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Oracle complexity separation in convex optimization

Anastasiya Ivanova, Alexander Gasnikov, Pavel Dvurechensky, Darina Dvinskikh, Alexander Tyurin,
Evgeniya Vorontsova, Dmitry Pasechnyuk

Abstract

Ubiquitous in machine learning regularized empirical risk minimization problems are often
composed of several blocks which can be treated using different types of oracles, e.g., full gradi-
ent, stochastic gradient or coordinate derivative. Optimal oracle complexity is known and achiev-
able separately for the full gradient case, the stochastic gradient case, etc. We propose a generic
framework to combine optimal algorithms for different types of oracles in order to achieve sepa-
rate optimal oracle complexity for each block, i.e. for each block the corresponding oracle is called
the optimal number of times for a given accuracy. As a particular example, we demonstrate that
for a combination of a full gradient oracle and either a stochastic gradient oracle or a coordinate
descent oracle our approach leads to the optimal number of oracle calls separately for the full
gradient part and the stochastic/coordinate descent part.

1 Introduction

The complexity of an optimization problem usually depends on the parameters of the objective, such
as the Lipschitz constant of the gradient and the strong convexity parameter. In Machine Learning
applications the objective is constructed from many building blocks, a typical example of a block be-
ing the individual loss for an example or the different regularizers in supervised machine learning.
Standard theoretical results for optimization algorithms for such problems provide iteration complexity,
namely the number of iterations to achieve a given accuracy. Unlike these results, in this paper, we
address the question of oracle complexity, focusing on the number of oracle calls. Moreover, the goal
is to study what number of oracle calls for each building block of the objective is sufficient to obtain the
required accuracy. Indeed, typically the finite-sum part of the objective is much more computationally
expensive than the regularizer, which motivates the usage of a randomized oracle for the finite-sum
part and a proximal oracle for the regularizer. Further on, some components in the finite-sum part
may be more expensive than others and it is desirable to call the gradient oracle of the former less
frequently than the gradient oracle of the latter. Moreover, some of the building blocks of the objective
may be available with their gradient, while for the other block only the value of the objective may be
available. In this case, one would prefer to call the gradient oracle for the former less frequently than
the zero-order oracle of the latter. To the best of our knowledge, the current optimization theory does
not provide a convincing answer to the question of how to do this.

To be more precise, we consider minimization problem in the form

min i(z) + g(z), (1)

where the full objective is y-strongly convex, h(x) has Ly-Lipschitz continuous gradient and is avail-
able via its full gradients. The part g is available through different types of oracle, e.g. full gradient,
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A. lvanova et al. 2

stochastic gradient, coordinate derivative, objective value, etc. The goal is to separate oracle complex-
ity for h and ¢ and call the oracle of & less frequently than that of ¢g. To motivate this goal we consider
two particular examples.

Kernel SVM [17]. The learning problem in Kernel SVM is to solve optimization problem
- A
mxin Z;(a —bial Kx), + E:ETKx,
=

where K is the Kernel matrix, (b;, al ) is the data. The standard approach is to make a transition
to a basis in which the Kernel K is diagonal, which can be prohibitive in high dimensions. At the
same time, composite versions of standard variance reduction methods [21), [19, [1] need to evaluate
proximal operator of the quadratic term on each iteration, which is equivalent to inversion of the Kernel
matrix and can be expensive in high dimensions. | our approach we use cheap first-order oracle for
the quadratic term and cheap stochastic gradient oracle for the loss term. Moreover, the full gradient
oracle for the quadratic term is called much more rarely than the stochastic gradient for the loss. This
opens the way of using non-proximal friendly regularizers for ERM problem.

Log-density estimation with Gaussian Prior [20]. This problem has the form

max {(c, z) —mlog (Z exp ((Ak,x>)> — %HGx”?} :

This problem is not in the standard form of a ERM problem and the standard method of choice is
the full gradient method. At the same time, coordinate descent is an efficient method for quadratic
functions and, in some cases, for problems related to smoothing [16]. Our approach allows to combine
coordinate descent method for the quadratic part and full gradient for the log-sum-exp function.

The literature on combining different types of oracles to propose more efficient methods is quite sparse
to the best of our knowledge. The most popular combination is known as composite optimization [14],
in which first-order, second-order or stochastic gradient oracle for / is combined with proximal oracle
for g, which allows complexity not to depend on g. Yet, proximal oracle is needed on each iteration of
the method, so the complexity is not separated. An example of combination of first-order oracles for A
and g is the paper [9], where the complexity is separated in this case. Recently a separation of oracle
complexities was also introduced in the context of higher-order methods [7].

