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Site-monotonicity properties for reflection positive measures
with applications to quantum spin systems

Benjamin Lees, Lorenzo Taggi

Abstract

We consider a general statistical mechanics model on a product of local spaces and prove
that, if the corresponding measure is reflection positive, then several site-monotonicity properties
for the two-point function hold. As an application of such a general theorem, we derive site-
monotonicity properties for the spin-spin correlation of the quantum Heisenberg antiferromagnet
and XY model, we prove that such spin-spin correlations are point-wise uniformly positive on
vertices with all odd coordinates – improving previous positivity results which hold for the Cesàro
sum – and we derive site-monotonicity properties for the probability that a loop connects two
vertices in various random loop models, including the loop representation of the spin O(N) model,
the double-dimer model, the loop O(N) model, lattice permutations, thus extending the previous
results of Lees and Taggi (2019).

1 Introduction

We consider a general probabilistic model on the torus TL = Zd/LZd, whose realisations live in a
product of local spaces. Each local space is associated to one of the vertices of TL and elements of
the local spaces interact with each other according to a probability measure. Such a general setting
includes various important models in statistical mechanics, for example the spin O(N) model, the
quantum Heisenberg anti-ferromagnet and XY model, the dimer and the double-dimer model, lattice
permutations, and the loop O(N) model. We prove that, if a linear functional acting on functions of our
state space is reflection positive, then several site-monotonicity properties for the two-point function
hold. This generalises the monotonicity and positivity results of [12] to a very general system. This
general result has the following implications.

Firstly, in their seminal paper [6], Fröhlich, Simon and Spencer introduced a method for proving the
non-decay of correlations of the two-point function of several statistical mechanics models in dimen-
sion d > 2. This method was further developed in [5] and used in many other research works (we
additionally refer to [3] for an overview). More precisely, this method is used to prove that the Cesàro
sum of the two-point function is uniformly positive. Our general monotonicity result shows that, when-
ever this method works, a stronger result can be obtained. Namely not only is the Cesàro sum of the
two-point function uniformly positive in the system size, but the two-point function is also uniformly
positive point-wise. This result was derived by Lees and Taggi [12] in a special case and here it is
generalised to an abstract statistical mechanics setting.

As an example of a new application we consider quantum spin systems including the Heisenberg anti-
ferromagnet and XY model, which were not covered by the framework of [12]. Quantum spin systems
are important class of statistical mechanics models whose realisation space is the tensor product of
local Hilbert spaces. It is already known [4, 5, 7, 8, 16] that the Gibbs states of this model are reflection
positive in the presence of anti-ferromagnetic interactions and that, in dimension d > 2, the Cesàro
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sum of the two-point function is uniformly positive for large enough values of the inverse temperature
parameter and system size. Our result implies that the spin-spin correlation is point-wise uniformly
positive for vertices with all odd coordinates, extending the existing results. We fully expect that this
uniform positivity should extend to all vertices, not just ‘odd’ vertices.

Our third main result involves a general class of random loop soup models, which we refer to as
the random path model. This class includes the loop representation of the spin O(N) model [1, 12],
the double-dimer model [9], lattice permutations [2, 14], and the loop O(N) model [13]. In [12], site-
monotonicity properties for the two-point function – which is defined as the ratio of partition functions
with a walk connecting two-points in a system of loops and the partition function with only loops – were
derived. Here we extend the result to a general class of two-point functions, including the probability
that two fixed vertices have a loop passing through both of them.

2 Model and Main Result

Consider the torus TL = Zd/LZd with d ≥ 2 and L ∈ 2N. Denote by o = (0, . . . , 0) the origin
of the torus. For each x ∈ TL let Σx be a Polish space of local states (for example SN−1, C2S+1,
{−1,+1},...). Further let⊗ be some associative product between the Σx’s (for example the cartesian
product or the tensor product). Our state space is

S = ⊗x∈TL
Σx. (2.1)

We denote elements of S by w = (wx)x∈TL
where wx ∈ Σx. Let AL be a real, finite dimensional,

algebra of functions on S with unit (for example if Σx = SN−1 then we could take the cartesian
product and AL to be the algebra of functions S → R that are measurable with respect to the Haar
measure on S). Further, let 〈·〉 be a linear functional on AL such 〈1〉 = 1. Our key requirement is
that 〈·〉 is reflection positive, which we describe briefly.

