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Summary. We find the asymptotics for the large and moderate large deviation 
probabilities of common distribution of the empirical measure and the empirical 
bootstrap measure (empirical measure obtaining by the bootstrap meth,od). For 
the most widespread statistical functionals depending on empirical measure we · 
compare their asymptotics of moderate large deviation probabilities with simila~ 
asymptotics given by the bootstrap procedure. 

1. Introduction. Let S be a Hausdorff space, ~ the o--field of Borel sets in 
S and A the space of all probability measures (pms) on (S, ~). Let X1 , ... , Xn 
be i.i.d.r.v.'s taking values in S according to a pm P0 E A and let Pn be the 
empirical measure of X1 , ... , Xn. The distributions of statistics depending on 
the sample X 1 , ... , Xn are often analyzed on the base of the bootstrap procedure 
(see Hall (1992), Mammen (1992) and Efron and Tibshirany(1993)). For a given 
statistics V(X1, ... ,Xn), we simulate independent samples Xi, ... ,X~ with the 
distribution Pn and consider the empirical distributi~n of V(X;, ... , X~) as an 
estimator of the distribution of V(X1, ... , Xn)· What is of especial interest, are 
the estimates of large and moderate large deviation probabilities of V(X1, ... , Xn)· 
From this viewpoint it is natural to compare probabilities of large and moderate 
large deviations for V(X1, ... , Xn) and V(Xi, ... , X~). In the paper we carry 
out such a comparison in a slightly different setting. The statistics V(X1, ... , Xn) 
usually can be represented as a functional T(Fn) of the empirical measure Pn: 
V(X1, ... , Xn) = T(Pn)· Similarly, V(X;, ... , X~) = T(P;), where P; is the 
empirical measure of Xi, ... , X~. Thus, the problem is reduced to the study of 
large and moderate deviations of statistical functionals T(Pn)-T(P) and T(P;)-
T(Fn)· 

The problems related to large and moderate large deviation probabilities of em-
pirical measures have been studied in many papers (see Sanov (1957), Hoadley 
(1967), Stone (1974), Sievers (1978), Groeneboom, Oosterhoff, Ruymgaart (1979) 
(GOR), Bprovkov and Mogulskii (1980), and Ermakov (1992),(1995)). These pa-
pers contain complete results proved under rather general assumptions. Our goal 
here is to develop similar techniques for large and moderate large deviations of 
P; x Pn and to use these techniques to compare the probabilities of the deviations 
T(Pn) - T(P) and T(P;) - T(Pn)· Thus, we intend to consider the following two 
settings: the asymptotics of the probabilities Po(P; x Pn E n) with n E A2 =Ax A 
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and the asymptotics of the probabilities Po(P; x Pn E nn) where nn c A2 and Po 
is a limiting point of nn. 

The problem of large deviations for empirical bootstrap measure has been studied 
earlier in Chaganty (1993). These results were obtained on the base of another · 
approach and were given in terms of the topology of weak convergence instead 
of the r-topology considered in the paper. It seems that the approach developed 
in GOR (1979) can be easily extended to the large deviations problem for the 
empirical bootstrap measure. Similar situation takes place also for the moderate 
large deviations, with the only difference that here more essential modification of 
analytical technique of GOR (1979) and Ermakov (1992), (1995) is required. 

Note that the results on large deviations for P; x Fn are far from being "com-
putable", except some special cases (see Chaganty (1993)). At the same time the 
moderate large deviation theorems allow easily to co~pare the probabiliti~s of devi-
ations of T(Fn)-T(P) and T(P;) _.:. T(Fn) for the majority of widespread statistics. 
Using the same technique as in GOR (1979) and Ermakov (1992), (1995), we also 
consider the problem of moderate large deviation in tlie parametric bootstrap set-
ting. The large deviation problem for parametric bootstrap has been studied earlier 
in Chaganty (1993) in terms of the topology of weak convergence. 

In this paper we use the following notations. We denote by C, c arbitrary positive 
· . constants, by x(A) the indicator of an event A, and by [t] the integral part of a 

real number t. 

