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Dynamics in high-power diode lasers
Uwe Bandelow, Mindaugas Radziunas, Anissa Zeghuzi,

Hans-Jürgen Wünsche, Hans Wenzel

Abstract

High-power broad-area diode lasers (BALs) exhibit chaotic spatio-temporal dynamics above
threshold. Under high power operation, where they emit tens of watts output, large amounts of
heat are generated, with significant impact on the laser operation. We incorporate heating effects
into a dynamical electro-optical (EO) model for the optical field and carrier dynamics along the
quantum-well active zone of the laser. Thereby we effectively couple the EO and heat-transport
(HT) solvers. Thermal lensing is included by a thermally-induced contribution to the index profile.
The heat sources obtained with the dynamic EO-solver exhibit strong variations on short time
scales, which however have only a marginal impact on the temperature distribution. We consider
two limits: First, the static HT-problem, with time-averaged heat sources, which is solved itera-
tively together with the EO solver. Second, under short pulse operation the thermally induced
index distribution can be obtained by neglecting heat flow. Although the temperature increase
is small, a waveguide is introduced here within a few-ns-long pulse resulting in significant near
field narrowing. We further show that a beam propagating in a waveguide structure utilized for BA
lasers does not undergo filamentation due to spatial holeburning. Moreover, our results indicate
that in BALs a clear optical mode structure is visible which is neither destroyed by the dynamics
nor by longitudinal effects.

1 Introduction

Due to their small size and high efficiency broad-area (BA) lasers are important pump sources for
high-performance laser systems and are also used for direct material processing. Tens of watts output
from single devices can be obtained. Not to exceed the critical intensity for catastrophical facet de-
generation, the beam area at the facet must be large and the intensity distribution should be as flat as
possible. This gives rise to multimode operation, such that mode beating is unavoidable. The inherent
nonlinearities transform this beating into a rather complex spatio-temporal behaviour. In the present
paper we describe a numerical tool that is able to accurately calculate these phenomena. It considers
all essential elements of realistic device structures but is still simple enough for design optimizations
within reasonable computing times. The developed simulation tool BALaser bases on sophisticated
numerical algorithms [1, 2, 3, 4]. Applications to several subjects have been reported, among them
different types of beam shaping and stabilization [5, 6, 7], as well as tailoring external feedback [8, 9].
We cannot present all this work here, but focus on two further applications: i) what is the nature of
filamentation [10] and ii) which role possible temporal changes of temperature are playing[11]?

In optics, the notion filamentation means the creation of a self-trapped beam of light in a nonlinear
medium or the breakup of a beam into many transverse components [12], Ch.7, p. 330. BA lasers
typically show beam break up as in the example of Fig. 1(a). Since this example is calculated with
our model, we can ask for the nature of this effect. In literature it is often discussed along the idea of
the modulation instability of a beam in a medium with a Kerr nonlinearity. We have evaluated this idea
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U. Bandelow et al. 2

on base of our model. The results agree exactly with theory in case of an ideal homogeneous Kerr
medium. However, we do not find an indication of the modulation instability for realistic device struc-
tures. Instead, the filamentation is structured here by the transverse modes of the cavity. Moreover,
the filaments of the time-averaged intensity are highly dynamical objects as the snapshot of Fig. 1(b)
demonstrates. Here we see chaotic light bullets rather than filaments. Note, however, the different axis
scales. The bullets are hundreds microns long but only few microns wide. They are a kind of short
filaments flying through the device.

Figure 1: Top view on the optical intensity distribution in the active region of the BA laser of Fig. 2
under continuous wave (CW) high power operation, calculated with the model of section 2. (a) time
averaged, (b) time snapshot of intensities laterally normalized at each longitudinal position.

Figure 2: Sketches of a typical BA laser. (a) Vertical-lateral cross section of the thermal simulation
domain. (b) Domain of the electro-optical simulation. Our calculated example device has rear and
front facet power reflectivities of R0 = 0.95 and RL = 0.01, respectively. The active layer consists of
a 7-nm-thick single InGaAs quantum well embedded in p- and n-doped AlGaAs cladding and optical-
confinement layers. To provide lateral current confinement the p-doped layers are implanted down
to the vicinity of the active region. The vertical layer structure is designed to form an index-guided
single-mode large-optical-cavity waveguide with negligible carrier accumulation in the confinement
and cladding layers.

A large amount of heat is generated in high-power lasers. Even being cooled, the interior temperature
is increased with large impact on the laser operation. The most prominent effect is the formation of a
thermally induced waveguide, i.e. a substantial increase of the refractive index in the hot center below
the contact stripe, commonly referred to as thermal lens. In the example of Fig. 1, it causes a slight
focussing close to the right facet. Thermal lenses are well studied for continuous wave (CW) operation
and a steady temperature distribution. They are usually neglected under pulsed operation because
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Dynamics in high-power diode lasers 3

thermal build-up times up to milliseconds are much longer than the pulse lengths. However, the heat is
generated near to the active layer in the same region where the guided wave is localized. This region
is small and its thermal build-up time is much shorter than that of the whole device. Thus, one can
also expect focussing, but with a dynamic thermal lens.

