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Low-dimensional approximations of high-dimensional
asset price models

Martin Redmann, Christian Bayer, Pawan Goyal

ABSTRACT. We consider high-dimensional asset price models that are reduced in their di-
mension in order to reduce the complexity of the problem or the effect of the curse of dimen-
sionality in the context of option pricing. We apply model order reduction (MOR) to obtain
a reduced system. MOR has been previously studied for asymptotically stable controlled
stochastic systems with zero initial conditions. However, stochastic differential equations
modeling price processes are uncontrolled, have non-zero initial states and are often un-
stable. Therefore, we extend MOR schemes and combine ideas of techniques known for
deterministic systems. This leads to a method providing a good pathwise approximation.
After explaining the reduction procedure, the error of the approximation is analyzed and the
performance of the algorithm is shown conducting several numerical experiments. Within
the numerics section, the benefit of the algorithm in the context of option pricing is pointed
out.

1. INTRODUCTION

In finance we often encounter high-dimensional models, since the underlying markets are
usually high-dimensional. For instance, in equity, take all stocks comprising the S & P 500
index (SPX). Fixed income markets exhibit a myriad of different relevant interest rates. All
these are, obviously, only small snapshots of even larger markets. Of course, in many situ-
ations, we are only interested in a tiny fraction of these markets, which can be adequately
modeled by a low-dimensional stochastic process. Moreover, if we are interested in deriva-
tives on SPX, for example, then we may just model the index itself, disregarding the fine
structure. On the other hand, if we consider a larger portfolio, this may not be possible with-
out introducing inconsistencies in the model.

From a numerical perspective, high-dimensional models pose severe difficulties. Indeed,
many traditional computational tools suffer from the curse of dimensionality, which essen-
tially states that the computational work required to compute the relevant quantity of interest
up to a prescribed error tolerance grows exponentially in the dimension n of the model. Most
methods for discretizing partial differential equations (such as finite element and finite differ-
ence methods) suffer from the curse of dimensionality, as do Fourier based methods. Even
many deterministic sampling methods (i.e., tree methods, quasi Monte Carlo) suffer from the
curse of dimensionality in one way or another.1 The notable exception is, of course, Monte
Carlo simulation.

One way to overcome the numerical burden in high-dimensional models is Model order re-
duction (MOR) [1, 2, 9]. MOR is a technique in numerical analysis in order to construct low

1It is worth pointing out, that the effective dimension for QMC and MC method is, in fact, n multiplied by the
number of time-steps, if time discretization is needed.
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M. Redmann, C. Bayer, P. Goyal 2

dimensional surrogate models that allow to approximate the quantity of interest with the de-
sired accuracy. As MOR takes the specific quantity of interest into account, reduced models
for different options will generally be different. (The specific method introduced later will,
however, not depend, e.g., on the specific strike price.)

To fix ideas, suppose that we are given an n dimensional stochastic volatility model with
asset price processes S(t) ∈ Rn and the corresponding stochastic variance processes v
– which will be one-dimensional in our numerical examples. Consider an option with payoff
g(CS), whereC ∈ Rp×n and g : Rp → R possibly non-linear, where we assume that p�
n. For instance, we have p = 1 for basket options. Our goal is to construct a Markov process
x̃ taking values in Rñ – with ñ � n – and a matrix C1 ∈ Rp×ñ such that the processes
CS and C1x̃ are close in L2. This usually ensures a good approximation of the payoff,
i.e., g(CS) ≈ g(C1x̃). In this paper, we present a general strategy for identifying such
processes x̃. We also provide numerical evidence of successful MOR in several financial
applications, in the sense that relative errors of the order of 10−4 are regularly achieved with
very small ñ even when n ≥ 100. It should be noted here that we only propose a MOR
technique for the asset process S in this paper, but not for the variance process v. This is
due to the generally non-linear dynamics of the variance process, which would require more
complicated MOR strategies and will be explored in future work.

Before explaining the MOR strategy in detail, some conclusions can already be made based
on the fundamental idea. First note that MOR should not be confused with Markovian pro-
jection, see [11, 17]. The underlying problem is, of course, that the process CS itself is a
natural candidate for a reduced model, but it generally lacks the Markov property. There is,
however, a Markov process x̂ taking values in Rp such that CS(t) and x̂(t) have the same
distribution for every t. This means that European option prices based on x̂ correspond ex-
actly to the prices in the full model. The coefficients of x̂ are, however, not trivial to obtain.
Nonetheless, there has been continuous interest in the financial community in applications
of Markovian projections, see, for instance, [18] and [3] for two recent examples.

In contrast, the surrogate model x̃ is often easier to construct than the Markovian projection
x̂. Moreover, our construction provides that x̃ is close to CS on path-space, which directly
allows the application to American option pricing. This comes at the price of being only an
approximation, though. Moreover, MOR may provide good low dimensional surrogate models
even in situations when there is no natural low-dimensional intermediate process, i.e., when
p ≈ n as of above.

Remark 1. Generally, the surrogate model x̃ does not have any specific financial interpre-
tation. Hence, its only justification is the approximation quality with respect to the quantity of
interest.

Outline of the paper. After setting the stage in Section 2, we introduce techniques to pro-
vide quantitative estimates of “importance” of projections of the state for the dynamics of
the process in Section 3. These quantitative estimates are then used in Section 4 to identify
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Low-dimensional approximations of high-dimensional asset price models 3

especially efficient reduced models. We continue to provide error bounds in Section 5. Nu-
merical experiments are reported in Section 6, followed by concluding remarks in Section 7.
Some general definitions and technical proofs are presented in an appendix.

2. SETTING AND COVARIANCE FUNCTIONS

LetW = (W1, . . . ,Wq)
T be an Rq-valued with mean zero Wiener process with covariance

matrix K = (kij), i.e., E[W (t)W T (t)] = Kt for t ∈ [0, T ], where T > 0 is the terminal
time. Suppose that W and all stochastic process appearing in this paper are defined on a
filtered probability space

(
Ω,F, (Ft)t∈[0,T ],P

)
2. In addition, we assumeW to be (Ft)t∈[0,T ]-

adapted and the increments W (t + h) −W (t) to be independent of Ft for t, h ≥ 0. We
consider the following large-scale Heston type model:

dx(t) = Ax(t)dt+

q∑

i=1

√
v(t)Nix(t)dWi(t), x(0) = x0 = Bz,(1a)

y(t) = Cx(t), t ∈ [0, T ],(1b)

where A,Ni ∈ Rn×n and C ∈ Rp×n. Moreover, the set of initial conditions, in which we
are interested, is spanned by the columns of a matrix B ∈ Rn×m, i.e., there is a vector
z ∈ Rm such that x0 = Bz. This assumption allows to construct a reduced-order system
that performs well for several initial states. However, there are many financial applications,
where only a single x0 is of interest. Then, we have B = x0 and z = 1. The scalar
(Ft)t∈[0,T ]-adapted stochastic process (v(t))t∈[0,T ] is non-negative, P-a.s. bounded from
above by a constant c > 0 and called variance process. The variance process is assumed
to be bounded for theoretical considerations below. Practically, boundedness is less relevant.
The state dimension n is assumed to be large and the quantity of interest y is rather low-
dimensional, i.e., p� n.