2.1 Reflection Positivity

Consider a planeR = {z ∈ Rd : z ·ei = m} for somem ∈ 1
2
Z∩ [0, L) and some i ∈ {1, . . . , d}.

Let ϑ : TL → TL be the reflection operator that reflects vertices of TL in the planeR. More precisely,
for any x = (x1, . . . , xd) ∈ TL

ϑ(x)k :=

{
xk if k 6= i,

2m− xk mod L if k = i.
(2.2)

Ifm ∈ 1
2
Z\Z we call such a reflection a reflection through edges, ifm ∈ Z we call such a reflection a

reflection through vertices. We denote by T+
L ,T

−
L the partition of TL into two halves with the property

that ϑ(T±L) = T∓L .

We say a function A ∈ AL has domain D ⊂ TL if for any w1, w2 ∈ S that agree on D we
have A(w1) = A(w2). Consider the algebras A+

L ,A
−
L ⊂ AL, of functions with domain T+

L ,T
−
L

respectively. The reflection ϑ acts on elements w ∈ S as (ϑw)x = wϑx and for A ∈ A+
L it acts as

ϑA(w) = A(ϑw).

We say that 〈·〉 is reflection positive with respect to ϑ if, for any A,B ∈ A+
L ,

1 〈AϑB〉 = 〈BϑA〉,
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Figure 2.1: An example of a sequence of reflections sending a function with domain o to a function
with domain x.

2 〈AϑA〉 ≥ 0.

A consequence of this is the Cauchy-Schwarz inequality

〈AϑB〉2 ≤ 〈AϑA〉〈BϑB〉. (2.3)

We say 〈·〉 is reflection positive for reflections through edges resp. vertices if, for any reflection ϑ
through edges resp. vertices, 〈·〉 is reflection positive with respect to ϑ.

2.2 Main Results

For j ∈ {1, 2} let F j
o ∈ AL be functions with domain {o}. Fix an arbitrary site x ∈ TL and let o = t0,

t1, . . ., tk = x be a self-avoiding nearest-neighbour path from o to t, and for any i ∈ {1, . . . , k}, let
Θi be the reflection with respect to the plane going through the edge {ti−1, ti}. Define

(F j
o )[x] := Θk ◦Θk−1 . . . ◦Θ1 (F j

o ).

Observe that the function (F j
o )[x] does not depend on the chosen path (See Figure 2.1 for an illus-

tration). For a lighter notation denote by F j
x = (F j

o )[x] the function obtained from F j
o by applying a

sequence of reflections that send o to x. We define the two-point function,

GL(x, y) :=
〈
F 2
x F

2
y

( ∏
z∈TL\{x,y}

F 1
z

)〉
,

omitting the dependence on the functions F j
o in the notation. For spin system examples we would

usually take F 1
o to be the spin at o and F 2

o = 1, meaning that GL(x, y) is a spin-spin correlation. We
say that the two-point function is torus symmetric if, for any A,B ⊂ TL and z ∈ TL〈∏

x∈A

F 1
x

∏
x∈B

F 2
x

〉
=
〈 ∏
x∈A+z

F 1
x

∏
x∈B+z

F 2
x

〉
, (2.4)

where the sum is with respect to the torus metric. As a consequence, for any x, y, z ∈ TL,

GL(x, y) = GL(x+ z, y + z), GL(o, x) = GL(−x, o). (2.5)

Our first theorem states several site-monotinicity properties for the two-point function.
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Theorem 2.1. Consider the torus TL = Zd/LZd for d ≥ 2 and L ∈ 2N. Take i ∈ {1, . . . , d}.
Suppose that 〈·〉 is reflection positive for reflections through edges and that the two-point function is
torus symmetric. For any z = (z1, . . . , zd),

GL(o, z) ≤ GL(o, ziei) if zi odd (2.6)

GL(o, z) ≤ 1

2

(
GL

(
o, ei(zi − 1)

)
+GL

(
o, ei(zi + 1)

))
if zi even (2.7)

Further, for y ∈ TL such that y · ei = 0 (possibly y = o) the function

GL

(
o, y + nei

)
+GL

(
o, nei

)
(2.8)

is a non-increasing function of n ∈ (0, L/2) ∩ 2N + 1. If, in addition, 〈·〉 is reflection positive for
reflections through vertices then (2.6) also holds for zi even and (2.8) holds for any n ∈ (0, L/2].

