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Convergence bounds for empirical nonlinear least-squares
Martin Eigel, Philipp Trunschke, Reinhold Schneider

ABSTRACT. We consider best approximation problems in a nonlinear subset M of a Banach space

of functions (V, ‖ • ‖). The norm is assumed to be a generalization of the L2-norm for which only a

weighted Monte Carlo estimate ‖ • ‖n can be computed. The objective is to obtain an approximation

v ∈ M of an unknown function u ∈ V by minimizing the empirical norm ‖u − v‖n. In the case of

linear subspaces M it is well-known that such least squares approximations can become inaccurate

and unstable when the number of samples n is too close to the number of parameters m = dim(M).

We review this statement for general nonlinear subsets and establish error bounds for the empirical

best approximation error. Our results are based on a restricted isometry property (RIP) which holds

in probability and we show that n & m is sufficient for the RIP to be satisfied with high probability.

Several model classes are examined where analytical statements can be made about the RIP. Numerical

experiments illustrate some of the obtained stability bounds.

1. INTRODUCTION, SCOPE, CONTRIBUTIONS

We consider the problem of estimating an unknown function u from noiseless observations. For this
problem to be well-posed, some prior information about u has to be assumed, which often takes the
form of regularity assumptions. To make this notion more precise, we assume that u is an element of
some Banach space of functions (V, ‖ • ‖) that can be well approximated in a given (nonlinear) subset
M ⊆ V. The approximation error is measured in the norm

‖v‖ :=
(ˆ

Y

|v|2y dρ(y)
)1/2

where Y is some Borel subset of Rd, ρ is a probability measure on Y and | • |y is a y-dependent
seminorm for which the integral above is finite for all v ∈ V. This norm is a generalization of the
L2(Y , ρ)- and H1

0 (Y , ρ)-norms which are induced by the seminorms |v|2y = |v(y)|2 and |v|2y =
‖∇v(y)‖2

2, respectively.

We characterize the best approximation operator P implicitly by

Pu ∈ arg min
v∈M

‖u− v‖.

In general, this operator is not computable. We propose to approximate P by an estimator Pn that is
based on the weighted least-squares method which replaces the norm ‖v‖ by the empirical seminorm

‖v‖n :=
(

1
n

n∑
i=1

w(yi)|v|2yi

)1/2

for a given weight function w and a sample set {yi}ni=1 ⊆ Y with yi ∼ w−1ρ. The weight function
is a non-negative function w ≥ 0 such that

´
Y
w−1 dρ = 1. The corresponding empirical best

approximation operator Pn is characterized implicitly by

Pnu ∈ arg min
v∈M

‖u− v‖n. (1)
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Given this definition, we can choose w such that an optimal rate of convergence Pn → P is achieved
as n tends to∞. Note that changing the sampling measure from ρ to w−1ρ is a common strategy to
reduce the variance in Monte Carlo methods referred to as importance sampling.

Since ‖ • ‖ is not computable in general the best approximation error

‖(1− P )u‖ = min
v∈M
‖u− v‖

serves as a baseline for a numerical method founded on a finite set of samples. We prove in this paper
that the empirical best approximation error ‖(1− Pn)u‖ is equivalent to this error with high probability.

Main result. Let M ⊂ V be a model class and choose δ ∈ (0, 1). There exist positive constants
K = K(u,M) and ν = ν(u,M, δ) such that

‖(1− P )u‖ ≤ ‖(1− Pn)u‖ ≤
(

1 + 2
√

1 + δ√
1− δ

)
‖(1− P )u‖

holds with probability p ≥ 1− ν exp(−nδ2K).

To put this in a broader perspective, we propose a convergence theory based on the restricted
isometry property (RIP) as known from compressed sensing where only finite dimensional linear spaces
are considered. The RIP can be conceived as a generalization of stability conditions such as the
Ladyzhenskaya-Babuška-Brezzi (LBB) condition in finite element analysis. Our goal is an extension to
nonlinear approximations and this paper provides first results towards a more general theory which can
be used in particular in the context of low-rank tensor reconstruction as discussed in [1].

Our considerations are closely related to statistical learning as for instance presented in [2] and [3].
However, our samples can usually be actively generated and there is no intrinsic noise involved,
although this can be introduced if required. This setting allows for results which are qualitatively much
better than what can be achieved in learning theory.

Examples to which our theory applies are for instance finite dimensional vector spaces and sets
of sparse vectors, or low-rank tensors. We later examine some model classes for which analytical
statements regarding the RIP can be derived.

1.1. Structure. The remainder of the paper is organized as follows. In Section 1.2 we aim to provide a
brief overview of previous work. Based on the notion of the RIP Section 2 develops the central results
of this work. These are applied to some common model classes in Section 3. We begin by considering
linear spaces in Section 3.1 and illustrate how the choice of the seminorm influences the convergence.
Section 3.3 considers sets of sparse functions and Section 3.4 examines sets of low-rank functions.
The connection to empirical risk minimization (ERM) as scrutinized in our earlier work [1] is discussed
in Section 4. We conclude in Section 5 with a discussion of the derived results and an outlook on future
work.

1.2. Related work. In statistics Pnu is known as the nonlinear least squares estimator of u. The
extensive use of machine learning in recent years has lead to the investigation of this estimator for
special model classes like sparse vectors [4–6], low-rank tensors [1, 7, 8] and neural networks [9,
10]. However, to the knowledge of the authors no investigation for general model classes has been
published so far.
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Convergence bounds for empirical nonlinear least-squares 3

The empirical approximation problem (1) was thoroughly examined in [11] for linear model spaces. There
the model class M is assumed to be the m-dimensional subspace spanned by the orthonormal basis
functions {Bj}j∈[m] in V = L2(Y , ρ). One of the key points in this paper is that for estimating the error
of ‖(1−Pn)u‖ it suffices to ensure that ‖G−Im‖2 ≤ δ < 1 where G := 1

n

∑n
i=1w(yi)B(yi)B(yi)ᵀ

is the Monte Carlo estimate of the Gram matrix Im. This condition is in fact equivalent to the restricted
isometry property (RIP)

(1− δ)‖u‖2 ≤ ‖u‖2
n ≤ (1 + δ)‖u‖2 for u ∈ span(B). (2)

Cohen and Migliorati [11] prove that under suitable conditions the RIP (2) is satisfied with high probability.

Theorem 1.1. If KB,w := ess supy∈Y w(y)B(y)ᵀB(y) <∞ then

P[‖G− Im‖2 > δ] ≤ 2m exp
(
− cδn

KB,w

)

with cδ := δ + (1− δ) ln(1− δ).

The notion of a RIP was introduced in the context of compressed sensing [4]. It expresses the well-
posedness of the problem by ensuring that ‖ • ‖n is indeed a norm and thus a convergence of the
empirical norm implies a convergence in the real norm. In compressed sensing of sparse vectors [4,
5] and low-rank tensors [7] discrete analogues of the RIP (2) are employed to derive bounds for the
corresponding reconstruction errors. A recent work which generalizes the RIP from [11] to sparse grid
spaces is [12].

In this paper we extend the cited results to more general norms and nonlinear model sets by directly
bounding the probability of

RIPA(δ) :⇔ (1− δ)‖u‖2 ≤ ‖u‖2
n ≤ (1 + δ)‖u‖2 ∀u ∈ A.

We prove that this RIP holds with high probability and use it to provide quasi-optimality guarantees in
the considered function approximation setting.