Short-time local heating can be expected to influence the optical pulse formation although time-
averaged heating is negligible. Theoretically, a time-dependent temperature has been considered in
early models as presented e.g. in Refs. [13, 14]. They concentrated on a sophisticated microscopic
description of the processes in the active layer. However, besides requiring enormous computer re-
sources even for nanosecond transients, they disregarded outer parts of devices, where a considerable
portion of the heat is generated. Heat flow was replaced by a simple local relaxation of temperature
towards an ambient temperature. These features limit applications in device design.

Our paper is structured as follows. The time-dependent quasi three-dimensional electro-optic-thermal
model is presented in Section 2. It bases on our previous electro-optical model and solver BALaser [15,
16, 17]. Its upgrade with a space-time dependent thermal model is designed so that few-nanoseconds-
long transients can be calculated within minutes. As a first application, the nature of filamentation in
such devices is explored in Section 3. Exemplary laser operation with 10 ns long pulses is simulated
in section 4, revealing a fast-growing thermally induced waveguide initializing the known stationary
thermal lens. The paper is summarized in section 5.

2 The electro-optical and thermal model

2.1 Electro-optical model of the active layer

Our mathematical model is a hybrid combination of a traveling-wave (TW) model in the (x, z) plane,
a model of current flow in the (x, y) plane, and a thermal model. In the semiclassical framework of
rotating-wave, scalar, effective-index and paraxial approximations, the transverse-electric optical field
is represented by its electric x-component

E(~r, t) = A φ(y)
[
u+e−in̄k0z + u−ein̄k0z

]
eiωt + c.c. (1)

with A =
√
d~ω/(2ε0n̄ng) and k0 = 2π/λ0. λ0 = 910 nm, d = 7 nm, ~, ε0, ng = 3.87,

n̄ = 3.4, ω and c are the center wavelength, the thickness of the active region, the Planck constant,
the vacuum permittivity, the group refractive index, a real valued reference index, a reference angular
frequency and the vacuum speed of light, respectively. Supposing a well-designed vertical waveguide,
the normalized fundamental vertical mode φ(y) is calculated in advance for the cold cavity and re-
mains unchanged. The slowly varying complex amplitudes u±(x, z, t) obey a traveling wave equation
(TWE) coupled to a diffusion equation for the carrier density N(x, z, t) (sheet density divided by the
QW thickness)[

1

vg

∂

∂t
± ∂

∂z
+

i

2n̄k0

∂2

∂x2
+D

]
u± = −ik0

[
∆neff(N, T, ‖u‖2)+∆n±2,eff(|u±|2)

]
u±+f±sp , (2)

∂N

∂t
=

∂

∂x

(
Deff(N)

∂N

∂x

)
+
j(x, z, t)

ed
−R(N, u±,D). (3)

Here, j(x, z, t) is the injection current density, ‖u‖2 = |u+|2 + |u−|2 the local photon density, Deff

an effective diffusion coefficient and R(N, u±,D) = AN + BN2 + CN3 + Rstim(N, u±,D) the
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recombination rate, where A, B, C are the Shockley-Read-Hall, spontaneous radiative and Auger
recombination coefficients.
The rate of stimulated recombination Rstim(N, u±,D) = vgRe

∑
ν=± u

ν∗(g− 2D)uν is mainly de-
termined by the term vgg(x, z,N, ‖u‖2)‖u‖2. The local carrier density-dependent gain g accounts
also for nonlinear gain compression: g = g′ log(N/Ntr)/(1 + εs‖u‖2), with g′, Ntr and εs as differ-
ential modal gain, transparency carrier density and gain compression factor, respectively. The operator
D is used to model dispersion of the optical gain [18]. We use it in the form

Du± =
gr
2

(u± − p±),
∂p±

∂t
= γ(u± − p±) + iδωp±, (4)

which couples the traveling wave equations (2) to ordinary differential equations for the complex slowly
varying amplitudes of the polarization fields p± [18]. This approximates the dispersion of the gain with
a Loretzian of amplitude gr, half width at half maximum γ, and relative central frequency δω.

The amplitudes u± are coupled to each other by reflecting boundary conditions at the facets. Periodic
boundary conditions are assumed at the lateral boundaries of the sufficiently broad simulation domain.
The complex effective index deviation ∆neff from the reference index n̄ obeys

∆neff(x, z,N, T )=∆n0(x, z)+∆nN(x, z,N)+∆nT(x, z, T )+i
g(x, z,N, ‖u‖2)−α(x, z,N)

2k0

,

(5)
with ∆n0, ∆nN, and ∆nT accounting for built-in index changes, carrier density and temperature
dependent index changes, respectively, and α for optical loss, which includes effective internal back-
ground absorption and free carrier absorption in the active region. ∆n±2eff describes effective changes
of the complex refractive index due to the Kerr effect ∆n±2r and two-photon absorption α±2P and is
derived as

∆n±2eff = ∆n±2r − i
α±2P

2k0

=

(
n′2 − i

β′

2k0

)
~ω0vgd(‖u‖2 + |u∓|2), (6)

with the effective optical Kerr coefficient n′2 in units of mW−1 and the effective two-photon absorption
coefficient β′ in units of W−1 [19].

