluation at (x, t, (1 − θ)u∗ +

θ u, (1− θ)Dxu
∗ + θ Dxu). In short, in order to avoid the integral and the parameter θ, we write

g =g(x, t, u∗, Dxu
∗) + gq(u, u

∗) (q − q∗) + g%(u, u
∗) (%− %∗) + gv(u, u

∗) (v − v∗)
+ gqx(u, u

∗) · (qx − q∗x) + g%x(u, u
∗) (%x − %∗x) + gvx(u, u

∗) · (vx − v∗x)
=:g(x, t, u∗, Dxu

∗) + g′(u, u∗) (u− u∗) . (57)

Obviously, the latter expressions make sense only if u, u∗ both belong to XT,I , in which case the
entire convex hull {θ u+ (1− θ)u∗ : θ ∈ [0, 1]} is in XT,I . Following the same scheme as for (57),
we write in short

g1 =g1(x, t, q̂0, %̂0, v̂0, q̂0
x, %̂

0
x, v̂

0
x) + g1

q (u, û
0) r + g1

%(u, û
0)σ + g1

v(u, û
0)w

+ g1
qx(u, û

0) rx + g1
%x(u, û

0)σx + g1
vx(u, û

0)wx

=:ĝ0 + (g1)′(u, û0) ū . (58)

Similar expressions are obtained for h1 and f 1. In the case of h1, note however that div ĥ0 =
div(h1(x, t, q̂0, %̂0, v̂0, q̂0

x, %̂
0
x, v̂

0
x) = 0 due to the construction (51) of ζ̂0.

Now we construct the fixed-point map to solve (52), (53), (54) and (55). For a given vector (r∗, w∗) ∈
0YT , we define q∗ := q̂0 + r∗ and v∗ := v̂0 + w∗. Then we define %∗ to be the unique solution to

∂t%
∗ + div(%∗ v∗) = 0, %∗(x, 0) = %0(x) . (59)

We thus write %∗ := C (v∗) where C is the solution operator to the continuity equation with initial data
%0. We employ the abbreviation

u∗ :=(q∗, 1, %∗, v∗) = (q∗, 1, C (v∗), v∗) ∈ XT . (60)
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For ū := (r, χ, σ, w), we next consider the linear problem

Rq(C (v∗), q∗) ∂tr − div
(
M̃(C (v∗), q∗)∇r + A(C (v∗), q∗)∇χ

)
= ĝ0 + (g1)′(u∗, û0) ū ,

(61)

− div
(
d(C (v∗), q∗)∇χ+ A(C (v∗), q∗)∇r − w

)
= − div((h1)′(u∗, û0) ū) , (62)

∂tσ + div(σ v∗) = − div(%̂0w) , (63)

C (v∗) ∂tw − div S(∇w) +∇χ = f̂ 0 + (f 1)′(u∗, û0) ū , (64)

with the boundary conditions ν · ∇r = 0 = ν · ∇χ on ST and w = 0 on ST , and with zero initial
conditions for r, σ and w.

We will show that the solution map T 1 : (r∗, w∗) 7→ (r, w) is well defined from 0YT into itself for
T > 0 arbitrary, provided that the distance of the initial data to an equilibrium solution is sufficiently
small. As to the latter restriction, note that the expressions (g1)′(u∗, û0) make sense only if the
density components in both u∗ and û0 map into the interior of the critical interval, which cannot be
expected globally for the solutions to (50) and (59). If ū = (r, w) is a fixed point of T 1, then we can

show that u := û0 + ū is a solution to Ã (u) = 0. This is verified exactly as in [BDb], Remark 6.1.

6.3 The self-mapping property

Assume at first that the map T : (q∗, v∗) 7→ (q, v) via the solution to (46), (47), (48), (49) is well
defined in YT , with image in YT̃ for some T̃ = T̃ (q∗, v∗) > 0. Then, we want to show that T
maps some closed bounded set of YT0 into itself for a fixed T0 > 0. Here, a major change occurs in
comparison to the compressible case, since we do not expect that the linearised map T produces a
solution defined globally up to T . This is due to the constraint % ∈]%min, %max[ which can by nature
be enforced only locally for solutions to the continuity equation (46).

We shall rely on continuous estimates expressing the controlled growth of the solution in time. We will
show that there is a parameter a0 depending on the distance of the initial density to the singular values

{%min, %max} such that for all t > 0 satisfying t1−
1
p ‖(q∗, v∗)‖Yt < a0, the pair (q, v) = T (q∗, v∗)

is well defined in Yt and satisfies the estimate

‖(q, v)‖W 2,1
p (Qt;RN−2)×W 2,1

p (Qt;R3) ≤ Ψ(t, R0, ‖(q∗, v∗)‖W 2,1
p (Qt;RN−2)×W 2,1

p (Qt;R3)) . (65)

Here R0 stands for the magnitude of the initial data q0, %0 and v0, and of the external forces b
in their respective norms. The function Ψ is continuous, increasing in all arguments, and finite for

t1−
1
p ‖(q∗, v∗)‖Yt < a0. Hence we obtain a self mapping property with the help of the following

Lemma.

Lemma 6.1. Suppose that R0 is fixed. Suppose that there is a0 > 0 such that the inequality (65) is
valid with a continuous function Ψ = Ψ(t, R0, η) satisfying the properties:

� Ψ(·, R0, ·) is finite for all t ≥ 0 and η ≥ 0 satisfying t1−
1
p η < a0;

� t 7→ Ψ(t, R0, η) is nondecreasing for all 0 ≤ η, and η 7→ Ψ(t, R0, η) is nondecreasing for

all t as long as t1−
1
p η < a0;

� The value of Ψ(0, R0, η) = Ψ0(R0) > 0 is independent on η.
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Then there is t0 = t0(R0) > 0 such that the map T (q∗, v∗) := (q, v) maps a ball of Yt0 into itself.

Proof. The continuous function (t, η) 7→ Ψ(t, R0, η) is finite in {(t, η) ∈ [R+]2 : t1−
1
p η < a0}.

Then, there is a first t0 > 0 depending only on R0 such that

{η > 0 : Ψ(t0, R0, η) ≤ η and η < a0 t
1
p
−1

0 } 6= ∅ .

Otherwise, for all t > 0 and η < a0 t
1
p
−1, we would have that Ψ(t, R0, η) > η. Thus, Ψ(0, R0, η) =

limt→0 Ψ(t, R0, η) ≥ η for all η > 0. Since Ψ(0, R0, η) = Ψ0(R0) is strictly positive, every choice
of η > Ψ0(R0) then yields a contradiction.

We can further show that

0 < η0 := inf{η > 0 : Ψ(t0, R0, η) ≤ η and η < a0 t
1
p
−1

0 } .

Otherwise, there are positive {ηk}k∈N, ηk ↘ 0, such that Ψ(t0, R0, ηk) ≤ ηk for all k. Then
0 ≥ limk→∞Ψ(t0, R0, ηk) = Ψ(t0, R0, 0). Since Ψ(t0, R0, 0) ≥ Ψ(0, R0, 0) = Ψ0(R0) > 0,
this is again a contradiction.

Consider M := {(q∗, v∗) ∈ Yt0 : ‖(q∗, v∗)‖Yt0 ≤ η0}. Since η0 < a0 t
1
p
−1

0 , it follows that

t
1− 1

p

0 ‖(q∗, v∗)‖Yt0 < a0. The inequality (65) is valid by assumption and it yields ‖(q, v)‖Yt0 ≤
Ψ(t0, R0, η0) ≤ η0, hence (q, v) ∈M .

In the case of the map T 1 : (r∗, w∗) 7→ (r, w) defined via solution to (59), (61),(62), (63), (64),
we look for a fixed-point in the space 0YT . The solution can only be defined globally on [0, T ] if the
solution to (59) remains inside of ]%min, %max[ on the entire time-interval. We will show that this can
be ensured if the starting perturbation w∗ satisfies an inequality of type

φ0(T, ‖w∗‖W 2,1
p (QT )) ‖w

∗‖W 2,1
p (QT ) ≤ a0 ,

in which a0 > 0 is a fixed number depending on the distance of the initial data to the critical values

{%min, %max}, and φ0 is a continuous function on R
2

+, which increases in both arguments. We then
prove a continuity estimate of the type

‖(r, w)‖YT ≤ Ψ(T, R0, ‖(r∗, w∗)‖YT )R1 . (66)

Here R0 stands for the magnitude of initial data (q0, %0 and v0) and external forces b. The parameter
R1 expresses the distance of the initial data to a stationary/equilibrium solution (def. in (16), (17)).
Defining η0 to be the smallest positive solution to the equation φ0(T, η0) η0 = a0, we will show that
T 1 maps the ball of radius η0 in 0YT for initial data satisfying R1 ≤ η0/Ψ(T, R0, η0). In order to
apply the contraction principle and prove the theorems, we shall therefore prove the continuity estimate
(65), (66). This is the main object of the next sections.

7 Estimates of the linearised problems

In this section, we present the estimates on which our main results in Theorem 2.1, 4.2 are footing.
The preliminary work done in the paper [BDb] shall, in many points, allow to abridge the calculations.
The main novelty is the inversion of the parabolic–elliptic subsystem, which shall be dealt with in all
details.

DOI 10.20347/WIAS.PREPRINT.2720 Berlin 2020



Multicomponent incompressible flow models 21

To achieve more simplicity in the notation, we introduce both for a function or vector field f ∈
W 2,1
p (QT ; Rk) (k ∈ N) and t ≤ T the notation

V (t; f) := ‖f‖W 2,1
p (Qt;Rk) + sup

τ≤t
‖f(·, τ)‖

W
2− 2

p
p (Ω;Rk)

. (67)

Recall that W 2−2/p
p (Ω) is the trace space for f ∈ W 2,1

p (QT ), f 7→ f(·, t). Moreover we will need
Hölder half-norms. For α, β ∈ [0, 1] and f scalar valued, we denote

[f ]Cα(Ω) := sup
x 6=y∈Ω

|f(x)− f(y)|
|x− y|α

, [f ]Cα(0,T ) := sup
t6=s∈[0,T ]

|f(t)− f(s)|
|t− s|α

[f ]Cα,β(QT ) := sup
t∈[0, T ]

[f(·, t)]Cα(Ω) + sup
x∈Ω

[f(x, ·)]Cβ(0,T ) .

The corresponding Hölder norms ‖f‖Cα(Ω), ‖f‖Cα(0,T ) and f ∈ Cα,β(QT ) are defined by adding
the corresponding L∞−norm to the half-norm.

7.1 Estimates of a linearised problem for the variables q and ζ

We first formulate some global assumptions and notations. Recall that I =]%min, %max[. In this sec-

tion, the maps Rq, M̃ : I × RN−2 → R(N−2)×(N−2) are assumed to be of class C1(I × RN−2)
into the set of symmetric, positive definite matrices. Furtheron, A : I × RN−2 → RN−2, and d :
I × RN−2 → R+ are of class C1 too. We fix p > 3, and we consider given q∗ ∈ W 2,1

p (QT ; RN−2)

and %∗ ∈ W 1,1
p,∞(QT ) such that %∗(x, t) ∈]%min, %max[ for all (x, t) ∈ QT . We then denote

R∗q := Rq(%
∗, q∗), M̃∗ := M̃(%∗, q∗), A∗ := A(%∗, q∗) and d∗ := d(%∗, q∗). For t ≤ T , we

introduce the positive functions

m∗(t) :=m(%∗, t) := inf
(x,τ)∈Qt

min

{
%∗(x, τ)

%min

− 1, 1− %∗(x, τ)

%max

}
(68)

M∗(t) :=M(%∗, t) := max

{
1

inf(x,τ)∈Qt(
%∗(x, τ)
%min

− 1)
,

1

inf(x,τ)∈Qt(1−
%∗(x, τ)
%max

)

}
=

1

m∗(t)
.

(69)

We let g ∈ Lp(QT ; RN−2), q0 ∈ W 2−2/p
p (Ω; RN−2) such that ν · ∇q0(x) = 0 on ∂Ω in the sense

of traces, and h ∈ W 1,0
p (QT ; R3).

For a pair (q, ζ) : QT → RN−2 × R we consider the linear parabolic–elliptic auxiliary problem

R∗q qt − div(M̃∗∇q + A∗∇ζ) =g in QT , ν · ∇q = 0 on ST , q(x, 0) = q0(x) in Ω , (70)

− div(d∗∇ζ + A∗∇q) =− div h in QT , ν · ∇ζ = 0 on ST , (71)

and we want to obtain an estimate in the norm of W 2,1
p (QT ; RN−2)×W 2,0

p (QT ) for the solution. To
this aim we first show that (70), (71) can be equivalently reformulated as a system coupled only in the
lower order.

Lemma 7.1. We adopt the general assumptions and notations formulated at the beginning of this
section. A pair (q, ζ) ∈ W 2,1

p (QT ; RN−2)×W 2,0
p (QT ) is a solution to the problem (70), (71) if the

identity (71) and the initial and boundary condition are satisfied, and if instead of (70) we have

R∗q ∂tq − div([M̃∗ − A∗ ⊗ A∗

d∗
]∇q) = (72)

g +∇ζ · [∇A∗ − A∗

d∗
∇d∗] +∇(

A∗

d∗
) · ∇q A∗ +

A∗

d∗
div h .
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Proof. Computing the derivatives in the elliptic equation (71), we obtain that

−d∗4ζ = ∇d∗ · ∇ζ + div(A∗∇q)− div h . (73)

Thus, under the side-condition (73), the parabolic equations (70) are equivalent to

R∗q ∂tq − div(M̃∗∇q) = g + A∗4ζ +∇A∗ · ∇ζ

= g +∇A∗ · ∇ζ − 1

d∗
A∗ [∇d∗ · ∇ζ + div(A∗∇q)− div h] .