Below, the dependence of the state variable on x0 is sometimes indicated by writing x(t;x0),
t ∈ [0, T ], for the solution to (1a). Furthermore, we write M1 ≤ M2 for two symmetric ma-
trices M1 and M2 if M2 −M1 is symmetric positive semidefinite. In order to identity the
important states in system (1), the covariance function and an upper bound for the covari-
ance will be of interest. Therefore, we formulate the following lemmas.

Lemma 2.1. The matrix-valued function E
[
x(t;x0)xT (t;x0)

]
, t ∈ [0, T ], is a solution to

Ẋ(t) ≤ AX(t) +X(t)AT + c

q∑

i,j=1

NiX(t)NT
j kij, X(0) = x0x

T
0 ,(2)

where kij is the ijth entry of the covariance matrix K.

Proof. The proof is given in Appendix B.1. �

2(Ft)t∈[0,T ] shall be right continuous and complete.
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M. Redmann, C. Bayer, P. Goyal 4

We denote the solution to (1a) by xc if the process v is replaced by its upper bound c (v ≡ c).
We call (1) Black Scholes model in case the volatility is constant. The covariance function of
xc can be derived through the identity given in the following lemma.

Lemma 2.2. The matrix-valued function E
[
xc(t;x0)xTc (t;x0)

]
, t ∈ [0, T ], satisfies

Ẋc(t) = AXc(t) +Xc(t)A
T + c

q∑

i,j=1

NiXc(t)N
T
j kij, Xc(0) = x0x

T
0 ,(3)

Proof. The statement of this lemma is a special case of [25, Lemma 2.1] �

We now formulate a Gronwall type lemma for matrix differential inequalities involving resol-
vent positive operators. We refer to Appendix A for a definition of these operators.

Lemma 2.3. Suppose that L is a resolvent positive operator on the space of symmetric
matrices. Let the matrix-valued function X(t) ≥ 0, t ∈ [0, T ], satisfy

Ẋ(t) ≤ L(X(t))(4)

and let Z(t) ≥ 0, t ∈ [0, T ], be the solution to the matrix differential equation

Ż(t) = L(Z(t)).(5)

If X(0) ≤ Z(0), we have that X(t) ≤ Z(t) for all t ∈ [0, T ].

Proof. The proof of this theorem for a special resolvent positive operator is given in [26,
Lemma 3.3]. In order to render this paper as self-contained as possible, the proof is stated
in Appendix B.2 using the same arguments. �

Lemma 2.3 together with Lemmas 2.1 and 2.2 implies that

E
[
x(t;x0)xT (t;x0)

]
≤ E

[
xc(t;x0)xTc (t;x0)

]
,(6)

sinceL(X) := AX+XAT+c
∑q

i,j=1 NiXN
T
j kij defines a resolvent positive operator on

the space of symmetric matrices, see Appendix A. This means that the covariance function
of a suitable Black Scholes model dominates the one of a Heston model in case the volatility
function is bounded.

Remark 2. We can use the same approach if we allow for a different volatility vi (i =
1, . . . , q) in every summand of the diffusion in (1a). Then, boundedness has to be under-
stood in a more general sense, i.e., we need the existence of a positive semidefinite matrix
C = (cij)i,j=1,...,q such that

(
v

1
2
1 (t), . . . , v

1
2
q (t)

)T (
v

1
2
1 (t), . . . , v

1
2
q (t)

)
≤ C

for all t ∈ [0, T ]. The operator L in Lemma 2.1 then becomes L(X) = AX + XAT +∑q
i,j=1 NiXN

T
j cijkij . The associated Black Scholes model that guarantees the identity as

in Lemma 2.2, is given by setting vi ≡ 1 and replacing the Wiener process with covariance

DOI 10.20347/WIAS.PREPRINT.2706 Berlin 2020



Low-dimensional approximations of high-dimensional asset price models 5

matrix K by a Wiener process with covariance K ◦C, where · ◦ · denotes the component-
wise product of two matrices. Notice that K◦C is positive semidefinite again due to Schur’s
product theorem [30].

3. CHARACTERIZATION OF DOMINANT STATES

We are interested in the dominant subspace of system (1) meaning that we aim to identify
states that are less important in both equation (1a) and (1b). Those can be neglected in the
system dynamics, leading us to an approximation of the system in a lower dimension.

The objects that we choose to identify unimportant states are related to matrices that are
used in deterministic control theory. In linear deterministic control systems, the so-called
reachability Gramian characterizes the minimal energy that is needed to steer a system
from zero to some desired state at time T . Moreover, the observability Gramian determines
the energy that is caused by the observations of an unknown initial state on the time in-
terval [0, T ], see, e.g., [1]. Consequently, these Gramians can be used to identify states
that require a large amount of energy to be reached and states that produce only very little
observation energy. Those are less relevant in a control system.

We use these ideas and extend them to the stochastic uncontrolled framework considered
here. The matrices identifying the dominant subspaces of system (1) will also be called
Gramians due to the link between the concepts.

3.1. Dominant subspaces of (1a). We introduce the fundamental solution to (1a) as an
Rn×n-valued stochastic process Φ solving

Φ(t) = I +

∫ t

0

AΦ(s)ds+

q∑

i=1

∫ t

0

√
v(s)NiΦ(s)dWi(s), t ∈ [0, T ].(7)

If v ≡ c, the fundamental solution is denoted by Φc. It is not hard to see that the solution to
(1a) is given by

x(t;x0) = Φ(t)x0 = Φ(t)Bz,(8)

because we assumed that the initial state is spanned by the columns of B. Below, 〈·, ·〉2
denotes the Euclidean inner product and ‖·‖2

2 is the corresponding norm.

Based on (8), let us now identify the states in (1a) that play a minor role. We obtain

E |〈x(t;x0), x̃〉2|2 = E |〈Φ(t)Bz, x̃〉2|2 = E
∣∣〈z,BTΦT (t)x̃〉2

∣∣2

≤ x̃TE
[
Φ(t)BBTΦT (t)

]
x̃ ‖z‖2

2(9)

for a given vector x̃ ∈ Rn and using Cauchy’s inequality. Since E
[
Φ(t)BBTΦT (t)

]
might

not be available from the computational point of view, we find an estimate based on Φc in
the following proposition.