2. Large deviation probabilities. Introduce the r-topology of weak convergence 
in the space A. We say that a sequence Qn EA converges to Q EA in r-topology 
iff 

J!.r~ fs f dQn = fs f dQ 

for each bounded ~}-measurable function f: S-+ R1• In what follows all topological 
notions, except otherwise is explicitly stated, relate to r-topology (for details, see 
GOR (1979)). For any set n c A the closure and the interior of n are denoted by 
cl (n) and int (0) respectively. The r-topology in A2 is defined as the corresponding 
product topology. 

For any P, Q E A we introduce the Kullback-Leibler information number K( Q, P) 
as 

K(Q,P) = fsqlogqdP, 
dQ 

q=-dP 
if Q is absolutely continuous w.r.t. P, and K(Q, P) = oo otherwise. It is known 
(see, e.g., GOR (1979)) that the asymptotics of large deviation probabilities of 
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empirical measures Pn can be expressed in terms of the Kullback-Leibler informa-
tion numbers. The analog of Kullback-Leibler information numbers for the large 
deviation probabilities of P: x Pn is the functional Kb ( Q, P) which is defined as 
Kb(Q, P) = K(Q2, Qi)+ K(Qi, P) for any Q =Qi x Q2 E A2 and PE A. We also 
set Kb(O, P) = inf{Kb(Q, P) : Q E O} for any n cA2 and PE A. 

Theorem 2.1. Let Po EA and let n c A2
• Let Kb(int (D), Po)= Kb( cl (D), P0 ). 

Then 

(2.1) 

Remark. Theorem 2.1 admits the following interpretation. The righthand side of 
(2.1) equals the infimum of the product of asymptotics ~f two probabilities. The 
first is the asymptotics of probability that the empirical measure Pn belongs to 
"a small vicinity of pm Qi". The second is the asymptotics of probability that 
the empirical bootstrap measure P* belongs to "a small vicinity of Q2" under the 
condition that Pn belongs to "a small vicinity of Qi". 

The proof of Theorem 2.1 in its main elements is based on the same arguments as 
the proof of theorem on large deviations of empirical measures (see GOR (1979)). 
In particular, the analogies of Lemmas 2.3-2.5 in GOR (1979) are valid for our 
setting as well. The differences in the proof of the analogy of the main Lemma 
3.1 in GOR (1979) are clearly seen from similar arguments for the moderate large 
deviation setting (see the proof of Theorem 3.2 below). 

Chaganty (1993) has developed a special technique to prove the convergence of 
Kb(Qn, P) to Kb(Q, P) if a sequ~nce of pms Qn converges to Qin weak topology. 
As a consequence, Chaganty obtained a version of Theorem 2.1 related to weak 
topology. Passing to such a ·limit cannot be used straightforwardly in our setting, 
and here we apply the partition technique. For any P E A, Q = Qi x Q2 E A 2 and 
a partition II = { Sj }j=i of S consisting of Borel sets Sj, let 

,r (- I ) ~ (Q (S )1 Q2(Sj) Q (S )1 Qi(Sj)) lib Q, P II = ~ 2 i og Q(Si) + i i og P(Si) · 

For any n c A2 we set Kb(n, PIII) = inf{I<b(Q, PIII): Q En} With this notation, 
all analytical estimates are based on the relation (compare with Lemma 2.4 in GOR 
(1979)) 

I<b(n, P) = sup{I<b(n, P) : II is a partition of S} 

if Kb(O, P) = Kb( cl(O, P). 

(2.2) 
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The proof of (2.2) makes use of the same arguments as the proof of similar 
relation (2.5) in GOR (1979) and is based on the fact that the set r = {Q : 
Kb(Q, P) < C < oo, Q E A2 } is uniformly absolutely continuous w.r.t. P and is 
both compact and sequentially compact in the r-topology. These statements are 
proved similarly to that one of Lemma 2.3 in GOR (1979). 

3. Moderate large deviation probabilities. Let us introduce the linear space 
Ao generated by all differences P - Q with P, Q E A and define the r-topologies 
on Ao and A6 similarly to that one on A and A 2 , respectively. 