In Remark 2.5 we note that RIPA(δ)⇔ RIPCone(A)(δ). This means that it suffices to consider conic
model sets. Optimizing over these sets is not straight-forward and [13] derive sufficient RIP constants
for exact recovery of conic model sets using a suitable regularizer.

2. MAIN RESULT

To measure the rate of convergence with which ‖v‖n approaches ‖v‖ as n tends to∞, we introduce
the variation constant

K(A) := sup
u∈A
‖u‖2

w,∞ with ‖v‖2
w,∞ := ess sup

y∈Y
w(y)|v|2y.

This constant constitutes a uniform upper bound of ‖v‖n for all realizations of the empirical norm
‖ • ‖n and all v ∈ A. We usually omit the dependence of K on the choice of w, | • |y and Y . When a
distinction between different choices of these parameters is necessary we add suitable subscripts to K .

Remark 2.1. The bias-variance trade-off is directly reflected in the definition of K . Enlarging the model
set A reduces the approximation error but at the same time increases the variation constant K and
thereby decreases the rate of convergence of the empirical norm on A.
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The constant K is a fundamental parameter in many concentration inequalities that are used to provide
bounds for the rate of convergence of the quadrature error.

Definition 2.2 (Quadrature Error). The quadrature error of the empirical norm ‖ • ‖2
n on the model set

A ⊆ V is defined by

EA := sup
u∈A
|‖u‖2 − ‖u‖2

n|.

This error is closely related to the RIP. In order to see this relation, we introduce a normalization operator
U .

Definition 2.3 (Normalization). The normalization operator acts on a set A by

U(A) := Cone(A) ∩ SV
1 (0) =

{
u
‖u‖ : u ∈ A\{0}

}
,

where Cone(A) := {αa : α ∈ (0,∞) ∧ a ∈ A} denotes the cone generated by A and
SV
r (c) := {v ∈ V : ‖x− c‖ = r} denotes the sphere of radius r and centre c in V.

With this definition the variation constant K(U(A)) can be seen as a generalization of the embed-
ding constant (A, ‖ • ‖) ↪→ (A, ‖ • ‖w,∞) to nonlinear sets and therefore as an analog of KB,w in
Theorem 1.1. Using the normalization operator the subsequent lemma follows almost immediately.

Lemma 2.4 (Equivalence of RIP and generalization error bound). For some set A,

RIPA(δ)⇔ EU(A) ≤ δ for δ > 0.

Proof. Note that ‖αu‖n = |α|‖u‖n for all u ∈ A and ‖u‖ = 1 for all u ∈ U(A). Therefore,

(1− δ)‖u‖2 ≤ ‖u‖2
n ≤ (1 + δ)‖u‖2 ∀u ∈ A

⇔ (1− δ) ≤
∥∥∥ u
‖u‖

∥∥∥2

n
≤ (1 + δ) ∀u ∈ A

⇔ −δ ≤ ‖u‖2
n − ‖u‖2 ≤ δ ∀u ∈ U(A),

which holds exactly if supu∈U(A)|‖u‖2 − ‖u‖2
n| ≤ δ. �

Remark 2.5. Lemma 2.4 implies that

RIPA(δ)⇔ RIPCone(A)(δ) for δ > 0,

and consequently also holds for unbounded A.

We introduce the notion of a covering number to provide a well-known bound for the quadrature error in
the following.

Definition 2.6 (Covering Number). The covering number ν‖ • ‖(A, ε) of a subsetA ⊆ V is the minimal
number of ‖ • ‖-open balls of radius ε needed to cover A.

Lemma 2.7. Let A ⊆ V and | • |y be such that K = K(U(A)) <∞. Then,

P[EU(A) ≥ δ] ≤ 2ν‖ • ‖w,∞

(
U(A), 1

8
δ√
K

)
exp

(
−n

2

(
δ
K

)2
)

for δ > 0.

The proof of this lemma can be found in Appendix A. With the preceding preparations we can derive a
central result:
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Theorem 2.8. Let A ⊆ V and | • |y be such that K = K(U(A)) <∞. Then,

P[RIPA(δ)] ≥ 1− 2ν‖ • ‖w,∞

(
U(A), 1

4
δ√
K

)
exp

(
−n

2

(
δ
K

)2
)

for δ > 0.

Proof. By Lemma 2.4 it suffices to bound the quadrature error on U(A). Lemma 2.7 provides a bound
for the probability of the converse event. �

Corollary 2.9 (Sample Complexity). Let M > 0 and A ⊆ V be a set with ν‖ • ‖w,∞(U(A), r) ≤
1
2r
−M . Let p be defined as in Theorem 2.8. Under the assumptions of Theorem 2.8 with K =

K(U(A)), at least

n = 2
(
M ln

(
4
√
K

δ

)
− ln(p)

)(
K

δ

)2

many samples are required to satisfy RIPA(δ) with a probability larger than 1− p.

Proof. To obtain RIPU(A)(δ) with a probability of at least 1− p it suffices that

p = 2ν(U(A), 1
4

δ√
K

) exp(−n
2

(
δ
K

)2
)

= exp
(
M ln

(
4
√
K
δ

)
− n

2

(
δ
K

)2
)

.

Equivalently,

ln p = M ln
(
4
√
K
δ

)
− n

2

(
δ
K

)2

⇔ n = 2(M ln
(
4
√
K
δ

)
− ln p)

(
K
δ

)2
. �

Linear spaces, sparse vectors and low-rank tensors all satisfy the requirements of this corollary with M
depending linearly on the number of parameters of the model [7, 9, 14]. The corollary states that in these
cases n ∈ O(MG) depends linearly on the number of parameters M with a factor G := ln(K)K2

representing the variation of ‖ • ‖n on M.

Remark 2.10. Corollary 2.9 shows that the variation constant K is of greater importance than the
covering number ν which enters the bound on the sample complexity only logarithmically.

Example 2.11 (K represents regularity and not dimension). One might think that the convergence
of ‖ • ‖n → ‖ • ‖ should only depend on the interior dimension of the model set M and not on the
dimension of the ambient space V. However, a counter-example can be constructed easily. A sphere-
filling rope is a closed differentiable curve γ : SR2

1 (0) → SR3

1 (0) together with a radius r > 0 such
that at every point γ has a distance of 2r to itself. An illustration of this is provided in Figure 1 and a
classification of such curves can be found in [15]. The set A := γ(SR2

1 (0)) is a smooth manifold of
dimension 1 but K(U(A)) approaches K(U(V)) when the radius r goes to zero.

We derive an estimate of the error due to the empirical evaluation of the projection which can be
obtained when a RIP is satisfied. Note that for the sake of a simpler notation we henceforth use
u+ M := {u}+ M with a single element u.

Theorem 2.12 (Empirical Projection Error). Assume that RIPPu−M(δ) holds. Then

‖(P − Pn)u‖ ≤ 2 1√
1− δ

‖(1− P )u‖w,∞.

DOI 10.20347/WIAS.PREPRINT.2714 Berlin 2020
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Figure 1. A sphere-filling rope (left) and its corresponding curve (right).

If in addition RIP{(1−P )u}(δ) is satisfied then

‖(P − Pn)u‖ ≤ 2
√

1 + δ

1− δ‖(1− P )u‖.

