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Numerical analysis for nematic electrolytes

L’ubomír Baňas, Robert Lasarzik, Andreas Prohl

Dedicated to the memory of John W. Barrett

Abstract

We consider a system of nonlinear PDEs modeling nematic electrolytes, and construct a dissipative
solution with the help of its implementable, structure-inheriting space-time discretization. Computational
studies are performed to study the mutual effects of electric, elastic, and viscous effects onto the molecules
in a nematic electrolyte.
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1 Introduction

We consider a nonlinear system of PDEs to model electrokinetics in nematic electrolytes, and show conver-
gence of an implementable discretization to its solution. Electrokinetics is a term describing electrically driven
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flows, either of a fluid with respect to a solid surface (electroosmosis), or of particles dispersed in a fluid (elec-
trophoresis). For electrokinetics to occur, it is essential that electric charges of opposite polarities are spatially
separated such that an electric field can trigger motion in a fluid. Recent studies show that if an anisotropic
electrolyte replaces an isotropic one, the resulting electrokinetic flows may show very different responses to an
induced electric field; see [32], and also Figure 4 in Section 5. Additionally, mechanisms triggering electrokinet-
ics in isotropic electrolytes are far more restrictive, i.e., an anisotropic medium lifts the constraints on the electric
properties of the transported particles and additionally allows for alternating currents to induce a static flow field
in the medium (see [32] or [7]), and also Figure 13 in Section 5.

In this work, we show the solvability for a model proposed in [7, (2.51)–(2.52), (2.55)–(2.56), (2.65)] (in simplified
form) via an implementable (finite-element based) approximation, which is then used for computational studies.
The nonlinear PDE system uses

� the simplified Ericksen–Leslie equations for the director field ddd representing the spatio-temporal distri-
bution of average orientations of elongated molecules in the liquid-crystalline phase, which is coupled
with

� the Nernst–Planck–Poisson system to model phenomena due to the electrolyte.

Let Ω⊂ Rd , for d = 2,3 be a bounded convex Lipschitz domain. The PDE system is as follows:

∂tvvv+(vvv ·∇)vvv−ν∆vvv+∇ddd>
(
∆ddd + εa(ddd ·∇Φ)∇Φ

)
+(n+−n−)∇Φ+∇p = 0 , (1a)

∇·vvv = 0 , (1b)

∂tddd +(vvv ·∇)ddd− (I−ddd⊗ddd)
(
∆ddd + εa(ddd ·∇Φ)∇Φ

)
= 0 , (1c)

|ddd|= 1 , (1d)

−∇·(ε(ddd)∇Φ) = n+−n− , (1e)

∂tn±+(vvv ·∇)n±−∇·
(

ε(ddd)
(
∇n±±n±∇Φ

))
= 0 , (1f)

where vvv : Ω× [0,T ]→Rd denotes the macroscopic velocity of the nematic fluid, ddd : Ω× [0,T ]→Rd the
local orientation of the nematic liquid crystalline molecules, Φ : Ω× [0,T ]→R the electric potential, n± :
Ω× [0,T ]→R the concentrations of positive and negative ions in the liquid crystal, and p : Ω× [0,T ]→R
the pressure of the nematic electrolyte resulting from the incompressibility constraint (1b). The matrix ε(ddd) :=
I + εaddd ⊗ddd for εa > 0 is called the dielectric permittivity matrix, which describes the relation between the
electric displacement DDD of the nematic electrolyte and the electric field EEE =−∇Φ: for static dielectric constants
measured in the direction of the molecular orientation ddd (ε‖) and perpendicular to it (ε⊥, which we normalized
to 1), this relationship is given by DDD =−ε(ddd)∇Φ, where εa = ε‖− ε⊥ ≥ 0. The system is supplemented with
initial data

vvv(0) = vvv0 , ddd(0) = ddd0 with |ddd0|= 1 , n±(0) = n±0 ∈ [0,1] in Ω ,

and boundary conditions

vvv = 000 , ddd = ddd1 , nnn ·
(

vvvn±− ε(ddd)
[
∇n±±n±∇Φ

])
= 0 , nnn · ε(ddd)∇Φ = 0 on ∂Ω .

where the initial and boundary conditions for the director are assumed to fulfill the usual compatibility conditions,
e.g., ddd0 = ddd1 on ∂Ω.

The equations (1) are deduced from corresponding ones in [7], and are expected to describe relevant physical
effects of the original model. Applied simplifications here include

� the choice of equal elastic constants in the Oseen-Frank elastic energy, and omitting body forces, as well
as inertia effects acting on the director field,
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� setting to zero all Leslie constants in the dissipation potential, except from the one that corresponds to
the classical Newtonian part of the stress tensor,

� that electrokinetic effects are initiated from only two species of particles (with related densities n±),

� that the interaction matrix in the Nernst-Planck-Poisson part is set to be ε(ddd), where all appearing con-
stants are set equal to 1 — apart from εa, which scales inherent anisotropy and coupling effects.

The goal of this work is to establish a practically useful solvability concept for (1), where a sequence of functions
is generated via an implementable space-time discretization, and the solution of (1) is the limit of a properly
selected convergent subsequence. There are always two main obstacles for such a result:

1. (A structure-inheriting discretization scheme & stability) It turns out that the construction of a se-
quence of approximate solutions of practical schemes (here: obtained via finite element method), each of
which, in particular, inherit the properties (1b) and (1d) in proper sense, and contain [0,1]-valued approx-
imate concentrations, as well as relevant Lyapunov structures is still not sufficient to construct a weak
solution of (1) from it as the limit of a proper, convergent subsequence when discretization parameters
tend to zero (d = 3).

2. (Convergence & solution concept) Instead, only a measure-valued solution is known to exist even in
this case for the Ericksen-Leslie system (which is a sub-problem of (1); see [19]) — for whose practical
construction no implementable scheme is known so far. We here show convergence to a dissipative
solution instead.

In particular, we present a structure-preserving space-time discretization for (1) which satisfies all properties
outlined in 1. in Section 4, and show the practical constructability of a dissipative solution of (1) through it — see
Section 3.2 for a definition of this solution concept — as described in item 2. We provide further details of these
main results in this work in the following discussion.

The analysis of models for nematic electrolytes so far is rare in the literature: an interesting approach is [12],
where the authors show a priori estimates and weak sequential compactness properties for a model similar
to (1). In their model, the (pointwise) property of ddd to be a unit vector field (see (1d)) is approximated by a
Ginzburg-Landau-type singular logarithmic potential term that is added to the free energy functional; this ad-
ditional term is then crucial to validate relevant bounds for the director field. Unfortunately, this additional term
blows up for |ddd| ↗ 1, thus leaving open convergence of this model to (1); additionally, it has been pointed out
in [12] that it is not obvious how to construct such approximate sequences that satisfy the assumed properties
[12, (2.26)].

A first sub-problem of (1) is the Navier–Stokes-Nernst–Planck–Poisson system, which corresponds to formally
setting ddd constant in (1a), and ignoring (1c)–(1d). For this sub-problem, complete analytic resp. numerical works
are available, which prove the global existence of a weak solution (see e.g. [36, 10]), as well as their practical
constructability by a finite element-based, structure-preserving space-time discretization in [34]: approximate
space-time solutions generated from corresponding time-iterates of this scheme satisfy a discrete energy law, as
well as a discrete maximum principle (for charges), from which we may identify the limit of a proper, convergent
(sub-)sequence of approximate solutions (for numerical parameters independently tending to zero) as a weak
solution.

A second sub-problem of (1) are the simplified Ericksen–Leslie equations (1a)–(1d), where we set Φ≡ n± ≡ 0.
We mention several results on the local existence of classical solutions or global existence of classical solutions
under smallness conditions (see [14, 16, 17, 26] for a similar setting) — but our goal here is a global solution
concept that copes with possible singular behaviors, and its practical constructability. For d = 2, a weak solution
is constructed in [23], thanks to known properties of the singularity set of solutions of the harmonic map heat flow
to the unit sphere S2, local energy arguments, and a continuation procedure in time to cope with the elastic stress
tensor in (1a). Unfortunately, a corresponding existence result for a weak solution so-far is not known to hold
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for (the practically relevant case) d = 3 and general (initial) data, which is why a Ginzburg–Landau penalization
is chosen to approximate (1d) in (1). Here, a weak solution may be constructed (see [24]) for every positive
penalization parameter; moreover, different structure-inheriting numerical methods of varying complexity are
available in the literature which construct a weak solution for vanishing discretization parameters: while the first
work [29] required Hermite-type finite element methods to validate a discrete energy estimate, later ones [4, 39]
only require mixed methods to serve this purpose. Again, passing to the limit with the penalization parameter to
validate (1d) is open to yield a weak solution of the simplified Ericksen–Leslie equations.

Instead, a measure-valued solution is constructed in this way in [19] for the full Ericksen–Leslie system equipped
with the Oseen–Frank energy, satisfying (1d) almost everywhere: its construction considers ([sequences of]
weak solutions of) the Ginzburg-Landau penalization first, and then tends the penalization parameter to zero
to efficiently cope with the extra viscous stress tensor in (1a) in terms of a generalized gradient Young mea-
sures. This construction strategy of first tending discretization parameters to zero in available, structure-inheriting
schemes (see [4, 39]) for the Ginzburg-Landau penalization, and only afterwards tending the penalization pa-
rameter to zero clearly excludes a practical construction of a measure-valued solution. Regarding this gener-
alized solution concept, a relevant property of it is the weak-strong (or rather measure-valued-strong) unique-
ness [20], i.e., measure-valued solutions coincide with the local strong solution emanating from the same initial
data as long as such a strong solution exists.

A practical shortcoming of the relaxed solution concept in terms of parametrized measures is its complexity;
in fact, the first moment of a measure-valued solution is the physically relevant quantity in (1) which fulfills
the so-called dissipative formulation (see Definition 3.2 below, and [18] for details). To get this formulation, the
solution concept is not relaxed in terms of parametrized measures, but the weak formulation of equation (1a) is
relaxed to a relative energy inequality (see (22) below). The relations of the different solution concepts for the
full Ericksen–Leslie system equipped with the Oseen–Frank energy can be summarized as follows: global weak
solutions exist for the Ginzburg–Landau penalization to approximate the norm restriction (1d). In the limit of this
approximation, these solutions converge to a measure-valued solution: the first moment of the measure-valued
solution is then a dissipative solution [18], which also coincides with the local strong solution as long as the latter
exists.

The concept of a dissipative solution was first introduced by P.-L. Lions in the context of the Euler equations [28,
Sec. 4.4], with ideas originating from the Boltzmann equation [27]. It is also applied in the context of incompress-
ible viscous electro-magneto-hydrodynamics (see [1]) and equations of viscoelastic diffusion in polymers [38].
Our first goal in this work is to construct a dissipative solution to (1) via a practical scheme (see (27) in Sec-
tion 4). For this purpose, related iterates have to inherit relevant properties of (1), including a discrete energy
law, a discrete unit length property for the director field, and a discrete maximum principle for the charges (see
Theorem 4.5). Upon unconditionally passing to the limit with respect to the discretization parameters then gen-
erates a (6-tuple of) limiting functions which may be identified as a dissipative solution of (1). We remark that the
proposed scheme seems as well to be the first for nematic materials (i.e., including a convection term) which
preserves the norm restriction |ddd| = 1 at every nodal point of the triangulation. Another new ingredient in this
article then is to show that the solution to the fully discrete scheme fulfills an approximate relative energy in-
equality (see Proposition 4.6), which eventually establishes that a proper limit of this sequence of approximate
solutions is a dissipative solution of (1). As a by-product, we show strong convergence to the unique classical
solution, as long as this more regular solution exists.

The paper is organized as follows: in the following section, we collect some notations and preliminaries. Sec-
tion 3 is dedicated to the continuous system and collects associated a priori estimates and the definition of a
dissipative solution. Section 4 introduces the fully discrete scheme, its solvability, associated a priori estimates,
the approximate relative energy inequality, and the convergence to a dissipative solution. Section 5 discusses
computational experiments.
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2 Notation and preliminaries

We denote by VVV := {vvv ∈ C ∞
c (Ω;Rd)|∇·vvv = 0} the space of smooth solenoidal functions with compact sup-

port. By H and V we denote the closure of VVV with respect to the norm of LLL2(Ω) := L2 and HHH1(Ω) :=W1,2,
respectively. Note that H can be characterized by H= {vvv∈L2|∇·vvv= 0 in Ω ,nnn ·vvv= 0 on ∂Ω}, where the first
condition has to be understood in the distributional sense and the second condition in the sense of the trace in
H−1/2(∂Ω). The dual space of a Banach space X is always denoted by X∗ and is equipped with the standard
norm; the duality pairing is denoted by 〈·, ·〉. We use the standard notation (H1

0)
∗=H−1. By W1,2/R we denote

the functions f ∈W1,2 with
∫

Ω
f dxxx = 0. We define |aaa|2

ε(ddd) =aaa ·ε(ddd)aaa for aaa, ddd ∈Rd . The inner product in L2 is

denoted by brackets, i.e., (·, ·), and the associated norm is ‖ ·‖L2 . We define the dyadic product of a vector and
a matrix by (aaa⊗AAA)i jk = aaaiAAAkl , and the cross product for two matrices, as well as of a vector and a matrix using
the well-known Levi-Cevita symbol ϒ∈Rd×d×d by (AAA×BBB)i jk = ϒilmAAA jlBBBmk, as well as (aaa×AAA)i j = ϒilmaaalAAAm j

, where aaa ∈ Rd and AAA, BBB ∈ Rd×d . For simplicity, we denote the matrix vector multiplication without a sign, i.e.,
(AAAaaa)i =AAAi jaaa j, where aaa ∈ Rd and AAA ∈ Rd×d .

2.1 Discrete time derivative

Given a time-step size k > 0, and a sequence {ϕ j} for 0 ≤ j ≤ J in some Banach space X, we set dtϕ
j :=

k−1(ϕ j−ϕ j−1) for j ≥ 1 and dtϕ
0 = 0.

The following lemma provides a tool to mimic the Gronwall inequality for the relative energy inequality on the
discrete level.

Lemma 2.1. Consider sequences { f j}0≤ j≤J ⊂ R,{g j
1}0≤ j≤J , {g j

2}0≤ j≤J , {y j}0≤ j≤J ⊂ R+
0 . If we have

dty j + f j ≤ g j
1y j +g j

2y j−1 for 1≤ j ≤ J , (2)

then it holds true for k sufficiently small that

−k
J−1

∑
j=0

dtφ
j+1

(
y j

j

∏
l=1

1
ω l

)
+ k

J−1

∑
j=1

φ
j f j

1− kg j
1

(
j

∏
l=1

1
ω l

)
≤ φ(0)y0

for all φ ∈ C ∞
c ([0,T )) with φ ≥ 0, and φ ′ ≤ 0 on [0,T ], where φ j = φ( jk) and dtφ

j+1 = (φ j+1−φ j)/k for

0≤ j ≤ J with J = b(T/k)c as well as ω j := 1+kg j
2

1−kg j
1
.

Proof. From (2), we find

y j−ω
jy j−1 ≤− k

1− kg j
1

f j .

By some elementary calculation, we observe (where we understand ∏
0
l=1 1/ω l as 1)

−k
J

∑
j=0

dtφ
j+1

(
y j

j

∏
l=1

1
ω l

)
= φ

0y0−φ
J+1yJ

J

∏
l=1

1
ω l +

J

∑
j=1

φ
j

j

∏
l=1

1
ω l

(
y j−ω

jy j−1)
≤ φ

0y0− k
J

∑
j=1

φ
j

(
f j

(1− kg j
1)

)
j

∏
l=1

1
ω l .

Note that the term φ J+1 vanishes since φ ∈ C ∞
c ([0,T )).
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2.2 Finite element spaces

Let Th =
⋃

` K` be a quasi-uniform triangulation of Ω ⊂ Rd (d = 2,3) into triangles or tetrahedrons K` of
maximal diameter h > 0; see [6]. We additionally assume:

(A1) Th is a strongly acute triangulation, or for d = 2 a Delaunay triangulation.

A triangulation is strongly acute, if the sum of opposite angles to the common side of any two adjacent triangles is
≤ π−θ with θ > 0 independent of h; see e.g. [8, 31]. For strongly acute meshes, we may verify the M-matrix
property for the Nernst–Planck–Poisson sub-system, which establishes its unique solvability, and a discrete
maximum principle. Moreover, we often use Nh = {xxxl}1≤l≤L, which is the set of all nodes of Th, on which we
validate a unit-length property of iterates for the director, for example.

Let Pl(K;Rd) denote the set of Rd-valued polynomials in d variables of degree ≤ l on a triangle/tetrahedron
K ∈Th. We introduce the following spaces

Yh = {y ∈ C (Ω)∩L2
0 : y

∣∣
K∈ P1(K) ∀K ∈Th}

Zh = {y ∈ C (Ω) : y
∣∣
K∈ P1(K) ∀K ∈Th}

YYY h = {vvv ∈ C 0(Ω;Rd) : vvv
∣∣
K∈ P1(K;Rd) ∀K ∈Th}

ZZZh = {vvv ∈ C (Ω;Rd) : vvv
∣∣
K∈ P1(K;Rd) ∀K ∈Th}

BBBl
h = {vvv ∈ [H1

0]
d : vvv

∣∣
K∈ Pl(K;Rd) ∀K ∈Th}

XXXh =YYY h∪BBB3
h

Mh = {q ∈ L2
0∩C (Ω) : q

∣∣
K∈ P1(K) ∀K ∈Th} ,

where C 0(Ω;Rd) := {vvv ∈ C (Ω) : vvv = 0 on ∂Ω} and L2
0 := {q ∈ L2 : (q,1) = 0}. We assume the discrete

inf-sup of Babuška-Brezzi condition to be fulfilled, i.e., there exists a constant C > 0 independent of h, s.t.

sup
vvv∈XXXh

(∇·vvv,q)
‖∇vvv‖L2

≥C‖q‖L2 ∀q ∈Mh .

A well-known example complying to this condition is given by the MINI-element given by XXXh and Mh. Define

VVV h := {vvv ∈XXXh : (∇·vvv,q) = 0 ∀q ∈Mh} .

We remark the following compatibility condition of spaces from [34] is valid above that accounts for coupling
effects in the electro-hydrodynamical system:

(A2) Yh∩L2
0(Ω)⊂Mh.

Lemma 2.2 (Inverse inequality). For the considered triangulations Th, there exists C > 0 such that

‖∇y‖Lp ≤Ch−γ‖y‖Lq ∀y ∈ Yh ,

where γ = 1+min{0,d/q−d/p}, and p,q ∈ [1,∞].

This result is a special case of [6, Thm. 4.5.11]. We use the nodal interpolation operator Ih : C (Ω)→Yh such
that

Ih(y) := ∑
zzz∈Nh

y(zzz)ϕzzz ,

where ϕzzz ∈ Yh denotes the basis function associated to the nodal point zzz ∈Nh. For functions y1,y2 ∈ C (Ω),
we define mass-lumping

(y1,y2)h :=
∫

Ω

Ih (y1y2)dxxx = ∑
zzz∈Nh

y1(zzz)y2(zzz)
∫

Ω

ϕzzz dxxx , and ‖y1‖2
h := (y1,y1)h .
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For all y1,y2 ∈ Yh, there exists C > 0 independent of h > 0, such that [35, 9]

‖y1‖L2 ≤ ‖y1‖h ≤C‖y1‖L2 , and |(y1,y2)h− (y1,y2)| ≤Ch‖y1‖L2‖∇y2‖L2 . (3)

We will need several properties of the interpolation operator.

Lemma 2.3 (Interpolation estimate). Let p ∈ [1,∞]. There exists a constant C > 0 such that

‖y−Ih(y)‖W`,p ≤Ch‖∇`+1y‖Lp ∀y ∈W`,p (` ∈ {0,1}) .

Furthermore, for 1≤ p < ∞ and y ∈ Lp there holds ‖y−Ihy‖Lp→0 for h→0 .

The result is standard and can be found for example in [6, Thm. 4.6.19].

Lemma 2.4. Let p ∈ [1,∞) and q ∈ [1,∞]. There exists a constant C > 0 such that

‖(I−Ih)( fhg)‖Lp ≤Ch‖ fh‖Lpq (‖∇g‖W1,r +‖∇g‖Ls) ,

for all fh ∈Yh and g∈C ∞
c (Ω) with r = min{p,d pq/((p+d)q−d)} and s = pq/(q−1) for q > 1 and s = ∞

for q = 1. Note that for q > 1, we may estimate further ‖∇g‖Ls ≤ ‖∇g‖W1,r .

Proof. From Lemma 2.3, we observe

‖(I−Ih)( fhg)‖LP ≤Ch2‖∇2( fhg)‖Lp =Ch2
∑

T∈Th

‖∇2( fhg)‖Lp(T ) .

The subsequent argumentation will be done of a certain element of the triangulation Th, summation over all
element provides the assertion on the whole domain. Due to the product rule, we find ∇2( fhg) = ∇2 fhg+
2∇ fh⊗∇g+ f ∇2g, where the first term vanishes since fh is a polynomial of degree ≤ 1. Applying Hölder’s
inequality for the two remaining terms, we find

Ch2‖∇2( fhg)‖Lp(T ) ≤Ch2
(
‖∇ fh‖Lpq(T )‖∇g‖Lpq′ (T )+‖ fh‖Lpqd/(d−pq)(T )‖∇2g‖Ld pq′/(d+pq′)(T )

)
where we set pqd/(d− pq) = ∞ and d pq′/(d + pq′) = p as soon as pq ≥ d. Summing over all elements,
standard embeddings, and Lemma 2.2 imply

‖(I−Ih)( fhg)‖Lp ≤Ch2‖∇ fh‖Lpq
(
‖∇2g‖Ld pq′/(d+pq′) +‖∇g‖Lpq′

)
≤Ch‖ fh‖Lpq

(
‖∇2g‖Ld pq′/(d+pq′) +‖∇g‖Lpq′

)
.

By PL2 , we denote the standard L2-projection PL2 : L2→ZZZh, which is denoted in the same way for matrices.
The L2-projection onto the finite element space Yh and YYY h are denoted accordingly, whenever the underlying
finite element space will be clear in the context. For quasi-uniform meshes Th, the H1-stability of PL2 is well-
known (see e.g. [5]), and the following error estimate is valid (see e.g. [6]),

‖yyy−PL2(yyy)‖L2 ≤Ch`‖∇`yyy‖L2 (`= 1,2) .

We also use the projection Ph : C(Ω)→ Yh via
(
φ −Ph(φ),y)h = 0 for all y ∈ Yh. We use the discrete

Lapacian ∆h : [H1
0]

d →YYY h, where

(−∆hφφφ ,y) = (∇φφφ ,∇yyy) ∀yyy ∈YYY h . (4)

For a sum ddd = ddd+ddd1, with ddd ∈H1
0 and ddd1 ∈W2,2 we denote accordingly ∆hddd = ∆hddd+PL2∆ddd1, where PL2

denotes the L2-projection onto the finite element space ZZZh.
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A discrete Sobolev interpolation inequality is a consequence of [13, Lemma 4.4],

‖∇yyy‖L4 ≤C‖∇yyy‖
4−d

4
L2 ‖∆hyyy‖

d
4
L2 ∀yyy ∈YYY h . (5)

This holds for homogeneous Dirichlet boundary conditions, for imhomogeneous Dirichlet boundary conditions,
we find in combination with the standard Gagliardo–Nirenberg inequality

‖∇(ddd +Ih[ddd1])‖L4 ≤ ‖∇ddd‖L4 +C‖∇ddd1‖L4

≤C‖∇ddd‖
4−d

4
L2 ‖∆hddd‖

d
4
L2 +C‖∇ddd1‖

4−d
4

L2 ‖ddd1‖
d
4
W2,2 ∀ddd ∈YYY h and ddd1 ∈W2,2 .

Additionally, we note that the boundedness of the discrete Laplacian of ddd follows from the boundedness of the
discrete Laplacian of ddd +ddd1, i.e.,

‖∆hddd‖L2 ≤ ‖∆hddd +PL2∆ddd1‖L2 +‖PL2∆ddd1‖L2

≤ ‖∆hddd‖L2 +‖∆ddd1‖L2 ∀ddd ∈YYY h and ddd1 ∈W2,2

with ∆hddd = ∆hddd+PL2∆ddd1 as defined above. This will help us to infer some h-dependent bound for the director
on the discrete level.