The thermally induced index, that will be used later

∆nT (T ) =

∫
n′TT |φ|2dy (7)

with constant slope parameters n′T in each material, is the main impact of temperature variations on
the wave propagation. Thermal changes of the Fermi distribution functions are also taken into account.

The numerical integration of the TW-model equations presented above are performed using parallel
computing and distributed memory paradigm (MPI) at the WIAS in Berlin. Typical 1 ns-transient sim-
ulations of 4 mm-long and 100 um-broad laser using 20-30 parallel processes can be made in 5-10
minutes. More details on the efficiency of the code are given in [16].

2.2 The (x, y) model of current flow through the p-layers

Current spreading and current self-distribution in the p-doped layers play an important role in BA lasers
[3, 11]. They are also expected to have a large impact on the Joule heating, which is proportional to
the square of the current density,

~j = σ∇ϕp (8)

DOI 10.20347/WIAS.PREPRINT.2715 Berlin 2020



Dynamics in high-power diode lasers 5

with the electrical conductivity σ. The quasi-Fermi potential ϕp of the holes is determined by solving a
Laplace equation in the p-doped region [3, 7],

∇(σ∇ϕp) = 0 (9)

with the boundary conditions ϕp|y=ya = ϕF (N, T ) at the active layer, ϕp = U at the p-contact, and
∂
∂n
ϕp = 0 elsewhere, where ∂

∂n
is the normal derivative. U is the bias voltage and ϕF (N, T ) is the

Fermi voltage in the active layer, i.e. the separation between the quasi-Fermi potentials of holes and
electrons. The injection current density j(t, x, z) entering equation (3) is the y-component of ~j at the
upper boundary of the active layer adjacent to the p-doped region. To numerically solve the presented
equations the scheme extensively described in Ref. [3] is applied.

2.3 The thermal model

The heat model calculates the heat generation using results of the opto-electronic model, solves the
heat-flow equation, and determines the thermal index contribution (7) acting on the wave propagation.

2.3.1 Heat generation

The heat sources of the model that we list now, are derived from corresponding expressions given in
[20, 21].

In accordance with the current flow model the Joule heat

hJ = j2
p/σ (10)

is essentially generated in the p-doped region and can be neglected in the n-doped region, due to the
very high electron conductivity.

The heat source due to absorption of stimulated emitted photons is given as

habs =

{
vg~ωdn(y)

n̄
|φ(y)|2‖u(x, z, t)‖2 [α0(y)+vg~ωdβ2P(y)|φ(y)|2‖u(x, z, t)‖2] , y /∈ AR,

vg~ωfNN‖u(x, z, t)‖2, y ∈ AR
(11)

where the abbreviation AR denotes the active region, n(y), α0(y) and β2P(y) are the vertical distri-
bution of the real part of the refractive index, the absorption and the 2-photon absorption coefficient,
respectively. The first term in equation (11) accounts for background absorption due to doping, the
second term denotes 2-photon-absorption in the cladding and confinement layers, whereas the term
in the second line of equation (11) is due to free carrier absorption in the active region. 1

The third source term is recombination heat in the active region,

hrec = eϕF (N, T )(AN + ξBN2 + CN3) (12)

where ξ denotes the portion of absorbed spontaneous emission. By setting ξ = 1 we have assumed,
that all spontaneous emission is transferred into heat and not to the radiation field.

1Note that for α0,eff and f2P entering the effective absorption coefficient of the traveling wave equation, α0,eff =∫
n(y)α0(y)/n̄|φ|2dy and f2P = ~ωvgda

∫
n(y)β2P(y)/n̄|φ|2dy must hold[22].
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The last term taken into account denotes quantum defect heat generated in the active region as a
result of incomplete energy transfer from the carrier reservoir to the radiation field, given as

hdefect = (eϕF (N, T )− ~ω)Rstim(N, ‖u‖2). (13)

Furthermore, in this paper we neglect Thompson-Peltier heat [20, 21] as the overall impact is expected
to be small[22].

Figure 3: Time averaged absorption, Joule,
recombination and quantum defect heat
source densities as function of the vertical y-
direction in the middle of the stripe.

Figure 4: Distribution of the time-averaged (a) absorption, (b) Joule, (c) recombination, and (d) quan-
tum defect surface heat source densities H =

∫
hdy as function of lateral and longitudinal (x, z)-

coordinate.