For any P, Q EA, introduce the Hellinger distance 

dP 1/2 dQ 1/2 
( 

2 ) 1/2 
p(P,Q) = ls (CR) - CR) ) dR ' (3.1) 

Define also, for any GE Ao and PE A, the functional p0(G, P) such that 

(dG) 2 

p~(G:P)=fs dP dP (3.2) 

if G is absolutely continuous w.r.t. P and p0 ( G : P) = oo otherwise. The func-
tionals p and p0 are the standard tools for the study of moderate large deviation 
probabilities of empirical measures Fn (see Borovkov and Mogulskii (1980) and 
Ermakov (1992), (1995)). It is well known that for any G E Ao satisfying the 
inclusion P + uG E A and such that p0 ( G : P) < oo it holds 

1 
K(P + uG, P) = 2p2(P + uG, P) + o(u2) = 2u2p2(G: P) + o(u2) 

as u-+ 0. 
For any Q =Qi x Q2 E A2 and G = G1 x G2 E A6 denote Q + G = (Q1 + G1) x 

(Q2 + G2). We set 

The functionals Pb and Pob play the same role in the study of moderate large 
deviations of P; x Fn as the functional Kb in the study of large deviations. It 
is easily seen that for any G = G1 x G2 E Ao such that P + uG1 , P + uG2 E A and 
Pob( G: P) < oo it holds 

Kb((P + uG),P) = 2pb((P + uG),P) + o(u2
) = ~u2pob(G: P) + o(u2

) 

as u -+ 0. Here P = P x P 
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- 2 -For any n c A, n c A and no c A0 , n 0 c A6 define 

p(n, P) = inf{p(Q, P): Q En}, 

Po( no : P) = inf{po( G: P) : GE n 0}, 

Pb(n, P) = inf{pb(Q,i): Q En} 

and Pob(no, P) = inf{pob(Q, P): Q Eno}. 

Theorem 3.1. Let Po E A and n0 c A6. Let 

Pob(int (no) : Po) = Pob( cl (no) : Po). 

Then, for any sequence bn -7 0, nb; -+ oo as n -r oo, 

(3.3) 

2 1 A - 12-
lim (nbnt log Po(P: x Pn 'E Po X Po+ bnno) = --p0 (no :· P0 ). (3.4) 

n--too 2 
Remark. A similar version of a theorem on moderate large deviation probabilities 
of empirical measures is proved in Borovkov and Mogulskii (1980). 

The asymptotics (3.4) can be applied for the study of moderate large deviations of 
homogeneous functionals. At the same time, the majority of statistical fuctionals 
are only approximately homogeneous. To obtain the results for this latter case, we 
have developed the following approach (see Ermakov (1992),(1995)). 

Let a sequence of pms Pn converge to pm Po and let P0 == P0 x Po be a limiting 
point of sets Dn C A2 • Denote bn = p(Dn, Pn) and suppose that nb~ -7 oo as 
n-+ oo. 

Assume that 

Al. There exists a sequence Hn E Ao such that Hn are absolutely continuous w.r.t. 
Po, p(Pn, Po+ bnHn) = o(bn) as n -7 oo and for any sequence Cn -7 oo as n -7 oo 

. dHn dHn 
( )

2 ( ) }!.,~Is dPo X dPo > Cn dPo = O. (3.5) 

Al implies that pms Pn can be approximated by a sequence of pms Po+ bnHn such 
that dHn/ dP0 are uniformly integrable in L2( Po). 

A2. There exist an open set D0 c A6 and a function w, w(x)/x -r 0 as x -r 0 such 
that 

i. For any sequence Gn E flo there exists a sequence Qn E Dn such that Pb( Qn, Po+ 
bnGn) < w(pb(Fo, Po+ bnGn)· 

ii. For any sequence Qn E nn there exists a sequence Gn Eno such that Pb(Qn, Po+ 
bnGn) < w(pb(Fo, Qn)). 
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A2 implies that the sequence of sets Dn can be approximated in the Hellinger metric 
by the sets Po + bn no. 

Theorem 3.2. Assume Al,A2. Let bn --+ 0, nb; --+ oo as n --+ oo and let 
Pob( cl no : Po) = Pob(int Oo : Po) . Then 

lim log Pn(P; x Pn E nn) == -1. 
n-+oo 2np~(Dn, Pn) (3.6) 

The analogy of Theorem 3.2 is also valid for the moderate large deviations of 
P; x Pn, where P; is the empirical measure of independent sample x;, ... , XZ 
with the pm Fn. 