3 Continuous system

The main obstacle which prevents the construction of a weak solution (d = 3) even for a sub-problem of (1)
— the simplified Ericksen–Leslie equations (1a)–(1d), where we set Φ ≡ n± ≡ 0 — is the extra elastic stress
tensor in the Navier–Stokes equation, i.e., the fourth term in (1a). This highly nonlinear term is difficult to be
identified in the limit for solutions of an approximate scheme, due to limited regularity estimates. In [19], it was
found that using a suitable regularization in the equation in order to pass to the limit in the extra elastic stress
tensor may lead to undesired error terms coming from the chosen regularization procedure: the oscillatory
effects introduced herewith do not vanish in the limit and give rise to an additional defect measure (see also
Remark 3.4 below). This is circumvented by approximating the system via a Galerkin approximation with point-
wise norm constraint; see also Section 4. Unfortunately, it still seems not possible to pass to the limit in the
weak formulation of the Navier–Stokes-like equation even in this case due to the fact that the extra elastic stress
tensor is a nonlinear function of ∇ddd, the associated sequence of which only converges weakly. However, it is
possible to pass to the limit in the dissipative solution framework given in Section 3.2 by only exploiting this
weak convergence property of gradients of approximate director fields for the extra elastic stress tensor: for this
solution concept, only weakly lower semi-continuity is needed at this place to retain the relevant relative energy
inequality in Section 4.4 — which then settles the construction of a dissipative solution of (1). — We start this
section with a collection of relevant properties of a classical solution of (1).

3.1 A priori estimates

Theorem 3.1. Let T > 0, and (vvv,ddd,Φ,n±) be a classical solution of (1). Then the following energy equations
and norm restrictions are fulfilled for any 0≤ t ≤ T ,

i) energy conservation

1
2

(
‖vvv‖2

L2 +‖∇ddd‖2
L2 +

∫
Ω

|∇Φ|2
ε(ddd) dxxx

)∣∣∣∣∣
t

0

+
∫ t

0

(
ν‖∇vvv‖2

L2 +‖ddd× (∆ddd + εa(∇Φ ·ddd)∇Φ)‖2
L2

)
ds

+
∫ t

0

(
‖n+−n−‖2

L2 +
∫

Ω

(n++n−)|∇Φ|2
ε(ddd) dxxx

)
ds = 0 , (6)
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ii) charge conservation

1
2
(
‖n+‖2

L2 +‖n−‖2
L2

)∣∣∣∣∣
t

0

+
∫ t

0

∫
Ω

|∇n+|2
ε(ddd)+ |∇n−|2

ε(ddd) dxxxds

+
1
2

∫ t

0

(
n+−n−, [n+]2− [n−]2

)
ds = 0 ,

iii) norm restriction

|ddd(xxx, t)|= 1 for a.e. (xxx, t) ∈Ω× (0,T ) ,

iv) maximum principle

0≤ n±(xxx, t)≤ 1 for a.e. (xxx, t) ∈Ω× (0,T ) ,

v) elliptic regularity

‖Φ‖L∞(0,T ;Lp) ≤C for some p > 2 . (7)

Proof. In order to prove the energy equality 3.1i), we multiply (1a) by vvv and integrate over Ω to obtain

1
2

d

d t
‖vvv‖2

L2 +ν‖∇vvv‖2
L2 +

(
∇dddT (

∆ddd + εa(∇Φ ·ddd)∇Φ
)
,vvv
)
+
(
(n+−n−)∇Φ,vvv

)
= 0 . (8)

Multiplying (1c) by −∆ddd− εa(ddd ·∇Φ)∇Φ and integrating over Ω gives

1
2

d

d t
‖∇ddd‖2

L2− εa

(
∂tddd ·∇Φ,ddd ·∇Φ

)
−
(
(vvv ·∇)ddd,∆ddd + εa(ddd ·∇Φ)∇Φ

)
+
∥∥ddd× (∆ddd + εa(∇Φ ·ddd)∇Φ)

∥∥2
L2 = 0 . (9)

Multiplying (1e) by n+−n−−∂tΦ, adding (1f) multiplied by ±Φ and integrating over Ω, we observe

−
(

∂t∇Φ,ε(ddd)∇Φ

)
+
(

n+−n−,∂tΦ

)
+
(

∂t(n+−n−),Φ
)

−
(

∇(n+−n−),ε(ddd)∇Φ

)
+‖n+−n−‖2

L2

−
(
n+−n−,vvv∇Φ

)
+
(

∇[n+−n−],ε(ddd)∇Φ

)
+
∫

Ω

(n++n−)|∇Φ|2
ε(ddd) dxxx = 0 . (10)

By the product formula, (
n+−n−,∂tΦ

)
+
(

∂t(n+−n−),Φ
)
= ∂t

(
n+−n−,Φ

)
,

and

−
(

∂t∇Φ,ε(ddd)∇Φ

)
− εa

(
∂tddd ·∇Φ,ddd ·∇Φ

)
=−1

2
∂t

∫
Ω

|∇Φ|2
ε(ddd) dxxx .

Adding the three equations (8), (9), and (10), we find

1
2

d

d t

(
‖vvv‖2

L2 +‖∇ddd‖2
L2 +2

(
n+−n−,Φ

)
−
∫

Ω

|∇Φ|2
ε(ddd) dxxx

)
+
(

ν‖∇vvv‖2
L2 +‖ddd× (∆ddd + εa(∇Φ ·ddd)∇Φ)‖2

L2

)
+‖n+−n−‖2

L2 +
∫

Ω

(n++n−)|∇Φ|2
ε(ddd) dxxx = 0 . (11)
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Integrating (11) in time and using equation (1e) gives the assertion i).

In order to prove assertion 3.1ii), we multiply equation (1f) by n±, integrate over Ω, to find

1
2

d

d t

(
‖n+‖2

L2 +‖n−‖2
L2

)
+
∫

Ω

|∇n+|2
ε(ddd)+ |∇n−|2

ε(ddd) dxxx

+
1
2

(
ε(ddd)∇Φ,∇(n+)2−∇(n−)2

)
= 0 .

Adding (1e) multiplied by 1
2

(
(n+)2− (n−)2

)
and integrating over Ω, leads via another integration over (0,T )

to the assertion.

The unit norm restriction of the director 3.1iii) is implied by multiplying equation (1c) by (|ddd|2−1)ddd. Integrating
the resulting equation over Ω× (0,T ), we observe that

1
4

∫
Ω

∂t(|ddd|2−1)2 +(vvv ·∇)(|ddd|2−1)2 dxxx = 0 .

Since the initial value fulfills |ddd0|= 1 a.e. in Ω and (1b) is valid, we find that |ddd|= 1 a.e. in Ω× (0,T ).

Standard maximum principles are applied to prove 3.1iv). Indeed, multiplying (1f) for the positive charges by
(n+−1)+ and for the negative charges by (n−−1)+, and integrating in space, we find

1
2

d
dt

(
‖(n+−1)+‖2

L2 +‖(n−−1)+‖2
L2

)
+
∫

Ω

|∇(n+−1)+|2ε(ddd)+ |∇(n−−1)+|2ε(ddd) dxxx

+
(

ε(ddd)∇Φ,n+∇(n+−1)+−n−∇(n−−1)+
)
= 0 . (12)

The last term on the left-hand side can be transformed using (1e) to(
ε(ddd)∇Φ,n+∇(n+−1)+−n−∇(n−−1)+

)
=
(

ε(ddd)∇Φ,∇
[1

2
(n+−1)2

+−
1
2
(n−−1)2

++(n+−1)+− (n−−1)+
])

=
(

n+−1− (n−−1),
1
2
(n+−1)2

+−
1
2
(n−−1)2

++(n+−1)+− (n−−1)+
)
≥ 0 .

The inequality follows by observing that the right-hand side may be written as (a+−a−, f (a+)− f (a−)) with
a±= n±−1 and due to the monotony of the function f : a 7→ (1/2)(a)2

++(a)+. Integrating (12) in time implies
due to the condition on the initial condition the upper bound in 3.1iv). Using this L∞-bound on the charges, we
may show their non-negativity. Multiplying (1f) by −(n±)− =−max{−n±,0}, we find

1
2

d
dt
‖(n±)−‖2

L2 +
∫

Ω

|∇(n±)−|2ε(ddd) dxxx±
(

ε(ddd)∇Φ,
1
2

∇
[
(n±)2

−
])

= 0 . (13)

For the last term on the left-hand side, we observe due to (1e) and the upper bound on n∓ in 3.1iv)

±
(

ε(ddd)∇Φ,∇((n±)2
−)
)
=
(
(n±)2

−,n
±)− ((n±)2

−,n
∓)≥ ‖(n±)−‖3

L3−‖(n±)−‖2
L2 .

Reinserting this into (13) implies

d
dt
‖(n±)−‖2

L2 ≤ ‖(n±)−‖2
L2

and via Gronwall’s inequality the lower bound of 3.1iv).

The additional regularity of Φ follows from elliptic regularity theory (see [30, Theorem 1]).
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Remark 3.1. By the formulation of the equation, it is implied that the mass of the charges is conserved. Indeed,
integrating over Ω the equation (1f) and using the associated boundary conditions implies that∫

Ω

n±(t)dxxx =
∫

Ω

n±(0)dxxx .

Integrating the equation (1e) over Ω even implies that∫
Ω

n+0 dxxx =
∫

Ω

n+(t)dxxx =
∫

Ω

n−(t)dxxx =
∫

Ω

n−0 dxxx ,

which is a hidden compatibility condition for the initial values of the charges.

We remark that the verification of Theorem 3.1 involves nonlinear functions of the classical solution of (1) to
be multiplied with (1), which prevents an immediate corresponding argumentation in Section 4, where a finite
element-based space-time discretization is discussed.

3.2 Dissipative solutions

The concept of a dissipative solution heavily relies on the formulation of an appropriate relative energy. This
relative energy serves as a natural comparison tool for two different solutions uuu := (vvv,ddd,Φ,n±) and ũuu :=
(ṽvv,d̃dd,Φ̃, ñ±). One possibility to interpret the corresponding relative energy inequality is as a variation of the
energy equality. Thus in comparison to weak solutions which fulfill the equation in a generalized sense, the
dissipative solution rather fulfills the energy dissipation mechanism in a weakened sense. We decide to use the
variation of the energy principle i) in Theorem 3.1, therefore, the charges are not present in the relative energy.
It is also possible to derive a relative energy inequality for the energy principle ii) in Theorem 3.1, but this is
not necessary, since n± inherits enough regularity in the limit to perform the calculations to get ii), and thus
the relative energy inequality in the limit rigorously. This is also due to the fact that the weak and dissipative
solution coincide, if the solution inherits enough regularity to be unique (compare to [22]). The charges are
regular enough such that the equations (1f) may be tested with the solution n± in the limit.

We introduce the underlying Banach spaces X and Y to denote uuu := (vvv,ddd,Φ,n±) ∈ X, if

vvv ∈ L∞(0,T ;H)∩L2(0,T ;V) , (14a)

ddd ∈ L∞(0,T ;W1,2)∩W 1,2(0,T ;L3/2) , (14b)

Φ ∈ L∞(0,T ;W1,2/R)∩L∞(0,T ;W1,p) for some p > 2 ,

n± ∈ L∞(0,T ;L∞)∩L2(0,T ;H1)∩W 1,2(0,T ;(H1)∗
)
, (14c)

and ũuu := (ṽvv,d̃dd,Φ̃, ñ±) ∈ Y, if ũuu ∈ X and additionally

ṽvv ∈ C 1([0,T ];H)∩L4(0,T ;L∞) ,

d̃dd ∈ L4(0,T ;W1,4)∩C 1([0,T ];W1,2∩L∞)∩L4(0,T ;W2,3)∩L2(0,T ;W3,2) ,

Φ̃ ∈ L2(0,T ;W2,2∩C 1([0,T ];W1,3)∩L8(0,T ;W1,∞) ,

ñ± ∈ L1(0,T ;W1,3) .

As will be detailed in Definition 3.2 below, the space X will be the solution space, and Y the space of test
functions. The relative energy R : X×Y→R is defined for a.e. t ∈ (0,T ) by

R(uuu|ũuu) = 1
2
‖∇(ddd− d̃dd)‖2

L2 +
1
2
‖vvv− ṽvv‖2

L2 +
1
2

∫
Ω

|∇(Φ− Φ̃)|2
ε(ddd) dxxx (15)
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and the relative dissipation W : X×Y→R for a.e. t ∈ (0,T ) by

W (uuu|ũuu) = ν‖∇(vvv− ṽvv)‖2
L2 +‖ddd×qqq− d̃dd× q̃qq‖2

L2

+
∫

Ω

(n++n−)|∇(Φ− Φ̃)|2
ε(ddd) dxxx+

∥∥(n+−n−)− (ñ+− ñ−)
∥∥2
L2 .

(16)

We introduce the potential K : Y→R for a.e. t ∈ (0,T ) via

K (ũuu) =C
(
‖ṽvv‖4

L∞ +‖q̃qq‖4
L3 +‖∇d̃dd‖4

L3 +
∥∥d̃dd× ((ṽvv ·∇)d̃dd + q̃qq)

∥∥
W1,3

+‖d̃dd× ((ṽvv ·∇)d̃dd + q̃qq)‖L∞ +‖∂td̃dd‖4/3
L∞(Ω)+‖∇Φ̃‖8

L∞

+‖∇2
Φ̃‖2

L2 +‖∇ñ−‖L3 +‖∇ñ+‖L3 +‖∂t∇Φ̃‖L3 +1
)
,

which measures the regularity of the test function ũuu ∈ Y, and finally the solution operator A : Y→X∗, which
incorporates the classical formulation of system (1) evaluated at the test functions (ṽvv,d̃dd,Φ̃, ñ±) by

〈A (ũuu),•〉=
〈∂tṽvv+(ṽvv ·∇)ṽvv−ν∆ṽvv+(∇d̃dd)T

(
∆d̃dd + ε∇Φ̃ · d̃dd∇Φ̃

)
+∇Φ̃(ñ+− ñ−)

∂td̃dd +(ṽvv ·∇)d̃dd− d̃dd× (d̃dd× q̃qq)
∂t ñ±+(ṽvv ·∇)ñ±−∇·

(
∇ñ±± ñ±∇Φ̃

)
 ,•

〉
, (17)

where q̃qq is given by q̃qq := −∆d̃dd− εa(∇Φ̃ · d̃dd)∇Φ̃ ∈ L2(0,T ;L3), and Φ̃ solves −∇·(ε(ddd)∇Φ̃) = ñ+− ñ−.
The mapping A : Y→X∗ measures ‘how well’ the test function ũuu ∈ Y ‘approximately solves’ the problem, it is
a well-defined mapping, this can be read of the regularity requirements of X and Y.

Definition 3.2. The function uuu := (vvv,ddd,Φ,n±) ∈ X is called a dissipative solution to the system (1), if there
exists a qqq ∈ L2(0,T ;(H1

0∩Lp/(p−2))∗) with ddd×qqq ∈ L2(0,T ;L2), where p is given in (14) such that∫ T

0

〈
∂tn±,e±

〉
d t−

∫ T

0

∫
Ω

vvvn± ·∇e± dxxxd t +
∫ T

0

∫
Ω

ε(ddd)(∇n±±n±∇Φ) ·∇e± dxxxd t = 0 , (18)

for all e± ∈ L2(0,T ;H1) and n± ∈ [0,1] a.e. in Ω× (0,T ), as well as

−∇·
(
ε(ddd)∇Φ

)
= n+−n− a.e. in Ω× (0,T ) , (19)

∂tddd +(vvv ·∇)ddd−ddd× (ddd×qqq) = 0 a.e. in Ω× (0,T ) , (20)

where ∫ T

0
〈qqq,bbb〉d t =

∫ T

0

∫
Ω

∇ddd ·∇bbb− εa∇Φ(ddd ·∇Φ) ·bbbdxxxd t (21)

for all bbb ∈ C ∞
c (Ω× (0,T );Rd). The norm restriction is fulfilled almost everywhere, i.e., |ddd(xxx, t)| = 1 a.e. in

Ω× (0,T ), as well as tr(ddd) = ddd1 ∈ H1/2(∂Ω), and the relative energy inequality

R(uuu|ũuu)(t)+ 1
2

∫ t

0
W (uuu|ũuu)e

∫ t
s K (ũuu)dτ ds≤R(uuu0|ũuu(0))e

∫ t
0 K (ũuu)ds

+
∫ t

0

〈
A (ũuu),

 ṽvv−vvv
q̃qq−qqq+AAA(Φ̃)(d̃dd−ddd)

Φ̃−Φ

〉e
∫ t

s K (ũuu)dτ ds

+
∫ t

0

(
1
2
‖n+− ñ+‖2

L2 +
1
2
‖n−− ñ−‖2

L2

)
e
∫ t

s K (ũuu)dτ dτ , (22)

holds for a.e. t ∈ (0,T ) and all test functions ũuu ∈ Y, where tr(d̃dd) = ddd1,

AAA(Φ̃) :=
(
εa∇Φ̃⊗∇Φ̃

)
, q̃qq :=−∆d̃dd− εa(∇Φ̃ · d̃dd)∇Φ̃ , and −∇·

(
ε(d̃dd)∇Φ̃

)
= ñ+− ñ− .

.
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Theorem 3.3. Let Ω ⊂ Rd for d = 2,3 be a bounded convex Lipschitz domain. Let
(
vvv0,ddd0,n±0

)
∈ V×[

W2,2
]3× [L∞

]2
, with |ddd0| = 1 and n±0 ∈ [0,1] a.e. in Ω such that

∫
Ω

n+0 − n−0 dxxx = 0. We additionally as-
sume that there exists a d̄dd1 ∈W2,2(Ω) such that tr(d̄dd1) = ddd1 = tr(ddd0). Then there exists a dissipative solution
according to Definition 3.2.

We are going to prove the theorem by the convergence of a fully discrete, implementable scheme in Section 4.

Remark 3.2. The variational derivative qqq may be interpreted via∫ T

0
(ddd×qqq,bbb)d t =

∫ T

0

∫
Ω

ddd×∇ddd ·∇bbb− εaddd×∇Φ(ddd ·∇Φ) ·bbbdxxxd t ,

since (21) may be tested by bbb = ddd×hhh for hhh ∈ C ∞
0 (Ω× (0,T )). Note that in this formulation, all integrals are

well defined, since ddd×qqq ∈ L2(0,T ;L2) and Φ ∈ L∞(0,T ;W1,p), where p > 2, but p can be arbitrarily close
to 2.

Remark 3.3 (Continuity in time). Considering functions uuu = (vvv,ddd,Φ,n±) ∈ X, we may deduce additional reg-
ularity in time. From the regularity of ddd, we observe by a standard result (see for instance [37, Lemma 6]) that
ddd ∈ C w([0,T ];W1,2). Using compact embeddings and the uniform bounds on ddd implies ddd ∈ C ([0,T ];Lp) for
any p∈ [1,∞). For the charges we find from the standard embedding L2(0,T ;W1,2)∩W 1,2(0,T ;(W1,2)∗) ↪→
C ([0,T ];L2) that n± ∈ C ([0,T ];L2). From the uniform boundedness, we even observe n± ∈ C ([0,T ];Lp)
for any p ∈ (1,∞). For the electric field, Φ, we may deduce Φ ∈ C ([0,T ];W1,2) by the following calculation,
which employs (1e):∫

Ω

|∇Φ(t)−∇Φ(tn)|2ε(ddd(tn)) dxxx =
(

∇Φ(t),
[
ε
(
ddd(tn)

)
− ε
(
ddd(t)

)]
∇
(
Φ(t)−Φ(tn)

))
+
(

n+(t)−n−(t)−
[
n+(tn)−n−(tn)

]
,∇
(
Φ(t)−Φ(tn)

))
≤ 1

2

∫
Ω

|∇Φ(t)−∇Φ(tn)|2ε(ddd(tn)) dxxx

+C‖∇Φ(t)‖2
Lp‖ε(ddd(tn))− ε(ddd(t))‖2

L2p/(p−2)

+C
(
‖n+(t)−n+(tn)‖L2 +‖n−(t)−n−(tn)‖L2

)
,

where we used the uniform coercivity of the matrix ε , and that p is given according to (14).

We note that we do not claim any continuity in time for the velocity field, since we lack any uniform control on
its time-derivative. In the dissipative solution framework, this additional regularity is not needed to give sense to
the initial values as in the weak solution framework. If we would instead show (additionally) that (1a) is fulfilled
in a measure-valued sense, we would gain the additional regularity vvv ∈ C w([0,T ];H).

Remark 3.4 (Measure-valued formulation). Already our initial formulation (1) relies on an integration-by-parts
formula, which we took from [7]. In our simplified case, for smooth functions, it takes the form

∇dddT (∆ddd + εa(ddd ·∇Φ)∇Φ)+(n+−n−)∇Φ = ∇dddT
∆ddd + εa∇dddT (ddd ·∇Φ)∇Φ−∇·(ε(ddd)∇Φ)∇Φ

= ∇·
(
∇dddT

∇ddd
)
− 1

2
∇|∇ddd|2 + εa∇dddT

∇Φ(ddd ·∇Φ)

−∇·(∇Φ⊗ ε(ddd)∇Φ)+∇
2
Φε(ddd)∇Φ

= ∇·
(
∇dddT

∇ddd−∇Φ⊗ ε(ddd)∇Φ
)

− 1
2

∇

(
|∇ddd|2−|∇Φ|2

ε(ddd)

)
,

(23)

where the term in the last line can be incorporated into a reformulation of the pressure. Using this reformulation
of (1a) allows to show the weak-sequential stability of a measure-valued solution concept, where the relative
energy inequality (22) of Definition 3.2 would be replaced by
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∫ T

0
ν (∇vvv,∇ϕ)− (vvv,∂tϕ)− (vvv⊗vvv,∇ϕ)−

(
∇dddT

∇ddd−∇Φ⊗ ε(ddd)∇Φ,∇ϕ
)
−〈mmm,∇ϕ〉d t

=
∫

Ω

vvv0ϕ dxxx

for all ϕ ∈ C ∞
c ([0,T ))⊗VVV , and the energy inequality

1
2

(
‖vvv‖2

L2 +‖∇ddd‖2
L2 +

∫
Ω

|∇Φ|2
ε(ddd) dxxx+ 〈mmm, I〉

)∣∣∣∣∣
t

0

+
∫ t

0

(
ν‖∇vvv‖2

L2 +‖ddd×qqq‖2
L2

)
ds

+
∫ t

0

(
‖n+−n−‖2

L2 +
∫

Ω

(n++n−)|∇Φ|2
ε(ddd) dxxx

)
ds≤ 0 , (24)

for a.e. t ∈ (0,T ), where mmm ∈ L∞
w∗(0,T ;M (Ω;Md×d

+ ) and Md×d
+ denotes the set of symmetric semi-positive

matrices. We set the initial value of the defect measure to zero, i.e., mmm(0) = 0. For this formulation, one could
also gain the additional regularity vvv ∈W 1,2(0,T ;(W1,4∩V)∗) such that vvv ∈ C w([0,T ];H).

We decided against this formulation, since it seems difficult to numerically keep track of the defect measure
mmm. Additionally, to show convergence to this formulation, basically requires that an integration-by-parts formula
similar to (23) holds on the approximate level, as long as structure preserving approximations (complying to a
discrete energy principle) are concerned. We will rather focus on a scheme that preserves the structure of the
continuous system, but where an according integration-by-parts formula is not known to hold.

3.3 Relative energy inequality

The construction of a dissipative solution for (1) in Section 4.4 heavily relies on an (approximate) relative energy
inequality for the approximate problem in Section 4. For convenience, we prove the relative energy inequality
formally.

Proposition 3.4 (Relative energy inequality). Let uuu∈X be a classical solution of (1). Then it fulfills Definition 3.2.

Proof. The only thing we have to prove is that uuu fulfills the relative energy inequality (22). All calculations hold
for all t ∈ [0,T ]. For any ũuu ∈Y, we decompose the relative energy into the related two energy parts, as well as
a mixed part:

R(uuu|ũuu) = 1
2

(
‖vvv‖2

L2 +‖∇ddd‖2
L2 +

∫
Ω

|∇Φ|2
ε(ddd) dxxx

)
+

1
2

(
‖ṽvv‖2

L2 +‖∇d̃dd‖2
L2 +

∫
Ω

|∇Φ̃|2
ε(ddd) dxxx

)
−
(
∇ddd,∇d̃dd

)
− (vvv,ṽvv)−

(
∇Φ,ε(ddd)∇Φ̃

)
.

(25)

Similarly, we obtain for the relative dissipation

W (uuu|ũuu) = W (uuu|0)+W (0|ũuu)−2ν (∇vvv,∇ṽvv)−2
(

ddd×qqq,d̃dd× q̃qq
)

−2
(
n+−n−, ñ+− ñ−

)
−2

∫
Ω

(n+−n−)∇Φ · ε(ddd)∇Φ̃dxxx .