2.3.2 Heat flow equations

Our model bases on the classical macroscopic heat-flow equation,

ch
∂T

∂t
−∇ [κL∇T ] = h(N,~j, ‖u‖2), (14)

with the heat capacity ch, the heat conductivity κL, the heat source

h = hJ + habs + hrec + hdefect, (15)
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with the individual heat sources given in equations (10) - (13) and the boundary conditions

κL
∂
∂n
T = −(T − THS)/rth for (x, y, z) ∈ heat sink

∂
∂n
T = 0 for (x, y, z) ∈ other outer bounds

(16)

where rth is the thermal resistivity. Here and in what follows, T is the absolute temperature and THS the
temperature of the heat sink, which also serves as reference for parameter values. The arguments of h
on the right hand side of equation (14) symbolize that the heat source power densitiy h depends on the
carrier density, current density, and field intensity distributions in the laser, which result from the opto-
electronic model. Reversely, T acts back on the wave propagation mainly via the thermally induced
effective index (7). In addition, T implicitly influences the gain, distribution functions, and the diffusion
as well as recombination terms in equation (3). Thermal changes of parameters are disregarded in
this paper, in order to separate those from thermal wave-guiding effects.

Short times: the no-heat-flow (NHF) approximation It is unreasonable to solve the heat-flow equa-
tion (14) over tens of microseconds with the sub-ps temporal resolution of the opto-electronic model
in the large spatial domain sketched in Fig. 2(b). Fortunately, the following inherent features of heat
generation and transport enable us to simplify the problem considerably. Most of the heat is generated
in the active layer or very close to it (Fig. 3). During a given time τ , it flows only into a finite region of
size l which is related to τ by the inverse thermal diffusivity,

τ

l2
≈ ch
κL
≈ 105 s/m2 ≈ 1 ns

(100 nm)2
. (17)

Thus, the generated heat during a 1 ns simulation interval is spread by only about 100 nm. This
distance is much smaller than transverse inhomogeneities of the heat source density, see Fig. 4. It is
also smaller than the vertical extension of the mode profile |φ(y)|2 as is visible in Fig. 12(a) and does
only marginally affect the thermally induced index (7). Heat flow is therefore negligible when simulating
short transients. Differentiating (7) with respect to time and inserting (14) with κL = 0, we find the
ordinary differential equation

∂∆nT
∂t

=

∫
n′T
ch
|φ(y)|2h(N,~j, ‖u‖2)dy (18)

for the thermally induced index. It is integrated much easier in each node of the spatial grid than the
original partial differential heat-flow equation (14).

Treatment of CW operation The extremely long thermal build up in the case of CW operation cannot
be calculated with the NHF approximation. But in the later quasi-steady state, the rate of heat gener-
ation can be decomposed in a time-constant mean contribution h̄ and a contribution hfluct = h − h̄
fluctuating around zero. h is the total instantaneous heat production (15). Accordingly, the heat-flow
equation (14) is split into

0 = ∇κL∇T̄ + h̄ and (19)

ch
∂Tfluct

∂t
= ∇κL∇Tfluct + hfluct (20)

with boundary conditions following from (16). The heat capacity ch and the heat conductivity κL may
vary in space but not in time. Obviously, the sum of the two temperatures obeys the full heat-flow
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equation (14). The time scale of the fluctuations hfluct = h − h̄ is typically in the sub-ns range.
Thus, equation (20) is solved with the NHF approximation (18) along a few-ns long simulation interval.
Treating the stationary equation (19) is more challenging because heat flow dominates and it must
be solved in the full domain of the vertical structure including submount and substrate, Fig. 2(b).
Furthermore, the mean heat production h̄(x, y, z) is not known in advance. Therefore, we apply an
iterative approach. In the first step of the iteration the electro-optic model is solved under isothermal
conditions with T = THS. During this run, we set h̄ = 0. In all following iterations, h̄ is taken as the
temporal average of the total heat production of the last part of the iteration before and the fluctuating
part inserted into (18) is hfluct. The iterations are repeated until the temperature and near-field intensity
distributions of consecutive iteration steps are sufficiently close to each other. A detailed description
of the numerical implementation is given in Ref. [4].

3 Application I: nature of filamentation

BA lasers typically show lateral modulations of the intensity as in the example of Fig.1a. In literature this
phenomenon is usually named filamentation in analogy to the filamentation of a beam in a medium with
a Kerr nonlinearity. We have evaluated this idea in more detail. Essentials are presented here, details
are found in Ref.[10]. We start with considering an ideal Kerr medium. The theoretical understanding
of beam breakup due to a modulation instability is summarized in subsection 3.1. Subsection 3.2
demonstrates that our software exactly reproduces this theory for a fictive Kerr medium. Unfortunately,
the Kerr coefficients of our semiconductor material are too small and have the wrong sign to cause
this effect. However, it has been argued that spatial hole burning (SHB) gives rise to an effective
Kerr coefficient of right sign and sufficient magnitude. We simulate a fictive Kerr medium with this
coefficient but do not find filamentation in subsection 3.3. Finally, in subsection 3.4, we show that the
lateral modulation of the intensity is governed by a finite number of transverse modes that carry the
lasing process.