Let us briefly describe the main idea of the proposed approach. Assume that we have to solve a
smooth p-strongly convex problem

min 2(z) + g(2), (2)

where h(z) has Ly-Lipschitz continuous gradient and we have an algorithm that can solve the problem

: L .
min g(z) + o [l= — #l3 3)

with (O,-oracle) complexity 0, ( ng/E), where f)g > L. We also assume that Vg(z) may be

computed in k4, Og4-oracle calls. Then we can apply an accelerated proximal method [6] with parameter
L satisfying u < L < Ly, to (2). This method requires solving the auxiliary problem

: L k)12
min h(z) + g(z) + 5 lla — 2"l (4)
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Oracle complexity separation in convex optimization 3

O(\/L/u) times. To solve (4) we may then use a non-accelerated composite gradient method with
g(z) + £||z — 2*||% as the composite [14]. During each of the O(Ly,/ L) iterations of this method we

need to solve auxiliary problem (3) with L = L + L. So the total number of VA (x)-oracle calls wil
be O(y/L/1) and the total number of O -oracle calls will be

OK/L/u) - {O(Lh/L) -0 ( L,/(L+ Lh)) + Cn} .
Minimizing this expression over L € [u, Lj,] and assuming that r, = O (\ / ig/Lh) , we obtain

LZL}Z.

Thus, we can solve problem (2) via

0] (\/Lh//l) Vh(x)-oracle calls

and

O (\/f}g/u) Og-oracle calls.

In case when the O,-oracle is the standard V g(x)-oracle, this result corresponds to the accelerated
sliding [9]. But our approach significantly differs from [9]. We use an accelerated proximal envelope
with the non-accelerated composite gradient as an outer envelope instead of a special bulky acceler-
ated outer method that was used in [9]. First of all, this simplifies the approach. Second, our approach
allows to deal with different types of O -oracles, not only Vg(z). For example, when the O, -oracle
comes from block-coordinate descent, directional search, derivative-free methods [3] or incremental
methods [1, 10, 8].

Below in the paper we describe the scheme above (and its non-strongly convex variant) in detail, by
controlling with what accuracy we have to solve the auxiliary problems.

2 Main result

Consider the problem

min f(z) := h(z) + g(z).

We introduce the following assumptions about this problem:

Assumption 1. We assume that f(-) has Lipschitz continuous gradient with the Lipschitz constant
Ly and is pi-strongly convex w.r.t. || - ||

Assumption 2. We assume that h(-) has Lipschitz continuous gradient with the Lipschitz constant
Ly, w.rt. || - ||2 and there is an oracle Oy, which in one call produces the gradient V h().

Assumption 3. We assume that g(-) has Lipschitz continuous gradient with Lipschitz constant L,
w.rt || - ||2 and there is a basic oracle O, which in k, calls produces the gradient Vg(-).
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A. lvanova et al. 4

Algorithm 1 Monteiro—Svaiter algorithm MS(z°, L, N')

Parameters: Starting point 2° = 3° = 2°; parameter L & (0, Ly,]; number of iterations N.
fork=0,1,...,N —1do

Compute
1/L++/1/L2+4A, /L
ak—‘rl - P} 9
Appr = Ap+ apqa,
k+1 A k ak+1 k
z - Akf—ly - Ak+1z '
Compute
Yt = GMCO(2" T By ki (). (6)
Compute
=28 —a V(Y. (7)
end for
Output:

Algorithm 2 Restarting Strategy for MS

Parameters: Starting point 770; strong convexity parameter 1 > 0; parameter L > 0; accuracy
e > 0. N
Compute T' = [1og (Wﬂ . Ny = %
fort=1,...,Tdo
’f]t = MS(ﬁt_l, L, N(])
end for
Output: 7

Moreover, we need the following assumption to state the main result.

Assumption 4. We assume what there is a method M, (¢(-), N(€)), which takes as input an
objective function with the structure ¢(v) = (3, v) + $||v||5 + g(v) and returns a point v such that

E (¢(0) — p(v7)) <&,

0__,*[|2
in N(&) = O (\T/—‘L In M) basic oracle calls, where T, is a parameter dependent on the
6 €

function g() and the method M,,,, and independent of «, such that Ty > V/a, and C' is a constant
satisfying C' > 0.

To solve the problem (5) we introduce the Monteiro—Svaiter Accelerated Proximal Method [11], which
in non-adaptive case is presented as Algorithm|[1] where

Fry(z) = f(2) + §llz — ylf3.