DOI 10.20347/WIAS.PREPRINT.2706 Berlin 2020
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Proposition 3.1. Let Φ be the fundamental solution to (1a) and suppose that Φc is the
fundamental solution to (1a) for the special case v ≡ c. Then, we have

E
[
Φ(t)BBTΦT (t)

]
≤ E

[
Φc(t)BB

TΦT
c (t)

]
.

Proof. We denote the ith column of the matrix B by bi, allowing us to write Φ(t)B =[
x(t; b1), . . . , x(t; bm)

]
. Hence, we have

E
[
Φ(t)BBTΦT (t)

]
=

m∑

k=1

E
[
x(t; bk)x

T (t; bk)
]
.(10)

Applying (6) to (10) yields

E
[
Φ(t)BBTΦT (t)

]
≤

m∑

k=1

E
[
xc(t; bk)x

T
c (t; bk)

]
= E

[
Φc(t)BB

TΦT
c (t)

]
.

This concludes the proof. �

Combining (9) with Proposition 3.1, we find

E |〈x(t;x0), x̃〉2|2 ≤ x̃TF (t)x̃ ‖z‖2
2 ,(11)

where F (t) := E
[
Φc(t)BB

TΦT
c (t)

]
. We define PT :=

∫ T
0
F (t)dt and call PT (time-

limited) reachability Gramian. Integrating both sides of (11) over [0, T ] yields
∫ T

0

E |〈x(t;x0), x̃〉2|2 dt ≤ x̃TPT x̃ ‖z‖2
2 .(12)

Consequently, the Gramian PT characterizes the relevant subspaces as we see in the next
proposition.

Proposition 1. Let x(·;x0) be the solution to (1a) with initial state x0 = Bz, i.e., it is
spanned by the columns of B. Then, it holds that

x(t;x0) ∈ imPT P⊗ dt-a.s. on Ω× [0, T ].

Proof. If x̃ ∈ kerPT , then the left-side of (12) is zero, which implies that 〈x(t;x0), x̃〉2 = 0
P⊗ dt-a.s. Since PT is symmetric positive semidefinite, this yields the claim. �

Thus, the states that are not in imPT are not important in equation (1a). However, it is
also important to identify the states that play a minor role. Therefore, we turn our attention to
states that lie in imPT but that are nevertheless less important. We can choose an orthonor-
mal basis of eigenvectors (pk)k=1,...,n of PT with associated eigenvalues (λk)k=1,...,n. Then,
the following representation

x(t;x0) =
n∑

k=1

〈x(t;x0), pk〉2 pk

DOI 10.20347/WIAS.PREPRINT.2706 Berlin 2020



Low-dimensional approximations of high-dimensional asset price models 7

holds. Setting x̃ = pk in (12) leads to
∫ T

0

E |〈x(t;x0), pk〉2|2 dt ≤ λk ‖z‖2
2 .(13)

Consequently, x(t;x0) is small in the direction of pk if λk is small. Hence, states with a large
component in the direction of such a pk are less relevant. This means that that eigenspaces
of PT corresponding to small eigenvalues λk play a minor role in the system dynamics.

Remark 3. PT is related to the Gramian used in [4]. However, they choose limT→∞ PT in
some asymptotically stable deterministic setting , i.e., Ni = 0 and λ(A) ⊂ C−, where λ(·)
denotes the spectrum of a matrix. In the stochastic case the respective stability condition
were E ‖xc(t;x0)‖2

2 → 0 for t → ∞ and all initial conditions x0 (mean square asymptotic
stability), see, e.g., [12, 19, 25]. Stability is not assumed in this paper such that limT→∞ PT
does not exist in general. Moreover, the motivation to use the reachability Gramian PT is
different from the motivation given in [4].

We conclude this section by a discussion on how to compute PT which allows to identify
redundant information in the system. Using the representation of F in (10) and applying
Lemma 2.2 to every summand of its right-side, we see that F satisfies

Ḟ (t) = AF (t) + F (t)AT + c

q∑

i,j=1

NiF (t)NT
j kij, F (0) = BBT .(14)

Integrating both sides of (14) yields

F (T )−BBT = APT + PTA
T + c

q∑

i,j=1

NiPTN
T
j kij.(15)

This means that the large-scale generalized Lyapunov equation (15) needs to be solved
to derive PT . This can be done also in a large-scale setting for a given left-side. However,
the left-side of (15) depends on F (T ), a matrix that needs to be computed beforehand.
For dimensions n of a few hundreds, this can be done directly by vectorizing (14). Defining
f(t) := vec(F (t)), we then obtain

ḟ(t) = Kf(t), f(0) = vec(BBT ),(16)

where vec(·) is the vectorization of a matrix, · ⊗ · denotes the Kronecker product of two
matrices and

K := I ⊗ A+ A⊗ I + c

q∑

i,j=1

Ni ⊗Njkij.

Consequently, deriving F (T ) relies on the efficient computation of a matrix exponential,
since

f(T ) = eKT vec(BBT ).(17)

A discussion on how to determine a matrix exponential efficiently can be found in [21] and
references therein. However, we need to assume that 0 6∈ λ(K). This guarantees a unique
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solution of (15) which we suppose to have below. If system (1) were mean square asymptot-
ically stable in the spirit of Remark 3, then we could take T → ∞ in (15) and F (T ) would
disappear in the limit which makes the computation of the (infinite) reachability Gramian
much simpler. Such type of (infinite) reachability Gramians are, e.g., used to characterize
reachability energies in mean square asymptotically stable controlled stochastic systems
having time-invariant coefficients [10, 25], a setting that differs significantly from the one
considered here.

More advanced approaches need to be used to solve for F (T ) if n is very large. There are
relevant examples in which F (T ) and hence PT can be derived explicitly as we will see in
Section 6.

3.2. Dominant subspace of (1b). We now characterize the importance of an initial state
x0 in the output equation. The initial condition is not relevant if the corresponding output
y(·;x0) has zero energy and is of low relevance if the output energy is small, since those
initial states barely contribute to the quantity of interest. We begin with an estimate for y
based on the result of Section 2.

Proposition 2. Suppose that y is given by (1b) and let us assume that yc is the output
associated with the solution to the solution of (1a) if v ≡ c, i.e., yc(t) = Cxc(t). Then, we
have

E
∫ T

0

‖y(t)‖2
2 dt ≤ E

∫ T

0

‖yc(t)‖2
2 dt.(18)

Proof. We use the linearity of the trace to obtain

E
∫ T

0

‖y(t)‖2
2 dt = E

∫ T

0

tr(Cx(t)xT (t)CT )dt =

∫ T

0

tr(CE[x(t)xT (t)]CT )dt.