3.1 Filamentation: elementary theory for homogeneous beams

Beam breakup can happen in a medium with a focusing Kerr nonlinearity as a consequence of the
growth of spatial irregularities initially present on the laser wavefront [12]. The elementary theory of this
modulation instability has been formulated in the sixties by Bespalov and Talanov [23]. A monochro-
matic spatially nearly homogeneous beam is injected into the medium at z = 0. Within our framework,
suppressing the superscript +, the governing equation for its further propagation following from Eq. (2)
is the Nonlinear Schrödinger Equation (NLS)[

∂

∂z
+

i

2n̄k0

∂2

∂x2

]
u(x, z) = −ik0n

′
2~ω0vgd‖u(x, z)‖2u(x, z), u(x, 0) = u0 + δu0(x), (21)

where δu0(x) is an infinitesimally small deviation from spatial homogeneity. Along a certain distance,
the solution can still be expressed as sum of a strong plane wave component and a small perturbation,

u(x, z) = (u0 + δu(x, z)) · e−iκz with κ = k0n
′
2~ω0vgd|u0|2 and δu(x, 0) = δu0(x). (22)

Linearizing Eq. (21) with respect to a small perturbation with lateral wavenumber q, one finds[12]

δu(x, z) = u1e
−i(qx+γz) + u∗−1e

i(qx+γ∗z) (23)
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with

γ = ± q

2n̄k0

√
q2 − 4n̄k2

0n
′
2~ωvgd‖u0‖2. (24)

Thus, long-wave perturbations with q < qcrit,

qcrit =
√

4n̄k2
0n
′
2~ωvgd‖u0‖2, (25)

will be amplified, which happens only for focussing Kerr media with positive real values of n′2. Fourier
components with different q possess different exponents γ, as an example see the black curve in Fig.
5(a). Those with the maximum imaginary part γmax = max(=m[γ]) at q = qopt grow fastest. They
will dominate after a certain path compared to other Fourier components. At this stage, the beam is
laterally modulated with a period Λopt = 2π/qopt. This is the elementary process of beam breakup in
a homogeneous medium.

3.2 Filamentation: simulation of finite width effects

BA lasers have waveguides of finite width W . Thus, laterally homogeneous beams cannot propagate
and the described elementary theory is not applicable. To circumvent this aspect, we consider here
waveguides with laterally periodic boundary conditions. The above theory is now applicable, only the
lateral wave vectors are limited to integer multiples of 2π/W . We consider an example with following
parameters: simulation domain W = 400 µm, power density ~ωvg|u0|2 = 100 W/µm2, and n′2 =
10−11 mW−1. This power density can be achieved under pulsed operation. The Kerr coefficient is
artificially large to demonstrate the effects. Its relation to the real world will be discussed at the end.

(a) prediction from Eq. (24) (b) forward field intensity (W/µm2) (c) field intensity at x1 = Λopt/2

Figure 5: Theoretical prediction and numerical experiment using the traveling wave simulation of the
forward field intensity while propagating in an isotropic nonlinear dielectric with average material Kerr
coefficient n′2 = 10−11 m/W and originally injected field intensity of ~ωvg‖u+

s00‖2 ≈ 100 Wµm−2

including small random perturbations δu+
s (x, z). (a) Theoretical prediction of Im(γ/γmax) as function

of the lateral period 2π/q, Eq. (24). The vertical dotted line indicates the shortest period Λcrit at which
instabilities occur. The vertical dashed line indicates the optimum period Λopt for perturbations to grow.
Red asterisks indicate allowed values for a total simulation domain of W = 400 µm. (b) Longitudinal-
lateral distribution of the forward field intensity. (c) Forward propagating field intensity at position x1 =
Λopt/2 and theoretical development of u+

s1e
−iγmaxz with a filament gain of γmax = (21 mm)−1.

For this model case Fig. 5(a) shows the dependence of Im(γ/γmax) on the period of the perturbation
2π/q. The allowed periods forW = 400 µm are shown as red asteriscs. Only three of them are above
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U. Bandelow et al. 10

the critical Λcrit = 94 µm. The expected distance between filaments is Λopt = 133 µm, which is one
third of the stripe width in the present case. The gain of these optimum filament embryos is γmax =
(21 mm)−1, which characterizes the necessary propagation distance for its possible observation.

Now we check whether our numerical model is in agreement with these predictions. The resulting
longitudinal-lateral field intensity distribution is visible in Fig. 5(b). Clear filaments with a spacing that
exactly corresponds to Λopt are observed. Furthermore Fig. 5(c) shows the field intensity at position
x1 = Λopt/2 together with the theoretical development of ~ωvg|u(x1, z)|2 according to Eq. (22). For
longitudinal distances z < 50 mm the theoretical estimation corresponds very well to the results of
the numerical traveling-wave model. However, the more the filament intensities grow, the more both
curves differ due to deviations from linearity.