Proof. First observe that Pnu ∈M and therefore (P − Pn)u ∈ Pu−M. Consequently,

‖(P − Pn)u‖ ≤ 1√
1− δ

‖(P − Pn)u‖n

≤ 1√
1− δ

[‖(P − 1)u‖n + ‖(1− Pn)u‖n]

≤ 2 1√
1− δ

‖(1− P )u‖n,

where each inequality follows from RIPPu−M(δ), the triangle inequality and the definition of Pn,
respectively.

The first assertion holds since ‖v‖n ≤ ‖v‖n,∞ is satisfied for all v ∈ V and in particular for (1− P )u.
The second assertion follows by an application of RIP{(1−P )u}(δ). �

Remark 2.13. If u ∈M then ((1−P )u) ∈ −(Pu−M) and RIPPu−M(δ) implies RIP{(1−P )u}(δ).

Remark 2.14 (Reconstruction with Noise). Consider the randomly perturbed seminorm |v|y + ηy
where ηy is a centered random process satisfying the bound w(y)η2

y ≤ 1
4(1− δ)ε2 for some ε > 0

and δ ∈ (0, 1). This seminorm induces the perturbed empirical norm

‖v‖η,n :=
(

1
n

n∑
i=1

w(yi)(|v|yi + ηyi)2
)1/2

and the perturbed empirical best approximation operator

Pη,nu ∈ arg min
v∈M

‖u− v‖η,n.

DOI 10.20347/WIAS.PREPRINT.2714 Berlin 2020



Convergence bounds for empirical nonlinear least-squares 7

Assume that RIPPu−M(δ) holds. Then

‖(P − Pη,n)u‖ ≤ 2 1√
1− δ

‖(1− P )u‖w,∞ + ε.

If in addition RIP{(1−P )u}(δ) is satisfied then

‖(P − Pη,n)u‖ ≤ 2
√

1 + δ

1− δ‖(1− P )u‖+ ε.

Note that the projection error can be split into an approximation and an estimation error by the triangle
inequality. It immediately follows that

‖(1− Pn)u‖ ≤ ‖(1− P )u‖+ ‖(P − Pn)u‖

≤ (1 + 2
√

1 + δ√
1− δ

)‖(1− P )u‖.

Hence, under suitable assumptions the empirical projection is quasi optimal. Depending on the consid-
ered problem, the best approximation error ‖(1− P )u‖ is usually covered by results in functional and
numerical analysis.

Remark 2.15 (Deterministic Samples). Theorem 2.12 is also valid for deterministic instead of random
samples, e.g. determined by some quadrature formula. In this case, it has to be verified that the chosen
sample set satisfies the RIP.

Remark 2.16 (Error Equilibration). In an adaptive scheme the estimation error ‖(P − Pn)u‖ only has
to be minimized to the same extent as the approximation error ‖(1 − P )u‖ in order to equilibrate
error contributions. Corollary 2.9 implies that it suffices to use a fixed δ < 1 and raise the number
of samples n only to increase the probability of the RIP. In [11] the empirical Gramian could be
used to verify this RIP for a given sample set. In the nonlinear setting this is no longer possible. To
obtain an indicator for the convergence of our method we make the following considerations. Define
A := (Pu−M)∪{(1−P )u}, en := ‖(1−Pn)u‖ and e := ‖(1−P )u‖. Observe that for δ ≤ 1√

2

1 + δ ≤
√

1 + δ

1− δ ≤ 1 + 2δ.

Combining the second inequality with Theorem 2.12 leads to

RIPA(δ)⇒ en ≤
(

1 + 2
√

1+δ
1−δ

)
e ≤ (1 + 2(1 + 2δ))e

⇒ en ≤ (3 + 4δ)e.

Therefore,

P[RIPA(δ)] ≤ P[en ≤ (3 + 4δ)e]. (3)

By Theorem 2.8 there exist c and ν(δ) such that

1− ν(δ) exp(−cnδ2) ≤ P[RIPA(δ)].

Combining this with (3) yields

1− ν(δ) exp(−cnδ2) ≤ P[en ≤ (3 + 4δ)e] =: p(δ).

Since p(δ) is increasing in δ we can define an inverse δ(p) in the sense of the quantile function and
rearrange the last equation as

− ln(1− p) ≥ cnδ(p)2 − ln(ν(δ(p))).

DOI 10.20347/WIAS.PREPRINT.2714 Berlin 2020
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Both δ(p) and − ln(ν(δ(p))) ≤ 0 are increasing. This means that for large p the second term in the
above sum becomes negligible, yielding

δ(p) . n−1/2

and consequently

en . (1 + n−1/2)e.

Thus, in this regime, we obtain the classical Monte Carlo convergence rate of O(n−1/2). Conversely,
we can use this rate as an indicator for equivalence of the estimation error and the approximation error.
When O(n−1/2)-convergence is observed, equivalence is assumed and additional sampling can be
deemed unnecessary. This behaviour is illustrated in Figure 2.

This also highlights that the model class only influences the rate with which the RIP is satisfied. As
soon as the RIP holds, any further convergence of the error only achieves the slow Monte Carlo rate.

Figure 2. Depicted is the error of an empirical approximation in the model space M

of polynomials of degree less than 20 (i.e. M = 20) in relation to n. The hatched area
on the left marks a range of n where the approximation problem is underdetermined
and any error can be reached. When n ≥ m the approximation problem has a
unique solution in the least squares sense. From this point until the gray and dashed
line an exponential decay of the error can be observed. This decay results from the
exponentially fast convergence of the probability for the RIP w.r.t. n. From there on
the RIP holds with a high probability and the error decays with a rate of n−1. This
faster decay can be explained as a pre-asymptotic phenomenon by using Bernstein’s
inequality instead of Hoeffding’s inequality in the proof of Theorem 2.8.

DOI 10.20347/WIAS.PREPRINT.2714 Berlin 2020
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3. EXAMPLES AND NUMERICAL ILLUSTRATIONS

In this section, we examine some exemplary model spaces to which the developed theory can be
applied. More specifically, we consider linear spaces, sparse vectors and tensors of fixed rank. The
following theorem is central to the further considerations.

Theorem 3.1. Let the ambient vector space V be separable andA ⊆ V. Then the pointwise supremum
b̂(y) := supv∈A|v|2y with respect to y ∈ Y is measurable and

K(A) = ‖wb̂‖L∞(Y ,ρ).

With this, an optimal (a priori) weight function is given by w = ‖b̂‖L1(Y ,ρ)b̂
−1.

Proof. See Appendix B. �

This Theorem allows to analyse the seminorm and the model class independently from the choice of
weight function which can be chosen optimally when these first two parameters are fixed.

3.1. Linear Operators and Energy Spaces. Let H ⊆ V be a subspace on which the seminorm
takes the form |u|y := ‖Lyu‖2 for m ∈ N and a family of bounded y-dependent linear operators
Ly ∈ L(H,Rm). For elliptic differential operators A = LTy Ly, e.g. with Ly := ∇ and the Laplacian
∆ = LTL, this results in a corresponding Dirichlet energy. Then, for all u ∈ H,

|u|2y = ‖Lyu‖2
2 ≤ ‖Ly‖2

L(H,Rm)‖u‖2
H.

This is a generalization of the concept of a reproducing kernel Hilbert space (RKHS) and implies that
for any A ⊆ H

b̂(y) = κ(y)KH(U(A)),
with κ(y) := ‖Ly‖2

L(H,Rm) and KH(U(A)) := supu∈A
‖u‖2

H

‖u‖2 . This decouples the choice of the

seminorm represented by the factor κ and the choice of the model class represented by the factor KH.