Using that (6) is preserved when the trace is applied yields

E
∫ T

0

‖y(t)‖2
2 dt ≤

∫ T

0

tr(CE[xc(t)x
T
c (t)]CT )dt = E

∫ T

0

‖yc(t)‖2
2 dt

which concludes the proof of this proposition. �

Now, the goal is to find a bound for the energy of yc. Therefore, we introduce QT as the
solution to

G(T )− CTC = ATQT +QTA+ c

q∑

i,j=1

NT
i QTNjkij,(19)

an equation that can be solved for large n once the left-side is given. We refer to QT as the
observability Gramian since it characterizes the observation energy as we will see below.

DOI 10.20347/WIAS.PREPRINT.2706 Berlin 2020
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G(t), t ∈ [0, T ], entering in (19) satisfies

Ġ(t) = ATG(t) +G(t)A+ c

q∑

i,j=1

NT
i G(t)Njkij, G(0) = CTC,(20)

i.e.,QT =
∫ T

0
G(s)ds. Notice that if n is not too large,G(T ) can be computed analogously

to (17) meaning that g(T ) := vec(G(T )) is given by

g(T ) = eK
TT vec(CTC).

Below, we distinguish between two cases. We first discuss the case in which the system
matrices commute.

Commuting matrices. We find a representation forQT and subsequently an energy estimate
for yc in case all the matrices in (1a) commute. For that purpose, we establish the following
result.

Proposition 3.2. Let us assume that all matricesA,N1, . . . , Nq commute. Hence, we have
that these matrices commute with the fundamental solution Φc, i.e.,

AΦc(t) = Φc(t)A and NiΦc(t) = Φc(t)Ni(21)

for all t ∈ [0, T ] and i = 1, . . . , q.

Proof. These identities hold since the left and the right-sides satisfy the same different equa-
tion, e.g., one can multiply (7) with A from the left to obtain the equation for AΦc and with
A from the right to get the one for ΦcA. Since all system matrices commute, the equations
coincide. Similarly, one finds the indents for the matrices Ni. �

The example considered in Section 6 satisfies the assumption of Proposition 3.2. Further-
more, notice that in the deterministic case (Ni = 0), we have Φc(t) = eAt and hence (21)
is always given. Based on Proposition 3.2, a representation of QT can be found.

Proposition 3.3. Under the assumptions of Proposition 3.2, we have

QT =

∫ T

0

E
[
ΦT
c (t)CTCΦc(t)

]
dt.

Proof. We apply Ito’s product rule to ΦT
c (t)CTCΦc(t) and take the correlation of the noise

processes into account. This yields

d
(
ΦT
c (t)CTCΦc(t)

)

= d
(
ΦT
c (t)

)
CTCΦc(t) + ΦT

c (t)CTCd (Φc(t)) + d
(
ΦT
c (t)

)
CTCd (Φc(t))

= d
(
ΦT
c (t)

)
CTCΦc(t) + ΦT

c (t)CTCd (Φc(t)) + c

q∑

i,j=1

ΦT
c (t)NT

i C
TCNjkijΦc(t)dt.

DOI 10.20347/WIAS.PREPRINT.2706 Berlin 2020
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Above, we plug in (7) for the case when v ≡ c and take the expected value on both sides.
Hence, using that the Ito integral has mean zero, we have

d
(
E
[
ΦT
c (t)CTCΦc(t)

])

= E

[
ΦT
c (t)

(
ATCTC + CTCA+ c

q∑

i,j=1

NT
i C

TCNjkij

)
Φc(t)

]
dt.

Due to (21) we see that E
[
ΦT
c (t)CTCΦc(t)

]
, t ∈ [0, T ], solves (20) and thus QT =∫ T

0
E
[
ΦT
c (t)CTCΦc(t)

]
dt. �

Inequality (18) and Proposition 3.3 now imply that

E
∫ T

0

‖y(t)‖2
2 dt ≤ E

∫ T

0

‖CΦc(t)x0‖2
2 dt = xT0QTx0.(22)

Initial states that are spanned by eigenvectors ofQT belonging to the small eigenvalues lead
to a small right-side in (22) and consequently yield a small output y. Hence, we know that
eigenspaces of QT corresponding to the small eigenvalues are less relevant in (1b).

General case. We find another bound on the energy of yc and hence also for y in the general
case.

Proposition 3.4. If y is the quantity of interest in system (1) and QT the solution of (19),
then

E
∫ T

0

‖y(t)‖2
2 dt ≤ xT0QTx0 + R(T ),(23)

where R(T ) := E
∫ T

0
xTc (t;x0)G(T )xc(t;x0)dt − E

[
xTc (T ;x0)QTxc(T ;x0)

]
with G

solving (20).

Proof. We make use of

E
[
xTc (T ;x0)QTxc(T ;x0)

]
= tr(QTE

[
xc(T ;x0)xTc (T ;x0)

]
).(24)

We obtain from Lemma 2.2 that

QTE
[
xc(T ;x0)xTc (T ;x0)

]
= QTx0x

T
0 + E

∫ T

0

QTAxc(t;x0)xTc (t;x0)dt

+ E
∫ T

0

QTxc(t;x0)xTc (t;x0)ATdt

+ c

q∑

i,j=1

E
∫ T

0

QTNixc(t;x0)xTc (t;x0)NT
j kijdt.
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Low-dimensional approximations of high-dimensional asset price models 11

Using properties of the trace, (24) becomes

E
[
xTc (T ;x0)QTxc(T ;x0)

]

= xT0QTx0 + E
∫ T

0

xTc (t;x0)

(
ATQT +QTA+ c

q∑

i,j=1

NT
i QTNjqij

)
xc(t;x0)ds.

We insert equation (19) into the above identity to get

E
[
xTc (T ;x0)QTxc(T ;x0)

]
= xT0QTx0 + E

∫ T

0

xTc (t;x0)(G(T )− CTC)xc(t;x0)dt

= xT0QTx0 − E
∫ T

0

‖yc(t)‖2
2 dt+ E

∫ T

0

xTc (t;x0)G(T )xc(t;x0)dt

(25)

This, together with (18), gives us the result. �

Assuming that the remainder term R(T ) is not too large, the same conclusions as below
(22) can be made. The eigenspaces that belong to the small eigenvalues of QT are unim-
portant. If the system is mean square asymptotic stable, then Q∞ := limT→∞QT exists
and R(T ) → 0 as T → ∞. Taking the limit of T → ∞ in (23) would then lead to a
characterization of the output energy by Q∞ without a remainder term. Q∞ is also easier to
determine than QT since it solves (19) with G(T ) = 0. Energy estimates based on Q∞ are
shown in [6, 10, 25] if the variance v is constant.