Note that the parameter L must be chosen sothat 0 < L < L. If u > 0, to recover the acceleration
through strong-convexity we apply a restarting strategy (Algorithm [2) to Algorithm

Note that on each iteration of the MS algorithm in step (6) we solve the minimization problem:
min FLyka(y). We consider this problem as a composite optimization problem with the composite
Yy
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Oracle complexity separation in convex optimization

Algorithm 3 Gradient method for Composite Optimization GMCO(¢?, Fro 1 (+))

1: Parameters: starting point (° € R", objective function Fy c0(¢) = f(¢) + £|[¢ — ¢°|)3 =

h(¢) +g(¢) + £11¢ = 15
:Setk:=0
repeat

Setk =k + 1.

Set

a s e

pe(Q) = (VA(C*),¢ =N +4(Q)
+ L= O3+ IC = ¢S,

6: Compute
¢* = Minn(21(C), Nty ),
where Ny, is defined as in (8).
until [|[VEL o(¢F)]2 < 5[I1¢F = O
. Output: (¥

© N

9(y) + £||ly — 2*1]]3. To solve this problem we use the Gradient method for Composite Optimization

(Algorithm 3) [14].

So, on each iteration k of the Algorithm we use GMCO(z* ™, Fi+1 1,(+)). Note that we don't as-

sume the proximal-friendliness of the function g(x). Hence, it is necessary to take into account the

complexity of the problem m}%{n ©x(v) which arises at each iteration of the AIgorithm To solve this
veER™

problem we consider £ [|¢ — 0|3+ £2|¢ — {*~"||3 as the composite and use the inner method M,

from the Assumption 4, where o = L + Lj, and

O(—+2—=1In Cth) if 1 >0,

B VIiL, L SVaL
Mt =) 0 (21w Glk) g
Vit M ver ) THEY

where R > ||2° — z*||5, C; > 0and § € (0,1).

So, for this scheme we can state the following main result:

Theorem 1. Under the Assumptions 1-4 with probability at least 1 — § we can obtain T such that

f(@) = f(a") <ein

a) O ( LEE (14 %)) Oracle calls for h(-) and

LR? L T R
O( P (/fg"‘fh‘ ( /7LiLh hlm)))
Oracle calls for g(-), if ;1 = 0, and

b) O <\/%log (%2) 1+ %)) Oracle calls for h(-) and

O (ks () (- (Gt i)

Oracle calls for g(+), if ;1 > 0.
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A. lvanova et al. 6

3 Proof of the main result

The proof of the main result consists of four steps:

1 Estimating the number of iterations of the inner method M;,,,.
2 Estimating the number of iterations of Algorithm
3 Estimating the number of iterations of Algorithm[1]with the restarting strategy as in Algorithm

4 Obtaining a final estimate of the number of iterations of oracles O and O, based on estimates
from steps 1 — 3.

3.1 Step 1.

On each iteration of Algorithm [3|we need to solve the problem

min p(v) = (VA@"), v —0") +g(v)

veER™
+ Sl =°3 + B flo = oF|l5.

’UO*’U* 2
Applying the method M,,,,, to with « = L+ L, we obtain thatin Ny (£) = O (\/LT_‘;]_Lh In &I = ”2>

Oracle calls we can find vV ©) such that

E(p(v"ME) — p(v")) < &

Since p(v"ME)) — p(v*) > 0, with an arbitrary o€ (0, 1) we can apply the Markov inequality:

P (p(u"5) — p(u7) > &) < He0IED=0) < §

£

~ ~ 0__,*[|2
We have shown that with probability at least 1 — 0 in Ny (0¢) = O (VLTiLh In <II° 55” HQ) Oracle

calls we can find © such that p(0) — ¢(v*) < £. Since ¢(+) is L + Ly, strongly convex, we have

|0 — o5 < () — p(v*) < &
Moreover, since ¢(-) is L,-smooth and Vi (v*) =0
IVp(0)]]2 < Lgl[o — v7[2.
Using these two inequalities, we obtain

(Vep(0),0 —0") IVe(0)]l2 - [0 = v7]2

LgH@ - U*Hg < LgLth‘

IA A

This leads to the following lemma
Lemma 1. Applying the method M, to we have that with probability at least 1 — SinN M(€) =

0__ %2 A~
O ( 9 In 20Lg|lv v HQ) Oracle calls we can find v such that

VL+Ly, 66(L+Ly)
(Vp(0),0 = v7)

16— v*|[3

IAIA
R
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Oracle complexity separation in convex optimization 7

3.2 Step 2.

To estimate the number of iterations of Algorithm 3| note that the MS condition
IV Fr.eo(CF)l2 < 5IICE = COllz
instead of the exact solution (* of the auxiliary problem in the Algorithm 1} for which
IVFLeo(¢7)]l2 =0,

allows to search inexact solution C*.