Remark 3.2. In this setting the application of Theorem 2.12 leads to

‖(1− Pn)u‖ . ‖(1− P )u‖w,∞ ≤ ‖wκ‖L∞(Y )‖(1− P )u‖H
whenever RIPPu+M(δ) holds.

Example 3.3. Let Vm ⊆ V := L2(Y , ρ) be them-dimensional linear subspace spanned by the contin-
uous orthonormal basis {Bj}j∈[m]. This is a RKHS with reproducing kernel k(x, y) := Bᵀ(x)B(y).
It is well known that κ(y) = k(y, y) and thus

K(U(Vm)) = ess sup
y∈Rd

w(y)Bᵀ(y)B(y) = KB,w.

According to Theorem 3.1, the optimal choice w(y) := m(Bᵀ(y)B(y))−1 leads to K(U(Vm)) = m.
This was also observed in [11].

Using the fact that ‖v‖w,∞ ≤
√
K‖v‖ and therefore

ν‖ • ‖w,∞(U(Vm), r) ≤ ν‖ • ‖

(
U(Vm), r√

K

)
≤
(

2
√
mK

r

)m
,

we can bound the sample complexity of this model class by Corollary 2.9. This bound is similar to (but
slightly weaker than) the bound provided in [11].

DOI 10.20347/WIAS.PREPRINT.2714 Berlin 2020
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Figure 3. The upper bound κmλm for the variation constant. The optimal m is marked
in red.

Example 3.4. Spaces with higher regularity can be endowed with stronger norms which may lead to a
lower sample complexity. To see this let, Y be a Lipschitz domain in Rd and V := Hm(Y ). Assume
M ≥ m + d

2 and A ⊆ H := HM(Y ). When m increases the seminorm captures more of the
regularity of H and the constant

λm := KH(U(A)) = sup
u∈A

‖u‖2
HM (Y )

‖u‖2
Hm(Y )

decreases. Increasing m however also increases the complexity of the seminorm and consequently the
value of

κ(y) ≤ κm := (2
√
π)−d

Γ(M + 1)Γ(M −m− d
2)

Γ(M −m) .

A proof of this inequality is provided in Appendix C. In practice we therefore need to find a value of m
where both effects are equilibrated. This is illustrated in Figure 3. We conclude that an approximation
with respect to the H1-norm converges faster than an approximation with respect to the L2-norm which
is illustrated numerically in Figure 4.

Note also that the minimization with respect to the Hk(Y , ρ)-norm does not necessarily require more
computational effort than the minimization with respect to the L2(Y , ρ)-norm. The values of both
seminorms can be computed with a single evaluation of the Fourier transform Fu of u.

Remark 3.5. For V = L2([−1, 1], dx
2 ;C) consider the Fourier basis. This is an orthonormal basis for

which the basis functions are bounded by 1 almost everywhere. This implies that the variation constant
in V is 1. Other bases that satisfy these simultaneous orthogonality and boundedness conditions are
investigated in [16].

3.2. Sets of smooth functions. In this section we provide a bound for functions with high regularity
following the ideas in [17]. For Y = [0, 1]d and V := L2(Y , dy), we consider the class of µ-smooth
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(a) Least squares, L2 (b) Least squares, H1

Figure 4. Overlaid least squares approximations of the function f(x) = 1
1+25x2 (red)

by Legendre polynomials of degree 29. Different approximations correspond to different
random draws of n = 40 sampling points from the uniform measure on [−1, 1].

functions

Sµ := {v ∈ V : lim
m→∞

|v|1/mm ≤ µ}, µ > 0,

where the Hm-seminorm is defined as

|v|m :=

√√√√ d∑
k=1

∥∥∥∥∥∂mv∂ymk

∥∥∥∥∥
2

.

In the following we assume w ≡ 1. This implies ‖v‖w,∞ = ‖v‖L∞(Y , dy).

Lemma 3.6. It holds that

� Sµ ⊆ Sν for µ ≤ ν,
� Sµ = −Sµ,
� Sµ + Sν ⊆ Smax{µ,ν} and
� ‖v‖w,∞ ≤ cY max{1,µd/2}‖v‖ for all v ∈ Sµ.

Proof. The first two properties are trivial. To prove the third, consider vµ ∈ Sµ and vν ∈ Sν and
observe that

|vµ + vν |m ≤ |vµ|m + |vν |m ≤ 2 max{|vµ|m, |vν |m}.

Consequently,

lim
m→∞

|vµ + vν |1/mm ≤
(

lim
m→∞

21/m
)
·
(

lim sup
m→∞

max{|vµ|1/mm , |vν |1/mm }
)

≤ max{lim sup
m→∞

|vµ|1/mm , lim sup
m→∞

|vν |1/mm }

≤ max{µ, ν}.
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To prove the last property we consider v ∈ Sµ and use the Gagliardo-Nirenberg interpolation inequality
(cf. [17])

‖v‖w,∞ ≤ cYm
[
|v|2m + ‖v‖2

]d/4m
‖v‖1−d/2m.

Taking the limit m→∞ results in the estimate

‖v‖w,∞ ≤
(

lim
m→∞

cYm

)
·
(

lim
m→∞

[|v|2m + ‖v‖2]d/4m
)
·
(

lim
m→∞

‖v‖1−d/2m
)

≤ cY ·
(

lim
m→∞

(
2 max{|v|2m, ‖v‖2}

)d/4m)
· ‖v‖

≤ cY ·max
{

1,µd/2
}
· ‖v‖,

where cY is defined as cY := limm→∞ c
Y
m. �

Lemma 3.7. K(U(Sµ)) ≤
(
cY max{1,µd/2}

)2
.

Proof. This follows directly from Lemma 3.6. �

3.3. Sets of sparse functions. In this section we follow the ideas of [6] and consider spaces with
weighted sparsity constraints. For any sequence ω ∈ RN

≥0 and any subset S ⊆ N, define a weighted
cardinality and a weighted `0-seminorm by

ω(S) :=
∑
j∈S

ω2
j and ‖v‖ω,0 := ω(supp(v)).

Observe that ωj � ω̃j implies ω(S) ≤ ω̃(S) and that ω(S) = |S| for ω ≡ 1. This warrants the
names cardinality and `0-seminorm.

Let {Bj}j∈N be a fixed orthonormal basis for V := L2(Y , ρ) and fix a weight function w. For any
sequence ω with ωj ≥ ‖Bj‖w,∞ we define the model set

Mω,s := {v ∈ V : ‖v‖ω,0 ≤ s},

where v denotes the coefficient vector of v ∈ V with respect to the basis {Bj}j∈N.

Lemma 3.8. It holds that

� Mω,s ⊆Mω,t for s ≤ t,
� Mω,s = −Mω,s,
� Mω,s + Mω,t ⊆Mω,s+t and
� ‖v‖w,∞ ≤

√
s‖v‖ for all v ∈Mω,s.

Proof. The first three assertions are trivial. To prove the last one let v ∈ Mω,s. Using the triangle
inequality and ωj ≥ ‖Bj‖w,∞, we obtain

‖v‖w,∞ ≤
∞∑
j=1
|vj|‖Bj(y)‖w,∞ ≤

∞∑
j=1
|vj|ωj =

∑
j∈supp(v)

|vj|ωj.