(74)

Use of A
∗

d∗
div(A∗∇q) = div(A

∗⊗A∗
d∗
∇q)− A∗∇q · ∇(A

∗

d∗
) yields the claim.

Using this lemma, we next prove an estimate for the solution to the linearised parabolic–elliptic prob-
lem.

Proposition 7.2. Under the general assumptions and notations of this section, there is a unique pair
(q, ζ) ∈ W 2,1

p (QT ; RN−2)×W 2,0
p (QT ), solution to the problem (70), (71), such that

∫
Ω
ζ(x, t) dx =

0 for all t ∈]0, T [. Moreover, there are a constant C depending only on Ω, and continuous func-
tions Ψ1 = Ψ1(t, a1, . . . , a5) and Φ = Φ(t, a1, . . . , a5) defined for all t ≥ 0 and all numbers
a1, . . . , a5 ≥ 0, such that for all t ≤ T and for 0 < β ≤ 1 arbitrary:

V (t; q) + ‖ζ‖W 2,0
p (Qt)

≤ C Ψ1,t (1 + [%∗]
Cβ,

β
2 (Qt)

)
2
β (‖q0‖

W
2− 2

p
p (Ω)

+ ‖g‖Lp(Qt) + ‖h‖W 1,0
p (Qt)

)

+ C Φt ‖h‖Lp(Qt) ,

Ψ1,t = Ψ1(t, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%∗]
Cβ,

β
2 (Qt)

, ‖∇%∗‖Lp,∞(Qt)) ,

Φt = Φ(t, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%∗]
Cβ,

β
2 (Qt)

, ‖∇%∗‖Lp,∞(Qt)) .

The function Ψ1 possesses moreover the following two properties: It is increasing in all arguments, and
the value of Ψ1(0, a1, . . . , a5) = Ψ0

1(a1, a2) is a function independent on the three last arguments.
The function Φ is increasing in all arguments.

Proof. The existence and uniqueness can be easily obtained by means of the uniform estimates.
We thus suppose first that (q, ζ) is a given solution in the class W 2,1

p (QT ; RN−2) × W 2,0
p (QT ),

and we prove the claimed estimate. In order to simplify the discussion, we adopt the following con-
vention: When computing the derivative of a coefficient, like for instance ∇d∗ = d∗%∇%∗ + d∗q∇q∗,
there occur different functions d∗% := d%(%

∗, q∗) or d∗qj = dqj(%
∗, q∗) of the variables %∗, q∗. We

denote c∗1 = c1(M∗(t), ‖q∗‖L∞(Qt)) a generic continuous function depending only on M∗(t) and
‖q∗‖L∞(Qt), and increasing in these arguments. We then bound the L∞(QT ) norms of all non-linear
functions depending on %∗, q∗ by this generic c∗1.

Step 1: First estimate for the variable ζ .

For almost all s ≤ t, the function ζ satisfies the weak Neumann problem∫
Ω

d∗∇ζ(x, s) · ∇φ(x) dx =

∫
Ω

(−A∗∇q + h)(x, s) · ∇φ(x) dx .
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By well-known weak elliptic theory, there is a unique solution ζ(s) ∈ W 1,p(Ω) with
∫

Ω
ζ(x, s) dx =

0. Moreover, for all 0 < β < 1, perturbation techniques shortly recalled in the Appendix, Lemma B.5
yield the estimate

‖∇ζ(s)‖Lp(Ω) ≤c(Ω, p, inf
Ω
d∗(s), sup

Ω
d∗(s)) (1 + [d∗(s)]Cβ(Ω))

1
β×

× (‖A∗∇q(s)‖Lp(Ω) + ‖h(s)‖Lp(Ω))

≤c∗1 (1 + [d∗(s)]Cβ(Ω))
1
β (‖A∗(s)‖L∞(Ω) ‖∇q(s)‖Lp(Ω) + ‖h(s)‖Lp(Ω)) .

We define φ∗t := sups≤t(1+[d∗(s)]Cβ(Ω))
1
β . We bound sups≤t ‖A∗(s)‖L∞(Ω) with a generic c∗1, and

it follows that

‖ζ‖W 1,0
p (Qt)

≤c∗1 φ∗t (‖∇q‖Lp(Qt) + ‖h‖Lp(Qt)) . (75)

Step 2: First bound for the variable q.

We start from (72), and introduce the matrix K(%, q) := M̃(%, q) − A(%, q)⊗A(%, q)
d(%, q)

. In view of the

definitions (22), (23), (24), K ∈ R(N−2)×(N−2) is obviously symmetric, and obeys

K = ΠTM Π− ΠTMV̄ ⊗ ΠTMV̄

MV̄ · V̄
.

For all y ∈ RN−2, K y · y = M Πy · Πy − (MV̄ ·Πy)2

MV̄ ·V̄ ≥ 0, due to the fact that M is positive
semi–definite. By the Cauchy-Schwarz inequality, Ky · y = 0 is possible only if either Πy and V̄ are
parallel, or if Πy and 1N are parallel. Recall in this place that Πy =

∑N−2
k=1 yk ξ

k. By the choice of the
ξks, we know that {ξ1, . . . , ξN−2, V̄ , 1N} is a basis of RN . Thus, Πy = λ V̄ or Πy = λ 1N both
would imply that y = 0. This shows that Ky · y > 0 unless y = 0, hence K is positive definite.

Defining K∗ := K(%∗, q∗), we rephrase (72) as

R∗q ∂tq − div(K∗∇q) =g + g̃ , (76)

in which g̃ := ∇ζ · [∇A∗ − A∗

d∗
∇d∗] +∇(A

∗

d∗
) · ∇q A∗ + A∗

d∗
div h is bounded via

|g̃| ≤ c∗1 (|∇ζ · ∇%∗|+ |∇ζ · ∇q∗|+ |∇q · ∇%∗|+ |∇q · ∇q∗|+ |∇h|) . (77)

We now apply Appendix, Lemma B.3, which basically recalls the result of [BDb], Prop. 7.1 for a similar
parabolic system. With D0(t) := (1 + [%∗]

Cβ,
β
2 (Qt)

)2/β ‖q0‖
W

2−2/p
p (Ω)

+ ‖g‖Lp(Qt), and using (77)

to bound the norm of g̃, we obtain for the solution to (76)

V (t; q) ≤ C Ψ̄1,t

[
D0(t) + c∗1 ‖∇h‖Lp(Qt) (78)

+ c∗1 (‖∇ζ · ∇%∗‖Lp(Qt) + ‖∇ζ · ∇q∗‖Lp(Qt) + ‖∇q · ∇%∗‖Lp(Qt) + ‖∇q · ∇q∗‖Lp(Qt))
]
,

where Ψ̄1,t = Ψ̄1(t, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%∗]
Cβ,

β
2 (Qt)

, ‖∇%∗‖Lp,∞(Qt)), with a func-

tion Ψ̄1 satisfying all structural assumptions stated for Ψ1.

Step 3: Main estimate for the variable ζ .

Since ζ ∈ W 2,0
p (QT ), we can employ the pointwise identity (73). Since ζ has mean–value zero for all

times, the full W 2,p norm can be estimated by the Neumann-Laplacian, and we obtain that

‖ζ‖W 2,0
p (Qt)

≤c(Ω, p) ‖ −4ζ‖Lp(Qt)

=c(Ω, p) ‖(d∗)−1 (∇d∗ · ∇ζ + div(A∗∇q − h))‖Lp(Qt)

≤c 1

inf(x,s)∈Qt d
∗(x, s)

(‖∇d∗ · ∇ζ‖Lp(Qt) + ‖ div(A∗∇q − h)‖Lp(Qt)) . (79)
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Computing the derivatives of the coefficients, and using the same conventions as above, we derive
from (79) the inequality

‖ζ‖W 2,0
p (Qt)

≤ c∗1 (‖4q‖Lp(Qt) + ‖ div h‖Lp(Qt))

+ c∗1 (‖∇%∗ · ∇ζ‖Lp(Qt) + ‖∇q∗ · ∇ζ‖Lp(Qt) + ‖∇%∗ · ∇q‖Lp(Qt) + ‖∇q∗ · ∇q‖Lp(Qt)) .

We estimate ‖4q‖Lp(Qt) ≤ V (t; q), then we employ the inequality (78) to see that

‖ζ‖W 2,0
p (Qt)

≤C Ψ̄1,tD0(t) + c∗1 (1 + CΨ̄1,t) ‖∇h‖Lp(Qt)

+ c∗1 (1 + CΨ̄1,t) (‖∇%∗ · ∇ζ‖Lp(Qt) + ‖∇q∗ · ∇ζ‖Lp(Qt)) (80)

+ c∗1 (1 + CΨ̄1,t) (‖∇%∗ · ∇q‖Lp(Qt) + ‖∇q∗ · ∇q‖Lp(Qt)) .

Step 4: Combined estimates.

We add (78) to (80) to obtain that

V (t; q) + ‖ζ‖W 2,0
p (Qt)

≤2C Ψ̄1,tD0(t) + c∗1 (1 + 2CΨ̄1,t) ‖∇h‖Lp(Qt)

+ c∗1 (1 + 2CΨ̄1,t) (‖∇%∗ · ∇ζ‖Lp(Qt) + ‖∇q∗ · ∇ζ‖Lp(Qt)) (81)

+ c∗1 (1 + 2CΨ̄1,t) (‖∇%∗ · ∇q‖Lp(Qt) + ‖∇q∗ · ∇q‖Lp(Qt)) .

In order to control the factors on the right-hand, we first apply (33) to find that

‖∇ζ(s)‖L∞(Ω) ≤ C1 ‖D2ζ(s)‖αLp(Ω) ‖ζ(s)‖1−α
Lp(Ω) + C2 ‖ζ(s)‖Lp(Ω) , α :=

1

2
+

3

2p
,

with Ci = Ci(Ω), i = 1, 2. We can bound a b ≤ ε a1/α + cα ε
−α/(1−α) b1/(1−α) (Young’s inequality),

for all ε > 0 and a, b > 0. By these means, it follows that

‖∇%∗ · ∇ζ‖pLp(Qt)
≤
∫ t

0

|∇%∗(s)|pp |∇ζ(s)|p∞ ds

≤ C1

∫ t

0

|∇%∗(s)|pp |D2ζ(s)|pαp |ζ(s)|p(1−α)
p ds+ C2

∫ t

0

|∇%∗(s)|pp |ζ(s)|pp ds

≤ ε

∫ t

0

|D2ζ(s)|pp ds+ cα ε
− α

1−α

∫ t

0

|∇%∗(s)|
p

1−α
p |ζ(s)|pp ds+ C2

∫ t

0

|∇%∗(s)|pp |ζ(s)|pp ds

≤ ε

∫ t

0

|D2ζ(s)|pp ds+

∫ t

0

|ζ(s)|pp (cα ε
− α

1−α |∇%∗(s)|
p

1−α
p + C2 |∇%∗(s)|pp) ds . (82)

Here we use the abbreviation | · |r for ‖ · ‖Lr(Ω). Just in the same way, we show that

‖∇q∗ · ∇ζ‖pLp(Qt)
≤ε
∫ t

0

|D2ζ(s)|pp ds+

∫ t

0

|ζ(s)|pp (cα ε
− α

1−α |∇q∗(s)|
p

1−α
p + C2 |∇q∗(s)|pp) ds .

(83)

We let F ∗(t) := sups≤t(‖∇q∗(s)‖
p
Lp(Ω) + ‖∇%∗(s)‖pLp(Ω)) and X∗(t; ζ) := ‖∇%∗ · ∇ζ‖pLp(Qt)

+

‖∇q∗ · ∇ζ‖pLp(Qt)
. With the help of (82) and of (83), it follows that

X∗(t; ζ) ≤ 2 ε ‖D2ζ(s)‖pLp(Qt)
+ [cα ε

− α
1−α (F ∗(t))

1
1−α + C2 F

∗(t)] ‖ζ‖pLp(Qt)
.
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We choose ε = 2−2− 1
p (c∗1(1 + 2CΨ̄1,t))

−p, where c∗1, C and Ψ̄1,t are the numbers occurring in the
relation (81). Then

(c∗1 (1 + 2CΨ̄1,t))
pX∗(t; ζ) ≤ 1

21+1/p
‖ζ‖p

W 2,0
p (Qt)

(84)

+ (c∗1 (1 + 2CΨ̄1,t))
p [cα (22+1/p(c∗1(1 + 2CΨ̄1,t))

p)
α

1−α (F ∗(t))
1

1−α + C2 F
∗(t)] ‖ζ‖pLp(Qt)

.

Due to our conventions, we can bound every power of c∗1 and the maximum of 1 and c∗1 again by
another such function. Introducing a factor

(Φ∗1,t)
p :=c∗1 (1 + 2CΨ̄1,t)

p max{cα (22+1/p (1 + 2CΨ̄1,t)
p)

α
1−α , C2}

× {(V p(t; q∗) + ‖∇%∗‖pLp,∞(Qt)
)

1
1−α + (V p(t; q∗) + ‖∇%∗‖pLp,∞(Qt)

)} ,

we can rephrase (84) as

(c∗1 (1 + 2CΨ̄1,t))
pX∗(t; ζ) ≤ 1

21+1/p
‖ζ‖p

W 2,0
p (Qt)

+ (Φ∗1,t)
p ‖ζ‖pLp(Qt)

. (85)

By means of (75), we bound ‖ζ‖Lp(Qt) ≤ c∗1 φ
∗
t (‖∇q‖Lp(Qt) +‖h‖Lp(Qt)). Raising (85) to the power

1/p, we show that

c∗1 (1 + 2CΨ̄1,t) (‖∇%∗ · ∇ζ‖Lp(Qt) + ‖∇q∗ · ∇ζ‖Lp(Qt))

≤ 1

2
‖ζ‖W 2,0

p (Qt)
+ Cp c

∗
1 φ
∗
t Φ∗1,t (‖∇q‖Lp(Qt) + ‖h‖Lp(Qt)) .