Suppose that k/n--+ v > 0 as n.--+ oo. 
For any Q == Q1 x Q2 E A and G == G1 x G2 E A6 denote 

P~AG: P) == v p~(G2 - G1 : P) + p~(G1 : P). 

For any n c A2 and Do c A6 we set Pv(O, P) == inf{pv(Q, P) Q E O} and 
Pov( no : P) == inf{Pov( G : P) : GE no} 

Theorem 3.3. Assume Al,A2. Let bn --+ 0, nb~ --+ oo as n --+ oo and let 
Povcl (Oo) : Po) == Pov(int (Oo) : Po). Then 

lim log Pn(P; X Fn E On) == -1. 
n-+oo 2np~(Dn, Pn) (3.7) 

Let Hn == bnH, !f E A0 • Then, in the other terms, (3. 7) can be written as 

o 2 -1 * A - 1 2 - -hm (nbn) log Pn(Pk X Pn E Dn) == --2poJ!lo - H : Po) 
n-+oo 

where fI == (vH) x H. 

Clearly, similar version of Theorem 3.3 can be established also for the large devi-
ation probabilities of empirical bootstrap measure. The proof of Theorem 3.3 is 
akin to that one of Theorem 3.2 and is omitted. From now on, we assume k == n. 

Example 3.1. Differentiable statistical functionals. A linear approximation of sta-
tistics is the standard tool to prove its asymptotic normality (see Serfling (1980), 
Denker (1985)). Here we apply the same technique for the study of moderate large 
deviation. We assume that the functional T : A --+ R1 admits a linear approxima-
tion of the following type. 
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B. There exist a bounded function rand a norm Nin Ao continuous in 7-topology 
such that 

Jr(Q) -T(Po) - ls rd(Q- Po)J < w(N(Q- Po)). 

where w(t) is an increasing function such that w(t)/t -7 0 as t -7 0. 

Assumptions of such a type without that severe limitations on the function r and 
the norm N ( continuiuty in 7-topology) were used for the proof of asymptotic 
normality of statistics T( Pn) (see Serfling (1980)) and in implicit form also for the 
study of moderate large deviations (see Jureckova, Kallenberg and Veraverbeke 
(1988), Inglot, Kallenberg and Ledwina (1990),(1992), and Ermakov (1994)). At 
the same time the corresponding technique to weaken these limitations is developed 
in the theory of large deviations of empirical measures in Groeneboom and Shorack 
(1981 ). That allows to suppose that a similar results can be obtained for this setting 
as well . 

. If B holds, then, as it follows easily from Theorems 3.1. and 3.2, for any sequence 
Pn converging to P and satisfying Al we have 

lim (nb~t 1 l2 log Pn ( r r d(P: - Pn) > bn) = 
n-too ls 

-~inf {ls((g2 - gi)2 + gn dPo: ls(g2 - 91)r dPo >ls r2 dPo} = 

1 r 2 - 2 ls r dP0 , 

lim (nb~t 1l2 log Pn(T(Pn) - T(Pn) > bn) = 
n-too . 

lim (nb;t 1l 2 log Pn (fr d(Pn - Pn) > bn) . 
n-too ls 

-~inf {lsl dPo: lsgrdPo >ls r2dPo} =-~ls r2dPo. 

(3.8) 

(3.9) 

Thus, the asymptotics of moderate large deviation probabilities of T(P;) - T(Pn) 
and T(Pn) - T(P) coincide. At the same time by Theorem 3.2 

lim (nb;t 1
/

2 log Pn(T(P;) -T(Pn) > bn) = 
n-too 

lim (nb~t1 /2 log Pn( f rd(P: - Pn) > bn) = --4
1 

f r2 dPo. (3.10) 
n-tpo ls ls 

The proof of (3.8) is very easy and (3.9),(3.10) are obtained by a similar technique. 
Introduce the inverse function w(t) of w(s) such that w(t) = s implies w(s) = t. By 
Theorem 3.2 and B we have 

IPn(T(P*) - T(Pn) > bn) - Pn(ls r d(P; - Pn) > bn)I < 
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Pn(N(P; - Pn) > w(bn)) < exp{-Cnw2(bn)}. 