The energy inequality for the solution uuu is given by

1
2

(
‖vvv‖2

L2 +‖∇ddd‖2
L2 +

∫
Ω

|∇Φ|2
ε(ddd) dxxx

)∣∣∣t
0
+
∫ t

0

(
ν‖∇vvv‖2

L2 +‖ddd×qqq‖2
L2

)
ds

+
∫ t

0

(
‖n+−n−‖2

L2 +
∫

Ω

(n++n−)|∇Φ|2
ε(ddd) dxxx

)
ds≤ 0 .

For the test function, we observe that
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1
2

(
‖ṽvv‖2

L2 +‖∇d̃dd‖2
L2 +

∫
Ω

|∇Φ̃|2
ε(d̃dd) dxxx

)
+

1
2

∫
Ω

(
|∇Φ̃|2

ε(ddd)−|∇Φ̃|2
ε(d̃dd)

)
dxxx

+
∫ t

0

(
ν‖∇ṽvv‖2

L2 +
∥∥d̃dd× q̃qq

∥∥2
L2

)
ds

+
∫ t

0

(
‖ñ+− ñ−‖2

L2 +
∫

Ω

(ñ++ ñ−)|∇Φ̃|2
ε(d̃dd) dxxx

)
ds =

∫ t

0

〈
A (ũuu),

 ṽvv
q̃qq
Φ̃

〉ds .

Multiplying (1a) by ṽvv, integrating, and mimicking the same calculations for the test function tested by vvv implies

−
(
vvv,ṽvv
)∣∣∣t

0
=
∫ t

0

(
(vvv ·∇)vvv,ṽvv

)
+
(
(ṽvv ·∇)ṽvv,vvv

)
+2ν(∇vvv,∇ṽvv)−

〈
A (ũuu),

vvv
0
0

〉ds

−
∫ t

0

(
(ṽvv ·∇)ddd,qqq

)
+
(
(vvv ·∇)d̃dd,q̃qq

)
−
(
(n+−n−)∇Φ,ṽvv

)
−
(
(ñ+− ñ−)∇Φ̃,vvv

)
ds .

Multiplying (1c) by q̃qq, integrating, and mimicking the same calculations for the test function tested by qqq implies

−
(
∇ddd,∇d̃dd

)∣∣∣t
0
=
∫ t

0

(
(vvv ·∇)ddd,q̃qq

)
+
(
(ṽvv ·∇)d̃dd,qqq

)
+(ddd×qqq,ddd× q̃qq)+

(
d̃dd× q̃qq,d̃dd×qqq

)
ds

− εa

∫ t

0

(
∂tddd∇Φ̃,∇Φ̃ · d̃dd

)
+
(

∂td̃dd ·∇Φ,∇Φ ·ddd
)

ds−
∫ t

0

〈
A (ũuu)

0
qqq
0

〉ds . (26)

For the remaining term in the relative energy, we use equation (1e),

−
(
∇Φ,ε(ddd)∇Φ̃

)
= −

(
n+−n−,Φ̃

)
Multiplying (1e) by ∂tΦ̃ and adding (1f) multiplied by Φ̃, as well as mimicking the same for ũuu leads to

−
(
(n+−n−),Φ̃

)∣∣∣∣∣
t

0

= −
∫ t

0

((
vvv(n+−n−),∇Φ̃

)
+
(
ṽvv(ñ+− ñ−),∇Φ

))
ds

−
∫ t

0

(
ε(ddd)∇Φ,∇∂t∇Φ̃

)
−
(

∂t
(
ε(d̃dd)∇Φ̃

)
,∇Φ

)
ds

+
∫ t

0

(
ε(ddd)∇(n+−n−),∇Φ̃

)
+
(

ε(d̃dd)∇(ñ+− ñ−),∇Φ

)
ds

+
∫ t

0

(
ε(ddd)∇Φ,(n++n−)∇Φ̃

)
+
(

ε(d̃dd)∇Φ̃,(ñ++ ñ−)∇Φ

)
ds

−
∫ t

0

〈
A (ũuu),

000
000
Φ̃

〉ds .

For the different terms on the right-hand side, we infer(
ε(ddd)∇n±,∇Φ̃

)
+
(

ε(d̃dd)∇ñ±,∇Φ

)
=
(

ε(d̃dd)∇n±,∇Φ̃

)
+
(

ε(ddd)∇ñ±,∇Φ

)
+
(
(ε(ddd)− ε(d̃dd))∇n±,∇Φ̃

)
+
((

ε(d̃dd)− ε(ddd)
)
∇ñ±,∇Φ

)
=
(

ñ+− ñ−,n±
)
+
(
n+−n−, ñ±

)
+
((

ε(ddd)− ε(d̃dd)
)
∇(n±− ñ±),∇Φ̃

)
+
((

ε(d̃dd)− ε(ddd)
)
∇ñ±,∇(Φ− Φ̃)

)
,
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and(
ε(ddd)∇Φ,(n++n−)∇Φ̃

)
+
(

ε(d̃dd)∇Φ̃,(ñ++ ñ−)∇Φ

)
= 2
(

ε(ddd)∇Φ,(n++n−)∇Φ̃

)
+
(

ε(d̃dd)(ñ++ ñ+)− ε(ddd)(n++n−),∇Φ̃⊗∇Φ

)
.

The next term is(
ε(ddd)∇Φ,∂t∇Φ̃

)
−
(

∂t(ε(d̃dd)∇Φ̃),∇Φ

)
=
(
(ε(ddd)− ε(d̃dd))∇Φ,∂t∇Φ̃

)
−
(

∂tε(d̃dd)∇Φ̃,∇Φ

)
=
(
(ε(ddd)− ε(d̃dd))(∇Φ−∇Φ̃),∂t∇Φ̃

)
+
(
(ε(ddd)− ε(d̃dd))∇Φ̃,∂t∇Φ̃

)
−
(

∂tε(d̃dd)∇Φ̃,∇Φ

)
.

From calculating the derivative of

1
2

(
ε(ddd)− ε(d̃dd),∇Φ̃⊗∇Φ̃

)∣∣∣∣∣
t

0

= εa

∫ t

0

(
∂tddd,∇Φ̃(ddd ·∇Φ̃)

)
−
(

∂td̃dd,∇Φ̃(d̃dd ·∇Φ̃)
)

ds

+
1
2

∫ t

0

(
∂t
(
∇Φ̃⊗∇Φ̃

)
,ε(ddd)− ε(d̃dd)

)
ds ,

we find for the terms incorporating εa that

−
∫ t

0
εa

(
ddd ·∇Φ,∇Φ∂td̃dd

)
+ εa

(
d̃dd ·∇Φ̃,∂tddd ·∇Φ̃

)
ds+

1
2

(
ε(ddd)− ε(d̃dd),∇Φ̃⊗∇Φ̃

)∣∣∣∣∣
t

0

−
∫ t

0

(
(ε(ddd)− ε(d̃dd))∇Φ̃,∂t∇Φ̃

)
−
(

∂tε(d̃dd)∇Φ̃,∇Φ

)
ds

=−
∫ t

0
εa

(
ddd ·∇Φ,∇Φ∂td̃dd

)
+ εa

(
d̃dd ·∇Φ̃,∂tddd ·∇Φ̃

)
ds

+ εa

∫ t

0

(
∂tddd,∇Φ̃(ddd ·∇Φ̃)

)
−
(

∂td̃dd,∇Φ̃(d̃dd ·∇Φ̃)
)

ds+
∫ t

0

(
∂tε(d̃dd)∇Φ̃,∇Φ

)
ds

= εa

∫ t

0

(
∂tddd−∂td̃dd,∇Φ̃

(
∇Φ̃ · (ddd− d̃dd)

))
+
(

∂td̃dd(∇Φ−∇Φ̃),∇Φ̃ · d̃dd−∇Φ ·ddd
)

ds

+ εa

∫ t

0

(
∂td̃dd ·∇Φ̃,(ddd− d̃dd) · (∇Φ̃−∇Φ)

)
ds .

Putting the pieces together, we obtain the inequality

R(uuu|ũuu)
∣∣∣t
0
+
∫ t

0
W (uuu|ũuu)ds

≤
∫ t

0

(
(vvv ·∇)vvv,ṽvv

)
+
(
(ṽvv ·∇)ṽvv,vvv

)
ds

+
∫ t

0

(
(vvv ·∇)ddd,q̃qq

)
+
(
(ṽvv ·∇)d̃dd,qqq

)
−
(
(ṽvv ·∇)ddd,qqq

)
−
(
(vvv ·∇)d̃dd,q̃qq

)
ds

+
∫ t

0

(
ddd×qqq,ddd× q̃qq

)
+
(
d̃dd× q̃qq,d̃dd×qqq

)
−2
(
d̃dd× q̃qq,ddd×qqq

)
ds

+
∫ t

0

(
(n+−n−)∇Φ,ṽvv

)
+
(
(ñ+− ñ−)∇Φ̃,vvv

)
ds

−
∫ t

0

((
vvv(n+−n−),∇Φ̃

)
+
(
ṽvv(ñ+− ñ−),∇Φ

))
ds

+
∫ t

0

((
ε(ddd)− ε(d̃dd)

)(
∇(n+−n−)−∇(ñ+− ñ−)

)
,∇Φ̃

)
ds
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+
∫ t

0

((
ε(d̃dd)− ε(ddd)

)(
∇(ñ+− ñ−)+∂t∇Φ̃

)
,∇(Φ− Φ̃)

)
ds

+
∫ t

0

(
ε(d̃dd)(ñ++ ñ−)− ε(ddd)(n++n−),∇Φ̃⊗

(
∇(Φ− Φ̃)

))
ds

+ εa

∫ t

0

(
∂td̃dd(∇Φ−∇Φ̃),∇Φ̃ · d̃dd−∇Φ ·ddd

)
+
(

∂td̃dd ·∇Φ̃,(ddd− d̃dd) ·∇(Φ̃−Φ)
)

ds .

+
∫ t

0
εa

(
∂t(ddd− d̃dd) ·∇Φ̃,∇Φ̃ · (ddd− d̃dd)

)
+

〈
A (ũuu),

 ṽvv−vvv
q̃qq−qqq
Φ̃−Φ

〉ds .

For the difference of the time-derivatives of ddd and d̃dd, we observe

∂tddd−∂td̃dd +A (ũuu) · (0,1,0)> = (ṽvv ·∇)d̃dd− (vvv ·∇)ddd +ddd× (ddd×qqq)− d̃dd× (d̃dd× q̃qq)

=
(
(ṽvv−vvv) ·∇

)
d̃dd− (vvv ·∇)(d̃dd−ddd)+ddd×

(
ddd×qqq− d̃dd× q̃qq

)
+(ddd− d̃dd)× (d̃dd× q̃qq) .

Due to the norm restriction on ddd and the test function d̃dd, we find that ∇|ddd|2 = 0 = ∇|d̃dd|2. Thus, we observe by
some manipulations that(

(vvv ·∇)ddd,q̃qq
)
+
(
(ṽvv ·∇)d̃dd,qqq

)
− ((ṽvv ·∇)ddd,qqq)−

(
(vvv ·∇)d̃dd,q̃qq

)
=
(

ddd×
[
(vvv ·∇)ddd

]
,ddd× q̃qq

)
+
(

d̃dd× ((ṽvv ·∇)d̃dd),d̃dd×qqq
)

−
(

ddd× ((ṽvv ·∇)ddd),ddd×qqq
)
−
(

d̃dd× ((vvv ·∇)d̃dd),d̃dd× q̃qq
)

=
(

d̃dd× ((ṽvv ·∇)d̃dd,(d̃dd−ddd)× (qqq− q̃qq)
)
+
(

ddd×
(
((vvv− ṽvv) ·∇)(ddd− d̃dd)

)
,ddd× q̃qq

)
+
(
(ddd− d̃dd)×

(
((vvv− ṽvv) ·∇)d̃dd

)
,ddd× q̃qq

)
+
(

d̃dd×
[
(vvv− ṽvv) ·∇)d̃dd

]
,(ddd− d̃dd)× q̃qq

)
+
(

ddd×
[
(ṽvv ·∇)(ddd− d̃dd)

]
,d̃dd× q̃qq−ddd×qqq

)
+
(
(ddd− d̃dd)×

(
(ṽvv ·∇)d̃dd

)
,d̃dd× q̃qq−ddd×qqq

)
+
(

ddd×
[
(ṽvv ·∇)(ddd− d̃dd)

]
,(ddd− d̃dd)× q̃qq

)
+
(
(ddd− d̃dd)×

(
(ṽvv ·∇)d̃dd

)
,(ddd− d̃dd)× q̃qq

)
and similarly

(ddd×qqq,ddd× q̃qq)+
(
d̃dd× q̃qq,d̃dd×qqq

)
−2
(
d̃dd× q̃qq,ddd×qqq

)
=
(
ddd×qqq− d̃dd× q̃qq,(ddd− d̃dd)× q̃qq

)
+
(
d̃dd× q̃qq,(d̃dd−ddd)× (qqq− q̃qq)

)
.

We use (21), and integration by parts to estimate the terms including the difference in qqq and q̃qq. Indeed, for any
smooth enough function aaa, we find(

aaa,(d̃dd−ddd)× (qqq− q̃qq)
)
= −

(
∇aaa,(d̃dd−ddd)×∇[ddd− d̃dd]

)
−
(

aaa⊗ I,(∇[d̃dd−ddd])>×∇[ddd− d̃dd]
)

+ εa

(
aaa,(d̃dd−ddd)×

[
∇Φ(∇Φ ·ddd)−∇Φ̃(∇Φ̃ · d̃dd)

])
.

Additionally, we use integration by parts in the term incorporating the derivative of n± to find([
ε(ddd)− ε(d̃dd)

][
∇(n+−n−)−∇(ñ+− ñ−)

]
,∇Φ

)
=−

(
(n+−n−)− (ñ+− ñ−),∇·

[
(ε(ddd)− ε(d̃dd)) ·∇Φ

])
=−

(
(n+−n−)− (ñ+− ñ−),∇·

[
(ε(ddd)− ε(d̃dd)

]
·∇Φ

)
−
(
(n+−n−)− (ñ+− ñ−),

[
(ε(ddd)− ε(d̃dd)

]
: ∇

2
Φ

)
.
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Note that the boundary terms vanish, since ddd and d̃dd fulfill the same inhomogeneous Dirichlet boundary condition.

Inserting this back into the relative energy inequality, we find

R
(
uuu|ũuu
)
(t)+

∫ t

0
W (uuu|ũuu)ds

≤R(uuu|ũuu)(0)+
∫ t

0

([
(vvv− ṽvv) ·∇](vvv− ṽvv),ṽvv

)
ds

+
∫ t

0

(
(ddd×

[
((vvv− ṽvv) ·∇)(ddd− d̃dd)

]
,ddd× q̃qq

)
+
(
(ddd− d̃dd)×

[(
(vvv− ṽvv) ·∇

)
d̃dd
]
,ddd× q̃qq

)
ds

+
∫ t

0

(
d̃dd×

[
(vvv− ṽvv) ·∇)d̃dd

]
,(ddd− d̃dd)× q̃qq

)
+
(

ddd×
[
(ṽvv ·∇)(ddd− d̃dd)

]
,d̃dd× q̃qq−ddd×qqq

)
ds

+
∫ t

0

(
(ddd− d̃dd)×

[
(ṽvv ·∇)d̃dd

]
,d̃dd× q̃qq−ddd×qqq

)
+
(

ddd×
[
(ṽvv ·∇)(ddd− d̃dd)

]
,(ddd− d̃dd)× q̃qq

)
ds

+
∫ t

0

(
(ddd− d̃dd)×

[
(ṽvv ·∇)d̃dd

]
,(ddd− d̃dd)× q̃qq

)
+
(

ddd×qqq− d̃dd× q̃qq,(ddd− d̃dd)× q̃qq
)

ds

−
∫ t

0

(
∇(d̃dd× ((ṽvv ·∇)d̃dd + q̃qq)),(d̃dd−ddd)×∇

[
ddd− d̃dd

])
ds

−
∫ t

0

(
(d̃dd× ((ṽvv ·∇)d̃dd + q̃qq))⊗ I,(∇(d̃dd−ddd))>×∇(ddd− d̃dd)

)
ds

+ εa

∫ t

0

(
d̃dd× ((ṽvv ·∇)d̃dd + q̃qq),(d̃dd−ddd)×

[
∇Φ(∇Φ ·ddd)−∇Φ̃(∇Φ̃ · d̃dd)

])
ds

+
∫ t

0

((
(n+−n−)− (ñ+− ñ−)

)
(∇Φ−∇Φ̃),ṽvv

)
ds

+
∫ t

0

(
(n+−n−)− (ñ+− ñ−)∇Φ̃,ṽvv−vvv

)
ds

−
∫ t

0

(
(n+−n−)− (ñ+− ñ−),∇·

(
ε(ddd)− ε(d̃dd)

)
·∇Φ̃+(ε(ddd)− ε(d̃dd)) : ∇

2
Φ̃

)
ds

+
∫ t

0

(
(ε(d̃dd)− ε(ddd))

(
∇(ñ+− ñ−)+∂t∇Φ̃

)
,∇(Φ− Φ̃)

)
ds

+
∫ t

0

((
ε(d̃dd)− ε(ddd)

)
(ñ++ ñ−)+ ε(ddd)

[
(ñ++ ñ−)− (n++n−)

]
,∇Φ̃⊗∇(Φ− Φ̃)

)
ds

+
∫ t

0

〈
A (ũuu),

 ṽvv−vvv
q̃qq−qqq+AAA(Φ̃)(d̃dd−ddd)

Φ̃−Φ

〉ds

+ εa

∫ t

0

(
∂td̃dd ·∇(Φ− Φ̃),∇Φ̃ · d̃dd−∇Φ ·ddd

)
+
(

∂td̃dd ·∇Φ̃,(ddd− d̃dd) ·∇(Φ̃−Φ)
)

ds

+
∫ t

0

(
AAA(Φ̃),

[(
(ṽvv−vvv) ·∇

)
d̃dd +ddd× (ddd×qqq− d̃dd× q̃qq)

]
⊗ (ddd− d̃dd)

)
ds

+
∫ t

0

(
AAA(Φ̃),

[
(ddd− d̃dd)× (d̃dd× q̃qq)

]
⊗ (ddd− d̃dd)

)
ds− 1

2

∫ t

0

(
(vvv ·∇)AAA(Φ̃) : (ddd− d̃dd)⊗ (ddd− d̃dd)

)
ds ,

where we defined

AAA(Φ̃) :=
(
εa∇Φ̃⊗∇Φ̃

)
.

Estimating the right-hand side in terms of the relative energy and relative dissipation leads to

R(uuu|ũuu)
∣∣∣t
0
+

1
2

∫ t

0
W (uuu|ũuu)ds≤R(uuu0|ũuu(0))+

∫ t

0

〈
A (ũuu),

 ṽvv−vvv
q̃qq−qqq+AAA(Φ̃)(d̃dd−ddd)

Φ̃−Φ

〉ds

+
∫ t

0
K (ũuu)R(uuu|ũuu)ds+

1
2

∫ t

0
‖n+− ñ+‖2

L2 +‖n+− ñ+‖2
L2 ds
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such that Gronwall’s estimate implies (22).

4 Fully discrete system

The aim is this work is a practical construction of a dissipative solution for (1). The related discussion in the
introduction of existing schemes [4, 39] for the simplified Ericksen–Leslie equations (1a)–(1d) as a sub-problem
of (1) shows that they are not practical, since involved discretization and penalization parameters have to in-
dependently tend to zero to construct a related measure-valued solution. In this respect, a different effort is
made in [21], where a dissipative solution to this sub-problem is constructed with the help of a spatial discretiza-
tion, whose iterates satisfy an approximate relative energy inequality, and related director fields are (uniformly)
bounded. While this scheme avoids the construction of a solution via (sequences generated by) a (Ginzburg-
Landau) penalization approach, and thus is exempted from the above unpractical scenario of admissible pa-
rameter choices, it is still not practical, since it is only a semi-discretization in space. In this section, we propose
a practical/implementable construction of a dissipative solution for (1), where related iterates inherit physically
relevant properties, including a discrete sphere-property for director fields, that approximate concentrations take
values in [0,1] only, and a discrete/approximate (relative) energy (in)equality. For this purpose, the Scheme 4.1
below, with solutions in the finite element space

UUUh :=VVV h× [YYY h]
2× [Zh]

2×Yh .

uses different numerical tools which make this possible:

� mass lumping (·, ·)h in equations (27d) and strongly acute meshes Th to validate an M-matrix property
which ensures that discrete charges take values in [0,1] only,

� regularizing terms in (27a) (scaled by hα ) resp. (27c) via (27b) (scaled by hβ ) to limit the spatial varia-
tion of discrete velocities resp. director fields, and thus allow the M-matrix property for equations (27d);
cf. Theorem 4.5 below,

� mass lumping (·, ·)h in reformulation (27c) of (1c) to obtain unit-vector director fields at nodal points of
the space-time mesh,

� a proper discretization of the (coupling) elastic stress tensor in (27a) to allow for a discrete energy law
for non-trivial fluid-flow velocities; cf. Theorem 4.5 below. This strategy requires the evaluation of (local)
averages of gradients of the discrete director field at nodal points of Th.

� the introduction of a new variable qqq for the variational derivative of the free energy functional with respect
to ddd in order to cope with the nonlinear contribution in this term.

The discrete dynamics starts with initial data
(
vvv0,ddd0, [n±]0

)
∈VVV h×ZZZh× [Zh]

2, such that

|ddd0(zzz)|= 1 ∀zzz ∈Nh , [n±]0 ∈ [0,1]
(
[n+]0− [n−]0,1

)
= 0 .

Below, we denote ddd j−1/2 := 1
2

(
ddd j +ddd j−1) for brevity. Additionally, we define ddd

j
= ddd j−Ih[d̄dd1] for 1≤ j ≤ J

in order to work on linear finite element spaces, where d̄dd1 is the function of the assumptions on the boundary
conditions in Theorem 3.1. Note that the discrete Laplacian is defined according to the Definition at the end of
Section 2.

Let α ∈ (0,(6−d)/d) and β ∈ (2− (2d)/3,(4−d)2/d).
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L’. Baňas, R. Lasarzik, A. Prohl 20

Scheme 4.1. Let α,β > 0. For every 1 ≤ j ≤ J, find the solution
(
vvv j,ddd

j
,qqq j, [n±] j,Φ j

)
∈UUUh for the given

6-tuple (vvv j−1,ddd
j−1

,qqq j−1, [n±] j−1,Φ j−1) ∈UUUh, such that for all (aaa,bbb,ccc,e±,g) ∈UUUh holds(
dtvvv j,aaa

)
+
(
∇vvv j,∇aaa

)
+hα

(
∇dtvvv j,∇aaa

)
+
(
(vvv j−1 ·∇)vvv j,aaa

)
+

1
2

(
[∇·vvv j−1]vvv j,aaa

)
+
(
([n+] j− [n−] j)∇Φ

j,aaa
)
+
([

PL2(∇ddd j−1)
]>[ddd j−1/2×

(
ddd j−1/2×qqq j)],aaa)

h
= 0 ,

(27a)

hβ
(
∆hddd j−1/2,∆hbbb

)
+
(

∇ddd j−1/2,∇bbb
)
− εa

(
∇Φ

j(ddd j−1 ·∇Φ
j),bbb
)
−
(
qqq j,bbb

)
h = 0 , (27b)(

dtddd j,ccc
)

h +
(

ddd j−1/2×
[
PL2(∇ddd j−1)vvv j],ddd j−1/2×ccc

)
h
+
(

ddd j−1/2×qqq j,ddd j−1/2×ccc
)

h
= 0 , (27c)(

dt [n±] j,e±
)

h
+
(

ε(ddd j)∇[n±] j,∇e±
)
±
(
[n±] j

ε(ddd j)∇Φ
j,∇e±

)
−
(

vvv j[n±] j,∇e±
)
= 0 , (27d)(

ε(ddd j)∇Φ
j,∇g

)
−
(
[n+] j− [n−] j,g

)
h
= 0 . (27e)

Remark 4.1. We use the regularizing terms in (27a) and (27b) to establish the M-matrix property of the linear
system associated to (27d). In the computational studies elaborated in Section 5, the positiveness and bounded-
ness of the charges (which follows form the M-matrix property in our analysis) were observed in the experiments
even without these additional regularizing terms. Possibly these regularizing terms are only needed in turbulent
or oscillating regimes. In particular, the hβ regularization in (27b) is used to deduce h-independent bounds for
Φ j in stronger norms to validate an M-matrix property in (27d). In the 2d-case, the hβ regularization in (27b) is
not needed to deduce the M-matrix property in (27d), but it is essential in the 3d-case.