Our next theorem is a consequence of Theorem 2.1 and consists of the following statements. Suppose
that the two-point function is uniformly bounded from above by a constantM , (i) Whenever the Cesàro
sum of the two-point function is uniformly positive, the two-point function is point-wise uniformly positive
on cartesian axes. (ii) - (iii) If the uniformly positive lower bound to the Cesàro sum is close enough to
M , then the two-point function is point-wise uniformly positive not only on the cartesian axes, but also
at any site in a box centred at the origin whose side length is of order O(L).

Theorem 2.2. Consider the torus TL = Td/LZd for d ≥ 2 and L ∈ 2N. Take i ∈ {1, . . . , d}.
Suppose that 〈·〉 is reflection positive for reflections through edges and that the two-point function is
torus symmetric. Moreover, suppose that for some C1 > 0 we have

lim inf
L→∞
L even

1

|TL|
∑
x∈TL

GL(o, x) ≥ C1 > 0, (2.9)

and that for some M ∈ (0,∞) we have that,

∀L ∈ 2N ∀x, y ∈ TL GL(x, y) ≤M. (2.10)

Then, the following properties hold,

(i) For any ϕ ∈ (0, C1

2
) there exists ε > 0 such that for any integer n ∈ (−εL, εL) and any

i ∈ {1, . . . , d},
GL(o, ein) ≥ ϕ.

(ii) For ε ∈ (0, 1
2
) and L ∈ 2N sufficiently large, for any x ∈ TL such that |x · ei| ∈ (0, εL) ∩

(2N + 1) for every i ∈ {1, . . . , d},

GL(o, x) ≥M −
(
1
4
− 1

2
ε
)−d

(M − C1).

(iii) If 〈·〉 is also reflection positive for reflections through vertices then for any ε ∈ (0, 1
2
) andL ∈ 2N

sufficiently large, for all x ∈ TL such that |x · ei| ∈ (0, εL) for every i ∈ {1, . . . , d},

GL(o, x) ≥M −
(
1
2
− ε
)−d

(M − C1).

Remark 2.3. (i) For many statistical mechanics models one has that there exists some positive
c > 0 such that, if x and y are nearest neighbours, then GL(o, x) ≥ GL(o, y) c. When such
a property is fulfilled, the properties of point-wise positivity of the two-point function stated in (i)
and (ii) can be extended to vertices which are not necessarily odd.

(ii) If we do not care about the size of the box around o where we can show that two-point functions
are uniformly bounded then we can simple look at the limit ε → 0. In this case the bound in (ii)
becomes M − 4d(M − C1) and the bound in (iii) becomes M − 2d(M − C1).
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3 Applications

3.1 The Quantum Heisenberg Model

For S ∈ 1
2
N we define Σx = C2S+1 and ⊗ to be the tensor product, hence S = ⊗x∈TL

C2S+1. Let
S1, S2, S3 denote the spin-S operators on C2S+1. They are hermitian matrices defined by

[S1, S2] = iS3, [S2, S3] = iS1, [S3, S2] = iS2, (3.1)

(S1)2 + (S2)2 + (S3)2 = S(S + 1)1l, (3.2)

where 1l is the identity matrix. Each spin matrix has spectrum {−S,−S + 1, . . . , S}. We denote by
Six = Si ⊗ 1lTL\{x} the operator on S that acts as Si on Σx and as 1l on each Σy, y 6= x. For
u ∈ [−1, 1] consider the hamiltonian

Hu = −2
∑

{x,y}∈EL

(S1
xS

1
y + uS2

xS
2
y + S3

xS
3
y). (3.3)

The case u = 1 gives the Heisenberg ferromagnet, u = −1 is equivalent to the Heisenberg antifer-
romagnet, and u = 0 is the quantum XY model. For β ≥ 0 corresponding to the inverse temperature
our linear operator is given by the usual Gibbs state at inverse temperature β. More precisely, for
operator A on (C2S+1)TL the expectation of A in the Gibbs state is

〈A〉 =
1

Zu(β)
TrAe−βHu , Zu(β) = Tr e−βHu . (3.4)

Take
F 1
x = 1lx and F 2

x = S3
x. (3.5)

For u ≤ 0 we have reflection positivity for reflections through edges [6, 8, 15].

The following theorem is a direct consequence of Theorem 2.1.