We can also get to a more explicit bound by applying Gronwall’s lemma to (25) if QT is
regular. Defining α(T ) := xT0QTx0 − E

∫ T
0
‖yc(t)‖2

2 dt (25) becomes

E
[∥∥∥Q

1
2
Txc(t;x0)

∥∥∥
2

2

]
= α(T ) + E

∫ T

0

∥∥∥G 1
2 (T )xc(t;x0)

∥∥∥
2

2
dt

≤ α(T ) + kTE
∫ T

0

∥∥∥Q
1
2
Txc(t;x0)

∥∥∥
2

2
dt

where kT :=
∥∥∥G 1

2 (T )Q
− 1

2
T

∥∥∥
2

2
. Gronwall’s lemma leads to

0 ≤ E
[∥∥∥Q

1
2
Txc(t;x0)

∥∥∥
2

2

]
≤ α(T ) + E

∫ T

0

α(t)kT ekT (T−t) dt.

With a few more steps, we find

E
∫ T

0

‖y(t)‖2
2 dt ≤ xT0QTx0 ekTT ,

but this bound can not be expected to be tight.
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4. STATE-SPACE TRANSFORMATION AND REDUCED-ORDER MODEL

Balancing related MOR like balanced truncation were initially invented for controlled linear
deterministic systems that are asymptotically stable and have zero initial states [23]. Bal-
anced truncation has been extended to stochastic systems with similar properties [6, 10].
Subsequently, this scheme was studied for deterministic and stochastic systems with non-
zero initial conditions [4, 5]. However, all these methods are restricted to stable systems. A
method for deterministic equations called time-limited balanced truncation aiming to create
a good reduced system on a finite time interval only was introduced in [15]. As pointed out
in [21], this method has some potential in the context of unstable systems.

The method explained below is a combination of all the methods mentioned above. It fol-
lows the same concept which is simultaneously diagonalizing system Gramians. Here, the
Gramians are PT and QT solving (15) and (19), respectively. We have shown the relevance
of these Gramians in Section 3. Diagonalizing both PT and QT means that we create a
system in which the important states in equations (1a) and (1b) are the same. Hence, the
unimportant ones can be easily identified and thus truncated.

The unimportant ones can then be easily truncated.

Let S ∈ Rn×n be a regular matrix. We do a coordinate transformation by introducing

x̂(t) = Sx(t).

Based on (1) the associated system is

dx̂(t) = Âx̂(t)dt+

q∑

i=1

√
v(t)N̂ix(t)dWi(t), x̂(0) = Sx0 = SBz,(26a)

y(t) = Ĉx̂(t), t ∈ [0, T ],(26b)

where Â = SAS−1, B̂ = SB, Ĉ = CS−1 and N̂i = SNiS
−1. Notice that the quantity of

interest does not change with this transformation. However, the matrices characterizing the
importance of states in (26a) and (26b) are different ones. For the transformed system (26),
these become

P̂T = SPTS
T and Q̂T = S−TQTS

−1.

The above relation is obtained by multiplying (14) with S from the left and with ST . Moreover,
(20) needs to be multiplied with S−T from the left and with S−1 from the right.

We now choose S such that P̂T = Q̂T = ΣT = diag(σ1, . . . , σn), where σ1 ≥ . . . ≥
σn > 0 are called Hankel singular values (HSVs) and given by σi =

√
λi(PTQT ), where

λi(·) denotes the ith eigenvalue of the matrix and i = 1, . . . , n. Such a system is called
balanced. A transformation like this always exists if PT , QT > 0. It is, together with its
inverse, derived the following way:

S = Σ
− 1

2
T UTLTQ and S−1 = KPV Σ

− 1
2

T .
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Low-dimensional approximations of high-dimensional asset price models 13

The above matrices are computed from factorizations PT = KPK
T
P and QT = LQL

T
Q as

well as from the singular value decomposition of KT
PLQ = V ΣUT .

In a balanced system, it is easy to identify the unimportant states. They are the ones corre-
sponding to the small HSVs of the system and represented by x2 given by the partition of
the balanced state variable

x̂(t) = Sx(t) =
[
x1(t)
x2(t)

]
,

where x1(t) ∈ Rñ represents the relevant states in the system dynamics. Furthermore, we
partition the balanced realization as follows:

SAS−1 =
[
A11 A12
A21 A22

]
, SB =

[
B1
B2

]
, CS−1 = [ C1 C2 ] , SNiS

−1 =
[
Ni,11 Ni,12

Ni,21 Ni,22

]
,

where A11 ∈ Rñ×ñ etc. With this, system (26) becomes

[
dx1
dx2

]
=
[
A11 A12
A21 A22

]
[ x1x2 ] dt+

q∑

i=1

√
v
[
Ni,11 Ni,12

Ni,21 Ni,22

]
[ x1x2 ] dWi, x̂(0) =

[
B1
B2

]
z,(27)

y(t) = [ C1 C2 ]
[
x1(t)
x2(t)

]
, t ∈ [0, T ].(28)

The time dependence is omitted in (27) to shorten the notation. The reduced system of
dimension ñ� n is now obtained by neglecting x2, i.e., the second line in (27) is truncated
the remaining x2 variables are set zero in both the first line of (27) and in (28). The reduced-
order model then is

dx̃(t) = A11x̃(t)dt+

q∑

i=1

√
v(t)Ni,11x̃(t)dWi(t), x̃(0) = B1z,(29a)

ỹ(t) = C1x̃(t), t ∈ [0, T ].(29b)

where A11, Ni,11 ∈ Rñ×ñ, B1 ∈ Rñ×m and C1 ∈ Rp×ñ.

5. ERROR BOUND ANALYSIS

We introduce an error system by combining (1a) and (29a) with an output equation that
represents the error between (1b) and (29b). The error system is

(30)
dxe(t) = Aexe(t)dt+

q∑

i=1

√
v(t)N e

i x
e(t)dWi(t), xe(0) = Bez,

ye(t) = Cexe(t), t ∈ [0, T ],

where the error state xe and the error matrices (Ae, Be, Ce, N e
i ) are

xe = [ xx̃ ] , Ae =
[
A 0
0 A11

]
, Be =

[
B
B1

]
, Ce = [ C −C1 ] , N e

i =
[
Ni 0
0 Ni,11

]
.(31)
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Let us again assume that an index c indicates that v in (30) is replaced by c. We obtain

E
∫ T

0

‖ye(t)‖2
2 dt ≤ E

∫ T

0

‖yec(t)‖2
2 dt

the same way as in (18). Based on the fundamental solution Φe (or Φe
c), the quantity of in-

terest given a constant volatility function, is represented by yec(t) = CeΦe
c(t)B

ez. Plugging
this into the above inequality yields

E
∫ T

0

‖ye(t)‖2
2 dt ≤E

∫ T

0

‖CeΦe
c(t)B

ez‖2
2 dt ≤ E

∫ T

0

‖CeΦe
c(t)B

e‖2
F dt ‖z‖

2
2

= tr(CeP e
T (Ce)T ) ‖z‖2

2 ,(32)

where we set P e
T :=

∫ T
0
F e(t)dt with F e(t) = Φe

c(t)B
e(Be)T (Φe

c)
T (t). Analogue to (14),

F e solves

Ḟ e(t) = AeF e(t) + F e(t)(Ae)T + c

q∑

i,j=1

N e
i F

e(t)(N e
j )Tkij, F e(0) = Be(Be)T .