4.1 Construction of a solution for Scheme 4.1 via an auxiliary Scheme 4.2

We first consider an auxiliary problem (Scheme 4.2), for which we show the existence of a solution to this scheme

in form of a 6-tuple
(
vvv j,ddd

j
,qqq j, [n±] j,Φ j

)
∈UUUh via Brouwer’s fixed-point theorem; for a (slightly) restricted class

of space-time meshes, we then show that this 6-tuple already solves Scheme 4.1.

For this purpose, we introduce a non-increasing function φ ∈C∞
(
[0,∞); [0,1]

)
which satisfies

φ =

{
1 on [0,1]
0 on [2,∞)

, s.t. −φ
′ ∈
{

[0,2] on [0,1]
{0} on [2,∞)

. (28)

For every γ > 0, let φγ(s) := φ(γs) for all s ∈ [0,∞).

Scheme 4.2. Fix α,β ,γ > 0. For every 1≤ j ≤ J, find the solution
(
vvv j,ddd

j
,qqq j, [n±] j,Φ j

)
∈UUUh for the given

6-tuple (vvv j−1,ddd
j−1

,qqq j−1, [n±] j−1,Φ j−1) ∈UUUh, such that for all (aaa,bbb,ccc,e±,g) ∈UUUh holds(
dtvvv j,aaa

)
+
(
∇vvv j,∇aaa

)
+hα

(
∇dtvvv j,∇aaa

)
+
(
(vvv j−1 ·∇)vvv j,aaa

)
+

1
2

(
[∇·vvv j−1]vvv j,aaa

)
+

([
φγ

(
|[n+] j|

)
[n+] j−φγ

(
|[n−] j|

)
[n−] j

]
∇Φ

j,aaa

)

+

([
PL2(∇ddd j−1)

]>[ddd j−1/2×
(

ddd j−1/2×qqq j
)]

,aaa

)
h

= 0 ,

(29a)

hβ

(
∆hddd j−1/2,∆hbbb

)
+
(

∇ddd j−1/2,∇bbb
)
− εa

(
∇Φ

j(ddd j−1 ·∇Φ
j),bbb
)
−
(
qqq j,bbb

)
h = 0 , (29b)(

dtddd j,ccc
)

h +
(

ddd j−1/2×
[
PL2(∇ddd j−1)vvv j],ddd j−1/2×ccc

)
h
+
(

ddd j−1/2×qqq j,ddd j−1/2×ccc
)

h
= 0 , (29c)(

dt [n±] j,e±
)

h
+
(

ε(ddd j)∇[n±] j,∇e±
)
−
(

vvv j
φγ

(
|[n±] j|

)
[n±] j,∇e±

)
±
(

φγ

(
|[n±] j|

)
[n±] j

ε(ddd j)∇Φ
j,∇e±

)
= 0 ,

(29d)

DOI 10.20347/WIAS.PREPRINT.2717 Berlin 2020



Numerical analysis for nematic electrolytes 21

(
ε(ddd j)∇Φ

j,∇g
)
−
(
[n+] j− [n−] j,g

)
h
= 0 . (29e)

Lemma 4.3. Let k ≤ 1/(8γ) , and k ≤ k0(Ω) and h ≤ h0(Ω) be sufficiently small. There exists a solution(
vvv j,ddd

j
,qqq j, [n±] j,Φ j

)
∈UUUh of Scheme 4.2.

Proof. For every 1≤ j ≤ J, Scheme 4.2 defines a continuous map FFF j : UUUh→UUUh in a canonical way, whose

zero is the next iterate
(
vvv j,ddd

j
,qqq j, [n±] j,Φ j

)
; to show its existence, we use Brouwer’s fixed-point theorem in

the following form 〈
FFF j(www),www

〉
UUUh
≥ 0 ∀www ∈ {φφφ ∈UUUh : ‖φφφ‖UUUh ≥ R j} , (30)

for a number R j≥ 0. The following argumentation establishes this property, but complies already to the energetic
principle (37), by formally choosing

www =
(
aaa,bbb,ccc,e±,g

)
=
(

vvv j,dtddd j,qqq j,Φ j +
[n+] j

8
,
[n−] j

8
−Φ

j,−([n+] j− [n−] j)−2dtΦ
j− Φ j

k

)
in Scheme 4.2. Testing (29a) by vvv j implies

1
2

dt‖vvv j‖2
L2 +

k
2
‖dtvvv j‖2

L2 +ν‖∇vvv j‖2
L2 +

hα

2
dt‖∇vvv j‖2

L2 + k
hα

2
‖∇dtvvv j‖2

L2

−
(

ddd j−1/2×
[
PL2(∇ddd j−1)vvv j],ddd j−1/2×qqq j

)
h

+
(

φγ

(
|[n+] j|

)
[n+] j−φγ

(
|[n−] j|

)
[n−] j,∇Φ

j ·vvv j
)
= 0 . (31)

Testing (29b) by dtddd j, and adding this equation to (29c) tested by qqq j lead to

hβ

2
dt‖∆hddd j‖2

L2 +
1
2

dt‖∇ddd j‖2
L2− εa

(
dtddd j

∇Φ
j,ddd j−1 ·∇Φ

j
)

+
(

ddd j−1/2×
[
PL2(∇ddd j−1)vvv j],ddd j−1/2×qqq j

)
h
+‖ddd j−1/2×qqq j‖2

h = 0 . (32)

In the following we test (29d) by ±Φ j and add (29e) tested by −([n+] j− [n−] j)−dtΦ
j:(

dt
(
[n+] j− [n−] j) ,Φ j

)
h
+
(

ε(ddd j)∇
(
[n+] j− [n−] j) ,∇Φ

j
)

−
(

φγ

(
|[n+] j|

)
[n+] j−φγ

(
|[n−] j|

)
[n−] j,vvv j

∇Φ
j
)

+
(
(φγ

(
|[n+] j|

)
[n+] j +φγ

(
|[n−] j|

)
[n−] j)ε(ddd j)∇Φ

j,∇Φ
j
)

−
(

ε(ddd j)∇Φ
j,∇dtΦ

j
)
+
(
[n+] j− [n−] j,dtΦ

j
)

h

+‖[n+] j− [n−] j‖2
h−
(

ε(ddd j)∇Φ
j,∇
(
[n+] j− [n−] j))= 0 . (33)

When adding the three equations (31), (32), and (33), we observe that the terms in the second and third line
of (31) cancel with the first term in the second line of (32) and the two terms in the second line of (33). Addition-
ally, the second and the last term in (33) cancel.

For the following, it is crucial to observe the integration by parts formula(
dt
(
[n+] j− [n−] j) ,Φ j

)
h
+
(
[n+] j− [n−] j,dtΦ

j
)

h
(34)

−
(

ε(ddd j)∇Φ
j,∇dtΦ

j
)
− εa

(
dtddd j

∇Φ
j,ddd j−1 ·∇Φ

j
)

=
1
2

dt

(
ε(ddd j)∇Φ

j,∇Φ
j
)
+ k

1
2

(
ε(ddd j−1),

(
dt∇Φ

j⊗dt∇Φ
j))+ k

εa

2
‖∇Φ

j ·dtddd j‖2
L2 .
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Indeed, by the standard discrete integration by parts formula and equation (29e), we find(
dt
(
[n+] j− [n−] j) ,Φ j

)
h
+
(
[n+] j− [n−] j,dtΦ

j
)

h

= dt

(
[n+] j− [n−] j,Φ j

)
h
+ k
(

dt
(
[n+] j− [n−] j) ,dtΦ

j
)

h

= dt

(
ε(ddd j)∇Φ

j,∇Φ
j
)
+ k
(

dt
[
ε(ddd j)∇Φ

j] ,∇dtΦ
j
)

and additionally, we observe

k
(

dt
[
ε(ddd j)∇Φ

j] ,∇dtΦ
j
)
−
(

ε(ddd j)∇Φ
j,∇dtΦ

j
)
=−

(
ε(ddd j−1)∇Φ

j−1,∇dtΦ
j
)

=
1
2k

[(
ε(ddd j−1)∇Φ

j−1,∇Φ
j−1
)
−
(

ε(ddd j−1)∇Φ
j,∇Φ

j
)
+ k2

(
ε(ddd j−1),dt∇Φ

j⊗dt∇Φ
j
)]

.

We combine the remaining terms, and recall the definition of ε(ddd j−1) to find

dt

(
ε(ddd j)∇Φ

j,∇Φ
j
)
− εa

(
dtddd j

∇Φ
j,ddd j−1 ·∇Φ

j
)

+
1
2k

[(
ε(ddd j−1)∇Φ

j−1,∇Φ
j−1
)
−
(

ε(ddd j−1)∇Φ
j,∇Φ

j
)]

=
1
2

dt

(
ε(ddd j)∇Φ

j,∇Φ
j
)
+

1
2k

(
ε(ddd j)− ε(ddd j−1)−2εa[ddd j−ddd j−1]⊗ddd j−1,∇Φ

j⊗∇Φ
j
)

=
1
2

dt

(
ε(ddd j)∇Φ

j,∇Φ
j
)
+ k

εa

2

(
dtddd j⊗dtddd j,∇Φ

j⊗∇Φ
j
)
.

This argumentation settles (34). We may now use it in (32) and (33), and combine the result with (31), which
leads to

1
2

dt‖vvv j‖2
L2 + k

1
2
‖dtvvv j‖2

L2 +ν‖∇vvv j‖2
L2

+
hα

2
dt‖∇vvv j‖2

L2 + k
hα

2
‖∇dtvvv j‖2

L2 +
1
2

dt‖∇ddd j‖2
L2 +

hβ

2
dt‖∆hddd j‖2

L2

+
((

φγ

(
|[n+] j|

)
[n+] j +φγ

(
|[n−] j|

)
[n−] j)

ε(ddd j)∇Φ
j,∇Φ

j
)
+‖[n+] j− [n−] j‖2

h

+
1
2

dt

(
ε(ddd j)∇Φ

j,∇Φ
j
)
+ k

1
2

(
ε(ddd j−1),

(
dt∇Φ

j⊗dt∇Φ
j))+ k

εa

2
‖∇Φ

j ·dtddd j‖2
L2 = 0 . (35)

Note that only the first term in the third line of (35) is not necessarily non-negative. Due to the truncation, it may
be absorbed into the first term of the fourth line of (35), if∣∣∣((φγ

(
|[n+] j|

)
[n+] j +φγ

(
|[n−] j|

)
[n−] j)

ε(ddd j)∇Φ
j,∇Φ

j
)∣∣∣≤ 2γ

(
ε(ddd j)∇Φ

j,∇Φ
j
)

≤ 1
4k

(
ε(ddd j)∇Φ

j,∇Φ
j
)

and thus k ≤ 1/(8γ). In the next step, we test (29d) with [n±] j,

1
2

dt‖[n±] j‖2
h + k

1
2
‖dt [n±] j‖2

h +
(

ε(ddd j)∇[n±] j,∇[n±] j
)

=
(

vvv j[n±] j
φγ

(
|[n±] j|

)
,∇[n±] j

)
∓
(

φγ

(
|[n±] j|

)
[n±] j

ε(ddd j)∇Φ
j,∇[n±] j

)
. (36)

Note that∣∣∣(φγ

(
|[n±] j|

)
[n±] j

ε(ddd j)∇Φ
j,∇[n±] j

)∣∣∣≤ 1
4

(
ε(ddd j)∇[n±] j,∇[n±] j

)
+4γ

2
(

ε(ddd j)∇Φ
j,∇Φ

j
)
,(

vvv j
φγ

(
|[n±] j|

)
[n±] j,∇[n±] j

)
≤ 2γ‖vvv j‖L2‖∇[n±] j‖L2 ≤ 1

4

(
ε(ddd j)∇[n±] j,∇[n±] j

)
+8γ

2‖vvv j‖2
L2 .
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Note that ε(ddd j) is a positive definite matrix. Adding (35) and (36) multiplied by 1/(8γ2), we find

1
4

dt‖vvv j‖2
L2 + k

1
2
‖dtvvv j‖2

L2 +ν‖∇vvv j‖2
L2 +

hα

2
dt‖∇vvv j‖2

L2

+ k
hα

2
‖∇dtvvv j‖2

L2 +
1
2

dt‖∇ddd j‖2
L2 +

hβ

2
dt‖∆hddd j‖2

L2

+
1
2

dt

(
ε(ddd j)∇Φ

j,∇Φ
j
)
+ k

1
2

(
ε(ddd j−1),

(
dt∇Φ

j⊗dt∇Φ
j))+ k

εa

2
‖∇Φ

j ·dtddd j‖2
L2

+
1

16γ2 dt‖[n±] j‖2
h + k

1
16γ2 ‖dt [n±] j‖2

h +
1

32γ2

(
ε(ddd j)∇[n±] j,∇[n±] j

)
+‖[n+] j− [n−] j‖2

h ≤ 0 . (37)

This argumentation implies (30), where R j depends on the data from the previous iteration.

This auxiliary result will now be used to validate that a solution of Scheme 4.2 already solves Scheme 4.1,
provided the space-time mesh satisfies certain criteria.

Lemma 4.4. Suppose (A1), (A2) for Scheme 4.2, where

0 < α <
6
d
−1 and 0 < β <

(4−d)2

d
, (38)

γ =C2/2h
d
2 for some existing constant C2 independent of the discretization parameters, which are assumed to

be be sufficiently small, i.e., k ≤ k0(Ω) and h≤ h0(Ω). Then, the solution(
vvv j,ddd

j
,qqq j, [n±] j,Φ j) ∈UUUh

of Scheme 4.2 already solves Scheme 4.1. Moreover,

|ddd j(zzz)|= 1 ∀zzz ∈Nh , 0≤ [n±] j ≤ 1 (1≤ j ≤ J) .

Proof. Let again 1≤ j≤ J be fixed; by Lemma 4.3, there exists uuu j :=
(
vvv j,ddd

j
,qqq j, [n±] j,Φ j

)
∈UUUh which solves

Scheme 4.2.

a) In particular, there exists ddd j−1/2 ∈ ZZZh. On choosing ddd j−1/2(zzz)ϕzzz as test function in (29c), where ϕzzz is the
nodal basis function attached to zzz ∈Nh with zzz ∈Ω (i.e., zzz is an inner point), we recover |ddd j(zzz)|= 1 for all inner
points zzz ∈Nh. For the boundary points zzz ∈Nh , we immediately observe that |ddd j(zzz)|= |Ih[ddd1](zzz)|= 1, since

ddd
j ∈YYY h.

b) There exists C2 ≡C2(Ω,εa)> 0, s.t.

‖∇Φ
j‖L6 ≤Ch1−d/3(1+h−βd/(8−2d)) . (39)

b1) Let ddd j
h ≡ ddd j ∈ ZZZh, and [n±h ]

j ≡ [n±] j ∈ Zh. For given ddd j
h ∈ ZZZh and f j

h ≡ [n+h ]
j− [n−h ]

j ∈ Yh we consider

the solution Φ̂
j
h ∈H1/R to the elliptic PDE(

ε(ddd j
h)∇Φ̂

j
h,∇g

)
−
(

f j
h ,g
)
= 0 ∀g ∈H1 . (40)

Note that xxx 7→ ε
(
ddd j(xxx)

)
∈C
(
Ω;Rd×d

sym ), where by a)

∀xxx ∈Ω : |ξξξ |2Rd ≤
〈
ε
(
ddd j

h(xxx)
)
ξξξ ,ξξξ

〉
Rd ≤ (1+ εa)|ξξξ |2Rd ∀ξξξ ∈ Rd .

We use elliptic regularity theory to obtain an estimate for the solution of (40) in the H2-norm: on restating (40)
in non-divergence form and using a), we find a constant C ≡C(Ω)> 0, s.t.

1
C
‖∆Φ̂

j
h‖L2 ≤ ‖∇ε(ddd j

h)‖L4‖∇Φ̂
j
h‖L4 +‖ f j

h‖L2 .
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Since ‖∇Φ̂
j
h‖L4 ≤C‖∇Φ̂

j
h‖

(4−d)/4
L2 ‖∆Φ̂

j
h‖

d/4
L2 , by a), Young’s inequality, (37), and an inverse estimate,

1
C
‖∆Φ̂

j
h‖L2 ≤ ‖∇ddd j

h‖
4/(4−d)
L4 ‖∇Φ̂

j
h‖L2 +‖ f j

h‖L2

≤ Ch−βd/(8−2d)‖∇Φ̂
j
h‖L2 +‖ f j

h‖L2 ≤C
(
1+h−βd/(8−2d)) . (41)

b2) We consider the following auxiliary problem, which accounts for the effect of mass lumping of the right-hand
side in (29e): given (ddd j

h, [n
±
h ]

j), find Φ̃
j
h ∈ Yh, s.t.(

ε(ddd j
h)∇Φ̃

j
h,∇g

)
−
(

f j
h ,g
)
= 0 ∀g ∈ Yh . (42)

Subtraction of (42) from (29e), choosing g = Φ j− Φ̃
j
h, and then using estimates (3) and (37) leads to

‖∇(Φ j− Φ̃
j
h)‖L2 ≤Ch

∥∥ f j
h

∥∥
L2 ≤Ch .

By an inverse estimate, we then infer ‖∇(Φ j− Φ̃
j
h)‖L6 ≤C.

b3) Since Φ̃
j
h ∈ Yh is the Galerkin projection of Φ̂

j
h ∈H1/R, a standard estimate, and (41) yields

‖∇(Φ̂ j
h− Φ̃

j
h)‖L2 ≤Ch

(
1+h−βd/(8−2d)) . (43)

Putting steps b1)–b3) together, an inverse estimate then shows (39), since

‖∇Φ
j‖L6 ≤ ‖∇(Φ j− Φ̃

j
h)‖L6 +‖∇(Φ̃ j

h− Φ̂
j
h)‖L6 +C‖∇Φ̂

j
h‖L6

≤ Ch1−d/3(1+h−βd/(8−2d))
c) In (29d), and consequently (29a), we have [n±] j ∈ [0,1], provided that (A1) and (A2), hold. The proof of
this assertion adapts a corresponding argument in [34, Steps 3 & 4 in Section 4.1]; we consider (29d) as two
linear problems, where ε(ddd j),φγ

(
|[n±] j|

)
,vvv j,Φ j are given. Its algebraic representation then leads to a system

matrix B ∈ R2L×2L which is an M-matrix — which then validates [n±] j ∈ [0,1]; see c1) and c2) below.

c1) It holds 0 ≤ [n±] j (1 ≤ j ≤ J), provided that (A1), (A2), and (38) hold. This property follows from the M-
matrix property of B for the two equations (29d) for 1≤ j ≤ J fixed (but arbitrary), which is assembled via the
nodal basis functions {ϕβ}L

β=1 ⊂ Yh, with entries (M ,K ∈ RL×L)

mββ ′ ≡
(
M
)

ββ ′ :=
(
ϕβ ,ϕβ ′

)
h ,

kββ ′ ≡
(
K
)

ββ ′ :=
(
ε(ddd j)∇ϕβ ,∇ϕβ ′

)
,

c1,±
ββ ′ ≡

(
C1(vvv j)

)
ββ ′ :=−

(
φγ

(
|[n±] j|

)
vvv j

ϕβ ,∇ϕβ ′

)
,

c2,±
ββ ′ ≡

(
C±2 (Φ j)

)
ββ ′ :=±

(
φγ

(
|[n±] j|

)
ε(ddd j)ϕβ ∇Φ

j,∇ϕβ ′

)
.

Hence, the entries b±
ββ ′ ≡ (B)±

ββ ′ of the system matrix B = diag[B+,B−] read

B± :=
1
k
M +K +C±1 (vvv j)+C±2 (Φ j) , (44)

and [n±] j := ∑
L
β=1 x±

β
ϕβ solves (

B+ 000
000 B−

)(
xxx+

xxx−

)
=

(
[ fff+] j−1

[ fff−] j−1

)
,

where xxx± = (x±1 , . . . ,x
±
L )
>, and [ fff±] j−1

l := 1
k

(
[n±] j−1,ϕl

)
h. Note that the matrix K is an M-matrix, since its

defining properties (see c11)–c13) below) — which follow from an element-wise consideration — are a conse-
quence of

kββ ′ = ∑
{K∈Th: suppϕβ∩suppϕ

β ′∩K 6= /0}

〈(∫
K

ε(ddd j)dxxx
)

∇ϕβ ,∇ϕβ ′

〉
Rd×d

,
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since ∇ϕβ ∈ Rd is element-wise constant, and the minimum resp. maximum eigenvalue of the symmetric,

positive definite-valued function xxx 7→ ε
(
ddd j(xxx)

)
is bigger resp. less than 1 resp. 1+ εa. We now guarantee its

dominating influence as part of B± via a dimensional argument — and hence M-matrix property of B±:

c11) Non-positivity of off-diagonal entries of B±, i.e.,
(
B±
)

ββ ′ ≤ 0 for all β 6= β ′. Since Th satisfies (A1),

there exists Cθ0 > 0, such that kββ ′ ≤−Cθ0hd−2 < 0 uniformly for h > 0, for any pair of adjacent nodes.

The remaining parts of
(
B±
)

ββ ′ will be bounded independently, and we start with c1,±
ββ ′ : on using an

embedding property, ‖vvv j‖L6 ≤C‖∇vvv j‖d/3
L2 ‖vvv j‖(3−d)/3

L2 and (37), we conclude∣∣∣(φγ

(
|[n±] j|

)
vvv j

ϕβ ,∇ϕβ ′

)∣∣∣≤ ‖vvv j‖L6‖ϕβ ∇ϕβ ′‖L6/5 ≤C2h5d/6−1Ch−αd/6 . (45)

We use a dimensional (asymptotic) argument, which ensures that this term may be bounded by Cθ0hd−2

— and thus may be controlled by the corresponding negative term in K : we find that

d−2 <
5d
6
−1− αd

6
=⇒ α <

6
d
−1 (46)

validates this requirement.

Below, we use C ≡C(Ω)> 0. We proceed similarly with c2,±
ββ ′ , utilizing (39)∣∣∣(ϕβ ∇Φ

j,∇ϕβ ′
)∣∣∣ ≤ ‖∇Φ

j‖L6‖ϕβ ∇ϕβ ′‖L6/5 ≤Ch1−d/3(1+h−(βd)/(8−2d))h5d/6−1

By the same dimensional argument as below (45), we deduce

d−2 <
5d
6
−1−β

d
8−2d

+1− d
3

=⇒ β <
(4−d)2

d
(47)

Such that, we have |kββ ′ |> |c2,±
ββ ′ |, for h small enough.

Finally, non-positivity of off-diagonal entries of M holds. Therefore, off-diagonal entries of B± are non-
positive, if h≤ h0(Ω) is small enough and (46) holds.

c12) Strict positivity of the diagonal entries of B±: we have to verify that

1
k

mββ + kββ + c1
ββ

+ c2,±
ββ

> 0 .

By (A1), we know that there exists Cθ0
> 0, such that

1
k

mββ ≥Cθ0
hd , and kββ ≥Cθ0

hd−2 .

Moreover, from (45) and (47), we conclude

|c1,±
ββ
|+ |c2,±

ββ
| ≤C2h5d/d−1Ch−αd/6 +Ch1−d/3(1+h−βd/(8−2d))h5d/6−1 =: η(h) .

Hence, Cθ0
hd−2−η(h)> 0 is valid by the same dimensional argument as in c11) provided (46) and (47)

are valid.

c13) B± is strictly diagonal dominant, i.e., ∑β ′ 6=β |(B±)ββ ′ |< |(B±)ββ | for all 1≤ β ≤ L. We use the fact
that the number of neighboring nodes xxxβ ′ ∈Nh for each xxxβ is bounded independently of h > 0, and that
this property is inherited from K . Hence, there exists a constant C :=C

(
{#β ′ : kββ ′ 6= 0}

)
> 0, such

that, thanks to c11),c12) and for k ≤ k0(Ω) and h≤ h0(Ω) sufficiently small,

(B±)ββ ≥ 1
k

Cθ0
hd +Cθ0

hd−2−η(h)>C max
β ′ 6=β

|(B±)ββ ′ |

= C
∣∣−Cθ0hd−2−η(h)

∣∣
DOI 10.20347/WIAS.PREPRINT.2717 Berlin 2020
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The properties c11)− c13) then guarantee the M-matrix property of B± for k ≤ k0(Ω) and h ≤ h0(Ω) small
enough, under the given mesh constraints: this property then implies 0≤ [n±] j ∈ Yh via the discrete maximum
principle.

c2) It holds [n±] j ≤ 1 (1≤ j ≤ J), provided that (A1), (A2), and (38) hold.

First, we identify that φγ(|[n±] j|) = 1. From the bound (37) multiplied by k, we infer a bound on the L2-norm of
the charges [n±] j such that an inverse estimate helps to conclude

‖[n±] j‖L∞ ≤Ch−d/2‖[n±] j‖L2 ≤Ch−d/2‖[n±] j‖h ≤C2h−d/2 .