Since the function F', co(-) is (L + Ly)-smooth, we have

IV Freo(C)l2 < (L + L)IC" = ¢l (13)

Using the triangle inequality we have

110 = ¢*[l2 = 11C% = ¢*ll2 < 1ICF = ¢l (14)

Since r.h.s. of the inequality coincide with the r.h.s. of the M-S condition and I.h.s. of the inequal-
ity coincide with the I.h.s. of the M-S condition up to a multiplicative factor L /2, one can conclude
that if the inequality

I1¢F = ¢z < ﬁHCO — ("2

holds, the M-S condition holds too, where (° is a starting point.

We assume that on each iteration of the Algorithm [3| we solve an auxiliary problem (9) in the sense
of (11). Then, we provide the following convergence rate theorem for the Algorithm [3}

Theorem 2. Assume that % < 1. After N iterations of Algoriz‘hm@ we have

Fro®) = Fro(@) < e (-ME) (Fuol@) - FrelC) + 22

M2

e - B < R [ SR

The proof of this Theorem is given in the appendix.

Now we consider the function FL7<o(~) as an L-strongly convex function, not taking x into account.
From Theorem 2] we obtain that

0_ % -
Fcho(CN) . FL7§O(<*) S L}LHCz ¢ HQ exp ( NhL> + %8.
From strong convexity of F7, co(+), the following inequality holds. [15]

IEY = ¢*II3 < Freo(C™) = Freo(Cr).

Thus, for condition to be satisfied, it is necessary that

L 1¢°=¢|| —NL 4L 0 2
B exp () + 448 < il — Ol

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020



A. lvanova et al. 8

Equating each term of l.h.s. to half of the r.h.s. we obtain that the number of iterations of Algorithm
is
d 2
Namco 2 O(% In (—(3L+1Ls,f) Lh))

~ def 4
and & = ep = oot 160 — ¢l

Assuming that on each iteration of Algorithm [3| we solve the auxiliary problem with probability
at least 1 — dys/Nawmco in the sense of with £ = &4, using the union bound over all Nguco
iterations we obtain

Lemma 2. In Ngyco iterations of Algorithm@ with probability at least 1 — dys we findf such that

IVFLco(Q)l2 < £1¢ = ¢fo

3.3 Step 3.
To estimate the number of iterations of Algorithm[f]note that in (6) we apply Algorithm[3]and, according
to the stopping criterion of GMCO(z**!, F; ,x+1) obtain y*** such that

IV ELarss (D)l < Slly™H = 2o (16)

So we can apply the Theorem 3.6 from [11] for Algorithm[1]and obtain that for all N' > 0

FWY) =) <o ||V o

, SR, (17)
where R > ||y° — x*||,. Moreover, from Lemma 3.7 a) of [11] for all N > 0

Ay > 22 (18)

Substituting the inequality into the estimate we obtain that after IV iterations of Algorithm
the following inequality holds.

) = fa) < HEER,

d 0_ .x[]|2
Thus, if 1 = 0, then the total number of iterations of MS is T (<) S M

If > 0, to recover the acceleration through strong-convexity we need to apply the restarting strategy.

In light of the definition of strong convexity of f(-) and the estimate (79), we have
Slly™ = 2%l < fyY) = o) < 351" - 2"]f3.

In particular, in every N = Ny = ,/% iterations, we can halve the distance ||y" — z*||s <

:l|z® — x*||3. And if we repeatedly invoke MS(-, L, Ny) ¢ times, each time choosing the initial point
T as the previous output yNO, then in the last run of IV iterations, we have

F™) = f(2") < gz lla® — 275 = s ll=® — 275

llwo—=*[3-1
€

By choosing t = log ( ) we conclude that

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020



Oracle complexity separation in convex optimization 9

d |2,
. then after T(2) < log (M> iterations of

Lemma 3. If f(-) is pu-strongly convex w.r.t. || - | -

the Algorithm|2 we obtain some 0" such that f(n") — f(n*) < e.

d |2
From this lemma we obtain that the total number of iterations of MS is 755 () “I'o <\/%log <w>>

Assume that on each iteration of the Algorithm we find y’““ satisfying with probability at least
1 — dus with oys = d/Tus(e), where 6 € (0,1) and

YT TS (e) it =0.

Using the union bound over all iterations of MS and Lemma [3]for the strongly convex case, we obtain
the following lemma.

Lemma 4. If on each iteration of Algorithm |1 we find y** satisfying with probability at least
1— 5MS with 6MS = (S/TMs(ff), then

a) after T iterations of Algorithm|[d for the case j1 > 0
b) after 1},s iterations of Algorithm for the case ;1 = 0
we obtain that with probability as least 1 — § we find 1) such that f()) — f(n*) < e.

3.4 Step 4.

Before we give the estimates of the number of oracle calls for A(-) and g(-), we will explain how we
plan on obtaining them.