Theorem 3.1. Let β ≥ 0, L ∈ 2N, S ∈ 1
2
N, d ≥ 2 and u ≤ 0. For any z ∈ N \ {0},

〈S3
oS

3
z 〉 ≤

{
〈S3

oS
3
(z·ei)ei〉 if z · ei ∈ 2N + 1,

1
2

(
〈S3

oS
3
(z·ei+1)ei

〉+ 〈S3
oS

3
(z·ei−1)ei〉

)
if z · ei ∈ 2N \ {o}.

(3.6)

Further for y ∈ TL such that y · ei = 0 (for example y = o) the function

〈S3
oS

3
y+nei

〉+ 〈S3
oS

3
nei
〉, (3.7)

is a non-increasing function of n for odd n ∈ (0, L/2).

We now turn our attention to the consequence of Theorem 2.2. It is known from the famous result of
Dyson, Lieb and Simon [4] and various extensions of this result [7, 8, 15] that for d ≥ 3 and S ∈ 1

2
N

there are constants c1, c2 > 0 such that for L ∈ 2N sufficiently large

1

|TL|
∑
x∈TL

〈S3
oS

3
x〉 ≥ c1 −

c2
β
. (3.8)

Our next theorem extends such a result by showing that the two-point function is point-wise uniformly
positive on vertices whose coordinates are all odd.
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Theorem 3.2. Suppose that d ≥ 3 and u ≤ 0.

(i) For any ϕ ∈ (0, c1
2

) there exists β large enough and ε > 0 such that, for any L ∈ 2N, any odd
integer n ∈ (−εL, εL) and any i ∈ {1, . . . , d},

〈S3
oS

3
nei
〉 ≥ ϕ. (3.9)

(ii) There exists an explicit Q(d, u) ∈ (0,∞) such that if S > Q(d, u) and β is large enough, then
there exists ϕ, ε > 0 such that, for any L ∈ 2N and y ∈ TL such that ‖y‖∞ ≤ εL and, for
each i ∈ {1, . . . , d}, y · ei ∈ 2N + 1,

〈S3
oS

3
y〉 ≥ ϕ. (3.10)

In particular, Q(3, 0) can be taken equal to 8 and Q(3,−1) can be taken equal to 11. If we could
find a constant c > 0 as in Remark 2.3 (i) then we could extend (3.10) to all vertices y such that
‖y‖∞ ≤ εL.

Proof. The first claim follows from (3.8), and from an immediate application of the claim (i) in Theorem
2.2. We now prove the claim (ii). We start from (3.8), we have M = S(S + 1)/3. From [15] obtain an
explicit expression for c1,

c1 =
S(S + 1)

3
− 1√

2

1

|TL|
∑

k∈T∗
L\{o}

√
εu(k)

ε(k)
(3.11)

where T∗L is the Fourier dual lattice, ε(k) = 2
∑d

i=1(1 − cos(ki)) and εu(k) =
∑d

i=1

[
(1 −

u cos(ki))〈S1
oS

1
ei
〉 + (u − cos(ki))〈S2

oS
2
ei
〉
]
. Now it is easy to check that εu(k) ≤ S(S+1)

6
(1 −

u)ε(k + π), which gives

c1 ≥
S(S + 1)

3
−
√

1− u
2

√
S(S + 1)

3
Jd,L (3.12)

where

Jd,L =
1

|TL|
∑

k∈T∗
L\{o}

√
ε(k + π)

ε(k)
(3.13)

satisfies limd→∞ limL→∞ Jd,L = 1. Further limL→∞ Jd,L is a decreasing function of d and limL→∞ J3,L =
1.15672 · · · . Using these bounds, the inequality (ii) of Theorem 2.2 shows that there is some ϕ > 0
such that for any x ∈ TL with |x · ei| ∈ (0, εL) ∩ 2N + 1 for every i ∈ {1, . . . , d} we have
〈S3

oS
3
x〉 ≥ ϕ once β is sufficiently large if

S2 + S − 3
4
(1− u)(Jd,L)2

(
1
4
− 1

2
ε
)−d

> 0, (3.14)

which is fulfilled for any large enough S. This completes the proof.
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3.2 The Random Path Model

The Random Path Model (RPM) was introduced in [12]. It can be viewed as a random loop model
with an arbitrary number of coloured loops and walks, with loops and walks possibly sharing the same
edge and, at every vertex, a pairing function which pairs pairs of links touching that vertex or leaving
them unpaired. It was shown in [12] that, for different choices of the parameters of the RPM, we can
obtain many interesting models such as the loop O(N) model, the spin O(N) model, the dimer and
double-dimer model and random lattice permutations. Here we introduce the RPM in a more general
setting than in [12]. Such a generalisation consists of allowing pairings of links with different colours
and allows us to derive site monotonicity properties for a more general class of two-point functions, for
example, for the probability that a loop connects two distinct vertices of the torus.