The asymptotics of PnUs r d(P; - Pn) > bn) follows directly from Theorem 3.2. 

Example 3.2. Variance. Let T(P) = Varp[X] = Ep[X2] - (Ep[X]) 2 • Then the 
problem of identifying the asymptotics of the right-hand side of (3.8) can be reduced 
to minimization of the functional 

(3.11) 

under the constraint that 

Is x2(92(x )-91(x )) Po( dx)-(fs x2(1+92(x )) Po( dx)) \(Is x(l + 92(x )) Po( dx) r = 

ls x2(92(x) - 91 (x )) Po(dx) - 2Ep0 [X] ls x(92(x) - 91 (x )) Po( dx )+ 

Is x(92(x) - 91 (x )) Po(dx) ls x(91 (x) + 92(x )) Po( dx) = 

ls x2(92(x)-91(x)) Po(dx)-2EPo[X] ls x(92(x)-91(x)) Po(dx)+o(bn) > bn (3.12) 

Thus, the functional T(P) admits the linear approximation and 

lim (nb~t 1 !2 log Po(T(P;) -T(Fn) > bn) = 
n--too 

lim (nb~t1 l2 log Po(T(Fn) - T(Po) > bn) = --2
1 E[X2 

- 2X E[X]]2. (3.13) 
n--too 

This example can be considered as a particular case of Example 3.1, since Varp[X] 
has the influence function. 

Example 3.3. Homogeneous functionals. It is easily seen that the analog of (3.10) 
holds also in the case of an arbitrary norm N : Ao -+ R1 continuous in r-topology 

lim (nb;t 1!2 1og Po(N(P; - Po) > bn) = --4
1 p~(no : Pa). (3.14) 

n--too 

Here Do= {G: N(G) > 1, GE Ao}. 
For the moderate large deviations of empirical measure Pn (see Ermakov (1995)) 

we have 
I A 1 

lim (nb~t 1 2 log Po(N(Pn - Po) > bn) = --2 p~(Do : Pa). (3.15) n--too 

In particular, the relations (3.14) and (3.15) are valid for the functional N defined 
as the functional of the Kolmogorov and the omega-square test statistics 

N(P - Po)= max{IF(x) - xi: x ES} 

or 

( 
1 )1/2 

N(P - Po)= la (F(x) - x)2dx . 
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Here S = (0, 1 ), Po is the pm of the uniform distribution and F is the distribution 
~function of pm P. 

Let us prove that 

lim (nb~t 1 /2 log Po(N(P; - Po) - N(Fn - Po) > bn) = -~p~(Do : Pa). (3.16) 
n-too . . 2 

For any a~d > 0 denote D(a) = {P: N(P - P0 )::; a, PE A} and <l>(d) = {P: 
N(P - Po) 2:: d, P EA}, <I>(d) - D(a) = {G: G = Q - P, Q E <l>(d), P E D(a)}. 
Relation (3.16) is given by Theorem 3.1 combined with the following computation: 

inf{fs((92 - 9i)2 + 9;) dPo : N(G2) - N(G1) 2:: bn, 

91 = dGi/ dPo, 92 = dCh/ dPo, G1, G2 E Ao} = 
= inf{p~(<l>(d) - D(a): Po)+ p~(D(a) - Po: Po): d- a> bn} (3.17) 

By Theorem 3.2 in Ermakov (1995), there exists a function h E L2(P0 ), fs hdP0 = 
0 such that the family of pms WA, A > 0, dWA/dPo = cA + AhA(x), hA(x) = 
h(x)x(h(x) > -cA/ >i.), cA--+ 1 as A--+ 0, satisfies as follows WA E <l>(A + o(A)) and 

p2(iP(A), Po)= p2 (WA, P0 )(1 + o(l)) = ~,\2 Is h2 (s) dPo(l + o(l)) (3.18) 

as A--+ 0. Note that (3.17) is valid also in the case of D(O) = {P0}. Therefore the 
right-hand side of (3.18) equals 

inf{(d - a)2 + a2 
: d - a> bn} Is h2(s) ds (1 + o(l)) = 

b~p~(Do : Po)(l + o(l)), (3.19) 

and (3.16) follows. 