For h(-) we heed to compute the gradient at each step of Algorithm |3} which we run Tys(e) times.
Moreover, at each iteration of Algorithm|1|in step (7) we compute the gradient of f(-), so we also need
to compute the gradient of A(-).

For g(-) we heed to compute the gradient at each step of the inner algorithm M,,,,, which we run at
each iteration of Algorithm [3] and at each iteration of Algorithm f]in step (7) we also need to compute
the gradient of g(-).

Note that using the triangle inequality we have
0% = v*]lz < |l = 0]z + [[o = 072 (20)

And at each iteration of Algorithm we use the method M,,,,, with starting point Ck to compute the
point ¢**1. So for the k-th iteration of Algorithm [3|we have v° = ¢* and & = ¢**1. Using the triangle
inequality and Theorem [2, we have

1CF = ¢FHle < ICF = ¢l + 11CFT = ¢l
24/ 2|0 — ¢*]2 + 24/ 2RE.

VAN

Then, using (2), from we have

10—l < [0 — oll2 + /2L,
< V51 - ¢l VE (VR +E).
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A. lvanova et al. 10

Tg 20 Lg|[v°—v*||3
VL+Ly Sem(L+Ln)
Oracle calls of M,,,,. And using we obtain thatin Ny, = O ( T In & ) > Na(ep) Oracle

2C(32L2 Ly(3L+2Ly)%+(8Lp, Ly +L VL3
LA(L+Ly) :

Choosing the € = €4 and using Lemmawe obtain that we need N () = O (

calls the Lemma holds with € = ey and C} =

Each time choosing 0 ~ dus/Namco = 0/(Namco-Tus) we obtain that we need N3 = O (ml C\l/i—z)

. C _ Tg Ci1LLR
Oracle calls of M, for the strongly convex case and N§,(¢) = O (\/L+Lh In N ) Oracle calls
for the convex case, where R > ||z% — x*||,.

Using the union bound over all launches of M,,,,,, we obtain that with probability at least 1 — § we can
find such 7 that f(z) — f(z*) < &, and to do this we need O <\/%log (@) . (1 + %)) Oracle

calls for h(-) and
0 (/10 (#5) - (ro+ 2 (k)

Oracle calls for g(-), if u > 0,

and O ( LRZ (14 Lh)) Oracle calls for A(-) and

2 L
0 (Vi (s 2 (2mmile))

Oracle calls for g(-), if 1 = 0.

4 Applications

In this section, we present a few examples of algorithms that we consider as M,,.,.

4.1 Accelerated Gradient Method for Composite Optimization

Consider the following unconstrained problem

min f(x) := h(z) + g(x).

reR™

We assume that the function g(-) is L,-smooth w.r.t. || - ||2. To solve this problem we consider the
Accelerated Gradient Method for Composite Optimization from [14]. For this method the Assumption
holds with 7, = /L, if L, > L.

As the basic oracle O, we have a first order oracle which computes the full gradient Vg(-) in one
oracle call, so, for this case r, = 1.

Minimizing the number of Oracle calls for ¢(-), we obtain that the optimal value of L is L. We can
then state the following corollary of Theorem i}

Corollary 1. Using the Accelerated Gradient Method for Composite Optimization as M, we can
obtain Z such that f(z) — f(z*) < ein

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020



Oracle complexity separation in convex optimization 11

a)O (\ / LhTRQ) Oracle calls for h(-), O (\/ L9€R2) Oracle calls for g(-), if u = 0, and

b) O (ﬁ) Oracle calls for h(-) and O (w / %) Oracle calls for g(-), if u > 0.

4.2 Accelerated Proximal Coordinate Descent Method

Consider the following unconstrained problem

min f(z) := h(x) + g(x).

reR”™
Now we assume the directional smoothness for g(-), that is that there existf, . . ., 3, such that for
anyr € R",u e R
Vig (x4 ue;) — Vig(z)| < Bilul, i=1,...,n,

where V;g(z) = dg(x)/dz;. For twice differentiable ¢(-) it is equivalent to the condition (V2g(z));; <
B;. In this case we consider the Accelerated Proximal Coordinate Gradient Method from [13] 16, |4} 5]
as the inner method M,,,. For this method Assumption 4| holds with 7, = n4/L,, where 1/ L, =
%Z?:l VB if z9 > L.

As the basic oracle O 4 we have an oracle which computes a partial derivative V.g(+) in one iteration.
For this case we need x, = n calls to O, to compute the full gradient Vg(-).