The Cauchy-Schwarz inequality, ‖v‖ω,0 ≤ s and the orthonormality of B yield

≤ ‖v‖2

√ ∑
j∈supp(v)

ω2
j = ‖v‖2

√
‖v‖ω,0 ≤ ‖v‖

√
s.

�

Lemma 3.9. K(U(Mω,s)) ≤ s.
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Proof. This follows directly from Lemma 3.8. �

Remark 3.10. The constant sequence ω ≡ ωmax := maxj∈[m]‖Bj‖w,∞ represents the set Mω,s =
M1,bs/ωmaxc of b s

ωmax
c-sparse functions. When the chosen basis is a tensor product basis Bj :=

Bj1 ⊗ · · · ⊗Bjd this means that

s ≥ max
j∈[m]d

‖Bj‖w,∞ =
(

max
j∈[m]
‖Bj‖w,∞

)d
grows exponentially with the dimension. This is a drawback of the standard definition of sparsity.

Lemma 3.11. Let Vm be an m-dimensional subspace spanned by a subset of {Bj}j∈N. Then

ν‖ • ‖w,∞(U(Mω,s ∩ Vm), r) .
(
m
r
√
s

)s
.

Proof. We show that

ν‖ • ‖w,∞(U(Mω,s ∩ Vm), r) ≤ ν‖ • ‖

(
U(Mω,s ∩ Vm), r√

2s

)
.
(
m
r
√
s

)s
.

For the first step, let {vj} be the centers of a ‖ • ‖-covering of U(Mω,s ∩ Vm) with radius r√
2s . Thus,

for any v ∈ U(Mω,s ∩ Vm) there exists vj such that ‖v − vj‖ ≤ r√
2s . Since v − vj ∈Mω,2s and by

Lemma 3.8,
‖v − vj‖w,∞ ≤

√
2s‖v − vj‖L2 ≤ r.

This implies that {vj} are also the centers of an ‖ • ‖w,∞-covering with radius r.

For the second step, observe that Mω,s ⊆ M1,s = M1,bsc. Since (Vm, ‖ • ‖) ' (Rm, ‖ • ‖2) it
remains to compute the covering number for the unit sphere of bsc-sparse vectors in Rm. A bound for
this is given in [14] by

ν‖ • ‖2

(
SRm

1 (0) ∩M1,bsc,
r√
2s

)
.

(
d
√
s

rbsc

)bsc
≤
(

d

r
√
s

)s
.

�

Theorem 3.12. Let Vm be an m-dimensional subspace spanned by a subset of {Bj}j∈N. Then,

P[¬RIPMω,s∩Vm(δ)] . exp
(
s ln

(
m
δ

)
− n

2

(
δ
s

)2
)

.

Proof. The assertion follows directly from Theorem 2.8 together with Lemmas 3.9 and 3.11. �

If the sequence ω is increasing, the intersection Mω,s ∩ Vm required in Theorem 3.12 occurs naturally
since Mω,s must be contained in the finite-dimensional linear space

Vm := span{Bj : ω2
j ≤ s}.

In this way the choice of ω influences the sample complexity by controlling the growth of the dimension
of Vm. Using the basis of Legendre polynomials and ωj := ‖Bj‖L∞([−1,1]) =

√
2j + 1 for example

leads to m = s. For some choices of ω the admissible indices form sets like hyperbolic crosses that
are well-known in approximation theory [6, Section 1.7]. If the sequence is chosen appropriately, the
dimension of Vm may even be independent from the spatial dimension d [18, Remark 5.5].

If the sequence is non-increasing then Vm as defined above may not be finite-dimensional. In this case
however the covering number of Mω,s is infinite as well. Therefore, the intersection with an artificially
chosen finite dimensional Vm is necessary.
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Lemma 3.13. Let Vm be an m-dimensional subspace spanned by a subset of {Bj}j∈N and consider
the model set Mω,s ∩ Vm. Then

b̂(x) ≤ s
‖Ω−1B(x)‖4

2
‖Ω−1B(x)‖2

1
with Ω := diag(ω).

Proof. Observe that by the Cauchy-Schwarz inequality

‖Ωv‖1 =
∑

j∈supp(v)
|vj|ωj ≤ ‖v‖ω,0‖v‖2.

Defining the model set

M := {v ∈ Vm : ‖Ωv‖1 ≤
√
s‖v‖2}

we have the inclusion Mω,s ∩ Vm ⊆M. Since we know that b̂ for Mω,s ∩ Vm is bounded by b̂ for M,
we derive an estimate for the larger set.

Recall that

b̂(x) := sup
v∈M

vᵀG(x)v
‖v‖2

2
with G(x) := B(x)B(x)ᵀ.

Since ‖v‖−1
2 ≤

√
s‖Ωv‖−1

1 for all v ∈M, we derive the bound

b̂(x) ≤ s sup
v∈M

vᵀG(x)v
‖Ωv‖2

1
≤ s sup

v∈Rm
w=Ωv

wᵀΩ−1G(x)Ω−1w
‖w‖2

1
= s
‖Ω−1B(x)‖4

2
‖Ω−1B(x)‖2

1
.

�

According to Theorem 3.1 the sampling density and weight function can be chosen optimally for every
given model set. For Mω,s however, this role is reversed. The model set Mω,s depends implicitly on
the weight function and changing w may change the set. When w is replaced by wnew the weight
sequence ω might need to be adapted to ensure ωnew

j ≥ ‖Bj‖wnew,∞. This restricts the model
class on indices where ωj ≤ ‖Bj‖wnew,∞ but it may allow us to broaden the class for indices where
‖Bj‖wnew,∞ ≤ ‖Bj‖w,∞. This is illustrated in Figure 5. However, the simplest way to ensure this
is by scaling ω uniformly by a constant. Independent from the dependence on the model class this
reweighting results in a superior sampling density which is illustrated in Figure 6.

Remark 3.14. Theorem 3.12 states a sample complexity of

n & s2(s ln(m)− s ln(δ)− ln(1− p))δ−2,

which depends only logarithmically on the ambient dimension. The result can be compared with
Theorem 5.2 in [6] where

n & smax{ln3(s) ln(m), ln(p−1)}δ−2

or Theorems 4.4 and 8.4 in [19] where

n & smax{ln2(s) ln(m) ln(n), ln(p−1)}δ−2 max
j∈[m]
‖Bj‖2

w,∞.

This shows that our bound is qualitatively similar to specialized bounds for this model class even though
the developed approach is more general.

The theory presented in this subsection can be generalized easily to dictionary learning. This is stated
without proof in the following theorem.
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Convergence bounds for empirical nonlinear least-squares 15

Figure 5. The weight sequences for the original weight function are bounded by
ωj ≥ ‖Bj‖L∞ (black). The weight sequences for the new weight function are bounded
by ωnew

j ≥ ‖Bj‖wnew,∞ (red).

Theorem 3.15. Assume that {Bj}j∈N is a Riesz sequence satisfying

c‖v‖2
2 ≤

∥∥∥∥∥∥
∑
j∈N

vjBj

∥∥∥∥∥∥
2

≤ C‖v‖2
2

and redefine the model class

Mω,s := {v ∈ V : ∃v : v =
∞∑
j=1

vjBj ∧ ‖v‖ω,0 ≤ s}.

Let moreover Vm be an m-dimensional subspace spanned by a subset of {Bj}j∈N. Then it holds that

� Mω,s ⊆Mω,t for s ≤ t,
� Mω,s = −Mω,s,
� Mω,s + Mω,t ⊆Mω,s+t,

� ‖v‖w,∞ ≤
√
s
c
‖v‖ for all v ∈Mω,s and

� ν‖ • ‖w,∞(U(Mω,s ∩ Vm), r) .
(
Cm
r
√
s

)s
.