Choosing γ−1 = C2
2

(
h−

d
2
)

yields φγ

(
|[ñ±] j|

)
= 1.

By induction, we may assume that [n±] j−1 ≤ 1 for some fixed 1≤ j ≤ J.

In the following, we consider the system which is solved by (Ih1− [n+] j,Ih1− [n−] j)T . First, we observe
that (

dtIh[1],e±
)

h = 0 .

Secondly, for the convection term, we use integration by parts, the definition of VVV h, and (A2) to conclude

(vvv j,∇e±) = −
(
divvvv j , [e±] j−λ

)
= 0 , where λ =

1
|Ω|

∫
Ω

e± dxxx .

Thirdly, we find

±
(
ε(ddd j)∇Φ,∇e±

)
=±

(
[n+] j− [n−] j,e±

)
h

Combining these equations, we observe that (Ih[1]− [n+] j,Ih[1]− [n−] j)> solves(
dt(Ih[1]− [n+] j),e+

)
h +
(
dt(Ih[1]− [n−] j),e−

)
h

+
(
ε(ddd j)∇(Ih[1]− [n+] j),∇e+

)
+
(
ε(ddd j)∇(Ih[1]− [n−] j),∇e−

)
−
(
v j(Ih[1]− [n+] j),∇e+

)
−
(
v j(Ih[1]− [n−] j),∇e−

)
+
(
ε(ddd j)∇Φ(1− [n+] j),∇e+

)
−
(
ε(ddd j)∇Φ(1− [n−] j),∇e−

)
+
(
Ih[1]− [n+] j− (Ih[1]− [n−] j),e+

)
h

+
(
Ih[1]− [n−] j− (Ih[1]− [n+] j),e−

)
h =

(
ε(ddd j)∇Ih[1],∇(e++ e−)

)
Going back to (44), we observe that (Ih[1]−n±] j) := ∑

L
β=1 x±

β
ϕβ solves(

B++M −−−M
−−−M B−+M

)(
xxx+

xxx−

)
=

(
[ fff+] j−1 +K 111
[ fff−] j−1 +K 111

)
, (48)

where xxx± = (x±1 , . . . ,x
±
L )
>, 111 = (1, . . . ,1)>, and [ fff±] j−1

l := 1
k

(
(Ih[1]− [n±] j−1),ϕl

)
h. We already proved

that B± are M-matrices and since M is a diagonal matrix with positive entries due to the mass lumping,
we deduce that the system matrix is also an M-matrix. The right-hand side remains positive, since K is an
M-matrix (this term even vanishes, since constant functions are in the kernel of K ) such that [n±]≤ 1.

The arguments in a)–c) now show that uuu j ∈UUUh solves Scheme 4.1. By choosing e± = 1 in (29d), we observe
that the mass of the iterates [n±] j is conserved.

We combine the assumptions of Lemma 4.3 and Lemma 4.4 to:

(A3) An admissible step size (k,h) satisfies k ≤Chd/2.

Remark 4.2. The proof of the assertion c2) of the previous Lemma follows a different argument than the asso-
ciated proof in [34]. By considering the system matrix (48) and showing its M-matrix property, we can eliminate
the previous k and h coupling for this part of the proof. The remaining step-size assumption (A3) is only needed
to guarantee the existence of solutions. It can probably be improved and was not observed in the numerical
computations.
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4.2 The structure-inheriting Scheme 4.1

Scheme 4.1 was designed to inherit key properties of system (1); while such a scheme is of independent
relevancy, these properties will be crucial in later sections to construct a dissipative solution of (1) via (proper
sequences of) solutions of Scheme 4.1 in the limit of vanishing discretization parameters. Below, we use the
discrete energy

E(vvv j,ddd j,Φ j) :=
1
2
‖vvv j‖2

L2 +
1
2
‖∇ddd j‖2

L2 +
1
2

(
ε(ddd j)∇Φ

j,∇Φ
j
)
.

Theorem 4.5. Let Ω ⊂ Rd for d = 2,3 be a bounded convex Lipschitz domain. We additionally assume that
there exists a d̄dd1 ∈W2,2(Ω) such that tr(d̄dd1) = ddd1. Suppose (A1), (A2), and (A3). Assume k ≤ k0(Ω) and

h ≤ h0(Ω) to be sufficiently small. For every 1 ≤ j ≤ J, there exists a solution
{
(vvv j,ddd

j
,qqq j, [n±] j,Φ j); 1 ≤

j ≤ J
}
⊂UUUh of Scheme 4.1, with the following properties:

i) conservation of properties: For all 1≤ j ≤ J,

0≤ [n±] j ≤ 1 , and |ddd j(zzz)|= 1 ∀zzz ∈Nh .

ii) discrete energy equality: For all 1≤ j ≤ J,

E
(
vvv j,ddd j,Φ j)+ hα

2
‖∇vvv j‖2

L2 +
hβ

2
‖∆hddd j‖2

h

+
k2

2

j

∑
`=1

[
‖dtvvv`‖2

L2 +hα‖dt∇vvv`‖2
L2 +

(
ε(ddd`−1)∇dtΦ

`,∇dtΦ
`
)
+ εa‖∇Φ

` ·dtddd`‖2
L2

]
+ k

j

∑
`=1

[
ν‖∇vvv`‖2

L2 +‖ddd`−1/2×qqq`‖2
h +
(
([n+]`+[n−]`)∇Φ

`,ε(ddd`)∇Φ
`
)

+‖[n+]`− [n−]`‖2
h

]
= E

(
vvv0,ddd0,Φ0)+ hα

2
‖∇vvv0‖2

L2 +
hβ

2
‖∆hddd0‖2

h , (49)

iii) bounds for discrete charges: For all 1≤ j ≤ J,

‖[n+] j‖2
h +‖[n−] j‖2

h + k2
j

∑
`=1

[
‖dt [n+]`‖2

i +‖dt [n−]`‖2
h

]
+ k

j

∑
`=1

[(
ε(ddd`)∇[n+]`,∇[n+]`

)
+
(

ε(ddd`)∇[n−]`,∇[n−]`
)]

≤ ‖[n+]0‖2
h +‖[n−]0‖2

h +C

(
E(vvv0,ddd0,Φ0)+

hα

2
‖∇vvv0‖2

L2 +
hβ

2
‖∆hddd0‖2

h

)
.

iv) bounds for temporal variation: For all 1≤ j ≤ J,

k
J

∑
j=1

[
‖dt [n±] j‖2

(H1)∗+‖dtddd j‖2
L4/3

]
+‖qqq j‖

(W2,2∩W1,2
0 )∗

≤C
[
E
(
vvv0,ddd0,Φ0)+ hα

2
‖∇vvv0‖2

L2 +
hβ

2
‖∆hddd j‖2

h +1
]2
. (50)

Proof. Assertion i) follows from Lemma 4.4 and Assertion ii) from (35), Assertion i), and summation. We start
from (36) with φγ(|[n±] j|) = 1 and observe by (4.5) i) and the coercivity of ε(ddd j) that∣∣∣([n±] j

ε(ddd j)∇Φ
j,∇[n±] j

)∣∣∣≤ 1
4

(
ε(ddd j)∇[n±] j,∇[n±] j

)
+
(

ε(ddd j)∇Φ
j,∇Φ

j
)
,
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(
vvv j[n±] j,∇[n±] j

)
≤ ‖vvv‖L2‖[n±] j‖L∞‖∇[n±] j‖L2 ≤ 1

4

(
ε(ddd j)∇[n±] j,∇[n±] j

)
+‖vvv j‖2

L2 ,

where the second terms on the right-hand sides are bounded due to (49) and the first ones may be absorbed
into the left hand side of (36). Note that ε(ddd j) is a positive definite matrix. Summing up implies the assertion of
iii).

To verify assertion iv), we use approximation properties of the L2-projection PL2 : By the H1-stability of PL2 ,
see [11], and (3), and with the help of (27d) and the second assertion in i), we find

‖dt [n±] j‖(H1)∗ ≤ sup
ϕ∈H1

∣∣∣∣∣
(
dt [n±] j,PL2ϕ

)
h

‖ϕ‖H1

∣∣∣∣∣+ sup
ϕ∈H1

∣∣∣∣∣
(
dt [n±] j,PL2ϕ

)
−
(
dt [n±] j,PL2ϕ

)
h

‖ϕ‖H1

∣∣∣∣∣
≤C

(
‖vvv j‖L2 +‖∇[n±] j‖L2 +‖∇Φ

j‖L2 +h‖dt [n±] j‖L2

)
.

Note that due to (27d) and an inverse inequality

‖dt [n±] j‖2
h ≤

(
‖∇[n±] j‖L2 +(‖∇Φ

j‖L2 +‖vvv j‖L2)‖[n±] j‖L∞

)
‖∇dt [n±] j‖L2

≤
(
‖∇[n±] j‖L2 +‖∇Φ

j‖L2 +‖vvv j‖L2

)
h−1‖dt [n±] j‖L2 .

Applying the discrete integral operator implies the desired bound.

Using again the stability of the L2-projection, and (3), imply

‖dtddd j‖L4/3 = sup
ϕ∈L4

∣∣∣∣∣
(
dtddd j,PL2(ϕ)

)
h

‖ϕ‖L4

∣∣∣∣∣+ sup
ϕ∈L4

∣∣∣∣∣
(
dtddd j,PL2(ϕ)

)
h−
(
dtddd j,PL2(ϕ)

)
‖ϕ‖L4

∣∣∣∣∣
≤ sup

ϕ∈L4
‖ϕ‖L3

(
‖ddd j−1/2‖2

L∞‖vvv j‖L6‖PL2(∇ddd j−1)‖L2

+‖ddd j−1/2‖L∞‖ddd j−1/2×qqq j‖L2

)
+Chd/4‖dtddd j‖L2 .

(51)

The last term on the right-hand side of the previous inequality stems from the error due to the mass lumping,
it can be seen by a proof similar to the one in [9]. From (3), we find by Lemma 2.2, and the stability of the
projection that

‖(Ih− I)
[
dtddd jPL2(ϕ)

]
‖L1 ≤Ch2

∑
T∈Th

‖1‖L4(T )‖∇dtddd j‖L2(T )‖∇PL2(ϕ)‖L4(T )

≤Chd/4‖dtddd j‖L2‖ϕ‖L4 .

(52a)

Similar, we find for the L2-norm of the time derivative

‖dtddd j‖2
h = −

(
ddd j−1/2× (PL2 [∇ddd j−1]vvv j),ddd j−1/2×dtddd j

)
h
−
(

ddd j−1/2×qqq j,ddd j−1/2×dtddd j
)

h

≤ ‖ddd j−1/2‖2
L∞(Ω)‖vvv j‖L6(Ω)‖PL2 [∇ddd j−1]‖L2(Ω)‖dtddd j‖L3(Ω)

+‖ddd j−1/2‖L∞(Ω)‖ddd j−1/2×qqq j‖L2(Ω)‖dtddd j‖L3(Ω) ,

(52b)

and by the Gagliardo–Nirenberg inequality, the inverse inequality, and (3),

‖dtddd j‖L3(Ω) ≤C‖dtddd j‖(6−d)/6
L2 ‖∇dtddd j‖d/6

L2 ≤Ch−d/6‖dtddd j‖h . (52c)

Such that the last term on the right-hand side of (51) is bounded independently of h and even vanishes for
h→0. Considering the L2-norm in time, we find

k
J

∑
j=1
‖dtddd j‖2

L4/3 ≤ c
(

max
j∈{1,...,J}

‖ddd j−1/2‖4
L∞k

J

∑
j=1
‖vvv j‖2

L6 max
j∈{1,...,J}

‖∇dddJ‖2
L2
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+ max
j∈{1,...,J}

‖ddd j−1/2‖2
L∞k

J

∑
j=1
‖ddd j−1/2×qqq j‖2

L2

)
.

Due to (27b), we may estimate qqq j via

‖qqq j‖
(W2,2∩W1,2

0 )∗ = sup
ϕ∈W 2,2∩W1,2

0

∣∣∣∣∣(qqq j,PL2(ϕ))h

‖ϕ‖W2,2∩W1,2
0

∣∣∣∣∣+ sup
ϕ∈W2,2∩W1,2

0

∣∣∣∣∣(qqq j,PL2(ϕ))h− (qqq j,PL2(ϕ))

‖ϕ‖W2,2∩W1,2
0

∣∣∣∣∣
≤ sup

ϕ∈W2,2∩W1,2
0

‖ϕ‖H1‖∇ddd j−1/2‖L2 + sup
ϕ∈W2,2∩W1,2

0

‖ϕ‖L∞‖∇Φ
j‖2

L2‖ddd j−1/2‖L∞

+C sup
ϕ∈W2,2∩W1,2

0

hβ‖∆hddd j−1/2‖L2‖ϕ‖W2,2 +Ch1+d/3‖qqq j‖L2

(53a)

for all ϕ ∈W2,2∩W1,2
0 , where the error due to mass lumping is estimated similar to (52a), by

‖(Ih− I)
[
qqq jPL2(ϕ)

]
‖L1 ≤Ch2

∑
T∈Th

‖1‖L3(T )‖∇qqq j‖L2(T )‖∇PL2(ϕ)‖L6(T )

≤Ch1+d/3‖qqq j‖L2‖ϕ‖W1,6 .

(53b)

From testing (27b) by qqq j and Lemma 2.2, we find

‖qqq j‖2
h ≤ ‖∇ddd j−1/2‖L2‖∇qqq j‖L2 +‖∇Φ

j‖2
L2‖ddd j−1/2‖L∞‖qqq j‖L∞ +hβ‖∆hddd j−1/2‖L2‖∆hqqq j‖L2

≤C(h−1 +h−d/2 +hβ/2−2)‖qqq j‖L2 ,

which implies the asserted bound on qqq j, (note that we have to choose β > 2/3 for d = 2)

‖qqq j‖
(W2,2∩W1,2

0 )∗ ≤C .

Remark 4.3. Note that in the continuous case the term due to the mass lumping in (51) vanishes and we can
even deduce the bound on the time-derivative asserted in (14).

4.3 Approximate relative energy inequality

In [21], an approximate relative energy inequality has been derived for a (semi-)discretization of the Ericksen-
Leslie system (1a)–(1d). The approximate relative energy is a new tool for the construction of a dissipative
solution, which here is employed for the space-time discretization (27): instead of showing the convergence of its
approximate solutions directly, the result in Proposition 4.6 essentially bounds the distance between approximate
solutions and a related regular test function in terms of how well the chosen test function solves problem (1).
The approximate relative energy inequality is essential in Section 4.4 to construct a dissipative solution for (27)
via proper convergent sequences of functions that are generated from the discrete system (27). In the proof of
the approximate relative energy inequality, several difficulties arise due to the different discretization steps. To
focus on the ideas of the proof of the relative energy inequality, the reader is rather referred to the proof in the
continuous case (see Proposition 3.4).

The next result is a discrete relative energy inequality for a solution of Scheme 4.1, which employs modifications
K1, K2 and Kd , and Wd of related ones used in (22): the different regularity measures K1, K2 and Kd are
given by

K1(ũuu j,ũuu j−1) :=C
(
‖∇d̃dd

j−1‖4
L3 +‖q̃qq j‖4

L3 +‖ṽvv j‖4
L∞ +‖∇Φ̃

j‖8
L∞ +‖∇d̃dd

j‖4
L3 +‖∇2

Φ̃
j‖2

L3

+‖[∇ñ+] j‖L3 +‖[∇ñ−] j‖L3 +‖∂t∇Φ̃
j‖L3 +‖[ñ+] j +[ñ−] j‖2

L∞

DOI 10.20347/WIAS.PREPRINT.2717 Berlin 2020
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+‖dtd̃dd
j‖4/3

L∞ +
∥∥d̃dd

j−1/2× ((ṽvv j ·∇)d̃dd
j−1

+ q̃qq j)
∥∥
L∞

(
‖∇Φ̃

j‖2
L∞(0,T ;L3)+1

)
+
∥∥d̃dd

j−1/2×
(
(ṽvv j ·∇

)
d̃dd

j−1
+ q̃qq j)

∥∥
W1,3 +1

)
K2(ũuu j,ũuu j−1) :=C

(
‖∇d̃dd

j−1‖4
L3 +‖q̃qq j‖4

L3 +‖ṽvv j‖4
L∞ +‖∂t∇Φ̃

j‖L3 +‖∇Φ̃
j‖8

L∞

+
∥∥d̃dd

j−1/2× ((ṽvv j ·∇)d̃dd
j−1

+ q̃qq j)
∥∥
L∞

(
‖∇Φ̃

j‖2
L∞(0,T ;L3)+1

)
+
∥∥d̃dd

j−1/2× ((ṽvv j ·∇)d̃dd
j−1

+ q̃qq j)
∥∥
W1,3 +1

)
Kd(ũuu j) := kεa‖dtd̃dd

j‖2
L∞ .

Note that K1(ũuu|ũuu)+K2(ũuu,ũuu) = K (ũuu) and that Kd(ũuu)→0 as k→0. Additionally, we define the discrete
dissipation distance by

Wd(uuu j,ũuu j) = ν‖∇(vvv j− ṽvv j)‖2 +‖ddd j−1/2×qqq j− d̃dd
j−1/2× q̃qq j‖2

h

+
∫

Ω

([n+] j +[n−] j)|∇Φ
j−∇Φ̃

j|2
ε(ddd j)

dxxx+
∥∥([n+] j− [n−] j)− ([ñ+] j− [ñ−] j)

∥∥2
h .

The relative energy R is given by (15).Moreover, we use the abbreviative notation ãaa j = ãaa( j ·k) for a continuous
function ãaa ∈ C (Ω× (0,T )), where 0≤ j ≤ J with J = b(T/k)c.

Proposition 4.6 (Relative energy inequality). Let uuu j = (vvv j,ddd
j
,qqq j, [n±] j,Φ j) ∈UUUh be the solution of the fully

discrete system (27) according to Theorem 4.5. Let ũuu = (ṽvv,d̃dd,Φ̃, ñ±) ∈ Y be a smooth test function. Then the
discrete relative energy inequality

dtR(uuu j|ũuu j)+
hα

2
dt‖∇vvv j‖2

L2 +
hβ

2
‖∆hddd j‖2

h +dtr1
k(h)+

1
2
Wd(uuu j,ũuu j)

≤
(
K1(ũuu j,ũuu j−1)+Kd(ũuu j)

)(
R(uuu j|ũuu j)+

hβ

2
‖∆hddd j‖2

h

)
+K2(ũuu j,ũuu j−1)R(uuu j−1|ũuu j−1)

+
1
2

[
‖[n+] j

h− [ñ+] j‖2
L2 +‖[n−] j

h− [ñ−] j‖2
L2

]
+

〈
A j

d (ũuu
j),

 ṽvv j−vvv j

q̃qq j−qqq j +∇Φ̃ j
(

∇Φ̃ j · (d̃dd j−ddd j)
)

Φ̃ j−Φ
j
h

〉+ r2
k(h) .

(54)

holds for any 1 ≤ j ≤ J ,where r1
k(h)→0 and k ∑

J
j=1 |r2

k(h)|→0 as h→0. Here, we defined the discrete

solution operator A j
d by〈

A j
d (ũuu

j),

 aaa
ccc

e±

〉

:=
(
dtṽvv j,aaa

)
+
(
∇ṽvv j,∇aaa

)
+
(
(ṽvv j−1 ·∇)ṽvv j,aaa

)
+

1
2
(
∇·ṽvv j−1ṽvv j,aaa

)
+
(
([ñ+] j− [ñ−] j)∇Φ̃

j,aaa
)
+
(
(∇d̃dd

j−1
)>
[
d̃dd

j−1/2× (d̃dd
j−1/2× q̃qq j)

]
,aaa
)

h

+
(

dtd̃dd
j
,ccc
)
+
(

d̃dd
j−1/2× ((ṽvv j ·∇)d̃dd

j−1
),d̃dd

j−1/2×ccc
)

h
+
(

d̃dd
j−1/2× q̃qq j,d̃dd

j−1/2×ccc
)

h

+
(
dt [ñ±] j,e±

)
h +
(

ε(d̃dd
j
)∇[ñ±] j,∇e±

)
±
(
[ñ±] j

ε(d̃dd
j
)∇Φ̃

j,∇e±
)
−
(
ṽvv j[ñ±] j,∇e±

)
,

(55)
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where q̃qq j =−∆d̃dd
j−1/2

+ εa∇Φ̃ j∇Φ̃ j · d̃dd j−1
and Φ̃ is given as the solution of (ε(d̃dd)∇Φ̃,∇g) = (ñ+− ñ−,g)h

for all g ∈ C ∞
c (Ω× (0,T )), as well as |d̃dd|= 1 a.e. in Ω× (0,T ).

Proof. We start by decomposing the relative energy into the two energy parts and the mixed parts:

R(uuu j|ũuu) = 1
2

(
‖vvv j‖2

L2 +‖∇ddd j‖2
L2 +

∫
Ω

|∇Φ
j|2

ε(ddd j)
dxxx+‖ṽvv j‖2

L2 +‖∇d̃dd
j‖2

L2 +
∫

Ω

|∇Φ̃
j|2

ε(d̃dd
j
)
dxxx
)

−
(
∇ddd j,∇d̃dd

j)− (vvv j,ṽvv j)−
(

∇Φ
j,ε(ddd j)∇Φ̃

j
)
+

1
2

(
∇Φ̃

j,
(

ε(ddd j)− ε(d̃dd
j
)
)

∇Φ̃
j
)
.

(56)

Similarly, we obtain for the relative dissipation

Wd(uuu j|ũuu j) = Wd(uuu j|000)+Wd(000|ũuu j)−2ν
(
∇vvv j,∇ṽvv j)−2

(
ddd j×qqq j,d̃dd

j× q̃qq j
)

h

−2
(
[n+] j− [n−] j, [ñ+] j− [ñ−] j

)
h
−2

∫
Ω

(
[n+] j− [n−] j)

∇Φ
j · ε(ddd j)∇Φ̃

j dxxx .

The energy increment equality for the solution uuu ∈ X is given by (compare to (35))

dt

(
E(vvv j,ddd j,Φ j)+

hα

2
‖∇vvv j‖2

L2 +
hβ

2
‖∆hddd j‖2

h

)

+
k
2

[
‖dtvvv j‖2

L2 +hα‖dt∇vvv j‖2
L2 +

(
ε(ddd j−1)∇dtΦ

j,∇dtΦ
j
)
+ εa‖∇Φ

j ·dtddd j‖2
L2

]
+
(

ν‖∇vvv j‖2
L2 +‖ddd j−1/2×qqq j‖2

h +
(
([n+] j +[n−] j)∇Φ

j,ε(ddd j)∇Φ
j
)
+‖[n+] j− [n−] j‖2

h

)
= 0

where E is defined in Theorem 4.5. For the test function ũ ∈ Y, we observe that

dtE(ṽvv j,d̃dd
j
,Φ̃ j)+

k
2

(
‖dtṽvv j‖2

L2 +
(

ε(d̃dd
j−1

)∇dtΦ̃
j,∇dtΦ̃

j
)
+ εa‖∇Φ̃

j ·dtd̃dd
j‖2

L2

)
+
(

ν‖∇ṽvv j‖2
L2 +‖d̃dd j−1/2× q̃qq j‖2

h +
(
([ñ+] j +[ñ−] j)∇Φ̃

j,ε(d̃dd
j
)∇Φ̃

)
+‖[ñ+] j− [ñ−] j‖2

h

)
=

〈
Ad(ũuu j),

 ṽvv j

q̃qq j

Φ̃ j

〉

For the mixed terms in the second line of (56), we need several discrete product rules:

(vvv j,ṽvv j)− (vvv j−1,ṽvv j−1) = k
[
(vvv j,dtṽvv j)+(dtvvv j,ṽvv j)

]
− k2(dtvvv j,dtṽvv j) , (57)(

∇ddd j,∇d̃dd
j
)
−
(

∇ddd j−1,∇d̃dd
j−1
)
=
[(

∇dtddd j,∇d̃dd
j−1/2

)
+
(

∇ddd j−1/2,∇dtd̃dd
j
)]

, (58)

Indeed by a simple calculation, we deduce the first identity via

(vvv j,ṽvv j)− (vvv j−1,ṽvv j−1) = (vvv j−vvv j−1,ṽvv j)+(vvv j,ṽvv j− ṽvv j−1)− (vvv j−vvv j−1,ṽvv j− ṽvv j−1)

and the second identity follows accordingly.