The moderate large deviation probabilities of T( P;) -T(Fn) with T( P) = N'Y ( P -
P0 ), I > 1, can be expressed similarly to (3.17),(3.19). Here we get 

lim (nb~t1l2 log Po(N'Y(P; - Po) - N'Y(Fn - Po) > bn) = 
n-too . 

inf{(d - a)2 + a2 : d'Y - a'Y > bn} >Is h2(s)ds(l + o(l)) 

This relation shows that for / > 1 the asy~ptotics of log P(T( P;) - T( Fn) > bn) 
does not coincide with the corresponding asymptotics of log P(T(Pn)-T(P) > bn)· 

4. Moderate large deviations in the parametric bootstrap. Let X1, ... , Xn 
be i.i.d.r. v. 's with pm Pe0 E 8 C Rd and let T( Fn) be an estimator of Bo. In the 



11 

parametric bootstrap procedure, given T(Pn) == On, the bootstrap sample is a se-
quence of i.i.d. observations x;, ... , X~ from P0n. We shall study these procedures 
under the following assumptions; 

Cl. There exist charges H1, ... , Hd E Ao and a function w, w( x) / x -1- 0 as x -1- 0, 
such that p (Pe, Pea+ Lf=1 (Bi - Boi)Hi) < w(p(Pe, Pea)). Here B = (B1, ... , Bd) and 
Bo== (Bo1, ... , Bod)· 

C2. The charges Hi, 1 :::; i :::; d, are absolutely continuous w.r.t. Pea and have 
bounded densities hi == dHi/ dPea, 1 :::; i :::; d. 

Suppose that T(P) == (T1(P), ... , Td(P)). 

C3. There exist bounded functions ri, 1 :::; i :::; d, and a norm N : Ao -1- R1 which 
is continuous in the r-topology such that 

IT;(P) - T;(Po,) - ls r;d(P - Po,)I :::; w(N(P - Po,)) (4.1) 

for all 1 :::; i :::; d. 

For any G E Ao denote 
d 

I( G, Pea) == I: 1 ri dG 1 hihjdPea 1 rj dG. 
. i,j=l s s s 

For G == G1 x G2 E A6 we set 

P~p(G, P) = p~ ( G2 - ~ls r; dG1 H;: Po,) + I(Gi, Po,). 

For any n c A6, let Pop(Do : P) == inf {pop( G : P) : G E Do}. 

Theorem 4.1. Assume A2 and Bl-B3. Let bn -1- 0, nb; -1- oo as n -1- oo. Then 
. 2 -1 * - 1 2 -hm (nbn) log P(Pn x P0 E nn) == --2p. op( no : Pea) ( 4.2) n-+oo n 

Example 4 .1. Let B E R1 and let B"n == T1 ( Pn) be the estimator of B satisfying 
C3 with the functional T1 , satisfying ( 4.1). Let T2 : A -1- R1 satisfy ( 4.1) with 
i == 2. Then the moderate large deviation probabilities of T2(P;)- T2(P0J and 
T2(P;) - T2(Pea) have the following asymptotics. Then 

lim (nb~t 1 log Pea (T2(P:) - T2(P0 ) > bn) == n-+oo n 

-~inf {,(ls r1g1 dPo, r ls h2dPo, +ls (g2 - h ls r1g1 dPo, r dPo, : 

ls r2 (g2 - h ls r1g1 dPo,) dPo, > ls r~ dPo,} = - ~ls r~dPo, ( 4.3) 
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and 

lim (nb~t 1 log Pe0 (T2(P:) - T2(Pe0 ) > bn) ==-~inf { ( { r 1g1 dPe0 )

2 
{ h2 dPe + 

n-too 2 ls ls 0 

ls (92 - h ls rig1dPu0 )

2 
dPu0 : ls r2g2dPu0 >ls r~dPu0 } = 

1 Usr~dPe0 ) 2 fsh 2dPe0 ( 4.4) 

5. Proofs of Theorems 3.2 and 4.1. The reasoning in its main elements is 
akin to Ermakov (1995). The arguments are based on the approximation of the 
problem in question by the associated problem for the multinomial distributions. 
The approximation is realized on the base of partitions II == {Si }r of the Hausdorff 
space S consisting of the finite number of Borel sets Sj. We analyze the probabilities 
of a number of observations (X~, XiJ in each set Sj1 x Sj2 and, as a result, obtain 
the assertions of Theorem· 3.2 and 4.1. 