�

3.4. Tensors of rank r. For M ∈ N consider V := (L2(Y , ρ))⊗M and define the m-dimensional
subspace Vm ⊆ L2(Y , ρ) spanned by the orthonormal basis functions {Bj}j∈[m]. The tensor product
space V⊗Mm ⊆ V is isomorphic to the space of coefficient tensors

V⊗Mm ' (Rm)⊗M .

Due to the exponential scaling of the dimension mM with respect to M , this space is infeasible for
numerical computations. It has proven useful in applications to restrict the model class to functions
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(a) Exact inversion (b) Least squares (c) `1, uniform ω

(d) `1, original ω
(e) Reweighted `1, original ω (f) Reweighted `1, minimal ω

Figure 6. Overlaid interpolations of the function f(x) = 1
1+25x2 (red) by Legendre

polynomials using various reconstruction methods. Different interpolations correspond
to different random draws of n = 30 sampling points. The subfigures 6a and 6b
show least squares estimates of the coefficients of the first 30 and 15 basis functions
respectively. 6c displays the results of unweighted `1-minimization and 6d displays
the results of weighted `1-minimization using the weight sequence ωj = ‖Bj‖L∞ .
In all aforementioned cases the sampling points are drawn according to the uniform
measure on [−1, 1]. The subplots 6f and 6e use samples that are drawn according to
the optimal sampling density as given in Lemma 3.13. 6e uses the original sequence
ωj = ‖Bj‖L∞ while 6f uses the minimal possible weight sequence ωj = ‖Bj‖w,∞ .
‖Bj‖L∞ .

v ∈ V⊗Mm for which the corresponding coefficient tensors v ∈ (Rm)⊗M exhibit a small rank. Define
the set of tensors of CP-rank r [20] recursively as

T1 := {v ∈ V : v = v1 ⊗ · · · ⊗ vM with v1, . . . , vM ∈ Rm},
Tr+1 := Tr + T1.

We compute the variation constant for this decomposition in the subsequent theorem. Note that the
statement of this theorem is not constrained to the constant weight functions w ≡ 1 and the class of
canonical tensor decompositions Tr. In fact, it holds for any weight function w ∈ T1 and for any class of
tensor decompositions M that satisfies T1 ⊆M. This includes all tree-shaped tensor formats including
the Tucker format, the tensor-train (TT) format and general hierarchical tensor formats [21–23].
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Theorem 3.16. Assume that w ≡ 1. Then

K(U(Tr)) = K(U(Vm))M = K(U(V⊗Mm )).

Proof. We first prove the second equality. For this recall that {Bj}j∈[m] is an orthonormal basis for Vm
and define the orthonormal tensor product basis

B⊗Mα (y) =
M∏
j=1

Bαj(yj).

Using Example 3.3 we derive

K(U(V⊗Mm )) = KB⊗M ,w = ess sup
y∈YM

∑
α∈[m]M

B⊗Mα (y)2

= ess sup
y∈YM

∑
α∈[m]M

M∏
j=1

Bαj(yj)2

= ess sup
y∈YM

M∏
j=1

∑
αj∈[m]

Bαj(yj)2

=
M∏
j=1

ess sup
yj∈Y

∑
αj∈[m]

Bαj(yj)2

= K(U(Vm))M .

To prove the first equality, observe that Tr ⊆ Tr+1 and TmM = V⊗Mm and consequently K(U(T1)) ≤
K(U(Tr)) ≤ K(U(V⊗Mm )). The assertion now follows directly from the definition of K(U(T1)) by

K(U(T1)) = sup
uj∈Vm
‖uj‖=1

ess sup
yj∈Y

d∏
j=1
|uj(yj)|2 =

d∏
j=1

K(U(Vm)) = K(U(Vm))M .

�

We cannot expect better results for such a general class of functions. Without additional regularity as-
sumptions, every factor of a rank-1 tensor product can become arbitrarily large. This can be condensed
into the statement that regularity may induce low-rank structure but low-rank structure does not provide
regularity, cf. [24]. We are not aware of better estimates of the variation constant in this setting and
would like to point out the L∞ estimates in [17].

Despite this unfavourable result, the present theory notably can be used in this setting. Corollary 2.9
can be applied by utilizing the bound ‖ • ‖w,∞ ≤

√
K‖ • ‖ together with the isometry ‖ • ‖ = ‖ • ‖2

and bounds for the covering number of low-rank tensor formats, see e.g. [7]. To the knowledge of
the authors this is the first estimate for the sample complexity of this function class in the setting of
continuous approximation.

4. CONNECTION WITH EMPIRICAL RISK MINIMISATION

In empirical risk minimisation (ERM) as considered in [1], an empirical risk functional

Jn(v) := 1
n

n∑
i=1

`(v, yi) ≈ EY [`(v,Y )] =: J(v)
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is minimised. Define the minimizers

v∗ := arg min
v∈V

J(v), v∗M := arg min
v∈M

J(v), v∗M,n := arg min
v∈M

Jn(v).

If M is bounded, J is Lipschitz continuous on M as well as Lipschitz smooth1 and strongly convex on
V, it is shown in [1] that the empirical optimum is quasi-optimal with high probability, i.e.2

‖v∗ − v∗M,n‖ . ‖(1− P )v∗‖.

Using RIPPv∗−M(δ) and RIP{(1−P )v∗}(δ), we can employ Theorem 2.12 to derive similar estimate
under weaker assumptions.

First, assume that Jn is Lipschitz smooth and strongly convex on V and that v∗ ∈ arg minv∈V Jn(v).
Then, for all v ∈ V

‖v − v∗‖2
n

(4a)
. Jn(v)− Jn(v∗)

(4b)
. ‖v − v∗‖2

n.

Here, (4a) comes from strong convexity and (4b) from Lispschitz smoothness. By the triangle inequality
and RIPPv∗−M,

‖v∗M,n − v∗‖2 . ‖v∗M,n − Pv∗‖2 + ‖(P − 1)v∗‖2

. ‖v∗M,n − Pv∗‖2
n + ‖(P − 1)v∗‖2

Another triangle inequality and (4a) yield

‖v∗M,n − Pv∗‖2
n . ‖v∗M,n − v∗‖2

n + ‖(1− P )v∗‖2
n

. Jn(v∗M,n)− Jn(v∗) + ‖(P − 1)v∗‖2
n.

Recalling the definition of v∗M,n and using (4b) leads to

Jn(v∗M,n)− Jn(v∗) ≤ Jn(Pv∗)− Jn(v∗)
. ‖(P − 1)v∗‖2

n.

Using RIP{(1−P )v∗} and combining the preceding estimates, we obtain

‖v∗ − v∗M,n‖ . ‖(1− P )v∗‖.

Second, assume that J is Lipschitz smooth and strongly convex on V. Then, for all v ∈ V

‖v − v∗‖2
(4a)
. J(v)− J(v∗)

(4b)
. ‖v − v∗‖2.

Using (4b), RIPPv∗−M(δ) and RIP{(1−P )v∗}(δ) with Theorem 2.12 yields

J(Pnv∗)− J(v∗) . ‖(Pn − 1)v∗‖2

. ‖(P − 1)v∗‖2.