Testing (27a) by Ih[ṽvv] and mimicking the same calculations for the test function tested by vvvh and using the
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discrete integration by parts formula (57) implies

−(vvv j,ṽvv j)+(vvv j−1,ṽvv j−1)

≤
(
(vvv j−1

h ·∇)vvv j,Ih[ṽvv j]
)
+

1
2

(
(∇·vvv j−1

h )vvv j,Ih[ṽvv j]
)
+
(
(ṽvv j−1 ·∇)ṽvv j,vvv j

)
−
(

ddd j−1/2× (PL2 [∇ddd j−1]Ih[ṽvv j]),ddd j−1/2×qqq j
)

h

−
(

d̃dd
j−1/2× ((vvv j ·∇)d̃dd

j−1
),d̃dd

j−1/2× (q̃qq j)
)

h

+
(
([n+] j− [n−] j)∇Φ

j,Ih[ṽvv j]
)
+2ν(∇vvv j,∇Ihṽvv j)

+
(
([ñ+] j− [ñ−] j)∇Φ̃

j,vvv j
)
−
〈

A j
d (ũuu),

vvv j

000
0

〉

+ k(dtvvv j,dtṽvv j)+hα(dt∇vvv j,∇Ihṽvv j)+
(

dtvvv j,(Ih− I)ṽvv j
)
.

(59)

Testing (27c) by Ih[q̃qq j], adding (27b) tested by Ih[dtd̃dd
j
] and mimicking the same calculations for the test

function tested by qqq j implies

−
(

∇ddd j,∇d̃dd
j
)
+
(

∇ddd j−1,∇d̃dd
j−1
)

=
(

ddd j−1/2× (PL2 [ddd j−1]vvv j),ddd j−1/2×Ih[q̃qq]
)

h
+
(

d̃dd
j× ((ṽvv j ·∇)d̃dd

j−1
),d̃dd

j×qqq j
)

h

+
(

ddd j−1/2×qqq j,ddd j−1/2×Ih[q̃qq j]
)

h
+
(

d̃dd
j−1/2× q̃qq j,d̃dd

j−1/2×qqq j
)

h

− εa

((
dtddd j

∇Φ̃
j,∇Φ̃

j · d̃dd j−1
)
+
(

dtIh[d̃dd
j
] ·∇Φ

j,∇Φ
j ·ddd j−1

))
−
〈

A j
d (ũuu),

000
qqq j

0

〉

+hβ

(
∆hddd j−1/2,∆hIhdtddd j

)
+
∫

Ω

(Ih− I)
(
dtddd j · q̃qq j)dxxx (60)

For the remaining terms in the relative energy, we use after some manipulations equation (1e)

−
(
∇Φ

j,ε(ddd j)∇Φ̃
j)= − ([n+] j− [n+] j,Φ̃ j)

h−
(

ε(ddd j)∇Φ
j,∇(I−Ih)Φ̃

j
)
.

We observe another integration by parts rule:

dt

(
[n+] j− [n−] j,Ih[Φ̃]

)
h
=
(

dt
(
[n+] j− [n−] j) ,Ih[Φ̃

j]
)

h
+
(
[n+] j− [n−] j,Ih[dtΦ̃

j]
)

h

−k
(

dt
(
[n+] j− [n−] j) ,dtIh[Φ̃

j]
)

h

=
(

dt
(
[n+] j− [n−] j) ,Ih[Φ̃]

)
h
+
(
[n+] j− [n−] j,Ih[dtΦ̃

j]
)

h

−k
(

dt
(
ε(ddd j)∇Φ

j) ,∇dtIh[Φ̃
j]
)
.

Testing (27e) by Ih[dtΦ̃
j] and add (1f) tested by Ih[Φ̃

j] and mimicking the same for ũuu, while replacing

dt([ñ+] j− [ñ−] j)Φ j by dt(ε(d̃dd
j
)∇Φ̃ j) ·∇Φ j, we find

−dt

(
∇Φ

j,ε(ddd j)∇Φ̃
j
)
=−

(
vvv j([n+] j− [n−] j),∇Ih[Φ̃

j]
)
−
(

ṽvv j([ñ+] j− [ñ−] j),∇Φ
j
)

−
(
(ε(ddd j)∇Φ

j,∇Ih[dtΦ̃
j]
)
+
(

dt(ε(d̃dd
j
)∇Φ̃

j),∇Φ
j
)

+
(

ε(ddd j)∇
(
[n+] j− [n−] j) ,∇Ih[Φ̃

j]
)
+
(

ε(d̃dd
j
)∇([ñ+] j− [ñ−] j),∇Φ

j
)
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+
(

ε(ddd j)∇Φ
j,
(
[n+] j +[n−] j)

∇Ih[Φ̃
j]
)
+
(

ε(d̃dd
j
)∇Φ̃

j,([ñ+] j +[ñ−] j)∇Φ
j
)

−
〈

A j
d (ũuu

j),

 000
000

Φ j

〉+ k
(

dt
(
ε(ddd j)∇Φ

j) ,∇dtIh[Φ̃
j]
)
−dt

(
ε(ddd j)∇Φ

j,∇(I−Ih)Φ̃
j
)
.

For the different terms on the right-hand side, we infer(
ε(ddd j)∇[n±] j,∇Ih[Φ̃

j]
)
+
(

ε(d̃dd
j
)∇[ñ±] j,∇Φ

j
)

=
(

ε(d̃dd
j
)∇[n±] j,∇Φ̃

j
)
+
(
ε(ddd j)∇Ih[ñ±] j,∇Φ

j)
+
(
ε(ddd j)∇Ih[Φ̃

j]− ε(ddd j)∇Φ̃
j,∇[n±] j)+(ε(d̃dd

j
)∇[ñ±] j− ε(ddd j)∇Ih[ñ±] j,∇Φ

j
)

=
(
[ñ+] j− [ñ−] j, [n±] j

)
h
+
(
[n+] j− [n−] j,Ih[ñ±] j

)
h

+
(
(ε(ddd j)− ε(d̃dd

j
))
(
∇[n±] j−∇[ñ±] j) ,∇Φ̃

j
)
+
(
(ε(d̃dd

j
)− ε(ddd j))∇[ñ±] j,∇Φ

j−∇Φ̃
j
)

+
(

ε(ddd j)∇(Ih[Φ̃
j]− Φ̃

j),∇[n±] j
)
−
(

ε(ddd j)∇(Ih[ñ±] j− [ñ±] j),∇Φ
j
)

and (
ε(ddd j)∇Φ

j,([n+] j +[n−] j)∇Ih[Φ̃
j]
)
+
(

ε(d̃dd
j
)∇Φ̃

j,([ñ+] j +[ñ−] j)∇Φ
j
)

= 2
(

ε(ddd j)∇Φ
j,([n+] j +[n−] j)∇Φ̃

j
)

+
(

ε(d̃dd
j
)([ñ+] j +[ñ−] j)− ε(ddd j)([n+] j +[n−] j),∇Φ̃

j⊗∇Φ
j
)

+
(

ε(ddd j)∇Φ
j,([n+] j +[n−] j)∇(Ih[Φ̃

j]− Φ̃
j)
)

as well as

−
(

ε(ddd j)∇Φ
j,∇Ih[dtΦ̃

j]
)
+
(

dt(ε(d̃dd
j
)∇Φ̃

j),∇Φ
j
)

= −
(
(ε(ddd j)− ε(d̃dd

j
))∇Φ

j,∇dtΦ̃
j
)

+
(

dtε(d̃dd
j
)∇Φ̃

j−1,∇Φ
j
)
−
(

ε(ddd j)∇Φ
j,∇dt(Ih− I)Φ̃ j

)
.

From calculating the discrete derivative of
(

∇Φ̃ j,(ε(d̃dd
j
)− ε(ddd j))∇Φ̃ j

)
, we find

1
2

dt

(
ε(ddd j)− ε(d̃dd

j
),∇Φ̃

j⊗∇Φ̃
j
)
=

1
2

(
dt

(
ε(ddd j)− ε(d̃dd

j
)
)
,∇Φ̃

j⊗∇Φ̃
j
)

+
1
2

(
ε(ddd j)− ε(d̃dd

j
),dt

(
∇Φ̃

j⊗∇Φ̃
j))− k

2

(
dt

(
ε(ddd j)− ε(d̃dd

j
)
)
,dt
(
∇Φ̃

j⊗∇Φ̃
j))

= εa

(
ddd j⊗dtddd j− d̃dd

j⊗dtd̃dd
j
,∇Φ̃

j⊗∇Φ̃
j
)
+
(

ε(ddd j)− ε(d̃dd
j
),∇Φ̃

j⊗dt∇Φ̃
j
)

− k
2

εa

(
dtddd j⊗dtddd j−dtd̃dd

j⊗dtd̃dd
j
,∇Φ̃

j⊗∇Φ̃
j
)

− k
2

((
ε(ddd j−1)− ε(d̃dd

j−1
)
)
,dt∇Φ̃

j⊗dt∇Φ̃
j
)
− k
(

dt

(
ε(ddd j)− ε(d̃dd

j
)
)
,dt∇Φ̃

j⊗∇Φ̃
j
)
.

We find for the terms incorporating εa that

1
2

dt

(
ε(ddd j)− ε(d̃dd

j
),∇Φ̃

j⊗∇Φ̃
j
)
+ k
(

dt(ε(ddd j)∇Φ
j),∇dtΦ̃

j
)
− εa

(
dtddd j

∇Φ̃
j,∇Φ̃

jd̃dd
j−1
)
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−
(
(ε(ddd j)− ε(d̃dd

j
))∇Φ

j,∇dtΦ̃
j
)
− εa

(
dtd̃dd

j
∇Φ

j,∇Φ
j ·ddd j−1

)
+
(

dtε(d̃dd
j
)∇Φ̃

j−1,∇Φ
j
)

= εa

(
ddd j⊗dtddd j− d̃dd

j⊗dtd̃dd
j
,∇Φ̃

j⊗∇Φ̃
j
)
+
(

ε(ddd j)− ε(d̃dd
j
),∇Φ̃

j⊗dt∇Φ̃
j
)

−
(
(ε(ddd j)− ε(d̃dd

j
))∇Φ

j,∇dtΦ̃
j
)
− εa

(
dtddd j

∇Φ̃
j,∇Φ̃

jd̃dd
j
)
− εa

(
dtd̃dd

j
∇Φ

j,∇Φ
j ·ddd j

)
+ εa

(
dtd̃dd

j
∇Φ̃

j,∇Φ
jd̃dd

j
)
+ εa

(
dtd̃dd

j ·∇Φ
j,d̃dd

j ·∇Φ̃
j
)

− εak
(

dtd̃dd
j ·∇Φ

j,dtd̃dd
j ·∇Φ̃

j
)
− k
(

dtε(d̃dd
j
)dt∇Φ̃

j,∇Φ
j
)
+ k
(
dt(ε(ddd j)∇Φ

j),∇dtΦ̃
j)

+ εak
(

dtddd j
∇Φ̃

j,∇Φ̃
jdtd̃dd

j
)
+ εak

(
dtd̃dd

j
∇Φ

j,∇Φ
j ·dtddd j

)
− εa

k
2

(
dtddd j⊗dtddd j−dtd̃dd

j⊗dtd̃dd
j
,∇Φ̃

j⊗∇Φ̃
j
)
− k

2

((
ε(ddd j−1)− ε(d̃dd

j−1
)
)
,dt∇Φ̃

j⊗dt∇Φ̃
j
)

− k
(

dt

(
ε(ddd j)− ε(d̃dd

j
)
)
,dt∇Φ̃

j⊗∇Φ̃
j
)

= εa

(
dtddd j−dtd̃dd

j
,∇Φ̃

j
(

∇Φ̃
j · (ddd j− d̃dd

j
)
))

+ εa

(
dtd̃dd

j · (∇Φ
j−∇Φ̃

j),∇Φ̃
jd̃dd

j−∇Φ
jddd j
)

+ εa

(
dtd̃dd

j ·∇Φ̃
j,(ddd j− d̃dd

j
) ·∇(Φ̃ j−Φ

j)
)
+
((

ε(ddd j−1)− ε(d̃dd
j−1

)
)
(∇Φ

j−∇Φ̃
j),dt∇Φ̃

j
)

− k
2

((
ε(ddd j−1)− ε(d̃dd

j−1
)
)
,dt∇Φ̃

j⊗dt∇Φ̃
j
)
+ k
(

ε(ddd j−1)dt∇Φ
j,dt∇Φ̃

j
)

+ εa
k
2
‖dtddd j ·∇Φ

j‖2
L2 + εa

k
2
‖dtd̃dd

j ·∇Φ̃
j‖2

L2− εa
k
2
‖(dtddd j−dtd̃dd

j
) ·∇Φ

j‖2
L2

− εa
k
2
‖(dtddd j−dtd̃dd

j
) ·∇Φ̃

j‖2
L2 + εa

k
2
‖dtd̃dd

j
(∇Φ̃

j−∇Φ
j)‖2

L2 .

The first two lines on the right-hand side are similar to the contributions in the continuous case. The terms in the
third and fourth line on the right-hand side contribute to the positive terms on the left-hand side of the following
inequality. The term in the last line has to be estimated later on.

Putting the pieces together, we observe the inequality

dtR(uuu j|ũuu j)+
hα

2
dt‖∇vvv j‖2

L2 +
hβ

2
‖∆hddd j‖2

h +
k
2
[
‖dtvvv j−dtṽvv j‖2

L2 +hα‖dt∇vvv j‖2
L2

]
+

k
2

[(
ε(d̃dd

j−1
)∇dt(Φ

j− Φ̃
j),∇dt(Φ

j− Φ̃
j)
)
)+ εa‖(dtddd j−dtd̃dd

j
) ·∇Φ

j‖2
L2

+ εa‖(dtddd j−dtd̃dd
j
) ·∇Φ̃

j‖2
L2

]
+

1
2
W (uuu j,ũuu j)

≤
(
(vvv j−1

h ·∇)vvv j,ṽvv j
)
+

1
2

(
(∇·vvv j−1

h )vvv j,ṽvv j
)
+
(
(ṽvv j−1 ·∇)ṽvv j,vvv j

)
+

1
2

(
(∇·ṽvv j−1)ṽvv j,vvv j

)
−
(

ddd j−1/2× (PL2 [∇ddd j−1]ṽvv j),ddd j−1/2×qqq j
)

h
+
(

d̃dd
j−1/2× ((vvv j ·∇)d̃dd

j−1
),d̃dd

j−1/2× q̃qq js
)

h

+
(

ddd j−1/2× (PL2 [∇ddd j−1]vvv j),ddd j−1/2× q̃qq j
)

h
+
(

d̃dd
j× ((ṽvv j ·∇)d̃dd

j−1
),d̃dd

j×qqq j
)

h

+
(
([n+] j− [n−] j)∇Φ

j,ṽvv j
)
+
(
([ñ+] j− [ñ−] j)∇Φ̃

j,vvv j
)

−
(
(vvv j[n+−n−] j,∇Φ̃

j)
)
−
(

ṽvv j([ñ+] j− [ñ−] j),∇Φ
j
)

+
(

ddd j−1/2×qqq j,ddd j−1/2× q̃qq j
)

h
+
(

d̃dd
j−1/2× q̃qq j,d̃dd

j−1/2×qqq j
)

h
−2
(

d̃dd
j−1/2× q̃qq j,ddd j−1/2×qqq j

)
h

+
(
(ε(ddd j)− ε(d̃dd

j
))
(

∇[n+] j−∇[ñ+] j
)
,∇Φ̃

j
)
+
(
(ε(d̃dd

j
)− ε(ddd j))∇[ñ+] j,∇[Φ j− Φ̃

j]
)

−
((

(ε(ddd j)− ε(d̃dd
j
))
(
∇[n−] j−∇[ñ−] j) ,∇Φ̃

j
)
+
(
(ε(d̃dd

j
)− ε(ddd j))∇[ñ−] j,∇[Φ j− Φ̃

j]
))

+
(

ε(d̃dd
j
)([ñ+] j +[ñ−] j)− ε(ddd j)([n+] j +[n−] j),∇Φ̃

j⊗ (∇[Φ j− Φ̃
j])
)

+
(
(ε(ddd j−1)− ε(d̃dd

j−1
))(∇Φ

j−∇Φ̃
j),∇dtΦ̃

j
)
−
(
ε(ddd j)∇Φ

j,∇dt(Ih− I)Φ̃ j)
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+ k
(
dt(ε(ddd j)∇Φ

j),∇dt(I h− I)Φ̃ j)
+ εa

((
dtddd j−dtd̃dd

j
,∇Φ̃

j
∇Φ̃

j · (ddd j− d̃dd
j
)
)
+
(

dtd̃dd
j · (∇Φ

j−∇Φ̃
j),∇Φ̃

jd̃dd
j−∇Φ

jddd j
))

+ εa

(
dtd̃dd

j ·∇Φ̃
j,(ddd j− d̃dd

j
) ·∇(Φ̃ j−Φ

j)
)
+
∫

Ω

(Ih− I)
(
dtddd j · q̃qq j)dxxx

+

〈
A j

d (ũuu
j),

 ṽvv j−vvv j

q̃qq j−qqq j

Φ̃ j−Φ j

〉+

〈
A j

d (uuu
j),


(Ih− I)ṽvv j

(Ih− I)dtd̃dd
j

(Ih− I)q̃qq j

(Ih− I)Φ̃ j

(Ih− I)([ñ+] j− [ñ−] j−dtΦ̃
j)


〉

+ εa
k
2
‖dtd̃dd

j
(∇Φ̃

j−∇Φ
j)‖2−dt

(
ε(ddd j)∇Φ

j,∇(I−Ih)Φ̃
j
)

+hα
(
∇dtvvv j,∇ṽvv j)+hβ

(
∆hddd j−1/2,∆hdtd̃dd

j
)

=: I + Ih + Ik +

〈
A j

d (ũuu
j),

 ṽvv j−vvv j

q̃qq j−qqq j

Φ̃ j−Φ j

〉 ,

where we used the definition of the discrete solution operator for the continuous solution (55) and similarly the
definition of the discrete solution operator, which is given analogously to (55), but according to the discrete
system (27),i.e., 〈A j

d (uuu
j),(aaa,bbb,ccc,e±,g)T 〉 is given by the sum of the left-hand sides of the five equations

in (27).

Above, Ih abbreviates all terms that vanish for vanishing spacial discretization parameter h, i.e.,

Ih =

〈
A j

d (uuu
j),


(Ih− I)ṽvv j

(Ih− I)dtd̃dd
j

(Ih− I)q̃qq j

(Ih− I)Φ̃ j

(Ih− I)([ñ+] j− [ñ−] j−dtΦ̃
j)


〉
+ k
(

dt(ε(ddd j)∇Φ
j),∇dt(Ih− I)Φ̃ j

)

+
∫

Ω

(Ih− I)
(
dtddd j · q̃qq j)dxxx−dt

(
ε(ddd j)∇Φ

j,∇(I−Ih)Φ̃
j
)

+hα
(
∇dtvvv j,∇ṽvv j)+hβ

(
∆hddd j−1/2,∆hdtd̃dd

j
)

= dt
(
vvv j,(Ih− I)ṽvv j)+hα

(
∇dtvvv j,∇Ihṽvv j)+hβ

(
∆hddd j−1/2,∆hIhdtd̃dd

j
)
− (vvv j−1,(Ih− I)dtṽvv j)

+dt
(
ε(ddd j)∇Φ

j,∇(Ih− I)Φ̃
j)−((ε(ddd j−1)∇Φ

j−1),∇dt(Ih− I)Φ̃ j
)

+
(
(vvv j ·∇)vvv j,(Ih− I)ṽvv j)+ 1

2
(
(∇·vvv j−1)vvv j,(Ih− I)ṽvv j)+ (([n+] j− [n−] j)∇Φ

j,(Ih− I)ṽvv j)
+
(

∇ddd j−1/2,∇(Ih− I)dtd̃dd
j
)
)
− εa

(
∇Φ

j
(

ddd j−1 ·∇Φ
j
)
,(Ih− I)dtd̃dd

j
)

+
(

ε(ddd j)∇[n±] j,∇(Ih− I)Φ̃ j
)
±
(
[n±] j

ε(d̃dd
j
)∇Φ

j,∇(Ih− I)Φ̃ j
)

−
(

vvv j[n±] j,∇(Ih− I)Φ̃ j
)
±
(

ε(ddd j)∇Φ
j,∇[ñ±] j

)
.

Note that all terms including mass-lumping vanish immediately since

(aaa,Ihbbb)h = (aaa,bbb)h .

The term Ik abbreviates the term vanishing for vanishing temporal discretization parameter, i.e.,

Ik = εa
k
2
‖dtd̃dd

j
(∇Φ̃

j−∇Φ
j
h)‖2

L2 ≤ εak‖dtd̃dd
j‖2

L∞‖∇(Φ j− Φ̃
j)‖2

L2 ,
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L’. Baňas, R. Lasarzik, A. Prohl 36

and I incorporates the terms, which are similar to the continuous case, such that the associated manipulations
are also similar, i.e.,

I = ((vvv j−1
h ·∇)vvv j,ṽvv j)+

1
2
(
(∇·vvv j−1

h )vvv j,ṽvv j)+ ((ṽvv j−1 ·∇)ṽvv j,vvv j)+ 1
2
(
(∇·ṽvv j−1)ṽvv j,vvv j)

−
(

ddd j−1/2× (PL2 [∇ddd j−1]ṽvv j),ddd j−1/2×qqq j
)

h
+
(

d̃dd
j−1/2× ((vvv j ·∇)d̃dd

j−1
),d̃dd

j−1/2× q̃qq j
)

h

+
(

ddd j−1/2× (PL2 [∇ddd j−1]vvv j),ddd j−1/2× q̃qq j
)

h
+
(

d̃dd
j× ((ṽvv j ·∇)d̃dd

j−1
),d̃dd

j×qqq j
)

h

+
(
([n+] j− [n−] j)∇Φ

j,ṽvv j
)
+
(
([ñ+] j− [ñ−] j)∇Φ̃

j,vvv j
)

−
(
(vvv j[n+−n−] j,∇Φ̃

j)
)
−
(

ṽvv j([ñ+] j− [ñ−] j),∇Φ
j
)

+
(

ddd j−1/2×qqq j,ddd j−1/2× q̃qq j
)

h
+
(

d̃dd
j−1/2× q̃qq j,d̃dd

j−1/2×qqq j
)

h
−2
(

d̃dd
j−1/2× q̃qq j,ddd j−1/2×qqq j

)
h

+
(
(ε(ddd j)− ε(d̃dd

j
))
(
∇[n+] j−∇[ñ+] j) ,∇Φ̃

j
)
+
(
(ε(d̃dd

j
)− ε(ddd j))∇[ñ+] j,∇Φ

j−∇Φ̃
j
)

−
((

(ε(ddd j)− ε(d̃dd
j
))
(
∇[n−] j−∇[ñ−] j) ,∇Φ̃

j
)
+
(
(ε(d̃dd

j
)− ε(ddd j))∇[ñ−] j,∇Φ

j−∇Φ̃
j
))

+
(

ε(d̃dd
j
)([ñ+] j +[ñ−] j)− ε(ddd j)([n+] j +[n−] j),∇Φ̃

j⊗ (∇Φ
j−∇Φ̃

j)
)

+
(
(ε(ddd j−1)− ε(d̃dd

j−1
))(∇Φ

j−∇Φ̃
j),∇dtΦ̃

j
)

+ εa

((
dtddd j−dtd̃dd

j
,∇Φ̃

j
∇Φ̃

j · (ddd j− d̃dd
j
)
)
+
(

dtd̃dd
j · (∇Φ

j−∇Φ̃
j),∇Φ̃

jd̃dd
j−∇Φ

jddd j
))

+ εa

(
dtd̃dd

j ·∇Φ̃
j,(ddd j− d̃dd

j
) ·∇(Φ̃ j−Φ

j)
)

=
(
((vvv j−1− ṽvv j−1) ·∇)(vvv j− ṽvv j),ṽvv j)+ 1

2
(
(∇·vvv j−1)ṽvv j,vvv j− ṽvv j)

+
(

ddd j−1/2×
(
(PL2 [∇ddd j−1]−∇d̃dd

j−1
)(vvv j− ṽvv j)