For the focusing NLS (21) within infinite domain−∞ < x <∞ the general solution to this problem is
given by the class of Akhmediev Breathers [24]. This is a multi-parameter family of analytic solutions
to (21), where the free parameters can be used to adjust the period of the Akhmediev Breather, such
that the periodic situation here is covered by these solutions. In the extreme case where the period
tends to infinity we end up with the famous Peregrine soliton, which is a rational solution of (21) [25].

Concluding so far, our numerical traveling wave simulation describes very well the filamentation due
to a focussing Kerr nonlinearity. Unfortunately, the relevant material Kerr coefficients in our lasers are
negative and cannot be responsible for filamentation.

3.3 Filamentation due to spatial hole burning?

In semiconductor lasers an effective Kerr-nonlinearity can however be induced by spatial hole burning
due to the dependence of the refractive index on the carrier density [26]. Early results of simulations
based on a Maxwell-Bloch type dynamic traveling-wave model with a sophisticated treatment of carrier
kinetics supported this view [27]. For a hypothetical steady state the effective Kerr coefficient is [28, 19]

n′2 = −
[
αHg

′ + i(g′ − α′)
](j − jtr) g

′τ 2
N

2ek0~ω0d2
. (26)

The prime denotes derivative with respect to N at transparency. jtr = edNtr/τN , αH = 2k0∆n′N/g
′,

and τN are the transparency current density, Henry’s linewidth enhancement factor, and the recombi-
nation life time, respectively [19]. With the parameters of our devices[19], a typical current density j =
5 ·107 A/m2 and a field intensity of ~ωvg‖u+

s00‖2 ≈ 10 W µm−2 we get Real(n′2) = 3.6 ·10−6 m/W.
This is much larger than the fictive material coefficient used above in subsection 3.2. Thus it is not
surprising that the characteristic length scales of filamentation are much smaller, Fig. 6(a). The ex-
pected length of formation of filaments is only γ−1

max = 500 nm. The critical and optimum periods are
Λcrit = 0.5 µm and Λopt = 0.7 µm, respectively. Both values are further decreasing with current, Fig.
6(b). Accordingly we should expect a very effective formation of filaments.

To check these predictions, we perform with these parameters a similar numerical experiment as in
last subsection. Since length scales are smaller, we choose a width W = 20 µm. Using the ideal-
ized stationary Eq. (21) with the real part of the Kerr coefficient (26) yields the expected filamentation.
Surprizingly, no filamentation shows up when applying the full time-dependent equations (2 to 4). In-
stead, the injected beam propagates with constant intensity plus tiny ripples, Fig. 6(c). The expected
growth of filaments is suppressed mainly by two effects. First, the length scale of possible filaments
is much smaller than the diffusion length. Thus, diffusion washes out the carrier depletions. Second,
light is less amplified in a region with depleted carriers, and reversely outside of such regions. This
effect balances the intensities counteracting the filamentation. Irrespective of the details it can be con-
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(a) Im(γ/γmax) as function of 2π/q (b) Λcrit and Λopt as function of j (c) taveling-wave simulation

Figure 6: Theoretical prediction and numerical experiment using the traveling wave simulation of the
forward field intensity while propagating through a semiconductor slab waveguide with an equivalent
Kerr coefficient of n′2 = 3.6 · 10−6 m/W obtained for an injection current density of j = 5 · 107 A/m2.
An originally injected field intensity of ~ωvg‖u+

s00‖2 ≈ 10 Wµm−2 including small random perturba-
tions δu+

s (x, z) is assumed. (a) Filament gain Im(γ/γmax) as function of period 2π/q. Critical and
optimum period are indicated by vertical lines. Red asterisks indicate allowed values for a total simula-
tion domain of W = 4 µm. (b) Critical period Λcrit (black solid) and optimum period Λopt (red dashed)
as function of the injection current density j. (c) Traveling wave simulation of the forward field intensity
propagating though a semiconductor gain material with W=20 µm and an averaged carrier density of
N̄ = 3 · 1024 m−3 for which the modal gain is compensated for by the absorption (g(N̄) = α(N̄)).

cluded that filamentation of an injected beam by spatial hole burning does not occur in the waveguide
structures used for BA lasers.