Let EL be the set of edges connecting nearest neighbour vertices of the torus. Let m = (me)e∈EL ∈
NEL be an assignment of a number of links on each edge of EL and, for N ∈ N>0, let c(m) ∈
×e∈EL

(
{1, . . . , N}me

)
be a function, which we call a colouring, that for each e ∈ EL assigns the

me links on e with a colour in {1, . . . , N}. Lastly we define π(m, c(m)) = (πx(m, c(m)))x∈TL

consisting of a collection of partitions of links. πx(m, c(m)) is a partition of the links incident to x into
sets with at most two links each. If, for some x ∈ TL, two links are in the same element of the partition
at x then we say the links are paired at x and call this element a pairing. If a link is not paired to any
other link at x then we say x is unpaired at x. Links can be paired or unpaired at both end points of their
corresponding edge. We denote byWL the set of all such triples (m, c(m), π(m, c(m)) and refer to
elements w = (m(w), c(w), π(w)) ∈ WL as configurations. Configurations can be interpreted as a
collection of multicoloured loops and walks on (TL, EL).

Now for x ∈ TL and i ∈ {1, . . . , N} let uix be the number of unpaired links of colour i at x, let Kx

be the number of pairings at x between two differently coloured links, and let nx be the number of
elements of πx. If Kx = 0 we define vix to be the number of pairings at x between links with colour i,
otherwise we define vix = 0. Finally let tx be the number of pairings at x between links on the same
edge (this is required to recover, for example, the spin O(N) model from the RPM).

Let U : N2N+3 → R and β ≥ 0. We define our measure µL,N,β,U onWL as

µL,N,β,U(w) =
∏
e∈EL

βme(w)

me(w)!

∏
x∈TL

Ux(w) ∀w ∈ WL (3.15)

where Ux(w) = U(u1x, . . . , u
N
x , v

1
x, . . . , v

N
x , Kx, nx, tx). We refer to U as a vertex weight function.

For f :WL → R we use the same notation for the expectation of f ,

µL,N,β,U(f) :=
∑
w∈WL

f(w)µL,N,β,U(w).

The measure µL,N,β,U was proven to be reflection positive for reflections through edges in [12, Propo-
sition 3.2]. The same result holds for the more general random path model defined in this note, since
allowing pairing of links with different colour does not modify the proof.

It can be shown that the random path model fits the general framework introduced in the present note,
by considering local state spaces for x ∈ TL that consist of a specification of the number of coloured
links on each edge incident to x (an element of N2dN ) together with a function that maps N2dN to
partitions of tm≥0{1, . . . ,m}. The measure is then supported on configurations whose functions
partition the correct value of m (the value corresponding to the total number of incident links) at each
x ∈ TL and which, for each e ∈ EL specify the same link numbers on e for both end points of e.

DOI 10.20347/WIAS.PREPRINT.2713 Berlin 2020
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Suppose that Ux(w) = 0 whenever Kx 6= 0, then µL,N,β,U is supported on configurations of
monochromatic loops and walks. From this we can recover the RPM introduced in [12] which reduces
to the specific examples mentioned above if we further specify U in an appropriate way. In this case
we could take

〈·〉 =
1

Z loop
L,N,β,U

µL,N,β,U(·) (3.16)

where Z loop
L,N,β,U is the total measure under µL,N,β,U of configurations with only loops. We then take

F 1
x = 1lu1x=0 and F 2

x = 1lu1x=1 (3.17)

and find that GL(x, y) corresponds to the two-point function introduced in [12], when U is chosen
appropriately this is equal to the spin-spin correlation of the spin O(N) model. From this we can
recover Theorems 2.4, 2.6 and 2.8 in [12] .

Now suppose that N > 1, that Ux allows links of different colours to be paired, and that it is 0 if∑
i u

i
x 6= 0 (meaning the model only has loops and no walks). Our linear functional 〈·〉 could then be

given by

〈·〉 =
1

Zmono
L,N,β,U

µL,N,β,U(·) (3.18)

where Zmono
L,N,β,U is the total measure under µL,N,β,U of configurations with

∑
xKx = 0 and only

loops. Now we take
F 1
x = 1lKx=0 and F 2

x = 1lKx=1. (3.19)

We have that GL(x, y) = 2
(
N
2

)
P(x↔ y) where the probability is in the system with only monochro-

matic loops with colours in {1, . . . , N} and there are no walks. The event x ↔ y is the event that
there is a loop that passes through x and y.