We insert the latter result into (81), obtaining

V (t; q) +
1

2
‖ζ‖W 2,0

p (Qt)
≤ 2C Ψ̄1,tD0(t)

+ c∗1 (1 + 2CΨ̄1,t) ‖∇h‖Lp(Qt) + Cp c
∗
1 φ
∗
t Φ∗1,t ‖h‖Lp(Qt) (86)

+ c∗1 (1 + 2CΨ̄1,t) (‖∇%∗ · ∇q‖Lp(Qt) + ‖∇q∗ · ∇q‖Lp(Qt)) + Cp c
∗
1 φ
∗
t Φ∗1,t ‖∇q‖Lp(Qt) .

In order to estimate X∗(t, q), we apply the same steps as for X∗(t, ζ) (cf. (85) ). Hence

(c∗1 (1 + 2CΨ̄1,t))
pX∗(t; q) ≤ 1

21+1/p
‖q‖p

W 2,0
p (Qt)

+ (Φ∗1,t)
p ‖q‖pLp(Qt)

,

which, after raising to the power 1/p, yields

c∗1 (1 + 2CΨ̄1,t) (‖∇%∗ · ∇q‖Lp(Qt) + ‖∇q∗ · ∇q‖Lp(Qt)) ≤
1

2
‖q‖W 2,0

p (Qt)
+ Cp Φ∗1,t ‖q‖Lp(Qt) .

Since ‖q‖W 2,0
p (Qt)

≤ V (t; q), the latter and (86) imply that

1

2
(V (t; q) + ‖ζ‖W 2,0

p (Qt)
) ≤ Cp Φ∗1,t (1 + c∗1 φ

∗
t ) ‖q‖W 1,0

p (Qt)
(87)

+ 2C Ψ̄1,tD0(t) + c∗1 (1 + 2CΨ̄1,t) ‖∇h‖Lp(Qt) + Cp c
∗
1 φ
∗
t Φ∗1,t ‖h‖Lp(Qt) .

In order to finally get rid of the factors with q on the right-hand side, we introduce

[A(t)]
1
p :=2C Ψ̄1,tD0(t) + c∗1 (1 + 2CΨ̄1,t) ‖∇h‖Lp(Qt) + Cp c

∗
1 φ
∗
t Φ∗1,t ‖h‖Lp(Qt) ,

[B(t)]
1
p :=Cp Φ∗1,t (1 + c∗1 φ

∗
t ) , f(t) := sup

τ≤t
‖q(τ)‖p

W
2− 2

p
p (Ω)

.
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We raise (87) to the pth power. We use f(t) ≤ V p(t; q) and ‖q‖p
W 1,0
p (Qt)

≤
∫ t

0
f(τ) dτ . In this way,

we obtain the inequality f(t) ≤ 2pA(t) + 2pB(t)
∫ t

0
f(τ) dτ . Using that A and B are monotone

increasing by construction, the Gronwall Lemma yields f(t) ≤ 2pA(t) exp(2p t B(t)). In particular,
we conclude that

‖q‖W 1,0
p (Qt)

≤ [f(t) t]
1
p ≤ cp t

1
p [A(t)]

1
p exp(

2p

p
tB(t)) .

Combining the latter with (87), it follows that

V (t; q) + ‖ζ‖W 2,0
p (Qt)

≤ 2 {1 + c̃p t
1
p exp(

2p

p
tB(t)) [B(t)]

1
p}

× {2C Ψ̄1,tD0(t) + c∗1 (1 + 2CΨ̄1,t) ‖∇h‖Lp(Qt) + Cp c
∗
1 φ
∗
t Φ∗1,t ‖h‖Lp(Qt)} . (88)

In order to verify that the factors occurring in the latter inequality possess the structure as claimed
in the statement, we note that occurrences of B(t) in (88) are multiplied by a power of t, so that
they do not occur at t = 0. Moreover, the factor Ψ̄1,t possesses the structure required for Ψ1,t in
the statement. In order to estimate the dependence of ‖q∗‖L∞(Qt) on the coefficients c∗1, we apply
the same strategy as in the section 7 of [BDb]: ‖q∗‖L∞(Qt) ≤ ‖q0‖L∞(Ω) + tγ V (t; q∗). Setting
Φt := Cp c

∗
1 φ
∗
t Φ∗1,t, we are done.

7.2 Estimates for linearised problems for the variables v and %

First we state the estimate for the linearised momentum equation. The proof follows the lines of the
corresponding result in [BDb]. (Since we can assume %∗ ∈ [%min, %max], the proof is actually simpler.)

Proposition 7.3. Assume that %∗ ∈ Cα,0(Qt) (0 < α ≤ 1) attains values in ]%min, %max[, that

f ∈ Lp(QT ; R3), and that v0 ∈ W 2−2/p
p (Ω; R3) is such that v0 = 0 on ∂Ω. Then, there is a unique

solution v ∈ W 2,1
p (QT ; R3) to %∗ ∂tv − div S(∇v) = f in QT with the boundary conditions v = 0

on ST and v(x, 0) = v0(x) in Ω. Moreover, there is C independent on t, %∗, v0, f and v such that

V (t; v) ≤C Ψ2(t, sup
τ≤t

[%∗(τ)]Cα(Ω)) (1 + sup
τ≤t

[%∗(τ)]Cα(Ω))
2
α (‖f‖Lp(Qt) + ‖v0‖

W
2−2/p
p (Ω)

) .

The factor Ψ2 is continuous and increasing in both arguments, and it can be chosen such that

Ψ2(0, a) = (min{1, %min})−
2
α (%max/%min)

p+1
p is independent of a.

For the linearised continuity equation, we must acknowledge the main difference with respect to the
analysis of the compressible models.

Proposition 7.4. Assume that v∗ ∈ W 2,1
p (QT ; R3) and that %0 ∈ W 1,p(Ω) satisfies %min <

%0(x) < %max in Ω. We define M0 = M(%0, 0) := [infx∈Ω{%0(x)/%min− 1, 1− %0(x)/%max}]−1.
Then the problem ∂t%+ div(% v∗) = 0 in QT with %(x, 0) = %0(x) in Ω possesses a unique strictly
positive solution of class W 1,1

p,∞(QT ). Define also M(t) := M(%, t) (cf. (69)). Then, we can find a
constant c depending only on Ω and a function Ψ3 = Ψ3(t, a1, a2) continuous and finite in the set

{t, a1, a2 ≥ 0 : c a1 t
1− 1

p a2 e
c t

1− 1
p a2 < 1} ,
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such that M(t) ≤ Ψ3(t, M0, V (t; v∗)). Moreover, for β = 1 − 3
p

there are functions Ψ4, Ψ5 of t,
‖∇%0‖Lp(Ω) and V (t; v∗) such that

‖∇%‖Lp,∞(Qt) ≤Ψ4(t, ‖∇%0‖Lp(Ω), V (t; v∗)), [%]
Cβ,

β
2 (Qt)

≤ Ψ5(t, ‖∇%0‖Lp(Ω), V (t; v∗)) .

For i = 3, 4, 5, the function Ψi is continuous and increasing in all variables, and Ψi(0, a1, a2) =
Ψ0
i (a1) is independent on the last variable. The identity Ψ4(0, a1, a2) = a1, and the inequality

Ψ5(0, a1, a2) ≤ C a1, are also valid.

Proof. The existence statement as well as the construction of the functions Ψ4 and Ψ5 is proved
in [BDb], Corollary 7.8. The critical point is the construction of the function Ψ3. We start from the
well–known representation of the solution to the continuity equation (see a. o. [Sol80])

%(x, t) := %0(y(0; x, t)) exp

(
−
∫ t

0

div v∗(y(τ ; x, t), τ) dτ

)
,

where y(τ ; x, t) is the characteristic curve with speed v∗ through (x, t). Therefore,

%max − % =%max − %0(y(0; x, t)) + %0(y(0; x, t))

(
1− exp

(
−
∫ t

0

div v∗(y(τ ; x, t), τ) dτ

))
≥%max

(
1

M0

−
∣∣∣∣1− exp

(
−
∫ t

0

div v∗(y(τ ; x, t), τ) dτ

)∣∣∣∣) .

Use of |1− eb| ≤ e|b| |b| allows to bound∣∣∣∣1− exp

(
−
∫ t

0

div v∗(y(τ ; x, t), τ) dτ

)∣∣∣∣
≤ exp

(∫ t

0

‖ div v∗(τ)‖L∞(Ω) dτ

) ∫ t

0

‖ div v∗(τ)‖L∞(Ω) dτ .

Owing to the continuity of W 1,p(Ω) ⊂ L∞(Ω) and Hölder’s inequality

‖ div v∗‖L∞,1(Qt) ≤ cΩ

∫ t

0

‖ div v∗(τ)‖W 1,p(Ω) dτ ≤ cΩ t
1− 1

p ‖v∗‖W 2,0
p (Qt)

.

Thus 1 − %
%max

≥ 1
M0
− cΩ t

1− 1
p V (t; v∗) ecΩ t

1− 1
p V (t; v∗). Thanks to a similar argument applied to

%min − %, we find that

M(t) ≤ M0

1− cΩ M0 t
1− 1

p V (t; v∗) ecΩ t
1− 1

p V (t; v∗)
(89)

and define the function Ψ3 to be the right-hand of the latter relation.

8 The continuity estimate for T

We now want to combine the Propositions 7.2 and 7.3 with the linearisation of the continuity equation
in Proposition 7.4 to study the fixed point map T described at the beginning of Section 6 and defined
by the equations (46), (47), (48), (49) for given v∗ ∈ W 2,1

p (QT ; R3) and q∗ ∈ W 2,1
p (QT ; RN−2). We

define V ∗(t) := V (t; q∗) + V (t; v∗). At first we state estimates for the lower–order nonlinearities
(43), (45).
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Lemma 8.1. For u∗ = (q∗, ζ∗, %∗, v∗) ∈ XT,I , define g∗ := g(x, t, u∗, D1
xu
∗) and f ∗ :=

f(x, t, u∗, D1
xu
∗) via (43) and (45). There are continuous functions Ψg, Ψf = Ψ(t, a1, . . . , a4)

defined for all t ≥ 0 and a1, . . . , a4 ≥ 0 such that

‖g∗‖Lp(Qt) ≤ Ψg(t, M
∗(t), ‖(q∗(0), v∗(0))‖

W
2−2/p
p (Ω)

, ‖∇%∗‖Lp,∞(Qt), V ∗(t)) ,

‖f ∗‖Lp(Qt) ≤ Ψf (t, M
∗(t), ‖(q∗(0), v∗(0))‖

W
2−2/p
p (Ω)

, ‖∇%∗‖Lp,∞(Qt), V ∗(t)) .

Ψg and Ψf are increasing in all arguments with Ψg(0, a1, . . . , a4) = 0 = Ψf (0, a1, . . . , a4).

These estimates were proved in [BDb] for the case that the non-linear coefficients R, M̃ are defined
for %∗ taking values in ]0, +∞[. The proof is exactly the same for %∗ taking values in I , provided that
we adapt the definition of m∗(t), M∗(t) via (69). Moreover, the arguments are very similar to the
ones used to bound the right-hand vector field h. This statement, that we next prove in detail, might
serve as an illustration.

Lemma 8.2. Consider u∗ = (q∗, ζ∗, %∗, v∗) ∈ XT,I . Define h∗ := h(x, t, u∗) via (44). Then there
is a continuous function Ψh = Ψh(t, a1, . . . , a4) defined for all t ≥ 0 and a1, . . . , a4 ≥ 0 such that

‖h∗‖W 1,0
p (Qt)

≤Ψh(t, M
∗(t), ‖q∗(0)‖

W
2−2/p
p (Ω)

, ‖∇%∗‖Lp,∞(Qt), V ∗(t)) .

The function Ψh is increasing in all arguments. Moreover Ψh(0, a1, . . . , a4) = 0.

Proof. Recall that h := A(%∗, q∗) b̃(x, t) + d(%∗, q∗) b̂(x, t). With the same generic notation c∗1
as in the proof of Prop. 7.2, we bound |d(%∗, q∗) b̂| ≤ c∗1 |b̂| and |A(%∗, q∗) b̃| ≤ c∗1 |b̃|. Therefore
‖h‖Lp(Qt) ≤ c1(M∗(t), ‖q∗‖L∞(Qt)) (‖b̃‖Lp(Qt) + ‖b̂‖Lp(Qt)). We invoke the Lemma B.4 to bound
‖q∗‖L∞(Qt) ≤ ‖q0‖L∞(Ω) + tγ V ∗(t), and further make use of ‖q0‖L∞(Ω) ≤ C ‖q0‖

W
2−2/p
p (Ω)

. We

then define a function Ψ1
h(t, a1, . . . , a4) := (‖b̃‖Lp(Qt) + ‖b̂‖Lp(Qt)) c1(a1, a2 + tγ a4). We see

that Ψ1
h satisfies Ψ1

h(0, a1, . . . , a4) = 0, and ‖h‖Lp(Qt) ≤ Ψ1
h,t.