Minimizing the number of Oracle calls for g(-), we obtain that the optimal L. = L;,, so we can state
the following corollary from Theorem i}

Corollary 2. Using the Accelerated Gradient Method for Composite Optimization as M,,, we can
obtain z such that f(z) — f(z*) < ein

a) O («/LhTRQ) Oracle calls for h(-), O (n \/ LHTW) Oracle calls for g(-), if u = 0, and
b) O ( %) Oracle calls for h(-) and O (n : \/%> Oracle calls for g(-), if n > 0.

Note, that if M,,,, is a directional search or a derivative-free method such as in [3], then the main
conclusions of corollaryremain valid after replacing L, on L.

4.3 Accelerated Stochastic Variance Reduced Algorithm

Consider the following minimization problem

m

min f(z) == h(z) + 5 Y gul(a).
k=1

We assume that each component g (-) is smooth with the constant L, . To solve this problem we can

use the Katyusha [1] and other Accelerated Stochastic Variance Reduced Algorithms [10), 18] in place

of the inner method M,,,,,. Note that for the Accelerated Stochastic Variance Reduced Algorithms

the estimate of the number of oracle calls for problem is O (m + mffg) if ﬁg > L, where

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020



A. lvanova et al. 12

~

L, = max Ly, . If we additionally assume that L;m < ﬁg, then for this method Assumption (4 holds

with 7, = \/mlALg.

As the basic oracle O, we have an oracle which computes V g () in one iteration. Hence, in this case
we need k, = m basic oracle O, calls to compute the full gradient Vg(-).

Corollary 3. Using the Accelerated Gradient Method for Composite Optimization as M, we can
obtain & such that f(z) — f(z*) < ein

a)O <\/ LhTR2> Oracle calls for h(-), O ( @) Oracle calls for g(-), if u = 0, and

b) O (ﬁ) Oracle calls for h(-) and O (\/ mTLJ) Oracle calls for g(-), if ju > 0.

Condition Lym < ﬁg might seem very restrictive, but there exists a class of problems with non-
smooth gy, that is well suited to this condition. Assume that the convex conjugates g;. are proximal-
friendly. In particular, this is the case for generalized linear model [18] gx. (z) := g ({(ax, z)). In this
case we can apply the Nesterov’s smoothing technique [12, 2] and regularize the convex conjugate
functions g; with coefficient ~ €. Since all g;, are proximal-friendly, we can efficiently compute the
conjugate function to the resulting regularized function. This allows us to build an e-approximation of
initial problem with f;g ~ 1/e. In Section ?? we demonstrate how this approach works on the Kernel
SVM example.

5 Experiments

In this section, we present experimental results of applying Algorithm [1| to the real-world machine
learning problems, and demonstrate its effectiveness. More detailed theoretical explanation of de-
scribed below results see in Appendix B}

5.1 Log-density estimation with Gaussian Prior
To estimate the log-density of some measure P [20] we suppose that we observe only m random

observations Z1, ..., Z,, € Z generated from this measure. Without loss of generality, we assume
that Z has finite support {zj },_, of size p, then

> fla) =1 (22)
k=1

We parameterize the log-density by the linear model
log f(2) = U(z,27) = Y _ ajai(z) — ("),
=1

where a1(z), as(2), . .., a,(2) are given basis functions and z* € R™ is an unknown vector, corre-
sponding to the actual density. The normalization constant ¢(z*) is determined using (22):

() = log (Z exp ((Ap, x>)> :
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where Ay, = a(z) = (a1(21), - - -, an(21))7 is the k-th column of A = [aj(zk)]Zle. From [20] it's
known that £* can be alternatively defined as

v* = argmac{(E.[a(2)], ) — me(a)}.

It's also known (Fisher theorem) that Maximum Likelihood Estimation (MLE)

will be a good estimation of x*. Moreover, if we introduce Gaussian prior /\/(0, GQ) for x*, MLE
changes as follows

r€eR™

- 1
T¢ = arg max{ E (a(Zg), ) — me(x) — §HG$H2} (23)
k=1

Bernstein—von Mises theorem claims [20], that X is a good estimation of 2* in Bayesian set up.

Particular case when matrix A is sparse and all elements of G* are from the interval [1,2], is consid-
ered in the paper. Modern Accelerated Coordinate Descent algorithms don’t allow to take into account
sparsity of matrix A [4], so for the first two terms in argmax of RHS of it'd be better to use com-
mon accelerated method [15]. The third (last) term in is vice versa very friendly for Accelerated
Coordinate Descent [16]. So this problem formulation for relatively small m (or relatively large G?) is
well suited for splitting scheme with M,,,,, to be Accelerated Coordinate Descent.

Based on the problem statement, let us consider the optimization problem with the following objective
function:

k=1

fx) = log (Z exp<<Ak,x>>> + 5G] - min

In our case, n = 500, p = 6000, A is a sparse p x n matrix with sparsity coefficient 0.001, whose
non-zero elements are drawn randomly from /(—1, 1), and matrix G? generated as follows:

n
i=1

where > " \; = Land [é;]; ~ U(1,2) for every i, j.