Theorem 2.1 leads then to the following theorem.

Theorem 3.3. Let P(x ↔ y) be the probability that a loop passes through x and y in the random
path model with only monochromatic loops and no open path. For any z = (z1, . . . , zd),

P(o↔ z) ≤ P(o↔ ziei) if zi ∈ 2Z + 1, (3.20)

P(o↔ z) ≤ 1
2
P(o↔ (zi − 1)ei) + 1

2
P(o↔ (zi + 1)ei) if zi ∈ 2Z \ {0}, (3.21)

and that for y ∈ TL such that y · ei = 0

P(o↔ y + nei) + P(o↔ nei) (3.22)

is a non-increasing function of n for all odd n ∈ (0, L/2).

Note that P(x↔ y) equals the probability that a loop connects x and y in the loop O(N) model, in the
double dimer model, in lattice permutations or in the loop representation of the spin O(N) model under
an appropriate choice of U [12]. Further, it has been proven [1] that, when U is chosen appropriately,
such a probability equals the following correlation, P(x↔ y) = 〈S1

xS
2
xS

1
yS

2
y〉, in the spin O(N) model

with N > 1, hence our theorem provides monotonicity properties for such a four-spin correlation
function.

4 Proof of Theorem 2.1

Suppose that 〈·〉 is reflection positive with respect to the reflection ϑ. Let Q ⊂ TL and define Q± :=
(Q ∩ T±L) ∪ ϑ(Q ∩ T±L). The key to the proof is the following lemma.
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Lemma 4.1. For Q ⊂ TL∑
x,y∈Q
x 6=y

GL(x, y) ≤ 1

2

∑
x,y∈Q+

x 6=y

GL(x, y) +
1

2

∑
x,y∈Q−

x 6=y

GL(x, y). (4.1)

Proof. For 0 < η � 1 we consider the following functions

A =
∏

x∈Q∩T+
L

(1 + ηF 2
x

∏
z∈T+

L\{x}

F 1
z ), B =

∏
x∈Q∩T−

L

(1 + ηF 2
ϑx

∏
z∈T−

L\{x}

F 1
ϑz). (4.2)

Now for simplicity of notation we write TL(x) for T+
L \ {x} if x ∈ T+

L and T−L \ {x} if x ∈ T−L . A
simple calculation gives

〈AϑB〉 =
〈∏
x∈Q

(
1 + ηF 2

x

∏
z∈TL(x)

F 1
z

)〉
= 1 + η

∑
x∈Q

〈
F 2
x

∏
z∈TL(x)

F 1
z

〉
+ η2

∑
x,y∈Q
x 6=y

〈
F 2
xF

2
y

∏
z∈TL(x)

F 1
z

∏
z∈TL(y)

F 1
z

〉
+O(η3),

(4.3)

and analogously

〈AϑA〉 = 1 + η
∑
x∈Q+

〈
F 2
x

∏
z∈TL(x)

F 1
z

〉
+ η2

∑
x,y∈Q+

x 6=y

〈
F 2
xF

2
y

∏
z∈TL(x)

F 1
z

∏
z∈TL(y)

F 1
z

〉
+O(η3),

(4.4)

〈BϑB〉 = 1 + η
∑
x∈Q−

〈
F 2
x

∏
z∈TL(x)

F 1
z

〉
+ η2

∑
x,y∈Q−

x 6=y

〈
F 2
xF

2
y

∏
z∈TL(x)

F 1
z

∏
z∈TL(y)

F 1
z

〉
+O(η3).

(4.5)

Now suppose that x, y ∈ Q ∩ T+
L , then x, y, ϑx, ϑy ∈ Q+ and we further note that〈

F 2
xF

2
y

∏
z∈TL(x)

F 1
z

∏
z∈TL(y)

F 1
z

〉
=
〈
F 2
ϑxF

2
ϑy

∏
z∈TL(ϑx)

F 1
z

∏
z∈TL(ϑy)

F 1
z

〉
. (4.6)

An analogous identity holds for x, y ∈ Q ∩ T−L . Now we use (2.3). Note that the η terms will cancel
by (2.4). Now we compare the η2 terms. The terms

〈
F 2
xF

2
y

∏
z∈TL(x)

F 1
z

∏
z∈TL(y)

F 1
z

〉
when x, y ∈

Q∩T±L will cancel due to (4.6). By using (2.4) repeatedly on the remaining terms to group those terms
that are equal gives the result.