)
,ddd j−1/2× q̃qq j

)
h

+
(
(ddd j−1/2− d̃dd

j−1/2
)×
(
((vvv j− ṽvv j) ·∇)d̃dd

j−1
)
,ddd j−1/2× q̃qq j

)
h

+
(

d̃dd
j−1/2×

(
(vvv j− ṽvv j) ·∇)d̃dd

j−1
)
,(ddd j−1/2− d̃dd

j−1/2
)× q̃qq j

)
h

+
(

ddd j−1/2×
(
(PL2 [∇ddd j−1]−∇d̃dd

j−1
)ṽvv j
)
,d̃dd

j−1/2× q̃qq j−ddd j−1/2×qqq j
)

h

+
(
(ddd j−1/2− d̃dd

j−1/2
)×
(
(ṽvv j ·∇)d̃dd

j−1
)
,d̃dd

j−1/2× q̃qq j−ddd j−1/2×qqq j
)

h

+
(

ddd j−1/2×
(
(P[∇ddd j−1]−∇d̃dd

j−1
)ṽvv j
)
,(ddd j−1/2− d̃dd

j−1/2
)× q̃qq

)
h

+
(
(ddd j−1/2− d̃dd

j−1/2
)×
(
(ṽvv j ·∇)d̃dd

j−1
)
,(ddd j−1/2− d̃dd

j−1/2
)× q̃qq j

)
h

+
(

ddd j−1/2×qqq j− d̃dd
j−1/2× q̃qq j,(ddd j−1/2− d̃dd

j−1/2
)× q̃qq j

)
h

+
(

∇Ih

(
(ddd j−1/2− d̃dd

j−1/2
)× (d̃dd

j−1/2× ((ṽvv j ·∇)d̃dd
j−1

+ q̃qq j))
)
,∇ddd j−1/2−∇d̃dd

j−1/2
)

+hβ

(
∆hIh

(
(ddd j−1/2− d̃dd

j−1/2
)× (d̃dd

j−1/2× ((ṽvv j ·∇)d̃dd
j−1

+ q̃qq j))
)
,∆hddd j−1/2

)
− εa

(
Ih

(
(ddd j−1/2− d̃dd

j−1/2
)× d̃dd

j−1/2× ((ṽvv j ·∇)d̃dd
j−1

+ q̃qq j)
)
,
(

∇Φ
j(∇Φ

j ·ddd j−1)−∇Φ̃
j(∇Φ̃

j · d̃dd j−1
)
))

+
(
([n+] j− [n−] j)− ([ñ+] j− [ñ−] j),ṽvv j · (∇Φ

j−∇Φ̃
j)
)

+
(
([n+] j− [n−] j)− ([ñ+] j− [ñ−] j),(ṽvv j−vvv j) ·∇Φ̃

j
)

−
(
([n+] j− [n−] j)− ([ñ+] j− [ñ−] j),∇·(ε(ddd j)− ε(d̃dd

j
)) ·∇Φ̃

j +(ε(ddd j)− ε(d̃dd
j
)) : ∇

2
Φ̃

j
)

+
(
(ε(d̃dd

j
)− ε(ddd j))

(
∇([ñ+] j− [ñ−] j)

)
,∇(Φ j− Φ̃

j)
)
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+
(
(ε(d̃dd

j
)− ε(ddd j))([ñ+] j− [ñ+] j)+ ε(ddd)

(
([n+] j− [n−] j)− ([ñ+] j− [ñ−] j)

)
,∇Φ̃

j⊗ (∇(Φ j− Φ̃
j))
)

+ εa

(
dtddd j−dtd̃dd

j
,∇Φ̃

j
∇Φ̃

j · (ddd j− d̃dd
j
)
)
+
(

dtd̃dd
j ·∇(Φ j− Φ̃

j),∇(Φ̃ jd̃dd
j−Φ

j))) jd
)

+
(
(ε(ddd j−1)− ε(d̃dd

j−1
))(∇Φ

j−∇Φ̃
j),∇dtΦ̃

j
)
+εa

(
dtd̃dd

j ·∇Φ̃
j,(ddd j− d̃dd

j
) ·∇(Φ̃ j−Φ

j)
)

−
(

∇d̃dd
j−1/2

,∇
(
(Ih− I)

(
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

)))))
+ εa

(
∇Φ̃

j(∇Φ̃
j · d̃dd j−1

),(Ih− I)
(
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

))))
+
∫

Ω

(I−Ih)
(
(ddd j−1/2− d̃dd

j−1/2
)×
(

d̃dd
j−1/2× ((ṽvv j ·∇)d̃dd

j−1
+ q̃qq j)

)
· q̃qq j
)

dxxx ,

where we employed (27b) and the definition of q̃qq j (see Proposition 4.6).

The term incorporating the difference in the discrete time derivative may be handled as follows: for any function
aaa : Ω× [0,T ]→Rd , we find

(
dtddd j−dtd̃dd

j
,aaa
)
=

〈
A j

d (uuu
j),

 000
(I−Ih)aaa

0

〉−〈A j
d (ũuu

j),

000
aaa
0

〉+
(
dtddd j,aaa

)
−
(
dtddd j,aaa

)
h

+
(

d̃dd
j−1/2× ((ṽvv j ·∇)d̃dd

j−1
),d̃dd

j−1/2×aaa
)

h
−
(

ddd j−1/2× (PL2 [∇ddd j−1]vvv j,ddd j−1/2×aaa
)

h

+
(

d̃dd
j−1/2× q̃qq j,d̃dd

j−1/2×aaa
)

h
−
(

ddd j−1/2×qqq j,ddd j−1/2×aaa
)

=

〈
A j

d (uuu
j),

 0
(I−Ih)aaa

0

〉−〈A j
d (ũuu

j),

0
aaa
0

〉+
∫

Ω

(I−Ih)(dtddd j,aaa)dxxx

+
(

d̃dd
j−1/2× ((ṽvv j ·∇)d̃dd

j−1
),(d̃dd

j−1/2−ddd j−1/2)×aaa
)

h

+
(
(d̃dd

j−1/2−ddd j−1/2)× ((ṽvv j ·∇)d̃dd
j−1

),ddd j−1/2×aaa
)

h

+
(

ddd j−1/2×
(
PL2 [∇ddd j−1](ṽvv j−vvv j)

)
,ddd j−1/2×aaa

)
h

+
(

ddd j−1/2× ((PL2 [∇ddd j−1]−∇d̃dd
j−1

)ṽvv j),ddd j−1/2×aaa
)

h

+
(

d̃dd
j−1/2× q̃qq j,(d̃dd

j−1/2−ddd j−1/2)×aaa
)

h
+
(

d̃dd
j−1/2× q̃qq j−ddd j−1/2×qqq j,ddd j−1/2×aaa

)
h
.

(61)

Concerning the L2-projection, we may estimate

‖PL2(∇ddd j−1)−∇d̃dd
j−1‖L2 ≤ ‖PL2(∇ddd j−1)−PL2(∇d̃dd

j−1
)‖L2 +‖PL2(∇d̃dd

j−1
)−∇d̃dd

j−1‖L2

≤ ‖∇(ddd j−1− d̃dd
j−1

)‖L2 + ch‖∇2d̃dd
j−1‖L2 .

Inserting this, we may start to estimate the right-hand side of the relative energy inequality. Note that the inter-
polation operator is stable with respect to the H1- and L∞-norm, i.e.,

‖∇Ih[ f ]‖L2 ≤C‖∇ f‖L2 ∀ f ∈H1 , and ‖Ih[ f ]‖L∞ ≤ ‖ f‖L∞ ∀ f ∈ C (Ω) .

First, we may estimate the terms also occurring in the continuous setting as in the proof of Proposition 3.4; we
will not repeat the details here. Keeping only the additional terms stemming from the discretization, we end up
with

dtR(uuu j|ũuu j)+dt
hα

2
‖∇vvv j‖2

L2 +
hβ

2
‖∆hddd j‖2

h +dtr1
k(h)

+
k
2

[
‖dtvvv j−dtṽvv j‖2

L2 +hα‖dt∇vvv j‖2
L2 +‖∇dtddd j−∇dtd̃dd

j‖2
L2

]
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+
k
2

[(
ε(d̃dd

j−1
)∇dt(Φ

j
h− Φ̃

j),∇dt(Φ
j
h− Φ̃

j)
)

+ εa‖(dtddd j−dtd̃dd
j
) ·∇Φ

j
h‖2

L2 + εa‖(dtddd j−dtd̃dd
j
) ·∇Φ̃

j‖2
L2

]
+

1
2
W (uuu j,ũuu j)

≤
(
K1(ũuu j,ũuu j−1)+ εa

k
2
‖dtd̃dd

j‖2
L∞

)
R(uuu j|ũuu j)

+K2(ũuu j,ũuu j−1)
(
R(uuu j−1|ũuu j−1)+‖PL2(∇d̃dd

j−1
)−∇d̃dd

j−1‖2
L2

)
+

1
2
[
‖[n+] j− [ñ+] j‖2

L2 +‖[n−] j− [ñ−] j‖2
L2

]
+

〈
A j

d (ũuu
j),

 ṽvv j−vvv j

q̃qq j−qqq j +∇Φ̃ j
(

∇Φ̃ j · (d̃dd j−ddd j)
)

Φ̃ j−Φ j

〉

+

〈
A j

d (uuu
j),

 0

(I−Ih)
(

∇Φ̃ j
(

∇Φ̃ j · (ddd j− d̃dd
j
))

0

〉

−
∫

Ω

(I−Ih)(dtddd j · (∇Φ̃
j
∇Φ̃

j · (d̃dd j−ddd j)))dxxx+ Ih

−
(

∇d̃dd
j−1/2

,∇
(
(Ih− I)

(
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

)))))
+hβ

(
∆ddd j−1/2,∆Ih

((
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

)))))
+ εa

(
∇Φ̃

j(∇Φ̃
j · d̃dd j−1

),(Ih− I)
(
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

))))
+
∫

Ω

(I−Ih)
(
(ddd j−1/2− d̃dd

j−1/2
)×
(

d̃dd
j−1/2× ((ṽvv j ·∇)d̃dd

j−1
+ q̃qq j)

)
· q̃qq j
)

dxxx

≤
(

K1(ũuu j,ũuu j−1)+ εa
k
2
‖dtd̃dd

j‖2
L∞(Ω)

)
R(uuu j|ũuu j)+K2(ũuu j,ũuu j−1)R(uuu j−1|ũuu j−1)+ r2

k(h)

+hβ

∥∥∥∆ddd j−1/2
∥∥∥2

L2

∥∥∥d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

)∥∥∥
W2,∞

+
1
2
[
‖[n+] j− [ñ+] j‖2

L2 +‖[n−] j− [ñ−] j‖2
L2

]
+

〈
A j

d (ũuu
j),

 ṽvv j−vvv j

q̃qq j−qqq j +∇Φ̃ j
(

∇Φ̃ j · (d̃dd j−ddd j)
)

Φ̃ j−Φ j

〉 .

Above, we defined

r1
k(h) :=

(
vvv j,(Ih− I)ṽvv j

)
+
(

ε(ddd j)∇Φ
j,∇(Ih− I)Φ̃

j
)

and correspondingly

r2
k(h) := Ih− r1

k(h)−
∫

Ω

(I−Ih)
(

dtddd j ·
(
q̃qq j +∇Φ̃

j
∇Φ̃

j · [d̃dd j−ddd j]
))

dxxx

+

(
d̃dd

j−1/2×
[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

]
,(d̃dd

j−1/2−ddd j−1/2)× (I−Ih)qqq j

)

−
(

∇d̃dd
j−1/2

,∇

[
(Ih− I)

(
(d̃dd

j−1/2−ddd j−1/2)×
[
d̃dd

j−1/2×
[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j]])])

+ εa

(
∇Φ̃

j(∇Φ̃
j · d̃dd j−1

),(Ih− I)
(
(d̃dd

j−1/2−ddd j−1/2)×
[
d̃dd

j−1/2×
(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j)]))

+
∫

Ω

(I−Ih)
(
(ddd j−1/2− d̃dd

j−1/2
)×
[
d̃dd

j−1/2×
(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j)] · q̃qq j

)
dxxx
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+K2(ũuu j,ũuu j−1)‖PL2(∇d̃dd
j−1

)−∇d̃dd
j−1‖2

L2

+hβ

(
∆hddd j−1/2,∆hIh

((
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

)))))
−hβ

(
∆hddd j−1/2,Ih

((
(d̃dd

j−1/2−∆hddd j−1/2)×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

)))))
.

Thus, it remains to show that r1
k(h)→0 and k ∑

J
j=1 |r2

k(h)|→0 as h→0. With regard to r1
k , we may estimate

by Lemma 2.3

|r1
k(h)| ≤ ‖vvv j‖L2‖(Ih− I)ṽvv j‖L2 +‖ε(ddd j)∇Φ

j‖L2‖∇(Ih− I)Φ̃
j‖L2

≤Ch
(
‖vvv j‖L2‖∇ṽvv j‖L2 +‖ε(ddd j)∇Φ

j‖L2‖∇2
Φ̃

j‖L2

)
.

For r2
k , we may conclude

k
J

∑
j=1
|r2

k(h)|−K2(ũuu j,ũuu j−1)‖PL2(∇d̃dd
j−1

)−∇d̃dd
j−1‖2

L2

≤ k
J

∑
j=1

[
‖vvv j−1‖L2‖(Ih− I)dtṽvv j‖L2 +hα‖∇vvv j−1‖L2‖∇dtṽvv j‖L2

+‖ε(ddd j−1)∇Φ
j−1‖L2‖dt∇(Ih− I)Φ̃

j‖L2 +‖∇vvv j‖L2‖∇(Ih− I)ṽvv j‖L2

]
+ k

J

∑
j=1

[(
‖vvv j−1‖L10/3‖∇vvv j‖L2 +‖∇·vvv j−1‖L2‖vvv j‖L10/3

)
‖(Ih− I)ṽvv j‖L5

]
+ k

J

∑
j=1

[
‖[n+] j− [n−] j‖L∞‖∇Φ

j‖L2‖(Ih− I)ṽvv j‖L2

]
+ k

J

∑
j=1

[
‖∇ddd j−1/2‖‖∇(Ih− I)dtd̃dd

j‖+ εa‖∇Φ
j‖2

L2‖ddd j−1/2‖L∞‖(Ih− I)dtd̃dd
j‖L∞

]
+ k

J

∑
j=1

[(
‖ε(ddd j)∇[n±] j‖L2 +‖[n±] j

ε(ddd j)∇Φ
j‖L2 +‖vvv j[n±] j‖L2

)
‖∇(Ih− I)Φ̃ j‖L2

]
+ k

J

∑
j=1

[
‖ε(ddd j)∇Φ

j‖L2

∥∥(Ih− I)([ñ+] j− [ñ−] j)
∥∥
L2

]
+hk

J

∑
j=1

[
‖dtddd j‖L3/2

[
‖∇q̃qq j‖L3 +‖∇

(
∇Φ̃

j[
∇Φ̃

j · (d̃dd j−ddd j)
])
‖L3

]]

+ k
J

∑
j=1
‖∇d̃dd

j−1/2‖L∞

∥∥∥∥∥∇

[
(Ih− I)

(
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j]))]∥∥∥∥∥

L1

+ k
J

∑
j=1

[
‖∇Φ̃

j‖2
L4‖d̃dd j−1‖L∞

∥∥∥∥∥(Ih− I)

(
(d̃dd

j−1/2−ddd j−1/2)×
(

d̃dd
j−1/2×

[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j]))∥∥∥∥∥

L2

]

+hk
J

∑
j=1

[
‖ddd j−1/2− d̃dd

j−1/2‖H1‖
(

d̃dd
j−1/2× ((ṽvv j ·∇)d̃dd

j−1
+ q̃qq j)

)
· q̃qq j‖H1

]
+ k

J

∑
j=1

[
hβ

∥∥∥∆ddd j−1/2
∥∥∥
L2

∥∥∥∆Ih

((
d̃dd

j−1/2×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

))))∥∥∥
L2

]
+ k

J

∑
j=1

[
hβ

∥∥∥∆hddd j−1/2
∥∥∥
L2

∥∥∥ddd j−1/2
∥∥∥
W1,2

∥∥∥(d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

))∥∥∥
W1,∞

]
+ k

J

∑
j=1

[
hα
∥∥∇vvv j

∥∥
L2

∥∥∇dtṽvv j
∥∥
L2 +hβ

∥∥∥∆hddd j−1/2
∥∥∥
L2

∥∥∥∆hdtd̃dd
j
∥∥∥
L2

]
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≤ hk
J

∑
j=1

[
‖vvv j−1‖L2‖∇dtṽvv j‖L2 +hα‖∇vvv j−1‖L2‖∇2dtṽvv j‖L2 +‖ε(ddd j−1)∇Φ

j−1‖L2‖dt∇
2
Φ̃

j‖L2

]
+hk

J

∑
j=1

[
‖∇vvv j‖L2‖∇2ṽvv j‖L2

]
+hk

J

∑
j=1

[(
‖vvv j−1‖L10/3‖∇vvv j‖L2 +‖∇·vvv j−1‖L2‖vvv j‖L10/3

)
‖∇ṽvv j‖L5

]
+ k

J

∑
j=1

[
‖[n+] j− [n−] j‖L∞‖∇Φ

j‖L2‖∇ṽvv j‖L2

]
+hk

J

∑
j=1

[
‖∇ddd j−1/2‖L2‖∇2dtd̃dd

j‖L2 + εa‖∇Φ
j‖2

L2‖ddd j−1/2‖L∞‖∇dtd̃dd
j‖L∞

]
+hk

J

∑
j=1

[
‖ε(ddd j)∇[n±] j‖L2 +‖[n±] j

ε(ddd j)∇Φ
j‖L2 +‖vvv j[n±] j‖L2

]
‖∇2

Φ̃
j‖L2

+hk
J

∑
j=1
‖ε(ddd j)∇Φ

j‖L2

∥∥∇([ñ+] j− [ñ−] j)
∥∥
L2

+hk
J

∑
j=1
‖dtd̃dd

j‖L3/2

[
‖∇q̃qq j‖L3 +‖∇

[
∇Φ̃

j(
∇Φ̃

j · (d̃dd j−ddd j)
)]
‖L3

]
+hk

J

∑
j=1

[
‖∇d̃dd

j−1/2‖L∞

∥∥∥∇ddd j−1/2
∥∥∥
L2

∥∥∥d̃dd
j−1/2×

[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j]∥∥∥

W2,6/5

]
+hk

J

∑
j=1

[
‖∇d̃dd

j−1/2‖L∞

∥∥∥d̃dd
j−1/2×

(
d̃dd

j−1/2×
[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j])∥∥∥

W2,1

]
+hk

J

∑
j=1

[
‖∇Φ̃

j‖2
L4‖d̃dd j−1‖L∞

∥∥∥ddd j−1/2
∥∥∥
W1,2

∥∥∥d̃dd
j−1/2×

[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j]∥∥∥

W2,3∩L∞

]
+hk

J

∑
j=1

[
‖∇Φ̃

j‖2
L4‖d̃dd j−1‖L∞

∥∥∥d̃dd
j−1/2×

(
d̃dd

j−1/2×
[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j])∥∥∥

W2,2

]
+hk

J

∑
j=1

[
‖ddd j−1/2− d̃dd

j−1/2‖H1‖
(

d̃dd
j−1/2×

[
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j)

])
· q̃qq j‖H1

]
+hβ/2k

J

∑
j=1

[
hβ/2

∥∥∥∆ddd j−1/2
∥∥∥
L2

∥∥∥∆Ih

((
d̃dd

j−1/2×
(

d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

))))∥∥∥
L2

]
+hβ/2k

J

∑
j=1

[
hβ/2

∥∥∥∆hddd j−1/2
∥∥∥
L2

∥∥∥ddd j−1/2
∥∥∥
W1,2

∥∥∥(d̃dd
j−1/2×

(
(ṽvv j ·∇)d̃dd

j−1
+ q̃qq j

))∥∥∥
W1,∞

]
+ k

J

∑
j=1

[
hα/2

(
hα/2∥∥∇vvv j

∥∥
L2

)∥∥∇dtṽvv j
∥∥
L2 +hβ/2

(
hβ/2

∥∥∥∆hddd j−1/2
∥∥∥
L2

)∥∥∥∆hdtd̃dd
j
∥∥∥
L2

]
.

Above, we used Lemma 2.3, Lemma 2.4, and (52).

Corollary 4.7. Let the assumptions of Proposition 4.6 be fulfilled. Then it holds that

− k
J

∑
j=0

dtφ
j+1

(
R(uuu j|ũuu j)+

hα

2
‖∇vvv j‖2

L2 +
hβ

2
‖∆hddd j‖2

L2 + r1
k(h)

)
j

∏
l=1

1
ω l +

J

∑
j=1

φ
j Wd(uuu j|ũuu j)

1− kK1(ũuu j)

j

∏
l=1

1
ω l
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≤ φ
0

(
R(uuu0|ũuu0)+

hα

2
‖∇vvv0‖2

L2 +
hβ

2
‖∆hddd0‖L2

)

+
J

∑
j=1

φ
j 1
1− kK1(ũuu j)

1
2

[
‖[n+] j− [ñ+] j‖2

L2 +‖[n−] j− [ñ−] j‖2
L2

] j

∏
l=1

1
ω l

+
J

∑
j=1

φ
j 1
1− kK1(ũuu j)

〈A j
d (ũuu

j),

 ṽvv j−vvv j

q̃qq j−qqq j +∇Φ̃ j
(

∇Φ̃ j · (d̃dd j−ddd j)
)

Φ̃ j−Φ j

〉+ r2
k(h)

 j

∏
l=1

1
ω l (62)

for all φ ∈ C ∞
c ([0,T )) with φ ≥ 0, and φ ′ ≤ 0 on [0,T ], where

ω
j :=

1+ kK2(ũuu j)

1− kK1(ũuu j)
.

Proof. This result follows from applying Lemma 2.1 to (54).

4.4 Convergence to a dissipative solution

The a priori estimates achieved in the Theorem 4.5 allow to apply well established standard results to conclude
convergence of a subsequence. For k, h→0 as given above, there exists a subsequence such that

vvvk
h , vvvk

h , vvvk
h
∗
⇀vvv in L∞(0,T ;L2)∩L2(0,T ;V) , (63a)

ddd
k
h , dddk

h , dddk
h
∗
⇀ddd in L∞(0,T ;L4/3)∩L∞(0,T ;L∞)∩W 1,2(0,T ;L3/2) , (63b)

[n±]kh , [n
±]kh

∗
⇀n± in L∞(0,T ;L2)∩L2(0,T ;H1)∩W 1,2(0,T ;(H1)∗

)
, (63c)

Φ
k
h , Φ

k
h
∗
⇀Φ in L∞(0,T ;H1/R) , (63d)

qqqk
h
∗
⇀qqq in L∞(0,T ;(W2,2∩W1,2

0 )∗) , (63e)

Due to the Lions-Aubin lemma, we infer the strong convergences

[n±]kh , [n
±]kh→n± in L2(0,T ;L2) , (63f)

ddd
k
h , dddk

h , dddk
h→ddd in Lp(0,T ;Lp)

(
for any p ∈ [1,∞)

)
, (63g)

where we employed the standard notations

uuuk
h(t) := ũuu( jk) , uuuk

h(t) := ũuu(( j−1)k) , uuuk
h(t) =

jk− t
k

ũuu(( j−1)k)+
t− ( j−1)k

k
ũuu( jk) ,

for ( j− 1)k < t ≤ jk. Additionally, we use the abbreviation ddd
k
h := 1

2(ddd
k
h +dddk

h). Using these convergences,
going to the limit in (27e) gives immediately the weak formulation of (1e) and thus (19). The convergence of
the Nernst–Planck–Poisson system may be verified as in [34] and [33] due to the strong convergence (63g).
Passing to the limit in the formulation (27d), we find the weak formulation (18),

Testing (27c) by Ihhhh for hhh ∈ C ∞(Ω× (0,T )) implies∫ T

0

(
∂tdddk

h,Ihhhh
)

h
+
(

ddd
k
h× (PL2 [∇dddk

h]vvv
k
h),ddd

k
h×Ihhhh

)
h
+
(

ddd
k
h×qqqk

h,ddd
k
h×Ihhhh

)
h

d t = 0 .

In the limit as k, h→0, we find that (20) is fulfilled. Indeed, the only non-obvious point may be the change from
mass-lumping to L2-inner products. With respect to this point, we observe by (52) as well as Lemma (2.4) for
p = 2 that ∣∣∣∣∫ T

0

(
∂tdddk

h,hhh
)

h
−
(

∂tdddk
h,hhh
)

ds
∣∣∣∣≤ ∫ T

0
h‖∂tdddk

h‖L2‖hhh‖W1,2 ds≤ ch(6−d)/6‖hhh‖W1,2
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and∫ T

0

(
ddd

k
h×qqqk

h,ddd
k
h×hhh

)
h
−
(

ddd
k
h×qqqk

h,ddd
k
h×hhh

)
ds

≤Ch
∥∥∥ddd

k
h×
(

ddd
k
h×qqqk

h

)∥∥∥
L2(Ω×(0,T ))

‖hhh‖L2(0,T ;W1,2) . (64)

By Lemma 2.4, we find for the remaining term that∣∣∣∣∫ T

0

(
ddd

k
h× (PL2 [∇dddk

h]vvv
k
h),ddd

k
h×hhh

)
h
−
(

ddd
k
h× (PL2 [∇dddk

h]vvv
k
h),ddd

k
h×hhh

)
ds
∣∣∣∣

≤Ch
∫ T

0

∥∥∥ddd
k
h×
(

ddd
k
h× (PL2 [∇dddk

h]vvv
k
h)
)∥∥∥

L3/2
‖hhh‖W 1,3(Ω) ds

≤Ch‖∇dddk
h‖L∞(0,T ;L2)‖vvvk

h‖L2(0,T ;L6‖hhh‖L2(0,T ;W1,3) .