The Lipschitz constant for the first term of f calculated according to the following formula:

Ly = max AW,
i=1,...,n

where A*) denotes the k-th column of A, L. = 25L;, and directional Lipschitz constants for the %)
from (10) are L; = G% + L + Ly,

Below there are given the result of experiment{]for Fast Coordinate Descent [16] with 5 = 1/2 being
restarted every 300 iterations as M,,,,. The vertical axis of the both and figures measures function
value f(xz) in logarithmic scale, the horizontal axis of figuresandmeasures physical working time.

However, although for some problems, as above, it is possible to achieve convergence acceleration
using a Monteiro-Svaiter envelope, many additional experiments have shown that, in the general case,
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Figure 1: M-S accelerated Fast Coordinate Descent, function value f (%) vs working time

it does not give a significant improvement in the performance of the Fast Gradient Method. Neverthe-
less, experiments show that the convergence of the proposed method, in practice, corresponds to the
estimates obtained in the article.

We also compare the methods by the number of V7;(-) and Vg;(-) oracles calls. Figure [3 shows a
three-dimensional plot of the function value f(x?) in logarithmic scale vs the number of Vh;(+) and
Vg (-) oracles calls and two-dimensional projections of this plot for the Vh;(-) and Vg;(-) oracles
respectively. Since some of the methods involve calculating the full gradient (VA(-) or Vg(+)), the
oracles calls, in this case, accounted for with a weight of tl/tg ~ 2, where t; — is the average full
gradient computing time, £, — is the average time to calculate only the component of the gradient.

As can be noted from the plots, M-S accelerated version of FCD requires a significantly smaller number
of Vh;(-) oracle calls than FCD and FGM.

"Source code of these experiments are on GitHub: https://github.com/
ICML2020-OracleComplexitySeparation/Oracle-Complexity—-Separation
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Figure 2: M-S accelerated Fast Coordinate Descent, function value f(xz) vs working time (from 0.5 s)
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Figure 3: M-S accelerated Fast Coordinate Descent, function value f(z") vs number of V1;(-) and
Vg;(+) oracles calls
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A Proof of Theorem

Definition 1. For a convex optimization problem min,cq V(x), we denote by Arg min‘;EQ U(z) a
set of such x that

Jhed¥(z) : Ve e Q — (hyx—T)>—§

We denote by ar min®_, U (z) some element of Argming U(z).
gMmin,cq 2€Q

Algorithm 4 Gradient method for Composite Optimization GMCO(zg, F'(-))

1: Parameters: starting point x, € R", objective function F'(x) = f(x)+p(z), constant L (function
f with L Lipschitz gradient w.r.t. the || - ||2), error 0.

cfork=0,...,N—1do

. Set

w N

S (2) = (Vf(wr),x — 2x) +p(2) + 5z — zll3,

4:  Compute

Tpe1 = argmin® (¢ (7)) (24)
z€Q

: end for
: Output: zn

(23]

Lemma 5. Letv)(x) be a convex function and
y = argmin’ (0(z) + 51| — ol 3}
where 5 > 0. Then
V(@) + 51z — 2[5 > @) + 5llz =yl + Sllz —wll3 - 5, Ve € Q.

Proof. By Definition [{]

g € 0b(y), {9+ 5Vully —all3x —y) = (g + By — 2),2 —y) = =5, Vo €Q.
From (S—strong convexity of 1)(x) + §||z — z||3 we have

V() + §llz =2l = 9(y) + 511z =yl + {9+ 5V lly — zlf5. 2 —y) + Sllz — yll3
The last two inequalities complete the proof. O

The next theorem proves convergence rate of Algorithm [4] for optimization problem

min F(z) := f(a) +p(2),

where function f is convex function with L Lipschitz gradient w.r.t. the || - ||2 norm, function p is convex
function and function F'is p—strongly convex.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020



A. lvanova et al. 18

Theorem 3. Let us assume that % < 1. After N iterations ofAlgorithm we have

N,u) 4L~

Flay) — F(z,) < oxp (— (F(a) ~ Fla.)) + 255,

4L
1 L 4L~
gllee —anlls < o llee — zollz + 20
Proof of Theorem[3 Since gradient of function F'is L Lipschitz w.r.t. the || - ||2 norm, we have

F(ay) < flan-1) + (Vf(@n-1), 28 — an-1) + plan) + §||50N—1 — anl[3-
From Lemma(5|and auxiliary problem we get
F(en) < f(oy1) +(Vf(anya1), 2 — 2n-1)
4 (@) + Zlle — analli 45

In view of convexity of function f, we obtain
)’ -
F(ry) < F(z) + §||93 — a3+ 9.