Then, with the definition of v∗M and (4a), we obtain

J(Pnv∗)− J(v∗) . ‖v∗M − v∗‖2

. J(v∗M)− J(v∗).

1i.e. its gradient is Lipschitz continuous
2Note that we hide multiplicative constants in “.”.
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This means that we can approximate v∗ in two ways: either by minimizing the norm ‖v∗ − • ‖ or by
minimizing a more general cost functional J. In both cases, we obtain a quasi-optimal bound.

Remark 4.1. In the age of artificial neural networks, least-squares methods are used with nonlinear
model classes or replaced by the more general empirical risk minimization (ERM). When the model
class is bounded, the ERM approach allows for a similar convergence bound as least squares methods
which for instance was recently analysed and demonstrated in [1]. The probability of this bound however
decreases exponentially with the best approximation error ‖(1− P )u‖ and vanishes when the best
approximation error is zero.

5. DISCUSSION

In Section 2 we derive error bounds for the empirical approximation (1) by utilizing a restricted isometry
property (RIP) that is defined for general (nonlinear) model classes. When the number of samples is
sufficiently large, this RIP holds with high probability and the resulting approximation is quasi-optimal.
The required number of samples depends mainly on the variation constant K of the model class and at
most linearly on the ambient dimension. With respect to the number of samples we observe exponential
convergence of the expected error until the RIP is satisfied almost surely. After that the convergence
transitions to a (sub-)linear rate.

In Sections 3.1 and 3.3 we apply our central theory developed in Section 2 to the model classes of linear
function spaces and sets of functions with sparse representation. For both cases we derive results that
are qualitatively similar to known specialized results for the respective model classes. We assume that
these bounds can be tightened by using more advanced techniques (cf. [25, 26]) but expect the bounds
to improve by a polynomial factor at most. Moreover, we investigate improved convergence rates of the
empirical approximation when stronger norms are used. By bounding the variation constant on subsets
of Sobolev spaces, we provide a theoretical reasoning for this effect.

In Section 3.4 we derive the first bound on the sample complexity of low-rank tensors in the setting of
nonlinear least squares. We however also observe that the variation constant of this model set is equal
to that of the ambient space and that additional regularity assumptions are advisable when optimizing
in this class. As an example, we refer to [27] where the authors allow only local interactions of the
component tensors in the model class of TT tensors.

The fact that this model class has such an unfavorable variation constant is especially surprising
since one goal of this work has been to reconcile observations from the very promising experiments
in [1] with the theory presented therein. In [1] we reconstructed a function u mapping from RM to a
Hilbert space X and observed that the numerical convergence significantly exceeded the theoretical
predictions. A low-rank tensor ansatz similar to the one described in Section 3.4 was employed. The
basis was constituted of tensorized Hermite polynomials and the samples were drawn according to
the standard Gaussian measure. Under these conditions, the present theory predicts the RIP to fail
almost certainly. Nevertheless, the observed convergence rate was much higher than the Monte Carlo
rate which is most certainly due to the regularity of the approximated function u. We expect that this is
because Theorem 2.12 requires the RIP to hold for the shifted model class u−M where the additional
regularity of u may reduce the variation constant. Figure 7 illustrates this behaviour. The model class
used for all three experiments is the same and only the regularity of the function varies. Event though
the best approximation error in all three cases is bounded by 10−3 we can observe how the empirical
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(a) f(x) = 1
1+5x2 (b) f(x) = 1

1+15x2 (c) f(x) = 1
1+25x2

Figure 7. Overlaid least squares approximations of the function f(x) = 1
1+cx2 (red)

by Legendre polynomials of degree 29. Different approximations correspond to different
random draws of n = 100 sampling points from the uniform measure on [−1, 1].

approximations deteriorate with decreasing regularity. The relative errors for the empirical approximation
increase from 10−2 to 101. This phenomenon will be investigated in future research.

Finally, in Section 4 we briefly describe the connection of this work to empirical risk minimization (ERM)
as scrutinized in [1]. We show that under certain convexity and smoothness assumptions the fast
convergence rates derived in Section 2 carry over to the ERM setting. This, for example, enables to
apply our theory to solve high-dimensional elliptic PDEs by minimizing the respective Dirichlet energy.
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APPENDIX A. PROOF OF LEMMA 2.7

The proof consists of two steps. In the first step we derive Lemma A.3 to show that there exists ν ∈ N
and {uj}j∈[ν] ⊆ U(A) such that

P
[

sup
u∈U(A)

|‖u‖2 − ‖u‖2
n| > δ

]
≤ P

[
max
1≤j≤ν

|‖uj‖2 − ‖uj‖2
n| > δ

2

]
.

Using a union bound argument it follows that

P
[

max
1≤j≤ν

|‖uj‖2 − ‖uj‖2
n| > δ

2

]
≤

∑
1≤j≤ν

P
[
|‖uj‖2 − ‖uj‖2

n| > δ
2

]
≤ ν max

1≤j≤ν
P
[
|‖uj‖2 − ‖uj‖2

n| > δ
2

]
.

In the second step we prove Lemma A.5 which allows us to bound the probability

P
[
|‖uj‖2 − ‖uj‖2

n| > δ
2

]
≤ 2 exp(− δ2n

2K2 )

for each 1 ≤ j ≤ ν by a standard concentration inequality. Combining both inequalities yields the
statement.

In the following we are concerned with proving Lemmas A.3 and A.5 which both rely on properties of
the function `y : u 7→ w(y)|u|2y.

Lemma A.1. The function `y : u 7→ w(y)|u|2y has the properties

� |`y(u)| ≤ K and
� |`y(u)− `y(v)| ≤ 2

√
K‖u− v‖w,∞

for all u, v ∈ U(A).

Proof. Let u, v ∈ U(A). The first statement follows immediately by

|`y(u)| ≤ sup
u∈U(A)

ess sup
y∈Y

w(y)|u|2y = K.

To prove the second statement we consider the seminorm ky :=
√
`y and use the reverse triangle

inequality

|ky(u)− ky(v)| ≤ ky(u− v) ≤ ess sup
y∈Y

ky(u− v) = ‖u− v‖w,∞.
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Since ky is bounded by
√
K, we can use the Lipschitz continuity of x 7→ x2 on [−

√
K,
√
K] to

conclude

|`y(u)− `y(v)| ≤ 2
√
K|ky(u)− ky(u)| ≤ 2

√
K‖u− v‖w,∞. �

As an intermediate step we first prove Lemma A.2 from which Lemma A.3 follows almost immediately.

Lemma A.2. Let ν := ν‖ • ‖w,∞

(
U(A), δ

8
√
K

)
and {uj}j∈[ν] be the centres of the corresponding

covering. Then almost surely

sup
u∈U(A)

|‖u‖2 − ‖u‖2
n| ≤ δ

2 + max
1≤j≤ν

∣∣∣‖uj‖2 − ‖uj‖2
n

∣∣∣.
Proof. Let u ∈ U(A) be given. Then by definition of the {uj}j∈[ν], there is a specific uj with ‖u −
uj‖w,∞ ≤ δ

8
√
K

. By Lemma A.1 and Jensen’s inequality we know that

|‖u‖2 − ‖uj‖2| ≤
ˆ
Y

|`y(u)− `y(uj)| dρ(y) ≤ 2
√
K‖u− v‖w,∞ ≤ δ

4

and almost surely

|‖u‖2
n − ‖uj‖2

n| ≤ 1
n

n∑
i=1
|`yi(u)− `yi(uj)| ≤ 2

√
K‖u− v‖w,∞ ≤ δ

4 .