In order to pass to the limit in equation (27b), we first establish strong convergence of ∇Φ
k
h. Therefore, we use

a standard trick for strongly elliptic problems together with the additional regularity of the limit ∇Φ (see 3.1).

‖∇(Φ−Φ
k
h)‖2

L2 + εa‖ddd ·∇Φ−ddd
k
h ·∇Φ

k
h‖2

L2

= (ε(ddd)∇Φ,∇Φ)+
(

ε(ddd
k
h)∇Φ

k
h j,∇Φ

k
h

)
−2
(

∇Φ
k
h,ε(ddd

k
h)Ih∇Φ

)
−2
(

∇Φ
k
h,ε(ddd

k
h)(I−Ih)∇Φ

)
−2εa

(
(ddd

k
h−ddd)∇Φ,ddd

k
h ·∇Φ

k
h

)
≤
(
n+−n−,Φ

)
+
(
[n+] j− [n−] j,Φ

k
h−2IhΦ

)
h

+2‖∇Φ
k
h‖L2

(
1+ εa‖ddd

k
h‖2

L∞

)
‖(I−Ih)∇Φ‖L2

+2εa‖ddd−ddd
k
h‖L2p/(p−2)‖∇Φ‖Lp‖dddk

h‖L∞‖Φk
h‖L2

(65)

The strong convergences (63f) and (63g) as well as the weak convergence (63d) allows us together with the
additional regularity of the limit (see (7)) to pass to zero on the right-hand side as k, h→0.

Testing (27b) by Ihhhh for hhh ∈ C ∞(Ω× (0,T );R3), we may observe∫ T

0
hβ

(
∆hddd

k
h,∆hIhhhh

)
+
(

∇ddd
k
h,∇Ihhhh

)
− εa

(
∇Φ

k
h(∇Φ

k
h ·dddk

h),Ihhhh
)

d t =
∫ T

0

(
qqqk

h,Ihhhh
)

h
d t . (66)

For the last term, we observe by (53) that(
qqqk

h,hhh
)

h
=
(

qqqk
h,hhh
)
−
((

qqqk
h,hhh
)

h
−
(

qqqk
h,hhh
))

≤
(

qqqk
h,hhh
)
+Ch1+d/3

(
h−d/2 +h−d/(12)+h−(2−β/2)

)
‖hhh‖W1,6

such that its convergence is inferred from (63e).

For the second term on the left-hand side of (66), we first estimate the influence of the Interpolation operator by
Lemma 2.4 (

∇ddd
k
h,∇(Ih− I)hhh

)
≤ ‖∇ddd

k
h‖L2‖(Ih− I)hhh‖W1,2 ≤Ch‖∇ddd

k
h‖L2‖hhh‖W2,2 .

such that this term actually converges to the first term on the right-hand side of (21).

Using the additional regularity of the limit Φ, we may observe for the second term in (66)∣∣∣(∇Φ(∇Φ ·ddd),hhh
)
−
(

∇Φ
k
h(∇Φ

k
h ·dddk

h),Ih(hhh)
)∣∣∣
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=
∣∣∣∫ T

0

(
∇Φ

(
(∇Φ ·ddd)− (∇Φ

k
h ·ddd

k
h)
)
,hhh
)
+
(

∇Φ(∇Φ
k
h(ddd

k
h−dddk

h)),hhh
)

+
(

∇Φ(∇Φ
k
h ·dddk

h),(I−Ih)(hhh)
)
+
(
(∇Φ−∇Φ

k
h)(∇Φ

k
h ·dddk

h),Ih(hhh)
)

d t
∣∣∣

≤ ‖∇Φ‖L2(Ω×(0,T ))‖∇Φ ·ddd−∇Φ
k
h ·ddd

k
h‖L2(Ω×(0,T ))‖hhh‖L∞(Ω×(0,T ))

+‖∇Φ‖Lp(Ω×(0,T ))‖∇Φ
k
h‖L2(Ω×(0,T ))‖ddd

k
h−dddk

h‖L2p/(p−2)(Ω×(0,T ))‖hhh‖L∞(Ω×(0,T ))

+‖dddk
h‖L∞(Ω×(0,T ))‖∇Φ‖Lp(Ω×(0,T ))‖∇Φ

k
h‖L2(Ω×(0,T )) ‖(I−Ih)(hhh)‖L2p/(p−2)(Ω×(0,T ))

+‖∇Φ−∇Φ
k
h‖L2(Ω×(0,T ))‖∇Φ

k
h‖L2(Ω×(0,T ))‖dddk

h‖L∞(Ω×(0,T ))‖hhh‖L∞(Ω×(0,T )) .

The right-hand side vanishes as k, h→0 due to the strong convergences (63g) and (65). For the first term
in (66), we observe that

hβ

(
∆hddd

k
h,∆hIhhhh

)
≤ hβ/2

(
hβ/2‖∆hddd

k
h‖h

)
‖hhh‖W2,2→0 as h→0 .

We may conclude that (66) converges to the limit equation (21) as k, h→0.

It remains to pass to the limit in the relative energy inequality. Therefore, we define the linear and constant
interpolates also for the test function ũuu ∈ C ([0,T ];Y) and ũuu ∈ C ([0,T ]), i.e.,

ũuu(t) := ũuu( jk) , ũuu(t) := ũuu
(
( j−1)k

)
, ˆ̃uuu(t) =

( j+1)k− t
k

ũuu( jk)+
t− jk

k
ũuu(( j+1)k) ,

for ( j−1)k < t ≤ jk. The inequality (62) may be interpreted as

−
∫ T

0
∂t φ̂

(
R(uuuuuuuuuk

h|ũuu
k
)+

hα

2
‖∇vvvk

h‖2
L2 +

hβ

2
‖∆hddd

k
h‖2

L2 + r1
k(h)

)
ζk(t)d t

+
∫ T

0
φ (1+ γk(t))Wk(uuuk

h|ũuu
k
)ζk(t)ds

≤ φ(0)

(
R(uuu0

h|ũuu(0))+
hα

2
‖∇vvv0

h‖2
L2 +

hβ

2
‖∆hddd0‖2

L2

)

+
∫ T

0
φ (1+ γk(t))

〈
Ad(uuuk

h),


ṽvvk−uuuk

h

q̃qq j−qqqk
h +∇Φ̃

k
(∇Φ̃

k · (d̃dd
k
−ddd

k
h))

Φ̃
k−Φ

k
h


〉

ζk(t)d t

+
∫ T

0
φ (1+ γk(t))

1
2

[
‖[n+]kh− [ñ+]k‖2

L2 +‖[n−]kh− [ñ−]k‖2
L2 + r2

k(h)
]

ζk(t)d t

for all φ ∈ C ∞
c ([0,T )) with φ ≥ 0, and φ ′ ≤ 0 on [0,T ], where we defined

γk(t) = k
K1(ũuu(t),ũuu(t))

1− kK1(ũuu(t),ũuu(t))

and

ζk(t) =
tk

∏
l=1

1
1+ k(1+ γk(lk))

(
K1(ũuu(lk),ũuu(lk))+K2(ũuu(lk),ũuu(lk))

) ,
where tk := jk , for ( j−1)k < t ≤ jk and the error terms r1

k and r2
k are interpreted accordingly. For the above

terms, we observe that

γk(t)→0 and ζk(t)→e−
∫ t

0 K (ũuu)ds as k→0 ,
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where we used K1(ũuu,ũuu)+K2(ũuu,ũuu) = K (ũuu). Note that the regularizing terms may be estimated form below
by zero on the left hand-side of the above inequality. The regularizing terms of the initial values vanish in the
limit h→0 due to the additional regularity of the initial values (compare to the assumptions of Theorem (3.1)).

Passing to the limit with h and k, we find the inequality

−
∫ T

0
∂tφR(uuu|ũuu)e−

∫ t
0 K (ũuu)dτ ds+

∫ T

0
φW (uuu|ũuu)e−

∫ t
0 K (ũuu)dτ d t

≤ φ(0)R(uuu0|ũuu(0))+
∫ T

0
φ

〈
A (ũuu),

 ṽvv−vvv
q̃qq−qqq−∇Φ̃∇Φ̃ · (d̃dd−ddd)

Φ̃−Φ

〉e−
∫ t

0 K (ũuu)dτ d t

+
∫ T

0
φ

1
2
[
‖n+− ñ+‖2

L2 +‖n−− ñ−‖2
L2

]
e−

∫ t
0 K (ũuu)dτ d t .

for all φ ∈ C ∞
c ([0,T )) with φ ≥ 0, and φ ′ ≤ 0 on [0,T ]. A variation of the fundamental lemma of variational

calculus (see [22, Lemma 2.2]) and multiplying by e
∫ t

0 K (ũuu)dτ implies (22).

5 Computational studies

We set Ω = (−0.5,0.5)d , d = 2,3 and consider a slight modification of the numerical scheme (27):(
dtvvv j,aaa

)
+ν

(
∇vvv j,∇aaa

)
+
(
(vvv j−1 ·∇)vvv j,aaa

)
+

1
2
(
∇·vvv j−1vvv j,aaa

)
+λnpp

(
([N+] j− [N−] j)∇Φ

j,aaa
)
+νel

(
(PL2 [∇ddd j−1])T (ddd j−1/2× (ddd j−1/2×qqq j)),aaa

)
h
= 0 ,

(67a)

A
(

∇ddd j−1/2,∇bbb
)
−µΦ

(
εa∇Φ

j(ddd j−1 ·∇Φ
j),bbb
)
−
(
qqq j,bbb

)
h = 0 , (67b)(

dtddd j,ccc
)

h +νel

(
ddd j−1/2× (PL2 [∇ddd j−1]vvv j),ddd j−1/2×ccc

)
h

+
(

ddd j−1/2×qqq j,ddd j−1/2×ccc
)

h
= 0 ,

(67c)

(
dt [N±] j,e±

)
h +µΦ

(
ε(ddd j)∇[N±] j,∇e±

)
±
(
[N±] j

ε(ddd j)∇Φ
j,∇e±

)
−λnpp

(
vvv j[N±] j,∇e±

)
= 0 ,

(67d)

µΦ

(
ε(ddd j)∇Φ

j,∇g
)
−
(
[N+] j− [N−] j,g

)
h = 0 , (67e)

where ε(ddd) = ε⊥I + εaddd ⊗ddd; we introduced additional constants ε⊥, A, λnpp, µΦ, νel in order to control
the strength of interactions between the different physical variables in the system. If not mentioned otherwise,
we set vvv0 = 000, ε⊥ = 0.1, εa = 10, A = 0.01, µΦ = 0.25, νel = 1, ν = 1. In (67a) we use homogeneous
Dirichlet boundary conditions for the velocity, and in (67b), (67d)-(67e) we employ homogeneous Neumann-type
boundary conditions; i.e., we use the same boundary conditions as given in System (1), except for homogeneous
Neumann boundary conditions for the director in (67c) and (67b).

In (67a), we neglect the stabilization terms hα
(
∇dtvvv j,∇aaa

)
from (27a) and hβ (∆hddd j−1/2,∆hbbb) from (27b),

which was not required to preserve the discrete maximum principle for [n±] j in the presented experiments —
as opposed to part d) in the proof of Lemma 4.4. In addition, we note that a suitable choice of the nonlinear
solver guarantees that the discrete constraint |ddd j|= 1, j = 0, . . . ,J is always satisfied at the nodes of the finite
element mesh up to machine accuracy independently of τ , h; cf. [2] and below.

The velocity in the equation (67a) is approximated using the P2-P1 Taylor-Hood element, see e.g. [3], the re-
maining unknowns are approximated using standard continuous piecewise linear finite elements. To solve the
nonlinear algebraic system related to the coupled equations (67a)-(67e), we use a simple fixed-point iterative
scheme analogous to [33, Algorithm A1] (cf. also [3, Algorithm A]). The stopping criterion for the iterative solvers
was the `∞-norm of the subsequent iterates with respective tolerance tol = 10−9 in the fixed algorithm, and
tolerance tol = 10−14 in the arising linear and nonlinear systems in each fixed-point iteration to eliminate a
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possible effect of the algebraic solvers on the numerical approximation; we note that more efficient implemen-
tations of the algorithm are possible. In each iteration of the fixed-point algorithm the equations (67a)-(67e)
are linearized, cf. [3, 33], in a way that the resulting respective equations are decoupled and can be solved
separately. All resulting equations, except for (67c), are linear; the nonlinear algebraic system that corresponds
to (the linearized version of) (67c)-(67b) is solved using a Newton-multigrid algorithm; cf. [2]. Linear systems
arising from (67a) in d = 3 are solved using the Vanka-multigrid method, cf. [3].

A simple modification of the proof of Theorem 4.5 ii) implies that the above numerical scheme satisfies the
following discrete energy law

E(vvvJ,dddJ,ΦJ)+
k2

2

J

∑
j=1

(
‖dtvvv j‖2

L2 +µΦ

(
ε(ddd j−1)∇dtΦ

j,∇dtΦ
j)+µΦεa‖∇Φ

j ·dtddd j‖2
L2

)
+ k

J

∑
j=1

[
ν‖∇vvv j‖2

L2 +‖ddd j−1/2×qqq j‖2
h +
(
([N+] j +[N−] j)∇Φ

j,ε(ddd j)∇Φ
j
)
+‖[N+] j− [N−] j‖2

h

]
= E(vvv0,ddd0,Φ0) , (68)

where E(vvv j,ddd j,Φ j) := 1
2‖vvv j‖2

L2 +
A
2 ‖∇ddd j‖2

L2 +
µΦ

2

(
ε(ddd j)∇Φ j,∇Φ j

)
. In the experiments below (except for

the ones with applied field) we verified the decrease of the physically relevant component in the above energy
law, i.e., we neglected the numerical damping term scaled by k2

2 in (68).

5.1 Ericksen–Leslie interactions

In the next two experiments we illustrate the Ericksen–Leslie interactions in the model. We set n±0 = 0, λnpp =
εa = ε⊥ = 0 which implies that Φ j ≡ 0, j = 1, . . . ,J, and the interactions in the system (67a)-(67e) reduce to
the coupling between (67a)-(67c).

5.1.1 Defect driven flow

We choose the parameters analogically to [4, Example 5.2]: we choose vvv0 = 0, and A = 1, ν = 1, νel = 0.25,
and the discretization parameters were k = 0.0005, h = 2−4, T = 0.1. To construct the initial condition for the
director we set d̂̂d̂d(x,y) = (4x2 +4y2−0.25,2y,0)T and define

ddd0 =

{
d̂̂d̂d/|d̂̂d̂d| if |d̂̂d̂d|> 0 ,
(0,0,1)T if |d̂̂d̂d|= 0 .

We observe that the initial condition above contains two defects, see Figure 1 (left).

The computed results are displayed in Figures 1 and 2. The observed evolution is similar to the results in [4,
Example 5.2] for d = 2: the velocity drives the defect towards each other and the director field gradually becomes
uniform in space.

5.1.2 Velocity driven flow

Next, we examine the effect of the velocity on the evolution of the director field. We choose vvv0 = 10(−y,x)T ,
A = 0.1, ν = 1, νel = 1, and the remaining parameters, as well as the initial condition for the director are the
same as in the previous experiment. In Figure 3 we observe that the defects in the director field rotate around
the center of the domain due to the advection effect of the velocity field (Figure 3 (right)). We note that since the
energy decreases over time, the velocity field becomes weaker and eventually vanishes.
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Figure 1: From let to right: initial condition ddd0 (colored by the z-component), evolution of the discrete energy,
velocity at t = 0.02 (colored by the magnitude).

Figure 2: Director at time t = 0.02,0.04,0.1, colored by the magnitude of the z-component.

Figure 3: Director at time t = 0.05,0.15,0.25 (colored by the magnitude of the z-component) and the velocity
field at time t = 0.15 (colored by the magnitude).
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5.1.3 Effect of the director on the electric field

We demonstrate the anisotropy effect which is created as a consequence of interaction between the electric
field and the director. We consider d = 3 and study a stationary situation where we only solve (67a), (67e) with
prescribed director field and charge densities that do not evolve over time. The configuration of the charges is
the so-called dipole: we consider two spherically distributed (stationary) charges with opposite polarity centered
at xxx±0 = (±0.2,0,0)T given as n±(xxx) = exp(−50|xxx−xxx±0 |2), and a constant director field in the z-direction
ddd ≡ (0,0,1)T . The remaining parameters were ν = 1, A = 0.1, λnpp = 100, λel = 0, νel = 1, µΦ = 0.25,
ε⊥ = 0.1, εa = 100, and the results were computed with k = 5×10−4, h = 2−5.

In general the induced (negative) electric field −EEE = ∇Φ points from the negatively charged region towards
the positively charged one. Without the director effect the electric field induced by the dipole with εa = 0 (i.e.,
no effect of the director) is radially symmetric along the x-axis; see Figure 4 (left). When the director field
ddd ≡ (0,0,1)T is included in the system it introduces an anisotropy effect in the z-direction, i.e., the field is
approximately constant in the z-direction; see Figure 4 (right). For illustration in Figure 5 we also display the
velocity field induced by the electric field at time t = 0.0005; the velocity is qualitatively similar for both cases.

Figure 4: Negative electric field−EEE =∇Φ and the±0.5-level set of n+−n−1 for ddd =000 (left) and ddd = (0,0,1)T

(right).

5.2 The full system in 3D

In the subsequent experiments we examine the evolution of the full system (67a)-(67e) in d = 3 for different con-
figurations of the model parameters. The main observations from the presented simulations can be summarized
as follows:

� In the simulations below we want to illustrate physically relevant features which are predominantly due
to the effect of the electric field. Consequently, the parameters are chosen such that the velocity field
(which is induced by the interactions of the flow with the director field and the electric field, i.e., the λnpp,
νel-terms in (67a)) has a comparably weaker effect on the overall evolution. Furthermore, except for the
last experiments, the director field did not significantly evolve over time.

� The orientation of the director induces an anisotropy into the system, i.e., the charges are transported by
the electric field along the director field. In addition, the orientation of the director determines the direction
of the induced electric field, as well as of the velocity field. In particular, due to the anisotropy effects of the
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Figure 5: Velocity field at t = 5×10−4 and the ±0.5-level set of n+−n−1 for ddd = 000 (left) and ddd = (0,0,1)T

(right).

diffusion tensor ε(ddd) in (67e), the electric field (EEE =−∇Φ), which is induced by the difference between
the positive and negative charges, remains predominantly perpendicular to the director field.

5.2.1 Effect of the director on the diffusion of the charges

The next experiment is to demonstrate the anisotropy effect due to the orientation of the director. The initial
condition for the director is ddd0 ≡ 2−1/2(0,1,1)T , and the initial charges are taken as n±0 = exp(−25|xxx−xxx±0 |2)
with xxx±0 = (±0.2,0,0)T . The remaining parameters were ν = 1, A = 0.1, λnpp = 100, νel = 1, µΦ = 0.125,
ε⊥ = 0.1, εa = 100, and the results were computed with k = 2.5×10−4, h = 2−4.

The director field remains approximately constant during the whole evolution, and the induced velocity field
(which exhibits symmetry properties along in plane perpendicular to (0,−1,1)T ; cf. Figure 6 (right)) is small.
Consequently, the velocity has a negligible effect, and the evolution is driven mainly by the diffusion of the
charges and the advective effects of the electric field.

In Figure 6 we display a typical configuration of the gradient of the electric potential, the 0.2-level set of the
charges, and the magnitude of the velocity field along the direction (0,1,1)T (the direction of the director). As
in Section 5.1.3, we observe anisotropy in the displayed electric field along the (0,1,1)-direction, which is due
to the interactions with the director.

In Figure 7, we display the evolution of the 0.2-level set of n±, as well as of the value of n+ − n− in the
plane normal to (0,−1,1)T ; we observe that the charges evolve along the direction of the director, which is
≈ (0,1,1)T .

5.2.2 Effect of an applied electric field

Without external influence, the gradient of the electric potential (i.e., the negative electric field) is generated
solely by the difference between the negative and positive charges. From the previous experiments we deduce
that for εa� ε⊥ the electric field is induced predominantly in the direction that is perpendicular to the director
field, and thus only has a little influence on the director field. In order to demonstrate the effects of the electric
field on the evolution of the director we apply a uniform external electric field EEE0 = (0.4,0,0)T along the x-
direction, i.e., we replace ∇Φ by ∇Φ̃ = ∇Φ−EEE0 in (67a)-(67d). The remaining parameters in the simulation
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Figure 6: Snapshots of the negative electric field from two different angles (left, middle), and the velocity field in
the plane normal to (0,−1,1)T at time t = 0.015.

Figure 7: Snapshots of the 0.2-level set of n+, n−, and a cut through n+−n− at t = 0,0.02,0.045.

DOI 10.20347/WIAS.PREPRINT.2717 Berlin 2020
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were ν = 1, A= 0.1, λnpp = 1000, νel = 1, µΦ = 1.0, ε⊥= 0.1, εa = 10, and the discretization was performed
for k = 10−3, h = 2−4. The initial distribution of the charges and the initial orientation of the director field are
chosen to be uniform, i.e., n±0 = 0.5 and ddd0 = 3−1/2(1,1,1).

The applied electric field forces the positive and negative charges to accumulate according to their polarity in
the opposing parts of the spatial domain along the direction of the director field. Initially the charges accumulate
in the opposing corners of the domain along ddd0, i.e., the (1,1,1)-direction; see Figure 8. Due to the effect of
the external field, the director rotates from its initial orientation towards the direction of the applied field (i.e.,
the direction parallel to the x-axis); see Figure 9. As the system approaches a stationary state, the charges
accumulate along the x-direction. The induced perpendicular component of the electric field ∇Φ = ∇Φ̃−EEE0,
and the induced velocity at t = 0.03 are displayed in Figure 10.

Figure 8: Snapshots of the±0.05-level set of n+−n− at t = 0.001,0.004,0.006,0.03, along with a cut through
n+−n− at z = 0.

Figure 9: Director at time t = 0,0.01,0.03, colored by the magnitude of the x-component.

5.2.3 Effect of the director on the velocity

In the next experiment we demonstrate how the director can be used to influence the velocity field which is gener-
ated by an applied electric field. We repeat the previous experiments with applied field EEE0 = (1,0,0)T , h = 2−5

and consider three different initial orientations of the director ddd0 = (1,1,1)T , (1,0,1)T , (1,1,0)T . The results
displayed in Figure 11 indicate that the direction of the induced velocity field is prescribed by the direction of the
director field; the respective velocities rotate around the respective directions (0,−1,1)T , (0,1,0)T , (0,0,1)T

that are perpendicular to the respective initial conditions for the director.

When a constant electric field is applied, the induced velocity field quickly diminishes over time; see Figure 12.
By using an alternating electric field, it is possible to sustain the flow field over a longer period of time: we
consider an oscillating electric field EEE0(t) = (cos(35πt),0,0) and observe that the amplitude of the induced
velocity oscillates in time but the flow retains its direction and persists over a longer time period; see Figure 13
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Figure 10: The perpendicular component of the (negative) electric field (∇Φ = ∇Φ̃−EEE0) at z = 0 and y = 0
(left,middle), and the velocity (right) at time t = 0.03.

Figure 11: (from left to right) Velocity induced by the applied field EEE0 = (1,0,0) at t = 0.04 for ddd0 = (1,1,1)T ,
ddd0 = (1,0,1)T , and ddd0 = (1,1,0)T .
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(the maximum amplitude of the velocity is roughly half of the maximum amplitude in Figure 12). Eventually the
director aligns parallel to the applied electric field, the associated anisotropy effect vanishes, and the induced
velocity field becomes negligible. We note that as long as the orientation of the director is fixed, it is possible to
produce the desired flow pattern over an arbitrary period of time; cf. [32].

Figure 12: Velocity field at t = 0.04,0.07,0.1 for ddd0 = (1,0,1)T , and a constant applied field EEE0 = (1,0,0)
(computed with h = 2−4).

Figure 13: Velocity field at t = 0.12,0.13,0.14,0.15 for ddd0 =(1,0,1)T and with oscillating applied field EEE0(t)=
(cos(35πt),0,0) (computed with h = 2−4).
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