3.4 The mode picture of dynamical filamentation

If not a Kerr-type filamentation, what else is the reason for the lateral structure of the intensity in a
BA laser as examplified in Fig. 1? We shall demonstrate that this behavior can be better understood
in terms of lateral modes [11]. We simulate a laser with the parameters of Ref. [11]) at an exemplary
constant pump current above threshold. After turn-on oscillations, the time traces of output power and
intensity profiles at the front facet behave as shown in Figs. 8(a) and (b). A highly dynamic behavior
is visible. In panel (b) lateral structures with different numbers of intensity peaks can be identified that
merge into each other over time. They can be interpreted as lateral modes that dominate during a finite
time until other modes take over. In order to explore this presumption, we perform a mode analysis.
To this purpose, the complex-valued field profile at the front facet, z = L, and a given instantaneous
time t is expanded in terms of the modes φm(x) of the Helmholtz equation for a hypothetical steady
state, [

k−2
0 ∂2/∂x2 + 〈neff(x)〉2t

]
φm(x) = n̂2

mφm(x), (27)

where x is the lateral coordinate, n̂m is the modal index being the complex-valued eigenvalue and
〈neff(x)〉2t = [n̄ + 〈∆neff(x)〉t]2 the time averaged effective index, which includes the same built-in
modifications of the effective index, carrier induced index contributions as well as gain and losses as
the traveling wave model and is calculated from the time averaged profiles of carrier density 〈N〉t and
field intensity 〈‖u‖2〉t. The imaginary and real parts of the eigenvalues of (27) are displayed in Fig. 7
where the ordinate is the modal gain gm = 2k0Im(n̂m) and the abscissa the real part of the modal
index relative to the real part of the index of the fundamental mode, ∆Re(n̂m) = Re(n̂m)− Re(n̂1).
For every time instance the complex optical field amplitude uout(x, t) emitted at the front facet can be

DOI 10.20347/WIAS.PREPRINT.2715 Berlin 2020



U. Bandelow et al. 12

expressed as a linear combination of the eigenfunctions φm of (27),

uout(x, t) =
∑
m

am(t)φm(x, t), am =

∫
φmuout dx∫
φmφm dx

. (28)

Figure 7: Complex eigenval-
ues of the Helmholtz equation
(27). Eigenvalues of modes
with a significant contribution
to the mode expansion (28)
are marked blue.

Figure 8: (a) Temporal evolution of the optical output power, (b)
pseudo-color mapping of the near-field intensity distribution (normal-
ized to maximum in every time step) and (c) similar mapping of the
relative modal coefficients. The vertical lines indicate stages where
either a high order mode or the fundamental mode dominates.

In Fig. 8(c) the relative magnitudes |am|2/
∑

m |am|2 of the modal coefficients are displayed versus
time as a pseudo-color mapping. Only the 10 modes with the highest gain have a significant contri-
bution to the field (marked blue in Fig. 7). We see that the strong dynamics of the emitted power and
near-field intensity (see panels (a) and (b)) is indeed a result of the alternate lasing of a finite number
of different lateral modes. At some time instances it can directly be traced back to the dynamic lateral
structure of the intensity. For example, at t = 16.2 ps (dotted vertical line), the near-field in panel
(b) has 9 maxima and accordingly the 9th mode has the highest contribution to the field, whereas at
t = 21.4 ps (dashed vertical line) the near-field has one maximum and accordingly the fundamental
mode has the highest contribution.

Thus, although no pre-assumptions were made regarding the optical field our result indicates that
in the BA lasers considered here a clear mode structure is visible which is neither destroyed by the
chaotic dynamics nor by longitudinal effects. Single mode emission becomes unstable above threshold
due to lateral spatial hole burning, because each mode saturates the carrier density according to its
profile, and consequently the modal gain in those parts of the active layer where the mode intensity is
high. The modal gain in other parts rises with current, bringing more modes to threshold, which can
be additionally supported by a built-in or thermally induced waveguide. Indeed, recent experiments
reveal, that even at currents several times above threshold the lateral modes can be clearly identified
by spectrally-resolved near and far-field measurements [29].

4 Application II: Short-pulse operation

First we study an exemplary 10 ns long pulse at an injection current of 150 A, by applying the NHF
approximation. The parameters used in the simulation are given in Ref[22]. The bias voltage U is
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suddenly turned on and kept constant until pulse end. During the pulse, the thermal index generation
rate under the stripe (equation (18)) is positive and strongly fluctuating around a mean value of about
50 ms−1 as shown in Fig. 9(a). The corresponding increase of the thermally induced index during the
pulse leads to a rise of the effective index below the stripe, whereas the effective index outside the
stripe remains approximately unchanged, as depicted by the solid black curves in Fig.10, panel (a)
and (b). As a consequence, a thermally induced lateral waveguide is formed under the stripe during
the pulse, as displayed in Fig. 10(b). In panels (c) and (d), the near field intensity at the front facet, and
the far-field intensity distribution are shown, averaged over 1 ns. The disappearance of side wings in
the near field and a change of the far-field intensity are visible.

Figure 9: Thermal impact on wave guiding for
a 10 ns long 150 A current pulse. (a) Ther-
mal index generation rate of equation (18)
during the last 200 ps. (b) Effective index
∆neff = ∆nN + ∆nT below (x = 0 µm)
and beside the stripe (x = 60 µm) at rear
and front facet, respectively. (c) Evolution of
the width containing 95% of the power of the
near and far fields, averaged over 1 ns.