We compute h∗x, and readily show a bound |h∗x| ≤ c∗1 ((|%∗x|+ |q∗x|) (|b̃|+ |b̂|) + |b̃x|+ |b̂x|). Hence

‖h∗x‖Lp(Qt) ≤c∗1 (‖%∗x‖Lp,∞(Qt) + ‖q∗x‖Lp,∞(Qt)) (‖b̃‖L∞,p(Qt) + ‖b̂‖L∞,p(Qt))

+ c∗1 (‖b̃x‖Lp(Qt) + ‖b̂x‖Lp(Qt))

≤c∗1 [(‖b̃‖L∞,p(Qt) + ‖b̂‖L∞,p(Qt)) (‖%∗x‖Lp,∞(Qt) + V ∗(t)) + ‖b̃x‖Lp(Qt) + ‖b̂x‖Lp(Qt)]

=:Ψ2
h .

We use again Lemma B.4 to control c∗1, seeing thus that the function Ψ2
h also possesses the desired

structure (Ψ2
h = 0).

We are now ready to establish the final estimate that allows to obtain the self-mapping property.

Proposition 8.3. For (q∗, v∗) ∈ YT , the solution (q, v) = T (q∗, v∗) to the equations (46), (47),
(48), (49) exists and is unique in the class Yt for all t subject to

cM0 t
1− 1

p V ∗(t) ec t
1− 1

p V ∗(t) < 1 , (90)

where c = c(Ω) and M0 are the same as in Prop. 7.4. There is a continuous function Ψ6 =
Ψ6(t, a1, . . . , a4) defined for all t ≥ 0 and a1 . . . a4 ≥ 0 subject to the restriction

c a1 t
1− 1

p a4 e
c t

1− 1
p a4 < 1 , (91)
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such that V (t; q)+V (t; v) ≤ Ψ6(t, M0, ‖(q0, v0)‖
W

2−2/p
p (Ω)

, ‖∇%0‖Lp(Ω), V ∗(t)). The function

Ψ6 is increasing in all arguments and

Ψ6(0, M0, ‖(q0, v0)‖
W

2−2/p
p (Ω)

, ‖∇%0‖Lp(Ω), η) = Ψ0
6(M0, ‖(q0, v0)‖

W
2−2/p
p (Ω)

, ‖∇%0‖Lp(Ω))

for all η > 0.

Proof. Applying Prop. 7.4, we first find the global solution % to the continuity equation (46) with data v∗

on [0, T ]. The number M(t) expressing the distance of the solution % to the thresholds {%min, %max}
remains finite for all t subject to the restriction (90) (see Prop. 7.4). On this time interval, we can
therefore insert (%, q∗) into the coefficients of the system (47), (48). Applying Prop. 7.2, we find a
unique solution (q, ζ) ∈ W 2,1

p (Qt; RN−2) ×W 2,0
p (Qt). We then use (%, q∗) and ζ as data of the

system (49). Applying Proposition 7.3, we obtain a solution v ∈ W 2,1
p (Qt; R3) for all t subject to (90).

This shows that (q, v) := T (q∗, v∗) is well defined in Yt for all t subject to (90).

In order to verify the estimates, we first recall the outcome of Proposition 7.2 applied with %∗ = %. It
follows that

V (t; q) + ‖ζ‖W 2,0
p (Qt)

≤ C Ψ1(t, M(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%]
Cβ,

β
2 (Qt)

, ‖∇%‖Lp,∞(Qt))×

× (1 + [%]
Cβ,

β
2 (Qt)

)
2
β (‖q0‖

W
2−2/p
p (Ω)

+ ‖g∗‖Lp(Qt) + ‖h∗ + v∗‖W 1,0
p (Qt)

)

+ C Φ(t, M(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%]
Cβ,

β
2 (Qt)

, ‖∇%‖Lp,∞(Qt)) ‖h∗ + v∗‖Lp(Qt) . (92)

Evidently ‖v∗‖W 1,0
p (Qt)

≤ t
1
p supτ≤t ‖v(τ)‖W 1,p(Ω) ≤ t

1
p V (t; v∗). For the choices %∗ = % and

β := 1− 3
p
, Proposition 7.4 yields

M(t) ≤Ψ3(t, M0, V (t; v∗)) =: Ψ3(t, . . .) ,

‖∇%‖Lp,∞(Qt) ≤Ψ4(t, ‖∇%0‖Lp(Ω), V (t; v∗)) =: Ψ4(t, . . .) ,

[%]
Cβ,

β
2 (Qt)

≤Ψ5(t, ‖∇%0‖Lp(Ω), V (t; v∗)) =: Ψ5(t, . . .) .

Moreover, due to the Lemma 8.1 and due to Lemma 8.2,

‖g∗‖Lp(Qt) ≤Ψg

(
t, Ψ3(t, . . .), ‖(q0, v0)‖

W
2−2/p
p (Ω)

, Ψ4(t, . . .), V ∗(t)
)

=: Ψg(t, . . .) ,

‖h∗‖W 1,0
p (Qt)

≤Ψh(t, Ψ3(t, . . .), ‖q0‖
W

2−2/p
p (Ω)

, Ψ4(t, . . .), V ∗(t)) =: Ψh(t, . . .) .

Combining all these estimates we can bound the quantity V (t; q)+‖ζ‖W 2,0
p (Qt)

by some independent
constant times the function

Ψ1
6 := Ψ1(t, Ψ3(t, . . .), ‖q0‖Cβ(Ω), V (t; q∗), Ψ5(t, . . .), Ψ4(t, . . .))×

× (1 + Ψ5(t, . . .))
2
β (‖q0‖

W
2−2/p
p (Ω)

+ Ψg(t, . . .) + Ψh(t, . . .) + t
1
p V (t; v∗))

+ Φ(t, Ψ3(t, . . .), ‖q0‖Cβ(Ω), V (t; q∗), Ψ5(t, . . .), Ψ4(t, . . .)) (Ψh(t, . . .) + t
1
p V (t; v∗)) .

Since we can apply the inequalities V (t; v∗), V (t; q∗) ≤ V ∗(t), and ‖q0‖Cβ(Ω) ≤ c ‖q0‖
W

2−2/p
p (Ω)

,

we reinterpret the latter expression as a function Ψ1
6 of the arguments t, M0, ‖(q0, v0)‖

W
2−2/p
p (Ω)

,

‖∇%0‖Lp(Ω) and V ∗(t).
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At t = 0, we can use the estimates proved in the Propositions 7.2, 7.3 and the Prop. 7.4. Recall in
particular that Ψ1(0, a1, . . . , a4) = Ψ0

1(a1, a2). Moreover, Ψ3(0, M0, a4) = M0 (cf. (89)). Thus,
since Ψ5(0, a1, a4) ≤ C a1 is bounded independently of a4, since Ψg(0, . . .) = 0 = Ψh(0, . . .)
(see Lemma 8.1, 8.2), we can compute that

Ψ1
6(0, M0, ‖(q0, v0)‖

W
2−2/p
p (Ω)

, ‖∇%0‖Lp(Ω), V ∗(t)) (93)

= Ψ0
1(M0, ‖q0‖C1−3/p(Ω)) (1 + ‖∇%0‖Lp(Ω))

2p
p−3 ‖q0‖

W
2−2/p
p (Ω)

.

We next apply Proposition 7.3 with %∗ = % and f = f ∗ to obtain

V (t; v)

≤ C Ψ2(t, sup
τ≤t

[%(τ)]Cα(Ω)) (1 + sup
τ≤t

[%(τ)]Cα(Ω))
2
α (‖v0‖

W
2−2/p
p (Ω)

+ ‖f ∗‖Lp(Qt) + ‖∇ζ‖Lp(Qt)) .

For α = 1− 3
p
, the norm V (t; v) is estimated above by the quantity

Ψ2(t, Ψ5(t, . . .)) (1 + Ψ5(t, . . .))
2
α (‖v0‖

W
2−2/p
p (Ω)

+ Ψf (t, . . .) + ‖∇ζ‖Lp(Qt)) .

Recalling that (92) and the subsequent arguments also provide an estimate for ‖∇ζ‖Lp(Qt) by Ψ1
6,

we reinterpret the latter function as a Ψ2
6 of the same arguments, and we note that

Ψ2
6(0, M0, ‖(q0, v0)‖

W
2−2/p
p (Ω)

, ‖∇%0‖Lp(Ω), V ∗(t))

= Ψ0
2 × (1 + ‖∇%0‖Lp(Ω))

2p
p−3 (‖v0‖

W
2−2/p
p (Ω)

+ Ψ1
6(0, . . .))

=

(
1

min{1, %min}

) 2p
p−3

(
%max

%min

)p+1
p

(1 + ‖∇%0‖Lp(Ω))
2p
p−3 (‖v0‖

W
2−2/p
p (Ω)

+ Ψ1
6(0, . . .)) .

The value of Ψ1
6(0, . . .) is given in (93). We define Ψ6 := Ψ1

6 + Ψ2
6. Due to Proposition 7.4, the

function Ψ3(t, M0, V (t; v∗)) is finite for all arguments satisfying (91), and therefore Ψ6 is finite
under the same condition. The claim follows.

We sum up the continuity estimates in the following statement.

Proposition 8.4. We adopt the assumptions of Theorem 4.2. For a given pair (q∗, v∗) ∈ YT , we
define a map T (q∗, v∗) = (q, v) via solution to the equations (46), (47), (48), (49) with homogeneous
boundary conditions (31), (30) and initial conditions (q0, %0, v

0). Then, there are 0 < T0 ≤ T and
η0 > 0 depending on the data R0 := (M0, ‖(q0, v0)‖

W
2−2/p
p (Ω)

, ‖∇%0‖Lp(Ω)) such that T maps

the ball with radius η0 in YT0 into itself.

Proof. We define a0 > 0 to be the solution to the equation cM0 x e
c x = 1 associated with the

numbers in (91). We apply the Lemma 6.1 with Ψ(t, R0, η) := Ψ6(t, R0, η) from Prop. 8.3, and the
claim follows.

9 Proof of the theorem on short-time well-posedness

9.1 Existence and uniqueness

We choose T0, η0 > 0 according to Proposition 8.4. Starting from (q1, v1) = 0, we consider a
fixed point iteration (qn+1, vn+1) := T (qn, vn) for n ∈ N. Recalling (67), we define V n+1(t) :=
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V (t; qn+1) + V (t; vn+1). Since obviously V 1(t) ≡ 0, Proposition 8.4 guarantees that

sup
n∈N

V n(T0) ≤ η0, sup
n∈N
‖%n‖W 1,1

p,∞(QT0
) + ‖ζn‖W 2,0

p (QT0
) < +∞ . (94)

From Lemma 9.1 hereafter, we infer that the fixed-point iteration therefore yields strongly convergent
subsequences in L2(QT0) for the components of qn, ζn, %n and vn and for the gradients qnx , ζ

n
x and

vnx . The passage to the limit in the approximation scheme is then a straightforward exercise, since
we can rely on a uniform bound in XT0 . The proofs are almost identical with the fixed-point iteration
in [BDb]. We leave the minor changes to the interested reader, and state without proof the following
iteration lemma.

Lemma 9.1. For n ∈ N, we define

rn+1 := qn+1 − qn, χn+1 := ζn+1 − ζn, σn+1 := %n+1 − %n, wn+1 := vn+1 − vn .

Then there are k0, p0 > 0 and 0 < t1 ≤ T0 such that for all t ∈ [0, T0 − t1], the quantity

En+1(t) :=k0 sup
τ∈[t, t+t1]

(‖rn+1(τ)‖2
L2(Ω) + ‖wn+1(τ)‖2

L2(Ω) + ‖σn+1‖2
L2(Ω))

+ p0

∫
Qt,t+t1

(|∇rn+1|2 + |∇χn+1|2 + |∇wn+1|2) dxdτ

satisfies En+1(t) ≤ 1
2
En(t) for all n ∈ N.

9.2 Verification of continuation criteria

In order to complete the proof of the Theorems 2.1, 2.2 it remains to investigate the claimed charac-
terisations of the maximal existence interval.

Lemma 9.2. Suppose that u = (q, ζ, %, v) ∈ Xt is a solution to Ã (u) = 0 and u(0) = u0 for all
0 < t < T ∗. Then the two following statements are valid:

(1) If N (t) := ‖q‖Cα,α/2(Qt) + ‖∇q‖L∞,p(Qt) + ‖v‖Lz p, p(Qt) +
∫ t

0
[∇v(τ)]Cα(Ω) dτ with α > 0

arbitrary and z = z(p) defined in Theorem 2.1, and M(%, t) (cf. (69)) are finite for t↗ T ∗, then
it is possible to extend the solution to a larger time interval.

(2) If the tensor M occurring in (4) satisfies the additional conditions stated in Theorem 2.2, and if
K(t) := ‖q‖W 2,1

p (Qt;RN−2) + ‖ζ‖W 2,0
p (Qt)

+ ‖v‖W 2,1
p (Qt;R3) remains finite for t ↗ T ∗, then the

solution can be extended without additional condition concerning M(%, t).

Proof. First criterion (1). We must show that the quantity V (t; q) + V (t; v) is bounded by a con-
tinuous function of t, M(%, t), N (t). We will only sketch this point, which relies on going carefully
through the proofs of the estimates in the Propositions 7.2, 7.3 in the spirit of [BDb].