(33)

We partition the solution to (33) as follows

F e(t) =
[
F11(t) F12(t)

FT
12(t) F22(t)

]
(34)

and see that F11(t) = F (t) solving (14) as well as F12(t) = F̄ (t) and F22(t) = F̃ (t) that
are the solutions to

˙̄F (t) = AF̄ (t) + F̄ (t)AT11 + c

q∑

i,j=1

NiF̄ (t)NT
j,11kij, F̄ (0) = BBT

1(35)

˙̃F (t) = A11F̃ (t) + F̃ (t)AT11 + c

q∑

i,j=1

Ni,11F̃ (t)NT
j,11kij, F̃ (0) = B1B

T
1(36)

using the partitions in (31). From (32) and (34), we obtain

E
∫ T

0

‖y(t)− ỹ(t)‖2
2 dt = E

∫ T

0

‖ye(t)‖2
2 dt

≤
(

tr(CPTC
T )− 2 tr(CP̄TC

T
1 ) + tr(C1P̃TC

T
1 )
)
‖z‖2

2 ,(37)

where P̄T :=
∫ T

0
F̄ (t)dt and P̃T :=

∫ T
0
F̃ (t)dt. By Integrating both (35) and (36), the

equations for these two matrices are

F̄ (T )−BBT
1 = AP̄T + P̄TA

T
11 + c

q∑

i,j=1

NiP̄TN
T
j,11kij,(38)

F̃ (T )−B1B
T
1 = A11P̃T + P̃TA

T
11 + c

q∑

i,j=1

Ni,11P̃TN
T
j,11kij.(39)
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Low-dimensional approximations of high-dimensional asset price models 15

Since PT is already known from the balancing procedure explained in Section 4, the bound
for the absolute output error in (37) requires only the computation of P̄T and P̃T . Since the
reduced dimension ñ is rather small, the corresponding equations (38) and (39) can often
be solved directly through vectorization. Hence, we have

vec(F̄ (T ))− vec(BBT
1 ) = K̄ vec(P̄T ),

vec(F̃ (T ))− vec(B1B
T
1 ) = K̃ vec(P̃T )

with F̄ (T ) = eK̄T vec(BBT
1 ) and F̃ (T ) = eK̃T vec(B1B

T
1 ), where

K̄ :=

(
In ⊗ A11 + A⊗ Iñ + c

q∑

i,j=1

Ni ⊗Nj,11kij

)
,

K̃ :=

(
Iñ ⊗ A11 + A11 ⊗ Iñ + c

q∑

i,j=1

Ni,11 ⊗Nj,11kij

)
.

Above, the identity matrices are equipped with an index indicating the respective dimension.
With (37) a bound for the absolute error of reducing system (1) was found. However, the
relative error is more interesting to be analyzed. Therefore, we need a computable lower
bound for the L2-norm of y. This task is relatively simple because the inequality of Cauchy
Schwartz yields

∫ T

0

‖E[y(t)]‖2
2 dt ≤ E

∫ T

0

‖y(t)‖2
2 dt.

Now, E[x(t)], t ∈ [0, T ], solves equation (1a) with c = 0 which can be seen easily by
applying the expected value to both sides of (1a) and by exploiting that the Ito integrals have
zero mean. We use that Φc=0(t) = eAt such that E[y(t)] = C eAtBz. We plug this into
the above estimate leading to

E
∫ T

0

‖y(t)‖2
2 dt ≥

∫ T

0

∥∥C eAtBz
∥∥2

2
dt = zTBTQT,0Bz, .(40)

where QT,0 :=
∫ T

0
eA

T tCTC eAt dt. According to Subsection 3.2, QT,0 solves (19) with
c = 0, i.e.,

eA
TT CTC eAT −CTC = ATQT,0 +QT,0A,(41)

an equation that can be solved in a large-scale setting, since there are efficient methods to
determine eAT for large n. We summarize the results of this section in a theorem below,
where we set ‖y‖2

L2 := E
∫ T

0
‖y(t)‖2

2 dt.

Theorem 5.1. Let y be the output of the original system (1) and let ỹ be the output of the
reduced model (29). Then, the relative L2-error between y and ỹ is bounded as follows:

‖y − ỹ‖L2

‖y‖L2

≤

(
tr(CPTC

T )− 2 tr(CP̄TC
T
1 ) + tr(C1P̃TC

T
1 )
) 1

2 ‖z‖2

(zTBTQT,0Bz)
1
2

(42)
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where PT , P̄T , P̃T and QT,0 are the solutions to (15), (38), (39) and (41), respectively.

Proof. The result follows from (37) and (40). �

The bound in Theorem 5.1 provides a good a priori error estimate, an indicator for the quality
of the reduced system. Error bounds for related methods in a deterministic framework can
be found in [16, 27, 28].

Remark 4. Notice that if we aim to reduce a Black-Scholes model with output yc instead of
a Heston model with output y, the energy ‖yc‖L2 is explicitly known according to Section
3.2 given thatA,N1, . . . , Nq commute. Then, it holds that ‖yc‖L2 = xT0QTx0 such that we
can replace QT,0 by QT in Theorem 5.1.

6. NUMERICAL EXPERIMENTS

We apply the MOR technique motivated in Section 3 and explained in Section 4. The goal is
to accurately approximate payoff functions associated with the large asset price model (1a)
(these are functions of the quantity of interest in (1b)) by payoff functions of the reduced
system (29). This type of problem is of particular interest if we price European options with
an underlying high-dimensional Heston model because computational complexity can be
reduced. Moreover, since the reduced system shows good pathwise approximations, it can
be of interest in the context of Bermudan options because regression based methods [22, 31]
suffer from the curse of dimensionality which makes them inaccurate in a large-scale setting.
Below, we consider a particular Heston model (1) and illustrate the quality of the reduction
in dependence of the covariance matrix K of the noise process.