Proof of Theorem 3.2. For any partition II == { Sj }r and any Q, P E A, G E A0 , 

Q == Q1 x Q2 E A2, G == G1 x G2 .E A6 denote 

k 
p2(Q, PIII) == l:(Qlf2(Sj) - pl/2(Sj))2, 

j=l 

p~(Q, Pill)== p2(Q2, Qi III)+ p2 (Q1, PIII), 

m G2(S·) 
p~(G: Pill)==?= P(S~) , 

J=l J 

It is easy to see that 

p(Q, P) ==sup p(Q, PIIT), 
II 

Pb(Q,P) == suppb(Q,PIIT), 
II 

/Jo( G: P) =supp( G: Pill), Pob( G: II) =sup Pob( G: Pill). 
II II 

Here the supremum is taken over the all partitions II of S. 
For any partition II = {Si}r and any sets !1 c A2 and denote Pb(D, Pill) = 

inf{pb(Q, Pill) : Q E D} and Pob(Do, PIPi) = inf{pob(G : Pill) : G E D} respec-
tively. 

Suppose that the sequence Hn converges to H E Ao. Since the sequence of 
densities dHn/dP is compact set in L2(P) the general setting is akin to this one. 
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Similarly to the main line of the proof of Sanov theorem the analytical technique 
will be based on the following relation (compare with (2.2)) 

Pob(Oo: P) = sup{pob(Oo, Pill) : II is a partition of S} (5.1) 

if Pob(Oo : P) = Po( cl (Oo) : P) . 
By Al,A2, (5.1) implies 

Pb( On, Pn)(l + o(l)) = sup{pb(On, PnlIT) : II is a partition of S} (5.2) 

as n--+ oo. 
The proof of (5.1) is akin to that one of Lemma 2.4 in GOR (1979). 
By Al ,A2, the convergence Hn to H implies that there exists G = G1 x G2 E 

cl (no) such that 

p~(On, Pn) = p~(On, Po+ bnHn)(l + o(l)) = p~(Po + bnOo, Po+ bnH)(l + o(l)) =. 

2 - 122 - -Pb(Po + bnGn, Po+ bnH)(l + o(l)) = 2,bnPob(G - H: Po)(l + o(l)). 

Here fl= H x Hand G - fl= (G1 - H) x (G2 - H): 
Let II = {Si}i11 be a partition .of S such that Pi = P(Si) > 0, 1 :::; j :::; m. 

Denote Pni = Pni(Sj), hi= H(Sj), 9Ini = G1n(Si), 92nj = G2n(Sj), 91i = G1(Sj), 
92j = G2j(Sj) for all 1 :::; j :::; k. Put 

2 1 - _: 
!~ = p~(G: PnlII), I = 4Pob(G - H: PolII). 

It is clear that 

(5.3) 

as n--+ oo. 
By the Stirling formula, we get 

* { 1 m 1 m 
CI: exp (1 - m) log n - 2 ~log Znj - 2 ~log Xn;-

~ Znj . ~ Xnj } ( ) n L..J Znj log - .. - n L..J Xnj log -. = B Yn 
j=I PnJ j=I Zn; 

(5.4) 

Here :L* denotes the summation over the set Yn of all Zn = (zn1, ... , Znm) and Xn = 
(xn1, ... , Xnm) such that nzn1, ... , nznm and nxn1, ... , nXnm are whole nonnegative 
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numbers, Zni + ... + Znm = 1, Xni + · · · Xnm = 1 and Jin(zn) + J2n(Xn, Zn) > b;/~· 
Here 

m m 
J ( ) """""( i/2 1/2)2 J ( ) """""( 1/2 1/2)2 ln Zn = L...J znj - Pnj ' 2n Xn, Zn = L.J xnj - znj . 

j=i j=l 
Fix€> 0. For all whole numbers ii, ii> -l/c:-1, and all integers i2 introduce the 
sets Uni 1 = {zn : (1 + Eii)b;/~ < J1n(zn) :::; (1 + €(i1 + l))b;/~, Zn== (zn1, ... , Znm), 
nzn1, ... , nZnm are whole nonnegative numbers, Zn1 + .. . +znm == 1} and Wni2 (zn) == 

{xn : Ei2b~/~ < J2n(Xn, Zn) :::; €(i2 + l)b~/~, Xn == (Xn1, ... , Xnm), nXn1, ... , nXnm 
are whole nonnegative numbers, Xn1 + ... + Xnm == l}. Denote Yni1 ,i2 == {(zn, Xn) : 
Zn E Unip Xn E Wni2 (Zn)}. 