To begin with, we notice that the components of vx have all spatial mean-value zero over Ω due
to the boundary condition (30). Hence, for α > 0, inequalities ‖vx(τ)‖L∞(Ω) ≤ cΩ [vx(τ)]Cα(Ω)

and ‖vx‖L∞,1(Qt) ≤ cΩ

∫ t
0
[vx(τ)]Cα(Ω) dτ are available. For the solution to the continuity equation,

Theorem 2 of [Sol80] (see also Proposition 7.7 in [BDb]) implies that supτ≤t[%(τ)]Cα(Ω) is bounded by
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a function of
∫ t

0
[vx(τ)]Cα(Ω) dτ , thus also by a function ofN (t). Moreover, as in the same references,

we show for all t ≥ 0 that

‖%x(t)‖Lp(Ω) ≤φ(R0, ‖vx‖L∞,1(Qt)) (1 +

∫ t

0

‖vx,x(τ)‖Lp(Ω) dτ)

≤φ(R0, N (t)) (1 + V (t; v)) .

Here and throughout the proof, we denote by φ some generic continuous function increasing in its
arguments, and R0 stands for the initial data and the external forces.

We next exploit the momentum balance equation for v. We apply Proposition 7.3, hence V (t; v) ≤
φ(t, N (t)) (‖f‖Lp(Qt) + ‖∇ζ‖Lp(Qt) + ‖v0‖

W
2−2/p
p (Ω)

). The function f obeys (45) and therefore

|f(x, t)| ≤|∇%(x, t)| sup
Qt

|P%(%, q)|+ |∇q(x, t)| sup
Qt

|Pq(%, q)|

+ c (|v(x, t)| |∇v(x, t)|+ |b̄(x, t)|+ |b̃(x, t)|) sup
Qt

%+ |b̂(x, t)| .

Coefficients depending on % and q can in general be bounded following the example of

sup
Qt

|P%(%, q)| ≤ φ(M(%, t), ‖q‖L∞(Qt)) ≤ φ(M(%, t), N (t)) .

Therefore, we show that

‖f‖pLp(Qt)
≤ φ(M(%, t), N (t)) (‖∇%‖pLp(Qt)

+ ‖∇q‖pLp(Qt)
+ ‖v∇v‖pLp(Qt)

+ ‖b̃‖pLp(Qt)
+ ‖b̄‖pLp(Qt)

+ ‖b̂‖pLp(Qt)
) .

We define A0(t) := ‖b̃‖pLp(Qt)
+ ‖b̄‖pLp(Qt)

+ ‖b̂‖pLp(Qt)
+ ‖v0‖

W
2−2/p
p (Ω)

, hence

V p(t; v) ≤
φ(M(%, t), N (t)) (‖∇ζ‖pLp(Qt)

+ ‖∇%‖pLp(Qt)
+ ‖v∇v‖pLp(Qt)

+ ‖∇q‖pLp(Qt)
+ A0(t)) .

As shown, ‖∇%‖pLp(Qt)
≤ φ(R0, ‖vx‖L∞,1(Qt))

∫ t
0
(1 + V (τ ; v))p dτ , and ζ satisfies the weak

Neumann problem (48), hence

‖∇ζ‖Lp(Qt) ≤ φ(M(%, t), N (t)) (‖∇q‖Lp(Qt) + ‖v‖Lp(Qt) + ‖b̃‖Lp(Qt) + ‖b̂‖Lp(Qt)) .

We define z = 3
p−2

if 3 < p < 5, z > 1 arbitrary if p = 5 and z = 1 if p > 5. Recalling the

continuity of the embedding W 1−2/p
p ⊂ L3p/(5−p)+

, we show by means of Hölder’s inequality that
‖v vx‖pLp(Qt)

≤ cΩ

∫ t
0
‖v(τ)‖pLz p V p(τ ; v) dτ . Therefore, combining the latter bounds yields

V p(t; v) ≤ φ(t, M(%, t), N (t))
( ∫ t

0

(1 + ‖v(τ)‖pLz p) V p(τ ; v) dτ + ‖∇q‖pLp(Qt)
+ A0(t)

)
.

We invoke the Gronwall Lemma, hence V p(t; v) ≤ φ(t, M(%, t), N (t)) (‖∇q‖pLp(Qt)
+ A0(t)).

Since ‖∇q‖Lp(Qt) is also controlled by a function of t and N (t), so does V p(t; v). It follows that
‖∇%‖pLp,∞(Qt)

≤ φ(t, R0, N (t)). For β = 1− 3/p, the Proposition 7.4 yields that ‖%‖Cβ,β/2(Qt) ≤
φ(t, R0, N (t)). Recalling that q satisfies (76), we can now finish the proof as in [BDb], Lemma 9.2.
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Second criterion (2). The more interesting point is to get rid of the dependence on the distance
M(%, t) to the density thresholds in the estimates. First we note that the relation (28) implies for the
gradient of the pressure

∇P (%, q) = F :=−∇ζ − % (∂tv + (v · ∇)v) + div S(∇v)

+R(%, q) · b̃+ b̂+ % b̄ . (95)

Clearly, ‖F‖Lp(Qt) is bounded by a function of b and the norms of ζ and v occurring in the quantity
K(t). We notice in particular that this function is independent on M(%, t).

In order to obtain a bound on the entire pressure gradient, we employ the continuity equation (27). We
compute that

∂tP (%, q) =P%(%, q) ∂t%+ Pq(%, q) ∂tq

=P%(%, q) (−v · ∇%− % div v) + Pq(%, q) ∂tq .

Define m(%, t) := minQt{1 − %/%max, %/%min − 1}. Thanks to Lemma B.1, the properties of
the pressure function guarantee that |P%(%, q)| ≤ c4m(%, t)−1 in Qt. Since |P%(%, q)| |∇%| =
|∇P (%, q)− Pq(%, q)∇q|, the same Lemma B.1 also implies that

c3m(%, t)−1 |∇%| ≤ |∇P (%, q)|+ c5 |∇q|) .

By these means, the time derivative of pressure is bounded via

|∂tP (%, q)| ≤c4m
−1 (|v| |∇%|+ |%| | div v|) + |Pq| |∂tq|

≤c4
1 + c5

c3

|v| (|∇P (%, q)|+ |∇q|) + c4 %maxm
−1 | div v|+ c5 |∂tq| . (96)

We want to obtain a control onm(%, t)−1 | div v|. To this aim, we recall the relation (26), which allows
us to compute

div v = div(d(%, q) (∇ζ − b̂) + A(%, q) (∇q − b̃))
=d(%, q) div(∇ζ − b̂) + A(%, q) div(∇q − b̃) + (∇ζ − b̂) · ∇d(%, q) +∇A(%, q) · (∇q − b̃)
=d div(∇ζ − b̂) + A div(∇q − b̃) + [(∇ζ − b̂) dq + (∇q − b̃)Aq]∇q

+∇% [d% (∇ζ − b̂) + A% (∇q − b̃)] . (97)

We recall Lemma B.1, which shows for a constant c1, depending only on the kinetic matrix M and the
free energy function k, that

|d(%, q)|+ |A(%, q)|+ |dq(%, q)|+ |Aq(%, q)| ≤ c1m(%) ,

and, moreover, that |d%(%, q)|+ |A%(%, q)| ≤ c2. Applying these estimates to (97), we obtain that

1

m(%, t)
| div v| ≤c1 [|D2ζ|+ |D2q|+ |b̃x|+ |b̂x|+ |∇q| (|∇ζ|+ |∇q|+ |b̃|+ |b̂|)]︸ ︷︷ ︸

=:G

+ c2
|∇%|
m(%, t)

(|∇ζ|+ |∇q|+ |b̃|+ |b̂|) .

Recalling again that m(%)−1 |∇%| ≤ c (|∇P (%, q)|+ |∇q|), we get the bound

1

m(%, t)
| div v| ≤ |G|+ c (|∇P (%, q)|+ |∇q|) (|∇ζ|+ |∇q|+ |b̃|+ |b̂|) .
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It is readily verified that G is continuously bounded in Lp(Qt) by the quantity K(t), independently of
M(%, t). Since |ζx|+ |qx|+ |b̃|+ |b̂| is bounded in L∞,p(Qt), we recall (95) to finally obtain

‖m(%, t)−1 div v‖
Lp,

p
2 (Qt)

≤ Ψ(t, K(t)) . (98)

By means of (98), (95), (96) we see that also ‖∂tP (%, q)‖Lp,p/2(Q) is bounded by a function of t and
K(t), independently of M(%, t). Overall we have ‖Px‖Lp(Qt) + ‖Pt‖Lp,p/2(Qt) ≤ Ψ. For p > 5, we
can show that this implies a bound ‖P‖L∞(Qt) ≤ C(t) Ψ, where C(t) is the embedding constant of
an anisotropic Sobolev space into L∞(Qt). It remains to recall that for the choice (7), the function P
satisfies (cf. [Dru19], Proposition 5.3)

|P (%, q)| ≥ c ln max{ 1

%max − %
,

1

%− %min

} − C (1 + |q|) .

This implies that M(%, t) ≤ C1 e
C2 (‖P (%, q)‖L∞(Qt)

+‖q‖L∞(Qt)
), and the claim follows.

10 Global well-posedness

10.1 The map T 1 is well defined

We consider the equations (59), (61), (62), (63), (64) characteristic of the definition of the map T 1. We
recall that these equations are obtained by comparing a solution to some suitable extension (q̂0, v̂0) ∈
YT , to be constructed here below, of the initial data. The initial density %0 is extended by a function %̂0

obtained via the solution of (50). We moreover introduce the function ζ̂0, solution to (51).

In order to define T 1 we must make sense of the linear operators (g1)′(u∗, û0), (h1)′(u∗, û0) and
(f 1)′(u∗, û0). The density components in the vectors û0 = (q̂0, 1, %̂0, v̂0) and u∗ (def. in (60)) must
therefore assume values in I up to time T > 0! This property is to be expected if the initial data are
close enough to an equilibrium solution (ρeq, peq, veq) defined by the relations (16), (17). The distance
of the initial data to this solution is expressed by the number

R1 := ‖q0 − qeq‖
W

2−2/p
p (Ω;RN−2)

+ ‖v0 − veq‖
W

2−2/p
p (Ω;R3)

+ ‖%0 − %eq‖W 1,p(Ω) , (99)

in which %eq :=
∑N

i=1 ρ
eq
i and qeq

` = η` · ∇ρk(ρeq) for ` = 1, . . . , N − 2. Throughout this section,
we moreover employ the abbreviation

R0 :=‖û0‖XT + ‖%̂0‖W 2,0
p (QT ) + ‖b̃‖W 1,0

p (QT ) + ‖b̂‖W 1,0
p (QT ) + ‖b̄‖Lp(QT )) . (100)

Observe the occurrence of the higher–order W 2,0
p –norm of %̂0 in the definition of R0.

To commence with, we recall a result of [BDb] for estimating the gradient of solutions to a perturbed
continuity equation. The proof in [BDb] is given for zero initial conditions, but the extension to the
nonzero case is completely straightforward.

Lemma 10.1. Assume that σ ∈ W 1,1
p,∞(QT ) satisfies ∂tσ + div(σ v) = − div(%̂0w) with %̂0 ∈

W 1,1
p,∞(QT ) ∩ W 2,0

p (QT ) and v, w ∈ W 2,1
p (QT ; R3). Then there are constants C, c, depending

only on Ω, such that

‖σ(t)‖pW 1,p(Ω) ≤C exp
(
c

∫ t

0

[‖vx(τ)‖L∞(Ω) + ‖vx,x(τ)‖Lp(Ω) + 1]dτ
)
×

× (‖σ(0)‖pW 1,p(Ω) + ‖%̂0‖p
W 2,0
p (Qt)

‖w‖pL∞(Qt)
+ ‖%̂0‖p

W 1,1
p,∞(Qt)

‖w‖p
W 2,0
p (Qt)

)

for all t ≤ T .
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Construction of global extensions. Under the assumptions of Theorem 2.3, the trivial extensions
qeq(x, t) := qeq(x) and veq(x, t) := veq(x) are such that qeq ∈ W 2,∞

p,∞ and veq ∈ W 3,∞
p,∞ (QT ).

Introduce on Ω the differences q1(x) := q0(x) − qeq(x) and v1(x) := v0(x) − veq(x). We extend
q0 and v0 via

v̂0(x, t) := veq(x) + E(v1)(x, t)︸ ︷︷ ︸
=:v̂1(x, t)

, q̂0(x, t) := qeq(x) + E(q1)(x, t)︸ ︷︷ ︸
=:q̂1(x, t)

, (101)

in which E : W
2−2/p
p (Ω) → W 2,1

p (QT ) is a linear, bounded extension operator. Typically, the com-

ponents of q1, v1 defined in Ω are first extended to elements of W 2−2/p
p (R3) with bounded support.

Then, we solve Cauchy-problems for the heat equation to extend the functions into R3 × [0, T ] or
even R4. As the assumptions in Theorem 2.3 moreover guarantee that v1 ∈ W 2,p(Ω), this procedure
even yields the additional regularity v̂1 ∈ W 4,2

p (QT ; R3) (cf. [LSU68], Ch. 4, Par. 3, inequality (3.3)).

Then, the extensions defined in (101) satisfy

‖q̂0 − qeq‖W 2,1
p (QT ) + ‖v̂0 − veq‖W 2,1

p (QT ) ≤CE (‖q1‖
W

2−2/p
p (Ω)

+ ‖v1‖
W

2−2/p
p (Ω)

)

≤CE R1 , (102)

‖v̂0‖W 3,0
p (QT ) ≤C (‖veq‖W 3,p(Ω) + ‖v0‖W 2,p(Ω)) . (103)

In order to extend %0, we solve ∂t%̂0 + div(%̂0 v̂0) = 0 with initial condition %̂0 = %0. By these
means, %̂0 ∈ W 1,1

p,∞(QT ). Due to (103), we can even show that %̂0 ∈ W 2,0
p (QT ). We next extend the

equilibrium solution via %eq(x, t) := %eq(x) ∈ W 2,∞
p,∞ (QT ). Then, by definition, div(%̂eq v̂eq) = 0 in

QT (cp. (16)), and ∂t%̂eq = 0. Thus, the difference %̂1 := %̂0 − %eq is a solution to

∂t%̂
1 + div(%̂1 v̂0) = − div(%̂0 v̂1) , %̂1(x, 0) = %1(x) := %0(x)− %eq(x) .