We takeQ = {o, z} and ϑ the reflection in the plane bisecting {pei, (p+1)ei} for p := 1
2
(z ·ei−1+

q}, this requires z ·ei + q ∈ 2N+ 1 and z ·ei± q ∈ (0, L). If we take q = 0 when zi ∈ 2N+ 1 and
q = 1 when zi ∈ 2N\{0} then Lemma 4.1 gives us (2.6) and (2.7). If we also have reflection positivity
for reflections through sites then we can reflect in the plane R = {x ∈ R : x · ei = 1

2
(z · ei + q)},

requiring that z · ei + q is even. If we apply Lemma 4.1 with q = 0 we find that for z · ei ∈ 2N \ {0}
we also have (2.6).

For the monotonicity result (2.8) we takeQ = {o, z, ziei, z−ziei} with the same reflection as above.
We define the function

Gei
L (x) := 1

2

(
GL(o, x) +GL(o, (x · ei)ei)

)
, (4.7)
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and find, using Lemma 4.1, after rearranging and (2.4) that for zi + q odd

Gei
L (z + qei)−Gei

L (z) ≥ Gei
L (z) +Gei

L (z − qei). (4.8)

The proof follows the proof of [12, Proposition 4.2]. We can now prove (2.8) by contradiction. Suppose
that y ∈ TL such that y ·ei = 0 and odd n ∈ (0, L/2) satisfyGei

L (y+nei) > Gei
L (y+ (n−2)ei).

Now by repeatedly using (4.8) with q = 2 we find

Gei
L (y + nei) > Gei

L (y + (n− 2)ei) > Gei
L (y + (n− 4)ei) > Gei

L (y + (n− 6)ei) . . . (4.9)

Once we have used this inequality n times we findGei
L (y+nei) > Gei

L (y+nei−2nei) = Gei
L (y−

nei), but by reflection positivity we must have Gei
L (y − nei) = Gei

L (y + nei). This contradiction
completes the proof of (2.8). If, in addition, we have reflection positivity for reflections through sites we
can use the reflection in R = {x ∈ R : x · ei = 1

2
(z · ei + q)}. We then obtain the inequality (4.8)

for zi + q even. Using this we can obtain a contradiction as before by alternating between the odd and
even version of (4.8) with q = 1 to find that for any y ∈ TL such that y · ei ± 1 ∈ (0, L)

Gei
L (y + ei)−Gei

L (y) ≥ Gei
L (y)−Gei

L (y − ei). (4.10)

The full monotonicity result then follows similarly to (2.8).

5 Proof of Theorem 2.2

We start with the proof of (i) and we present the proof of (ii) and (iii) afterwards. To begin, fix an arbitrary
ϕ ∈ (0, C1). We claim that there must exist an ε > 0 small enough such that for any L ∈ 2N there
exists zL ∈ TL\[0, εL]d such thatGL(o, x) ≥ ϕ. The proof of this claim is by contradiction. Suppose
that this was not the case, then, under the assumptions of the theorem, we would have that∑

x∈TL

GL(o, x) ≤ ϕ d( 1 − ε )Led + MdεLed,

which would be in contradiction with (2.9) for small enough ε, since we assumed that ϕ < C1.
Now define yL := zL · e1 and, if it is odd, we use the first claim in Theorem 2.1 and deduce
that, GL

(
o, yLe1

)
≥ ϕ, otherwise we use the second claim in Theorem 2.1 and deduce that,

max
{
GL

(
o, (yL + 1)e1

)
, GL

(
o, (yL − 1)e1

)}
≥ ϕ

2
. Using the fact that yL + 1 ≥ εL and

the last claim in Theorem 2.1, we deduce that, for any odd integer in the interval n ∈ (o, εL),
GL

(
o, ne1

)
≥ ϕ

2
. This concludes the proof of (i). We now proceed with the proof of (ii) and (iii).

To begin, for z ∈ TL we define

Qz := {(x1, . . . , xd) ∈ Zd : ∀i ∈ {1, . . . , d}, xi ≤ |z · ei| or xi > L− |z · ei]}. (5.1)

The proof relies on the following lemmas.