In effect, a transition from a gain guiding to an index guiding situation occurs during the pulse. This
is indicated in Fig. 9, where panel (c) reveals that this transition is accompanied by a shrinking of the
widths w0 and Θ of the lateral near and far-fields containing 95 % of the power.

Figure 10: Thermal impact on wave guiding for a 10 ns long 150 A current pulse averaged over the
pulse within the time interval 1 to 2 ns and 9 to 10 ns (gray shaded in Fig. 9(b) and (c)). (a) & (b)
Lateral profiles of the effective index. (c) Near and (d) far-field intensities.

The described formation of an initial thermally induced waveguide is also detectable in the dependence
of time-averaged quantities on the pulse strength. Fig. 11(b) shows a shrinking of the near field width
and increased far field angle with increasing injection current (solid curve), compared to the case
without thermal wave-guiding (dashed). The mean pulse power, given by the total pulse energy divided
by the pulse length, as function of pulse current, in contrast, shows no dependence on wave-guiding
for currents up to 150 A, as shown in Fig. 11(a).2

The preceding results have been obtained neglecting heat flow. In order to check the validity of this
approximation, we have performed the following post processing. We solve the full heat-flow equation

2Note, that the neglected changes of parameters with temperature might have an additional influence.
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Figure 11: (a) Mean pulse power and (b) near
field width (black left axis) and far field angle
(red right axis) containing 95 % of the power
as function of mean pulse current. Solid
curves: with thermal wave-guiding. Dashed
curves: without thermal wave-guiding.

(14) where the fluctuating heat source density h at each position is replaced by its average along the
whole pulse. Moreover, we continue disregarding inplane heat flow and assume a vertically infinite
domain. This is justified because the extensions of lateral and longitudinal inhomogeneities in the
heat source densities (cf. Fig. 4) as well as the vertical size of the device are much larger than the
expected heat spreading, which is in the range of some hundred nanometers. Under these conditions,
the solution of (14) is

chT (y, t) =

∫ ∞
−∞

dξ h(y + ξ)

√
κL
ch
t w

(
chξ

2

4κLt

)
, w(q) =

{
√
q [erf(

√
q)− 1]+

e−q√
π

}
. (29)

With increasing time, this function deviates more and more from the heat-flow free temperature in-
crease h(y)t. Fig. 12(a) shows the situation in the stripe middle and at the pulse end. Here the verti-
cal distribution of the temperature increase is displayed on the left axis. Heat flow reduces the excess
temperature in the active layer from 60 K down to 5 K and smoothes the distribution considerably (solid
line compared to dashed line). However, to derive the thermally induced index the temperature has to
be weighted with the mode profile |φ(y)|2 shown in Fig. 12(a) on the right axis and integrated over the
whole profile. Thus, irrespective of the large temperature differences obtained with and without heat
flow, the thermally induced index differs only marginally between the two cases, Fig. 12(b). Thus, the
no-heat flow approximation is a reasonable approach to derive the thermal feedback on wave guiding
for pulses up to a length of 10 ns.

Figure 12: Impact of vertical heat flow. In all
cases h is averaged over the pulse. (a) Black
left axis: Vertical temperature distributions in
the middle of the stripe at the end of the
10 ns pulse with heat flow (HF - black solid)
derived from equation (29), and without heat
flow (NHF - black dashed). Red right axis:
Mode profile |φ(y)|2. (b) Thermally induced
index, eq. (7), versus time in the middle of
the stripe with heat flow (HF - black solid)
with T (y, t) from eq. (29), and without heat
flow (NHF - black dashed), eq. (18).
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5 Conclusion

High-power broad-area diode lasers (BALs) exhibit chaotic spatio-temporal dynamics above threshold.
Under high power operation heating effects, such as thermal lensing, play an important role. We have
proposed a physically realistic and yet numerically applicable thermal model, coupled to a dynamical
electro-optical (EO) model for the optical field and carrier dynamics along the quantum-well active
zone of the laser. The heat sources obtained with the dynamic EO-solver exhibit strong variations on
short time scales, which however have only a marginal impact on the temperature distribution. Two
limits have been considered: First, the static HT-problem, with time-averaged heat sources, which is
solved iteratively together with the EO solver. Second, under short pulse operation the thermally in-
duced index distribution can be obtained by neglecting heat flow. Although the temperature increase
is small, a waveguide is introduced here within a few-ns-long pulse, resulting in significant near field
narrowing. We have further shown that a beam propgating in a waveguide structure utilized for BA
lasers does not undergo filamentation due to spatial holeburning. This remains a high-dimensional
spatio-temporal phenomenon, that can not fully be explained by simplified models, such as the focus-
ing NLS. Moreover, our results indicate that in BALs a clear mode structure is visible which is neither
destroyed by the chaotic dynamics nor by longitudinal effects.
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