Put de== -[l/€] - 1. 
The numbers of elements Uni 1 and Wni2 (Zn) for ii > de+ 1 , i2 > 1 and Zn E Unii 

equal 
m 

CE(nbn/n) 2>.(1 + Ei1)>.-l II paj(l + o(l)) (5.5) 
j=l 

and 
m 

CE(nbn/n)2>.(Ei2)>.-l II zaj(l + o(l)), (5.6) 
j=i 

respectively. Here .-\ == ( m - 1) /2. 
Expanding log( Znj / Pnj) and log( Xnj / Znj) in Taylor series by powers of ( z~~2 -

1/2 -1/2 ( 1/2 1/2) -1/2 . 1 Pnj )Pnj and Xnj - Znj Znj respective y we get 

I(Yni 1iJ < CE2(1 + Ei1)>.- 1 (Ei2)>.-l(nb;1~) 2>. exp{-2n(l + E(i1 + i2))b;1~}. (5.7) 

The detailed estimates in (5. 7) are akin to (6.5) in Ermakov (1995). 
Define the sequence € == En such that En --+ 0, nc:nb~/~ --+ oo as n --+ oo. Then 

we have 

C(nb;1n)2>. f
00 

t>.-i exp{-2nb;1~t} f
00 

s>.-i exp{-2nb;1~s}dsdt < lo li-t . 
C(nb;1~)2,\ [

0 

u2,\-l exp{-2nb;1~u}du = 

exp{-2nb~1~(1 + o(l))} = exp{-2nb~12 (1 + o(l))} (5.8) 

Thus it remains to estimate 

L B(YndeniJ::; P(pb(P:xPn, Pill)> Pb(On, Plll)(l+o(l)) I p(Fn, Pill)> €~ 1 b;/~) < 
i2>l/en 

I: Cc:n(cni)>.-l(nb;1~)>. exp{-2nicnb~1~} = exp{-2nb;12(l + o(l))}, (5.9) 
i>-dn 



15 

E I(Yni10)::; CP(p(Fn,PIII) > p(t!n,PIII)(l + o(l))) < 
i1>0 

exp{-2nb~12 (1 + o(l))}. (5.10) 

Here (5.9) follows from (6.6) in Ermakov (199.5) and the estimates in (5.10) are 
similar to that in (5.9). Now (5.8)-(5.10) together implies (3.6). 

Proof of Theorem f 1. The difference in the arguments has no principal character in 
comparison with the proof of Theorem 3.2. Thus we introduce only new notations 
and point out auxilliary relations allowing to pass to the arguments of the proof of 
Theorem 3.2. 

For any partition II and set !1 c A 2 denote 

By Bl-B3, for any Bn -+Bo, Bn = (Bn1, ... , Bnd), as n-+ oo and> Qn converging to 
Qe0 in r-topology we have 

1 d { 
p2

( Po, Po,) = 4 i~l ( Bni - Bo;) J 
8 

h;hjdPo, ( Bnj - Baj )(1 + o(l) ), (5.11) 

P ( PT(Qn)• Po, +~ls r;d( Qn - Po,) H;) ~ w(p(PT(Qn)• Po,)), (5.12) 

p(PT(Qn)• Po,)= p (Po, + t ls r;d( Qn - Po,) H;, Po,) + O(w(p(PT(Qn)• Po,))), 

(5.13) 

p2 (Pr(Qn)' Pe0 ) = -
4

1 t { r;d(Qn - Po,) { h;hjdPo, i rjd(Qn - Po,)+ 
i,i=I ls ls s 

(5.14) 

Hence we get 

(5.15) 

as n-+ oo. 

The further arguments are akin to the proof of Theorem 3.2. We write 

and make use versions of relati~ns (5.11) - (5.16) written for a given partition II. 
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