Therefore, by triangle inequality,

|‖u‖2 − ‖u‖2
n| ≤ |‖u‖2 − ‖u‖2

n − (‖uj‖2 − ‖uj‖2
n)|+ |‖uj‖2 − ‖uj‖2

n|
≤ |‖u‖2 − ‖uj‖2|+ |‖u‖2

n − ‖uj‖2
n|+ |‖uj‖2 − ‖uj‖2

n|
≤ δ

2 + |‖uj‖2 − ‖uj‖2
n| almost surely.

Taking the maximum concludes the proof. �

Lemma A.3. Let ν := ν‖ • ‖w,∞

(
U(A), δ

8
√
K

)
and {uj}j∈[ν] be the centres of the corresponding

covering. Then

P
[

sup
u∈U(A)

|‖u‖2 − ‖u‖2
n| > δ

]
≤ P

[
max
1≤j≤ν

|‖uj‖2 − ‖uj‖2
n| > δ

2

]
.

Proof. By Lemma A.2

sup
u∈U(A)

|‖u‖2 − ‖u‖2
n| ≤ δ

2 + max
1≤j≤ν

∣∣∣‖uj‖2 − ‖uj‖2
n

∣∣∣
holds almost surely. In this event we know that

sup
u∈U(A)

|‖u‖2 − ‖u‖2
n| > δ ⇒ max

1≤j≤ν
|‖uj‖2 − ‖uj‖2

n| > δ
2

which concludes the proof. �

To prove Lemma A.5 we first recall a standard concentration result from statistics.

Lemma A.4 (Hoeffding 1963). Let {Xi}i∈[N ] be a sequence of i.i.d. bounded random variables
|Xi| ≤M and define X := 1

N

∑N
i=1Xi. Then

P
[
|E[X]−X| ≥ δ

]
≤ 2 exp

(
−2δ2N

M2

)
.

The proof of Lemma A.5 is now a mere application of this result.
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Figure 8. The set of feasible vectors v satisfying v > 0 and
´
X
b̂v dρ = 1 is displayed

in red. The contour lines ‖ 1
v
‖L∞(Y ) = t1/2/opt for t1 < t2 (left) and for the optimal

value topt (right) are drawn in black.

Lemma A.5. Let uj ∈ U(A) then

P
[
|‖uj‖2 − ‖uj‖2

n| > δ
2

]
≤ 2 exp(− nδ2

2K2 ).

Proof of Lemma A.5. The statement follows from an application of Lemma A.4 to the sequence of
random variables {`yi(uj)}ni=1. Since the samples yi are i.i.d. the random variables `yi(u) are i.i.d.
as well. Moreover, by Lemma A.1 the variables are bounded in absolute value by K. Therefore, the
assumptions for Lemma A.4 are satisfied. �

APPENDIX B. PROOF OF THEOREM 3.1

To prove the first assertion it suffices to show that b̂ is measurable. For this let {uj}∞j=1 be a countable
dense subset in M. Then

b̂(y) := sup
u∈M
|u|2y = sup

j∈N
|uj|2y

is the supremum over a countable set of measurable functions and as such it is measurable.

We only sketch the proof of the second assertion. By substituting w = (vb̂)−1, the minimization
problem

min
w
Kw s.t. w ≥ 0 and ‖w−1‖L1(Y ,ρ) = 1

is equivalent to

min
v
‖v−1‖L∞(Y ) s.t. v > 0 and

ˆ
Y

b̂v dρ = 1,

which is a non-convex optimization problem under linear constraints. The assertion is then equivalent
to the statement that the minimal v is a constant function. Figure 8 illustrates why this must be
the case. The function v is split as v = α1v1 + α2v2 with v1, v2 > 0 having disjoint support and
‖v−1

1 ‖L∞(Y ) = ‖v−1
2 ‖L∞(Y ) = 1. Then ‖v−1‖L∞(Y ) = ‖(α1v1)−1+(α2v2)−1‖L∞(Y ) = α−1

1 ∨α−1
2 .

APPENDIX C. PROOF OF EXAMPLE 3.4

Recall that V := Hm(Y , ρ) where Y ⊆ Rd is a Lipschitz domain and A ⊆ H := HM(Y , ρ)
with ` := M − m > d

2 . It was shown in [28] that since Y is Lipschitz Hm(Y ) can be embedded
isometrically into Hm(Rd). This means that we can restrict our analysis to the case Y = Rd. Since
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` > d
2 , the Sobolev embedding theorem ensures that Dαv ∈ H`(Y , ρ) ⊆ C0(Y ). This means that

the seminorm of Hm(Y , ρ) can be represented by

|v|2y =
∑
|α|≤m

|[Dαv](y)|2 =
∑
|α|≤m

|Lαy v|2

with the family of linear operators Lαy : v 7→ [Dαv](y). In the following we compute

κ(y) = ‖Ly‖2
L(H,R|{|α|≤m}|) =

∑
|α|≤m

‖Lαy‖H∗
2.

As in [29] the Riesz representative of Lαy

Kα
y (x) :=

ˆ
Rd

∏d
j=1(2πiuj)αj exp(2πi(x− y) · u)∑

|β|≤m+l
∏d
j=1(2πuj)2βj

du

can be obtained by using the Fourier transform and some standard properties. Thus,

‖Lαy‖2
H∗ = ‖Kα

y ‖2
H = 〈Kα

y ,Kα
y 〉H = [DαKα

y ](y)

=
ˆ
Rd

∏d
j=1(2πuj)2αj∑

|β|≤m+l
∏d
j=1(2πuj)2βj

du.

By the change of variables tj = 2πuj

‖Lαy‖2
H∗ = 1

(2π)d

ˆ
Rd

∏d
j=1 t

2αj
j∑

|β|≤m+l
∏d
j=1 t

2βj
j

dt.

The multinomial theorem states that

(1 + ‖t‖2
2)m =

∑
|α|≤m

(
m

α

)
d∏
j=1

t
2αj
j .

As a consequence,

∑
|α|≤m

d∏
j=1

t
2αj
j ≤ (1 + ‖t‖2

2)m ≤ Γ(m+ 1)
∑
|α|≤m

d∏
j=1

t
2αj
j .

This leads to the estimate

∑
|α|≤m

‖Lαy‖2
H∗ = 1

(2π)d

ˆ
Rd

∑
|α|≤m

∏d
j=1 t

2αj
j∑

|β|≤m+`
∏d
j=1 t

2βj
j

dt

≤ Γ(m+ `+ 1)
(2π)d

ˆ
Rd

(1 + ‖t‖2
2)m

(1 + ‖t‖2
2)m+` dt

= Γ(m+ `+ 1)
(2π)d

ˆ
Rd

dt
(1 + ‖t‖2

2)`

= Γ(m+ `+ 1)
(2π)d

2πd/2

Γ(d2)

ˆ ∞
0

sd−1

(1 + s2)` ds.

The recurrence relation (2.147) in [30] together with ell > d
2 yields

ˆ ∞
0

sd−1

(1 + s2)l ds = d− 2
2`− d

ˆ ∞
0

sd−3

(1 + s2)` ds = . . . =
Γ(`− d

2)Γ(d2)
2Γ(`) .
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Consequently,

κ(y) ≤ (2
√
π)−d

Γ(m+ `+ 1)Γ(`− d
2)

Γ(`) .
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