We consider the following linear stochastic differential equation that represents an asset
price model:

dxi(t) = rxi(t)dt+ ξi
√
v(t)xi(t)dWi(t), xi(0) = x0,i,(43)

where xi denotes the ith component of a price process x (i = 1, . . . , n). Moreover, we
assume that r = 0.02 is the fixed interest rate and ξi ∈ [0.2, 0.7] are volatility parameter
sampled from a uniform distribution. Now, we can rewrite equation (43) in order to guarantee
the form given in (1a). The respective matrices are

A = rI, Ni = ξieie
T
i , B = x0 and z = 1,(44)

where ei is the ith unit vector in Rn, q = n, and assuming that we are interested in a single
initial value x0 only. In this particular situation, the matrices A,N1, . . . , Nn commute and
are symmetric. The variance process is v(t) = min{v̄(t), c}, t ∈ [0, T ], where v̄ is the
solution to the following stochastic differential equation:

dv̄(t) = a(b− v̄(t))dt+ σ̄
√
v̄(t)dB̄(t), v(0) = v0,(45)

where b = 0.2 is the long run average variance, a = 0.2 is the rate characterizing the speed
of convergence of the average variance and σ̄ = 0.15 is the volatility of the volatility process.
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Low-dimensional approximations of high-dimensional asset price models 17

Furthermore, B̄ is a standard Brownian motion with respect to the filtration (Ft)t∈[0,T ] that
negatively correlated with the other standard Brownian motions Wi, i.e., E[B̄(t)Wi(t)] =
ρit, where ρi < 0. The parameters ξi, a, b, σ̄ are chosen to have an average volatility around
0.2, i.e.,

E
[√

v(t)
] 1

n

n∑

i=1

ξi ≈ 0.2.

Notice that in order to fit the theory, the process v is bounded by a constant c since generally
v̄ is unbounded. Practically, we simulate a certain number of paths of v̄ and choose a c that
represents a bound of these simulated paths such that those coincide with the respective
paths of v.

Suppose that the quantity of interest is now some one dimensional partial information y of
the price process x that is the form

y(t) = Cx(t),(46)

where the output matrix is C = [1, 1, . . . 1]. We now determine a reduced system (29).
To do so, the matrices PT and QT need to be computed in order to conduct the balancing
procedure described in Section 4. Fortunately, these matrices can be derived explicitly from
(14) and (20). Plugging in (44) into these equations, we obtain

Ḟ (t) = 2rIF (t) + c
n∑

i,j=1

eie
T
i F (t)eje

T
j ξiξjkij, F (0) = x0x

T
0 ,

Ġ(t) = 2rIG(t) + c
n∑

i,j=1

eie
T
i G(t)eje

T
j ξiξjkij, G(0) = CTC.

By multiplying the above equations with eTi from the left and with ej from the right, we can see
that these equations can be solved component-wise. The entries of F (t) = (fij)i,j=1,...n

satisfy

ḟij(t) = (2r + cξiξjkij)fij(t), fij(0) = x0,ix0,j,

such that fij(t) = ehijt x0,ix0,j , where hij := (2r + cξiξjkij). Integrating fij over [0, T ],
we find that PT = (pij)i,j=1,...n is given by

pij(t) =
ehijT −1

hij
x0,ix0,j.

Analogously, it holds that QT = (qij)i,j=1,...n is represented by

qij(t) =
ehijT −1

hij
eTi C

TCej.

Since PT andQT are given explicitly, the reduced system (29) with output ỹ comes basically
for free in terms of computational time. This also means that we are able to derive a reduced
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model if the number of assets is very large. We investigate the reduction quality for three dif-
ferent covariance matrices. First we consider a matrix with both small and large correlations
between the noise processes. We first choose K = K0 := ττT according to [13], where
τ = [τ1, τ2, . . . τn] has columns τi generated by a vector s = (si)i=1,...,n−1 of samples si
of independent uniformly distributed random variables with values in [0.8, 1]:

τ1 =
(

1
cp(s)

)
, τ2 =

√
1− s2

1

(
0
1

cp(s2:n−1)

)
, . . . , τn =

√
1− s2

n−1

(
0
...
0
1

)
.

Above, we set s`:n−1 := (s`, s`+1, . . . , sn−1)T and

cp(s) := [s1, s1s2, . . . , s1s2 . . . sn−1]T .

Further, we study the two extreme cases of K = I (independent noise processes) and
K = 11T (perfect correlation), where 1 is an n-dimensional vector of ones. We choose
n = 100, T = 1, c = 0.6 and the initial conditions x0,i ∈ [0, 1.25] are generated randomly,
where 1 =̂ 100 Dollar. For K = K0 we choose ρi ∈ [−0.9, 0), in case of K = I we have
ρi = −0.09 and we fix ρi = −0.5 for K = 11T . In all the numerical experiments below,
2e06 samples are generated.

6.1. Approximation error in the quantity of interest. We begin with analyzing the er-
ror between the output of the full system y and the output of the reduced system ỹ. The
first question is how to choose the dimension ñ of system (29). The HSVs, i.e., σi =√
λi(PTQT ) are a very good indicator for a suitable choice since the smaller σi, the less

important the ith state component x̂i in the balanced system (26) according to what we have
derived in Section 3. We can see these values in logarithmic scale for different covariance
matrices K in Figure 1. In each case, we observe that one variable dominates the dynamics
meaning that no matter how K is chosen, a scalar reduced-order model already leads to a
relatively good approximation. Moreover, we see that the reduction is expected to be least
efficient if all noise processes are independent due to a slow decay of the HSVs. However,
with perfect correlation (K = 11T ), we only have four non zero HSVs meaning that the
100-dimensional model can be perfectly approximated by a system of four variables. In the
case of K = K0 the performance is in between the independent and perfectly correlated
scenarios. This fits to our general observation that the higher the correlation, the better the
algorithm works.

We conclude this subsection by a discussion on the error between the outputs y and ỹ of
systems (1) and (29) for this particular example. We determine the relative L2-error and
the corresponding error bound in Theorem 5.1. This bound that is the right-side of (42) is
denoted by EB here. The error bound is relatively tight for the example. In most of the cases
it estimates the exact error by factor of three, see Tables 1, 2 and 3. As supposed from the
HSVs, very good results are obtained for very small ñ if K = 11T , compare with Figure 2.
However, in the situation of K = K0, a reduced-order between 4 and 10 shows a low error,
too.
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ñ ‖y − ỹ‖L2 / ‖y‖L2 EB

1 5.10e−03 1.55e−02
4 2.02e−03 6.18e−03
10 7.01e−04 2.17e−03
15 3.95e−04 1.23e−03
20 2.39e−04 7.46e−04
25 1.62e−04 5.06e−04
50 3.56e−05 1.13e−04

TABLE 1. Relative L2-error
and error bound for K =
K0.

ñ ‖y − ỹ‖L2 / ‖y‖L2 EB

1 2.56e−03 7.79e−03
4 2.23e−03 6.79e−03
10 1.69e−03 5.12e−03
15 1.46e−03 4.42e−03
20 1.27e−03 3.84e−03
25 1.08e−03 3.28e−03
50 5.01e−04 1.51e−03

TABLE 2. Relative L2-error
and error bound for K = I .

ñ ‖y − ỹ‖L2 / ‖y‖L2 EB

1 2.40e−03 5.48e−03
2 3.25e−06 1.34e−05
3 2.94e−09 2.98e−08
4 3.76e−12 2.76e−09

TABLE 3. Relative L2-error
and error bound for K =
11T .