Since %̂0 ∈ W 1,1
p,∞(QT ) ∩W 2,0

p (QT ) by construction, the estimate of Lemma 10.1 applies (with the
choices σ = %̂1, v = v̂0 and w := v̂1). Hence, invoking also (102),

‖%̂1‖p
W 1,1
p,∞(QT )

≤C exp
(
c

∫ T

0

[‖v̂0
x(τ)‖L∞(Ω) + ‖v̂0

x,x(τ)‖Lp(Ω) + 1]dτ
)
×

× [‖%1‖pW 1,p(Ω) + ‖%̂0‖p
W 2,0
p (QT )

‖v̂1‖pL∞(QT ) + ‖%̂0‖p
W 1,1
p,∞(QT )

‖v̂1‖p
W 2,0
p (QT )

]

≤CT (‖%1‖pW 1,p(Ω) + ‖v̂1‖p
W 2,1
p (QT )

) ≤ C(R0, T ) Rp
1 .

The latter and (102) now entail

‖q̂0 − qeq‖W 2,1
p (QT ) + ‖v̂0 − veq‖W 2,1

p (QT ) + ‖%̂0 − %eq‖W 1,1
p,∞(QT ) ≤ C R1 . (104)

Thus, it also follows that ‖%̂0 − %eq‖L∞(QT ) ≤ C R1. Therefore

%max − %̂0(x, t) ≥ %max − %eq(x)− C R1, %̂0(x, t)− %min ≥ %eq(x)− %min − C R1 .

By definition, the equilibrium density remains in the thresholds, that is, M(%eq, 0) < +∞ (see (69)).
If R1 is small enough, for instance if it satisfies the condition

R1 ≤
1

2C
min
x∈Ω
{%max − %eq(x), %eq(x)− %min} , (105)
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we can show that

M(%̂0, T ) = esssupQT max{ 1

%max − %̂0
,

1

%̂0 − %min

} ≤ 2M(%eq, 0) < +∞ . (106)

We define ζeq(x) := ηN−1 · ∇ρk(ρeq(x)). Multiplying (16) with V̄ , we see that ζeq satisfies

div(veq − d(%eq, qeq) (∇ζeq − b̂(x)) + A(%eq, qeq) (∇qeq − b̃(x))) = 0 .

Since ζ̂0 is constructed solving (51), the difference y := ζ̂0 − ζeq satisfies

− div(d0∇y) =− div(v̂0 − veq + (d0 − deq) (b̂(x)−∇ζeq))

− div(Aeq · (∇qeq − b̃(x))− A0 (∇q̂0 − b̃(x)))

where zero superscript of a coefficient means evaluation at (%̂0, q̂0), while eq superscript means
evaluation at (%̂eq, q̂eq). Thus, elementary calculations show that also

‖ζ̂0 − ζeq‖W 2,0
p (QT ) ≤ C (‖q̂0 − qeq‖W 2,1

p (QT ) + ‖v̂0 − veq‖W 2,1
p (QT ) + ‖%̂0 − %eq‖W 1,1

p,∞(QT ))

≤ C R1 . (107)

The nonlinear map. Consider now (r∗, w∗) given in 0YT . We define q∗ := q̂0+r∗ and v∗ = v̂0+w∗.
Following (59), we introduce %∗ := C (v∗). Then, the difference σ∗ := %∗ − %̂0 is a solution to

∂tσ
∗ + div(σ∗ v∗) = − div(%̂0w∗) , σ∗(x, 0) = 0 .

Making use of Lemma 10.1 (σ∗ = σ and v∗ = v, w∗ = w therein), we get

‖%∗ − %̂0‖p
W 1,1
p,∞(QT )

≤C exp
(
c

∫ T

0

[‖v∗x(τ)‖L∞(Ω) + ‖v∗x,x(τ)‖Lp(Ω) + 1]dτ
)
×

× (‖%̂0‖p
W 2,0
p (QT )

‖w∗‖pL∞(QT ) + ‖%̂0‖p
W 1,1
p,∞(QT )

‖w∗‖p
W 2,0
p (QT )

)

≤φ0(T, R0, ‖w∗‖W 2,1
p (QT )) ‖w

∗‖p
W 2,1
p (QT )

,

with a certain continuous function φ0 increasing of its arguments. Hence, use of the continuous em-
bedding W 1,1

p,∞ ⊂ L∞ yields ‖%∗ − %̂0‖L∞(QT ) ≤ φ0(T, R0, ‖w∗‖W 2,1
p (QT )) ‖w∗‖W 2,1

p (QT ). We
recall (106) to show that, under the condition

φ0(T, R0, V (T ; w∗)) V (T ; w∗) ≤ 1

4
min
x∈Ω
{%max − %eq(x), %eq(x)− %min} =: a0 , (108)

we can guarantee that M(%∗, T ) < +∞ globally.

The vector û0 := (q̂0, 1, %̂0, v̂0) is in XT,I under the condition (105). For a given (r∗, w∗) ∈ 0YT
satisfying (108), we define u∗ := (q̂0 + r∗, 1, C (v̂0 + w∗), v̂0 + w∗) (cp. (60)), and we see by
the latter arguments that u∗ ∈ XT,I too. Thus, we can make sense of the operators (g1)′(u∗, û0),
(h1)′(u∗, û0) and (f 1)′(u∗, û0) in the right-hand of the equations (61), (62), (64) on the entire interval
[0, T ].

If we can solve the linear system (61), (62), (63), (64) for (r, χ, ζ, w), we obtain a globally defined
solution in 0XT , and we can meaningfully define T 1(r∗, w∗) := (r, w). We shall prove the solvability
by linear continuation on the base of the continuity estimates, that we are in the position to prove next.
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10.2 Continuity estimates

We need at first an estimate for the operators (g1)′, (h1)′ and (f 1)′. We shall prove it for general body
forces b = b(x, t), even if the statement of Theorem 2.3 requires only b = b(x).

Lemma 10.2. Assume that the initial data satisfy (105). Consider û0 := (q̂0, 1, %̂0, v̂0) ∈ XT,I
with %̂0 ∈ W 2,0

p (QT ) constructed in the Section 10.1. For a given (r∗, w∗) ∈ 0YT satisfying (108),
we define u∗ := (q̂0 + r∗, 1, C (v̂0 + w∗), v̂0 + w∗) ∈ XT,I (cf. (60), Section 10.1). We further
consider (r, w) ∈ 0YT , and we denote by σ the function obtained via solution of (63). We define
ū := (r, 1, σ, w) ∈ 0XT . Then the operators (g1)′, (h1)′ and (f 1)′ on the right-hand side of (61),
(62), (63) satisfy

‖(g1)′(u∗, û0) ū‖pLp(Qt)
+ ‖(h1)′(u∗, û0) ū‖p

W 1,0
p (Qt)

+ ‖(f 1)′(u∗, û0) ū‖pLp(Qt)

≤ K∗2(t)

∫ t

0

V p(s)K∗1(s) ds

with functions K∗1 ∈ L1(0, T ) and K∗2 ∈ L∞(0, T ). There is a continuous function Φ∗(t, a1, a2)
defined for all t, a1, a2 ≥ 0, such that

‖K∗1‖L1(0,t), ‖K∗2‖L∞(0,t) ≤Φ∗(t, V ∗(t), R0)

for all t ≤ T , where V (t) := V (t; r)+V (t; w), V ∗(t) := V (t; r∗)+V (t; w∗) andR0 is defined
in (100).

Proof. The estimates of (g1)′, (f 1)′ were performed in [BDb] for the corresponding norms. They
can be translated one to one to the present context. In adapting the proof, recall also that the num-
bers M(%∗, T ) and M(%̂0, T ) are finite by construction. We consider here the factor (h1)′, which is
treated with similar arguments. We recall that

h1 =h1(x, t, q, %)

=d(%, q) (b̂(x, t)−∇ζ̂0(x, t)) + A(%, q) (b̃(x, t)−∇q̂0(x, t)) ,

where ζ̂0 is constructed solving (51). The derivatives of h1 are given by the following expressions:

h1
q = dq (b̂−∇ζ̂0) + Aq (b̃−∇q̂0), h1

% = d% (b̂−∇ζ̂0) + A% (b̃−∇q̂0) ,

while the gradients in x obey

∇h1
q =(dq,q∇q + dq,%∇%) (b̂−∇ζ̂0)

+ (Aq,q∇q + Aq,%∇%) (b̃−∇q̂0) + dq (∇b̂−D2ζ̂0) + Aq (∇b̃−D2q̂0) ,

∇h1
% =(d%,q∇q + d%,%∇%) (b̂−∇ζ̂0)

+ (A%,q∇q + A%,%∇%) (b̃−∇q̂0) + d% (∇b̂−D2ζ̂0) + A% (∇b̃−D2q̂0) .

Denote by c∗1 a generic function depending onM(%, T ) and ‖q‖L∞(QT ). Then the following estimates
are obviously valid:

|h1
q|+ |h1

%| ≤c∗1 (|b̂|+ |b̃|+ |∇ζ̂0|+ |∇q̂0|) ,
|∇h1

q|+ |∇h1
%| ≤c∗1 (|∇q|+ |∇%|) (|b̂|+ |b̃|+ |∇ζ̂0|+ |∇q̂0|)

+ c∗1 (|b̂x|+ |b̃x|+ |D2
x,xζ̂

0|+ |D2
x,xq̂

0|) .
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Using that W 1,p(Ω) ⊂ L∞(Ω), it follows that

‖h1
q‖L∞,p(Qt) + ‖h1

%‖L∞,p(Qt) ≤c∗1 (‖b̂‖W 1,0
p (Qt)

+ ‖b̃‖W 1,0
p (Qt)

+ ‖ζ̂0‖W 2,0
p (Qt)

+ ‖q̂0‖W 2,0
p (Qt)

) ,

(109)

‖∇h1
q‖Lp(Qt) + ‖∇h1

%‖Lp(Qt) ≤c∗1 (‖∇q‖Lp,∞(Qt) + ‖∇%‖Lp,∞(Qt) + 1)×
× (‖b̂‖W 1,0

p (Qt)
+ ‖b̃‖W 1,0

p (Qt)
+ ‖ζ̂0‖W 2,0

p (Qt)
+ ‖q̂0‖W 2,0

p (Qt)
) .

(110)

Next we turn to estimate (h1)′(u∗, û0) ū in W 1,0
p (Qt). At first we notice that (h1)′(u∗, û0) ū =

h1
q(u
∗, û0) r + h1

%(u
∗, û0)σ. Thus

‖(h1)′(u∗, û0) ū‖pLp(Qt)
≤
∫ t

0

(|h1
q(u
∗, û0)|pL∞ + |h1

%(u
∗, û0)|pL∞) (|r|pLp + |σ|pLp) dτ

≤c∗1
∫ t

0

K∗1(τ) (|r|pLp + |σ|pLp) dτ (111)

with c∗1 = c1(M(%∗, T ), M(%̂0, T ), ‖q∗‖L∞(QT ), ‖q̂0‖L∞(QT )), and

K∗1(τ) := ‖b̂(τ)‖W 1,p(Ω) + ‖b̃(τ)‖W 1,p(Ω) + ‖ζ̂0(τ)‖W 2,p(Ω) + ‖q̂0(τ)‖W 2,p(Ω) .

The function K∗1 is integrable on (0, t) with norm bounded by a function Φ∗t of the required structure.
Estimating ‖q∗‖L∞(Qt) ≤ ‖q̂0‖L∞(Qt) + C tγ V (r∗; t), we see that

‖(h1)′(u∗, û0) ū‖pLp(Qt)
≤φ(t, V ∗(t), R0)

∫ t

0

K∗1(τ) (‖r(τ)‖pLp(Ω) + ‖σ(τ)‖pLp(Ω)) dτ

≤φ(t, V ∗(t), R0)

∫ t

0

K∗1(τ) (‖r(τ)‖pLp(Ω) + c0 ‖σx(τ)‖pLp(Ω)) dτ .

For the terms containing σx, we use the result of Lemma 10.1. It yields for τ ≤ t that, in particular,

‖σ(τ)‖W 1,p(Ω) ≤K3(τ) ‖w‖pL∞(Qτ ) +K4(τ) ‖w‖p
W 2,0
p (Qτ )

(112)

with K3(τ) :=C ec
∫ τ
0 [‖v∗x‖L∞(Ω)+‖v∗x,x‖Lp(Ω)+1] ds ‖%̂0‖p

W 2,0
p (Qτ )

,

K4(τ) :=C ec
∫ τ
0 [‖v∗x‖L∞(Ω)+‖v∗x,x‖Lp(Ω)+1] ds ‖%̂0‖p

W 1,1
p,∞(Qτ )

.

Since ‖w‖L∞(Qτ ) ≤ c̄ sups≤τ ‖w(s)‖
W

2−2/p
p (Ω)

, we obtain that∫ t

0

K∗1(τ) ‖σx(τ)‖pLp(Ω) dτ ≤max{K3(t), K4(t)}
∫ t

0

K∗1(τ) [‖w‖pL∞(Qτ ) + ‖w‖p
W 2,0
p (Qτ )

] dτ

≤max{K3(t), K4(t)} (1 + c̄)p
∫ t

0

K∗1(τ) V p(w; τ) dτ .