Lemma 5.1. Let z ∈ TL and y ∈ Qz be such that zi and yi are odd for every i ∈ {1, . . . , d} then
under the same assumptions as Theorem 2.2

GL(o, y) ≥ 2dGL(o, z)− (2d − 1)M. (5.2)

If, in addition, 〈·〉 is reflection positive for reflections through vertices then the inequality holds for any
z ∈ TL and y ∈ Qz.
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Proof. The proof is as in the proof of [12, Proposition 4.7] with minor changes as we only have
the monotonicity result (2.8) for odd n. For convenience we assume that zi, yi > 0 for every i ∈
{1, . . . , d}, other cases follow by symmetry. For i ∈ {1, . . . , d} define

Di := (z − y) · ei, (5.3)

then Di ∈ 2N. There is a “path"

(z10 , z
1
1 , . . . , z

1
D1/2

, z20 , z
2
1 , . . . , z

2
D2/2

, . . . , zd0 , z
d
1 , . . . , z

d
Dd/2

) (5.4)

with the properties that z10 = z, zdDd/2
= y, and, for every i ∈ {1, . . . , d−1}, ziDi/2

= zi+1
1 . Further,

for each i ∈ {1, . . . , d} and j ∈ [1, Di/2]

zij−1 − zij = 2ei. (5.5)

Now we use both (2.6) and (2.8),

2GL(o, zi0) ≤ GL(o, zi0) +GL(o, (zi0 · ei)ei)
≤ GL(o, ziDi/2

) +GL(o, (ziDi/2
· ei)ei),

(5.6)

and hence using that GL(o, x) ≤M for any x ∈ TL we have that

GL(o, ziDi/2
) ≥ 2GL(o, zi0)−M. (5.7)

Iterating this for i = 1, . . . , d gives

GL(o, y) = GL(o, zdDd/2
) ≥ 2GL(o, zd0)−M ≥ . . .

≥ 2dGL(o, z)− (2d − 1)M,
(5.8)

this completes the proof. If 〈·〉 is also reflection positive for reflections through vertices the proof is
exactly as in [12, Proposition 4.7]. We define Di’s and the path (z10 , . . . z

d
Dd/2

as before except that

we can take zij−1 − zij = ei, the rest of the proof then proceeds as before.

Now, for r ∈ N let

Sr,L := {z ∈ TL : ∃i ∈ {1, . . . , d} such that z · ei < r or L− z · ei ≤ r}. (5.9)

Lemma 5.2. Under the same assumptions as 2.2 there are xL ∈ TL \ SεL,L and zL ∈ TL \ SεL,L
with |zL · ei| ∈ 2N + 1 for every i ∈ {1, . . . , d} such that

GL(o, xL) ≥M − (1− 2ε)−d(M − C1), (5.10)

GL(o, zL) ≥M −
(
1
2
− ε
)−d

(M − C1). (5.11)

Proof. The proof of (5.10) is exactly as in [12, Lemma 4.9]. The proof of (5.11) is a simple adaptation
of [12, Lemma 4.9] and we sketch it here. Now a simple proof by contradiction shows that there must
be a zL as in the statement of the lemma. Indeed, suppose for every zL ∈ TL with |zL · ei| ∈
[εL, L)∩ 2N + 1 for every i ∈ {1, . . . , d} that GL(o, zL) < M −

(
1
2
− ε
)−d

(M −C1). Using this
together with the worst-case bound M for every other vertex and the bound |TL \ Sr,L| = (L− 2r)d

gives a contradiction.
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Statement (i) of Theorem 2.2 follows immediately from (5.10) and Theorem 2.1. For statement (ii) of
Theorem 2.2 note that if zL is as in the statement of Lemma 5.2 then, by Lemma 5.1, for any y ∈ QzL

such that yi is odd for each i ∈ {1, . . . , d} we have (after rearranging)

GL(o, y) ≥ 2dGL(o, zL)− (2d − 1)M ≥M − 2d
(
1
2
− ε
)−d

(M − C1). (5.12)

which is equal to the bound in the Theorem. Finally for statement (iii) of Theorem 2.2 we note that by
Lemmas 5.1 and 5.2 for any y ∈ QxL we have (after rearranging)

GL(o, y) ≥ 2dGL(o, xL)− (2d − 1)M ≥M − 2d(1− 2ε)−d(M − C1). (5.13)
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