We rewrite the last inequality for v = ax, + (1 — a)zy_1 (o € [0, 1]) as

La? ~
F(zy) < Flaz,+ (1 —a)zy_1) + THI* —xn_1|[5+6.
In view of convexity of function f, we have
La? 9 =
Flan) < Flay-1) — a(F(ey-1) = F(2.)) + ==l = av-all; +90.
From pi—strong convexity of function F' we have F'(xy_1) > F'(z,) + 5|z, — 2n_1]
inequality:

2, this yields

F(zy) < F(zy_1) — (1 — a%) (F(xy_1) — F(zy)) + 0.

The minimum of the right part of the last inequality is achieved with & = min(1, %) Dueto 47 <1
with o = 5+ we have

Flry) — F(z.) < (1 . ﬂ) (F(an_1) — F(z,)) + 9.

4L
and
N 4~
Flzy) — F(z.) < (1 . i) (F(wo) — F(2.)) + -3
4L 1
N 4L~
< exp (~ 72 ) (Fan) = F(an)) + 205
From pi—strong convexity of function F' and the fact that gradient of function F'is L Lipschitz we obtain
1 L Nu 4L~
Sl — axll < o exp (32 ) lloe — olf+ 223
L 5 4L
< ZHZU* Zo|[3 + E(S
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B Motivation for examples

B.1 Kernel SVM

Let’s consider the following function

F) = = fultAw,a)) + 5o, Co).

k=1

We assume that | f{/(y)| = O(1/¢), matrix A = [Ay, ..., A,,]* has ms nonzero elements, maxy—; ., ||Ax|3 =
O(s), where 1 < s < nand C'is positive semidefinite matrix | with Apax (C) < 1/(em). Fast Gra-

dient Method [15] requires
o (\/(5/5 + Amax(C)) R2>
€

iterations with the complexity of each iteratiorﬂ

O (ms +n?).

For proposed in this paper approach we have

5 ( )\maX(EC)R2>

iterations of FGM for the second term in target function with the complexity of each iteration

O(n?)

o ( (ms/;) R2>

iterations of variance reduction algorithm [1] with the complexity of each

and

O(s).

We combine all these results in the table below. From the table one can conclude that since s > 1,
Amax(C) < 1/(em) < s/e, then our approach has better theoretical complexity.

Algorithm Complexity Reference
FGM O (£y/s(ms +n?)) [15]

Our approach O (%/ms . s) +0 < M -n2> this paper

2Here an below we also assume after ‘semidefinite’ that valuable part of the spectrum of dens matrix C lies in a small
(right) vicinity of zero point on real line.

3To obtain the part of the complexity O(ms) one should use special representation of matrix A in the memory —
adjacency list. The same requirements take place for other algorithms.
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B.2 Soft-max plus quadratic form

Let’s consider the following function

() = log <Z exp<<Ak,as>>> + 5 1G ) > min.

k=1

We introduce matrix A = [Ay, ..., A,]7, is such that max;; |A;;| = O(1), max;—;__, [|[A<7>|)3 =
O(n ) and A has O( ps) nonzero elements; G* is positive semidefinite matrix with )\max(G2) =0(n)

and Zz 1V G121

Fast Gradient Method [15] requires

0 W (0821, A7 3+ s (G2)) RQ)

€
iterations with the complexity of each iteration
@) (ps + n2) .
Coordinate Fast Gradient Method [16] requires

(maXz‘j | Ay |* + (% i1 \/G—i>2) R?

3

Oln

iterations with the complexity of each iteratiorﬂ
O(p+n).

For proposed in this paper approach we have

0 W (8321, [ AT 3+ s (G2)) R2>

9

iterations of FGM for the first term in target function with complexity of each iteration

O(ps)

and

n

S G V) e
15

iterations of coordinate FGM for the second term in target function with complexity of each iteration

O(n).

We combine all these results in the table below. From the table one can conclude that if n < p,
ER min{nQ/p, \/ﬁ} then our approach has better theoretical complexity.

“Here one should use a following trick in recalculation of log (>} _; exp ((A, z))) and its gradient (partial deriva-
tive). From the structure of the method we know that "¢ = azeld 4 Be;, where e; is i-th orth. So if we've already
calculate (A, 2°'4) then to recalculate (A, 2™¢V) = a (A, 2°) + B[Ay]; requires only O(1) additional operations
independently of n and s.
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Algorithm Complexity Reference
FGM O ( 2B (ps + n2)> [15]
coordinate FGM O (n R?Z (p+ n)) [16]
Our approach "TRQ ps) +0 (n R?Q n) this paper
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