Thus for K∗2(t) := C φ(t, V ∗(t), R0) max{K3(t), K4(t), 1}, it follows that

‖(h1)′(u∗, û0) ū‖pLp(Qt)
≤ φ(t, V ∗(t), R0)

∫ t

0

K∗1(τ) ‖r(τ)‖pLp(Ω) dτ

+ φ(t, V ∗(t), R0) c0 max{K3(t), K4(t)} (1 + c̄)p
∫ t

0

K∗1(τ) V p(w; τ) dτ

≤ K∗2(t)

∫ t

0

K∗1(τ) V p(τ) dτ .
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We can prove a similar estimate for ‖∇((h1)′(u∗, û0) ū)‖pLp(Qt)
. First we notice that

∇((h1)′(u∗, û0) ū) =∇(h1
q(u
∗, û0) r + h1

%(u
∗, û0)σ)

=∇h1
q(u
∗, û0) r +∇h1

%(u
∗, û0)σ + h1

q(u
∗, û0)∇r + h1

%(u
∗, û0)∇σ .

As before (see (111)), ‖h1
q∇r+h1

%∇σ‖
p
Lp(Qt)

≤ c∗1
∫ t

0
K∗1(τ) (‖rx‖pLp(Ω)+‖σx‖

p
Lp(Ω)) dτ . Treating

σx as in (112), we obtain that ‖h1
q∇r + h1

%∇σ‖
p
Lp(Qt)

≤ K∗2(t)
∫ t

0
K∗1(τ) V p(τ) dτ .

On the other hand, (110) yields

‖∇h1
q(u
∗, û0) r +∇h1

%(u
∗, û0)σ‖pLp(Qt)

≤c∗1 (‖∇q∗‖Lp,∞(Qt) + ‖∇q̂0‖Lp,∞(Qt) + ‖∇%∗‖Lp,∞(Qt) + ‖∇%̂0‖Lp,∞(Qt) + 1)p×

×
∫ t

0

(‖b̂‖W 1,p(Ω) + ‖b̃‖W 1,p(Ω) + ‖ζ̂0‖W 2,p(Ω) + ‖q̂0‖W 2,p(Ω))
p (‖r‖pL∞(Ω) + ‖σ‖pL∞(Ω)) dτ .

This implies that

‖∇h1
q r +∇h1

% σ‖
p
Lp(Qt)

≤ K̃∗2(t)

∫ t

0

K̃∗1(τ) (‖r(τ)‖pL∞(Ω) + c0 ‖σx(τ)‖pLp(Ω)) dτ .

Again, we treat σx by means of (112). The claim follows.

Next we prove the main continuity estimate. We apply Proposition 7.2 to (61), (62). Making use of the
fact that r(0, x) = 0 in Ω, we get the estimate

V (t; r) + ‖χ‖W 2,0
p (Qt)

≤C Ψ̃1,T (‖g1‖Lp(Qt) + ‖(h1)′(u∗, û0) ū‖W 1,0
p (Qt)

+ ‖w‖W 1,0
p (Qt)

) (113)

≤C Ψ̃1,T (‖ĝ0‖Lp(Qt) + ‖w‖W 1,0
p (Qt)

)

+ C Ψ̃1,T (‖(g1)′(u∗, û0) ū‖Lp(Qt) + ‖(h1)′(u∗, û0) ū‖W 1,0
p (Qt)

) .

Here Ψ̃1,T = max{Ψ1,T , ΦT} depends continuously on the data. We then apply Proposition 7.3 to
(64) and obtain

V (T ; w) ≤C Ψ̃2,T (‖f 1‖Lp(Qt) + ‖∇χ‖Lp(Qt))

≤C Ψ̃2,T (‖f̂ 0‖Lp(Qt) + ‖∇χ‖Lp(Qt) + ‖(f 1)′(u∗, û0) ū‖Lp(Qt)) , (114)

again with some Ψ̃2,T depending on T and sups≤t[%
∗(s)]Cα(Ω)). We estimate ‖∇χ‖Lp(Qt) by means

of (113). We next raise both (113) and (114) to the pth power, add both inequalities, and get for the
function V (t) := V (t; r) + V (t; w) + ‖χ‖W 2,0

p (Qt)
the inequality

V p(t) ≤C (Ψ̃p
1,T + Ψ̃p

2,T ) (‖ĝ0‖pLp(QT ) + ‖f̂ 0‖pLp(QT ) + ‖w‖p
W 1,0
p (Qt)

+ ‖(g1)′(u∗, û0) ū‖pLp(Qt)
+ ‖(f 1)′(u∗, û0) ū‖pLp(Qt)

+ ‖(h1)′(u∗, û0) ū‖p
W 1,0
p (Qt)

) .

Then we make use of ‖w‖p
W 1,0
p (Qt)

≤
∫ t

0
V p(s) ds, and we apply the Lemma 10.2 to find that

V p(t) ≤C (Ψ̃p
1,T + Ψ̃p

2,T )

(
‖ĝ0‖pLp(QT ) + ‖f̂ 0‖pLp(QT ) +K∗2(t)

∫ t

0

K∗1(s) V p(s) ds

)
. (115)
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The Gronwall inequality implies that

V p(t) ≤C (Ψ̃p
1,T + Ψ̃p

2,T ) exp

[
C (Ψ̃p

1,T + Ψ̃p
2,T )K∗2(t)

∫ t

0

K∗1(s) ds

]
×

× (‖ĝ0‖pLp(QT ) + ‖f̂ 0‖pLp(QT )) .

We thus have proved the following continuity estimate.

Proposition 10.3. We define R0 via (100). Suppose that (r∗, w∗) ∈ 0YT satisfy the condition (108).
Then (r, w) = T 1(r∗, w∗) is well defined in 0YT . Moreover, there is a continuous function Ψ7 =
Ψ7(T, R0, η), increasing of all arguments and finite for all φ0(T, R0, η) η < 1

4M(%eq, 0)
such that

V (T ) ≤Ψ7(T, R0, V ∗(T )) (‖ĝ0‖Lp(QT ) + ‖f̂ 0‖Lp(QT )) .

10.3 Existence of a unique fixed-point of T 1

We are now in the position to prove a self-mapping property for sufficiently ’small data’. We recall
the definitions (99), (100) of the critical norms R0, R1. We denote ueq = (qeq, ζeq, %eq, veq) and let
û0 := (q̂0, ζ̂0, %̂0, v̂0) and û1 := ueq − û0. In (104), (107), we just proved that ‖û1‖XT ≤ C R1.

Recalling that the operator Ã is continuously differentiable into the spaceZT defined in (38), and that
Ã(ueq) = 0 by the definition of an equilibrium solution, we can verify that

Ã (û0) =Ã (ûeq + û1) = Ã (ûeq + û1)− Ã (ûeq) =

∫ 1

0

Ã ′(ûeq + θ û1) dθ û1 .

Thus ‖Ã (û0)‖ZT ≤ C R1. The definitions of ĝ0 and f̂ 0 in (58) show that

‖ĝ0‖Lp(QT ) + ‖f̂ 0‖Lp(QT ) = ‖Ã 1(û0)‖Lp(QT ) + ‖Ã 4(û0)‖Lp(QT ) ≤ C̄ R1 . (116)

These considerations allow to state and prove the main properties of T 1.

Lemma 10.4. We define R0 via (100) and R1 via (99). For φ0 and a0 defined in (108), we de-
fine η0 > 0 as the smallest positive number such that φ0(T, R0, η0) η0 = a0. We define R̄1 =
min{1/(2CM(%eq, 0)), η0/(C̄ Ψ7(T, R0, η0))} with Ψ7 from Proposition 10.3, C from (105), and
C̄ from (116). If R1 ≤ R̄1, the map T 1 is well defined and possesses a unique fixed-point.

Proof. If w∗ satisfies (108) and if R1 satisfies (105), T 1(r∗, w∗) is well defined in YT . We apply
Proposition 10.3, use (116) and obtain

‖T 1(r∗, w∗)‖YT ≤Ψ7(T, R0, ‖(r∗, w∗)‖YT ) (‖ĝ0‖Lp(QT ) + ‖f̂ 0‖Lp(QT )) ≤ η0 .

We consider the iteration ūn+1 := T 1(ūn), starting at zero. The sequence (qn, ζn, %n, vn) is then
uniformly bounded in XT . We show the contraction property with respect to the same lower–order
norm than in Lemma 9.1. There are k0, p0 > 0 such that the quantities

En(t) := p0

∫ t+t1

t

{|∇(rn − rn−1)|2 + |∇(χn − χn−1)|2 + |∇(wn − wn−1)|2} dxds

+ k0 sup
τ∈[t, t+t1]

{‖(rn − rn−1)(τ)‖2
L2(Ω) + ‖(σn − σn−1)(τ)‖2

L2(Ω) + ‖(wn − wn−1)(τ)‖2
L2(Ω)}

satisfy En+1(t) ≤ 1
2
En(t) for some fixed t1 > 0 and every t ∈ [0, T − t1].
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A Properties of the free energy density

In this section we prove the statements of the section 3 devoted to the convex conjugate of the free
energy density: Lemma 3.1, Lemma 3.2 and Lemma 3.3.

We assume that k satisfies the assumptions of Lemma 3.1. Notice that requiring k essentially smooth
on S1, while positive homogeneous, induces that k is also essentially smooth on SV̄ . To see this,
we consider any sequence {rm} ⊂ SV̄ such that rm → r̄ for m → ∞, and r̄ belongs to the
relative boundary of SV̄ , which means that there is i ∈ {1, . . . , N} such that r̄i = 0. Then we define
ym := r̄m/

∑N
i=1 r

m
i which belongs to S1 for all m, and satisfies ymi → 0 for m → ∞. Since k is

positively homogeneous, we have ∇ρk(rm) = ∇ρk(ym). Thus, by the assumptions of Lemma 3.1,
we see that |∇ρk(rm)| → +∞, which is the essential smoothness on SV̄ .

Consider now µ ∈ RN arbitrary. Then we claim first that there exists a unique r̄ ∈ SV̄ such that

f(µ) = sup
r∈SV̄
{µ · r − k(r)} = µ · r̄ − k(r̄) .

Since SV̄ is bounded, we first notice that supr∈SV̄ {µ · r − k(r)} = maxr∈SV̄ {µ · r − k(r)}. Thus,

there is r̄ ∈ SV̄ such that supr∈SV̄ {µ ·r−k(r)} = µ · r̄−k(r̄). We want to show that r̄ is an interior
point. Since SV̄ is a convex set, we can find for every a ∈ SV̄ a h > 0 such that r̄+h (a− r̄) ∈ SV̄ .
Due to the choice of r̄

µ · (r̄ + h (a− r̄))− k(r̄ + h (a− r̄)) ≤ µ · r̄ − k(r̄) ,

which yields k(r̄ + h (a − r̄)) − k(r̄) ≥ hµ · (a − r̄) and limh↘0
k(r̄+h (a−r̄))−k(r̄)

h
> −∞. The

latter however contradicts the fact that k is essentially smooth on SV̄ (cf. [Roc70], Lemma 26.2). Thus,
r̄ ∈ SV̄ is an interior point.

The uniqueness of r̄ follows from the strict convexity of k on SV̄ .

Since k is differentiable, and since r 7→ µ·r−k(r) attains its maximum in r̄, we must have (∇k(r̄)−
µ) · ξ = 0 for every tangential vector ξ ∈ RN such that ξ · V̄ = 0. Thus, there is p ∈ R such
that µ = ∇ρk(r̄) + p V̄ . Multiplying with r̄, use of the homogeneity of degree one implies that
r̄ · ∇ρk(r̄) = k(r̄), hence

sup
r∈SV̄
{µ · r − k(r)} = µ · r̄ − k(r̄) = p r̄ · V̄ = p , (117)

showing that p = f(µ). Due to the structure f(µ) = µ · r̄ − k(r̄) = maxr∈SV̄ {µ · r − k(r)},
we easily show that f is differentiable in µ with ∇µf(µ) = r̄. In order to show the differentiability of
higher order, we can exploit the identities

µ− f(µ) V̄ = ∇ρk(∇µf(µ)), V̄ · ∇µf(µ) = 1 .

For a system of orthonormal vectors ξ1, . . . , ξN−1 for {V̄ }⊥, and ξN := V̄ /|V̄ |, we then have

µ · ξj =ξj · ∇ρk(
N−1∑
i=1

ξi · ∇µf(µ) ξi +
ξN

|V̄ |
) for j = 1, . . . , N − 1,

1

|V̄ |
=ξN · ∇µf(µ) .
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The latter can be viewed as an algebraic system of the form F (X) = (µ · ξ1, . . . , µ · ξN−1, 1
|V̄ |) for

the unknowns X := (ξ1 · ∇µf(µ), . . . , ξN · ∇µf(µ)) ∈ RN . The Jacobian of this system obeys

∂Fj
∂Xi

=


D2kξi · ξj for i = 1, . . . , N − 1, j = 1, . . . , N − 1 ,

0 for i = N, j = 1, . . . , N − 1 ,

δi, N for i = 1, . . . , N, j = N ,

where D2k is evaluated at ∇µf(µ). We can easily verify that {D2k(∇µf(µ))ξi · ξj}i,j=1,...,N−1 is
strictly positive definite: A vector of the form

∑N−1
j=1 ξj aj , a 6= 0 can never be parallel to ∇µf(µ),

since multiplying with V̄ yields a contradiction. On the other hand, the properties of k guarantee that
the kernel of D2k(∇µf(µ)) is the one-dimensional span of∇µf(µ).

Thus, the equations F (X(µ)) = (µ · ξ1, . . . , µ · ξN−1, 1
|V̄ |) define implicitly a map µ 7→ X(µ) of

class C1(RN). This clearly implies that f ∈ C2(RN), and we obtain the formula

D2
µk,µi

f(µ) =
N∑
j=1

∂Xj

∂µk
ξji . (118)

If k ∈ C3(RN
+ ), we then differentiate again to obtain that f is C3(RN). This proves the claims of

Lemma 3.1. The claims of Lemma 3.2 and 3.3 are also readily established (use (118) and (117)).

B Auxiliary statements

For the proof of the following Lemma, we need the variable transformation in the section 4.1.

Lemma B.1. We adopt the assumptions of Theorem 2.1 for the tensor M : RN
+ → RN×N , and we

assume that k : RN
+ → R is given by (7). We assume moreover that there is a continuous function

C = C(|ρ|), bounded on compact subsets of RN \ {0}, such that Bi,j(ρ) := Mi,j(ρ)/ρj , with
entries belonging to C1(RN

+ ), satisfies for all ρ ∈ RN
+ the conditions

|Bi,j(ρ)|+ ρk |Bi,j,ρk(ρ)| ≤ C(|%|) for all i, j, k ∈ {1, . . . , N} .

For % ∈ I and q ∈ RN−2, we denote M(%, q) := M(
∑N−2

`=1 R`(%, q) η
` + % ηN), and recall the

definitions (22), (23), (24) of the objects M̃(%, q), A(%, q), d(%, q) and the definition (21) of the non-
linear part P (%, q) of the pressure. For % ∈ I , we define m(%) := min{1− %/%max, %/%min − 1}.
Then the following statements are valid: For all % ∈ I and q ∈ RN−2

� |d(%, q)|+ |A(%, q)|+ |dq(%, q)|+ |Aq(%, q)| ≤ c1m(%);

� |d%(%, q)|+ |A%(%, q)| ≤ c2;

� The function P% is positive and c3 (m(%))−1 ≤ P%(%, q) ≤ c4 (m(%))−1 with c3 > 0; More-
over |Pq(%, q)| ≤ c5.

Proof. For ρ ∈ SV̄ we consider the vector uj = −ρj (V̄j − 1/%min) for j = 1, . . . , N . By the
definition of %min, all components of u are positive. Moreover

∑N
j=1 uj = %/%min−1 by the definition
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of SV̄ . Since M 1N = 0, the identity M(ρ) V̄ = M(ρ) (V̄ − 1N/%min) = −B(ρ)u holds. By
assumption |B(ρ)| ≤ C(|ρ|), and therefore

|M(ρ) V̄ | ≤ C(|ρ|) |u| ≤ C0 (
%

%min

− 1) .

Analogously, considering next uj := ρj (V̄j−1/%max), we obtain that |M(ρ) V̄ | ≤ C1 (1−%/%max),
and overall that |M(ρ) V̄ | ≤ C m(%).

We next investigate the derivatives. To do so, we recall two properties of the map R(%, q) (Section
4.1, (20)). For ` = 1, . . . , N − 2 direct computations yield for i = 1, . . . , N

∂q`Ri(%, q) =D2fei · ξ` − D2fei · 1N D2fξ` · 1N

D2f1N · 1N
for ` = 1, . . . , N − 2 ,

∂%Ri(%, q) =
D2fei · 1N

D2f1N · 1N
.

In these formula, we evaluateD2f at µ =
∑N−2

`=1 q` ξ
`+M (%, q) 1N . In the Section 4 of [Dru19], we

prove thatD2fei ·1N ≤ C0D
2f1N ·1N for i = 1, . . . , N (Lemma 4.3 (e)). Moreover, |D2fei ·a| ≤

ca ρi for any vector a (cf. Lemma 4.3 (a)). From these properties, we infer that

1

ρi
|∂qRi(%, q)| ≤

|D2fei|
ρi

(1 + C0 max
`=1,...,N−2

|ξ`|) ≤ c , |∂%Ri(%, q)| ≤ c .

We again express Mi,j(ρ) V̄j = −Bi,j(ρ) ρj (V̄j − 1/%min), hence

∂ρkMi,j(ρ) V̄j = −Bi,j,ρk(ρ) ρj (V̄j −
1

%min

)−Bi,k (V̄k −
1

%min

) ,

and therefore, it follows for ` = 1, . . . , N − 2 that

∂q`Mi,j(R(%, q)) V̄j =
N∑
k=1

(−Bi,j,ρk(ρ) ρj (V̄j −
1

%min

)−Bi,k (V̄k −
1

%min

)) Rk,q` .

Since −Bi,j,ρk(ρ) ρj (V̄j − 1/%min) = −Bi,j,ρk uj , and, by assumption, |Bi,j,ρk | ≤ C(|ρ|)/ρk, we
invoke that |Rk,q`| ≤ C ρk to show that

|Bi,j,ρk(ρ)uj Rk,q` | ≤ C0 |u| ≤ C0 (
%

%min

− 1) .

Moreover, by the same means

|Bi,k (V̄k −
1

%min

)) Rk,q` | ≤ |Bi,k uk (Rk,q`/ρk)| ≤ C1 |u| ≤ C1 (
%

%min

− 1) .

Arguing the same for the other choice of u, it follows that |∂q`Mi,j(R(%, q)) V̄j| ≤ C m(%). The
other estimates claimed have been verified for this special case of the function k in the Section 4 of
[Dru19].

Remark B.2. In the case that the matrixM results from inversion of the Maxwell-Stefan equations, we
notice that the matrix B of Lemma B.1 is nothing else but the pseudo-inverse of the Maxwell-Stefan
matrix. It is shown in the paper [BDc] that natural assumptions on the binary diffusivities are sufficient
for proving that the entries of B consist of regular functions of the state variables. In particular, they
satisfy the assumptions of Lemma B.1.
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The following statement is directly taken from our paper [BDb]. There we must only adapt the defi-
nition of the parameters m∗ and M∗ according to (69), (68) in order to account for different density
thresholds in the incompressible model.

Proposition B.3. Assume that Rq, M̃ : I × RN−2 → R(N−2)×(N−2) are maps of class C1

into the set of symmetric, positive definite matrices. Consider given q∗ ∈ W 2,1
p (QT ; RN−2) and

%∗ ∈ W 1,1
p,∞(QT ) (p > 3) such that the values of %∗ are strictly contained in I in QT . Let g ∈

Lp(QT ; RN−2) and q0 ∈ W 2−2/p(Ω) such that ν ·∇q0(x) = 0 in the sense of traces on ∂Ω. Then,
there is a unique q ∈ W 2,1

p (QT ; RN−2) solution to the problem

Rq(%
∗, q∗) qt − div(M̃(%∗, q∗)∇q) = g in QT , ν · ∇q = 0 on ST , q(x, 0) = q0(x) in Ω ,

Moreover there is a constantC independent on T , q, %∗ and q∗ such that for all t ≤ T and 0 < β ≤ 1:

V (t; q) ≤ C Ψ̄1,t

[
(1 + [%∗]

Cβ,
β
2 (Qt)

)
2
β ‖q0‖

W
2− 2

p
p (Ω)

+ ‖g‖Lp(Qt)

]
,

Ψ̄1,t = Ψ̄1(t, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [%∗]
Cβ,

β
2 (Qt)

, ‖∇%∗‖Lp,∞(Qt)) ,

with a continuous function Ψ̄1 defined for all t ≥ 0 and all numbers a1, . . . , a5 ≥ 0. The function
Ψ̄1 is increasing in all arguments and moreover Ψ̄1(0, a1, . . . , a5) = Ψ̄0

1(a1, a2, a3) is a function
independent on the two last arguments.

We also recall some estimates of Hölder norms. This is also proved in [BDb].

Lemma B.4. For 0 ≤ β < min{1, 2− 5
p
} we define

γ :=

{
1
2

(2− 5
p
− β) for 3 < p < 5 ,

(1− β) p−1
3+p

for 5 ≤ p .

Then, there is C = C(t) bounded on finite time intervals such that C(0) = C0 depends only on Ω
and for all q∗ ∈ W 2,1

p (Qt)

‖q∗‖
Cβ,

β
2 (Qt)

≤ ‖q∗(0)‖Cβ(Ω) + C(t) tγ [‖q∗‖W 2,1
p (Qt)

+ ‖q∗‖
C([0,t];W

2− 2
p

p (Ω)
)] .

Finally we have a perturbation Lemma for elliptic problems. This property ought to be well known, and
we only mention details for more convenience on reading.

Lemma B.5. Let a ∈ Cβ(Ω) (β > 0) satisfy 0 < a0 ≤ a(x) ≤ a1 < +∞ for all x ∈ Ω. Suppose
that F ∈ Lp(Ω) with p > 3. Then, there is a unique u ∈ W 1,p(Ω) satisfying

∫
Ω

(a(x)∇u−F (x)) ·
∇φ dx = 0 for all φ ∈ C1(Ω) and

∫
Ω
u dx = 0. Moreover, there is c = c(Ω, p, a0, a1) such that

‖∇u‖Lp(Ω) ≤ c (1 + [a]Cβ)
1
β ‖F‖Lp(Ω) .

Proof. Existence of a unique weak solution is well-known. In order to prove the estimate, we start re-
calling a few standard inequalities. First, the bound

√
a0 ‖∇u‖L2 ≤ ‖F‖L2 is valid. Since we choose

the mean-value of u to be zero, then also ‖u‖L2 ≤ cΩ a
− 1

2
0 ‖F‖L2 . Moreover, for s > 3 arbitrary, we

find that ‖u‖L∞(Ω) ≤ c(Ω, s) (a−1
0 ‖F‖Ls(Ω) + a1

a0
‖u‖Ls/2(Ω)). Thus, choosing s ≤ min{p, 4} and

employing the Hoelder inequality, we easily show that ‖u‖L∞(Ω) ≤ c̃(Ω, a0, a1) ‖F‖Lp(Ω).
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We now come to the main argument. We consider x0 in Ω and r > 0. We choose a nonnegative cut-off
function η ∈ C1

c (Br(x
0)) satisfying |∇η| ≤ c0 r

−1. Choosing in the weak formulation a testfunction
of the form φ η, we obtain, after some obvious shifting, for w := u η the identity

a(x0)

∫
Ω

∇w · ∇φ dx =

∫
Ω

(a(x0)− a)∇w · ∇φ dx

+

∫
Ω

(F η + a u∇η) · ∇φ dx+

∫
Ω

(F · ∇η + a∇η · ∇u)φ dx .

This is a weak Neumann problem for the Laplacian of w. By standard results, we obtain an estimate

‖∇w‖Lp ≤c(Ω, p)
(
‖(1− a

a(x0)
)∇w‖Lp

+
1

a(x0)
(‖F η + a u∇η‖Lp + ‖F · ∇η + a∇η · ∇u+ a(x0)w‖

L
p∗
p∗−1 (Ω)

)
)
.

Here p∗ is the Sobolev embedding exponent of W 1,p(Ω). For p > 3, we have p∗ = +∞ and
p∗/(p∗ − 1) = 1. Next, since w is supported in Br(x

0), and since a is Hoelderian, it follows that

‖(1− a

a(x0)
)∇w‖Lp ≤

[a]Cβ

a(x0)
rβ ‖∇w‖Lp .

Thus, fixing rβ := a0

2c(Ω, p)[a]
Cβ

, we obtain that

‖∇w‖Lp ≤
2 c(Ω, p)

a(x0)
(‖F η + a u∇η‖Lp + ‖F · ∇η + a∇η · ∇u+ a(x0)w‖L1(Ω)) .

With the notation Ωr(x
0) = Br(x

0) ∩ Ω, we notice that

‖∇w‖Lp ≥‖∇u η‖Lp −
c0

r
‖u‖Lp(Ωr(x0)) ,

‖F η + a u∇η‖Lp ≤‖F η‖Lp +
a1 c0

r
‖u‖Lp(Ωr(x0)) ,

‖F · ∇η + a∇η · ∇u+ a(x0)w‖L1 ≤c0

r
(‖F‖L1(Ωr(x0)) + a1 ‖∇u‖L1(Ωr(x0))) .

Thus, we have shown that

‖∇u η‖Lp ≤
2 c(Ω, p)

a0

(‖F η‖Lp +
c0

r
(‖F‖L1(Ωr(x0)) + a1 ‖∇u‖L1(Ωr(x0))))

+
c0

r
(1 + 2 c(Ω, p)

a1

a0

) ‖u‖Lp(Ωr(x0)) .

By appropriate covering of Ω with partition of unity, we obtain the inequality

‖∇u‖Lp ≤
2m0 c(Ω, p)

a0

‖F‖Lp +
2 c0m0 c(Ω, p)

a0 r
‖F‖L1

+
a1 c0

a0 r
m0 (2 c(Ω, p) ‖∇u‖L1 + (1 + 2 c(Ω, p)) ‖u‖Lp) .

Here m0 is some geometric constant associated with the covering of Ω. It remains to estimate

‖∇u‖L1 ≤ |Ω|
1
2 ‖∇u‖L2 ≤ |Ω|

1
2 a
− 1

2
0 ‖F‖L2

‖u‖Lp ≤ |Ω|
1
p ‖u‖L∞(Ω) ≤ c(Ω, p) ‖F‖Lp ,

where we employ the preliminary consideration at the beginning of this proof to show that ‖u‖L∞ ≤
c ‖F‖Lp . Recalling the choice of r, we are done.
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