6.2. Approximation error in the payoff. We have seen in Section 6.1 that the quantity of
interest y of system (1), that we specified in (46), can be well approximated by the output
ỹ of the reduced system (29) in a path-wise sense on some interval [0, T ]. However, it is
often of interest to consider weak errors instead. Therefore, we consider the following payoff
function

f(y) = max {y −K, 0}
that plays a role in the context of European call options, where K denotes the strike price.
We compare the expected payoff Ef (y(T )) at time T with the one associated with the
reduced system, which is Ef (ỹ(T )), for K = 〈1, x0〉2 in Figure 3. The relative errors in
the expected payoff are larger if the correlations between the noise processes are small. The
approximation works best if K = 11T . As displayed in Figure 3, the error is around 5e−06
for ñ = 2 and our simulations also show an error of 5e−13 already for ñ = 4. If smaller
correlations are involved, a larger ñ needs to be chosen. However, selecting 4 ≤ ñ ≤ 10
for K = K0 already leads to a good estimate of the original payoff.

Looking at Table 4 we observe that weak error (error in the expected payoff) is of the same
or of smaller error than the strong error in Table 1. Moreover, it can be seen that the approx-
imation in the payoff is better if the strike price is below the value of the basket 〈1, x0〉2 at
time zero and it is worse if the strike price is above 〈1, x0〉2.

DOI 10.20347/WIAS.PREPRINT.2706 Berlin 2020



M. Redmann, C. Bayer, P. Goyal 20

1 20 40 60 80 100
−6

−4

−2

0

2

i (index)

lo
g 1

0

( √
λ
i(
P
T
Q

T
))

K = K0

K = 11T

K = I

FIGURE 1. Logarithmic
HSVs of the large-scale
asset model.
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FIGURE 2. Logarithmic
relative L2-error be-
tween y and ỹ for ñ ∈
{1, 4, 10, 15, 20, 25, 50}
if K = K0, I and for
ñ = 1, 2 if K = 11T .

So far, the weak error has not yet been analyzed concerning error bounds etc. We believe
that it requires advanced techniques to succeed in this direction.

Remark 5. We have seen a good path-wise performance of our method in Section 6.1 and
an even better approximation in the payoff in this section. Therefore, we see the potential
of pricing high-dimensional Bermudan options with the help of MOR. Classical regression
based schemes as in [22, 31] cannot accurately determine values of Bermudan options
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|Ef(y)− Ef(ỹ)| / |Ef(y)|
ñ K = 0.9 〈1, x0〉2 K = 〈1, x0〉2 K = 1.1 〈1, x0〉2
1 9.54e−04 1.10e−03 1.98e−02
4 8.81e−04 6.92e−04 5.28e−03
10 2.78e−04 4.13e−04 8.80e−04
15 3.41e−05 8.63e−05 2.22e−04
20 8.62e−06 1.79e−05 2.25e−05
25 2.56e−06 7.22e−06 2.19e−05
50 1.12e−07 2.22e−07 7.09e−07

TABLE 4. Relative error in the payoff function for K = K0 and different
strike prices K .
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FIGURE 3. Logarithmic relative error expected payoff for K = 〈1, x0〉2 and
different reduced dimensions.

with high-dimensional underlying asset models due to the curse of dimensionality. However,
reducing the asset price model in its dimension and subsequently applying the methods in
[22, 31] can be promising and is an interesting topic for further research.

7. CONCLUSIONS AND OUTLOOK

In this paper, we have shown that model order reduction (MOR) can be an effective technique
to construct lower-dimensional surrogate models of large-scale financial models. These sur-
rogate models can be tackled by higher-order computational methods than Monte Carlo sim-
ulation. We construct a specific path-wise MOR method, and test it in a multi-dimensional
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Heston model. The MOR turns out to work very well for European basket option pricing,
especially when the individual assets are strongly correlated (a very realistic scenario). For
instance, in a common Doust-type correlation regime, for n = 100 assets, a reduced model
with dimension ñ = 1 was able to capture the price of an ITM basket option up to a relative
error of 10−3, whereas for an OTM option we obtained the same error bound with ñ = 10,
which is still a very significant dimension reduction.

Of course, this paper only scratches the surface of applications of MOR in finance. In particu-
lar, we identify two very relevant extensions that will be highly beneficial in a financial context.
On the one hand, consider that we have restricted ourselves to linear dynamics and essen-
tially linear payoff functions – in the sense that the payoff is assumed to be a non-linear
function of a low-dimensional projection of the full price process. Both restrictions can be
quite relevant in finance. Allowing non-linear dynamics opens up the possibility of including
the stochastic variance process in the model order reduction, as well as having local volatility
components. Techniques for MOR in non-linear dynamics have already been developed in
the deterministic case [7, 8, 20], and have been extended to stochastic differential equations
in some special cases [24]. General non-linear payoff functions are also relevant in finance,
think of max-call options. One strategy already available in our framework is to choose C to
be the identity matrix.

On the other hand, note that the MOR framework developed in this paper is strong in the
probabilistic sense, i.e., we try to approximate the process itself. In many financial applica-
tion, we are interested in weak approximations, i.e., we want to approximate the distribution
of the process. As this is a much weaker concept, even better MOR techniques are con-
ceivable. However, developing an appropriate framework does not seem obvious, and it is
unclear how to proceed in this direction.

APPENDIX A. RESOLVENT POSITIVE OPERATORS

Let (Hn, 〈·, ·〉F ) be the Hilbert space of symmetric n× n matrices, where 〈M1,M2〉F :=
tr(MT

1 M2) is the Frobenius inner product of two matrices M1 and M2. The corresponding
norm is defined by ‖M1‖2

F := 〈M1,M1〉F . Moreover, let Hn
+ be the subset of symmetric

positive semidefinite matrices. We now define positive and resolvent positive operators on
Hn.

Definition A.1. A linear operator L : Hn → Hn is called positive if L(Hn
+) ⊂ Hn

+. It is
resolvent positive if there is an α0 ∈ R such that for all α > α0 the operator (αI − L)−1 is
positive.

The operator L(X) := AX + XAT is resolvent positive for A ∈ Rn×n which is, e.g.,
shown in [12]. Moreover, Π(X) := c

∑q
i,j=1NiXN

T
j kij is positive for Ni ∈ Rn×n by [25,

Proposition 5.3]. This implies that the generalized Lyapunov operator L + Π is resolvent
positive. We now state an equivalent characterization for resolvent positive operators in the
following. It can be found in a more general form in [12, 14, 29].
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Theorem A.2. A linear operatorL : Hn → Hn is resolvent positive if and only if 〈V1, V2〉F =
0 implies 〈LV1, V2〉F ≥ 0 for V1, V2 ∈ Hn

+.

APPENDIX B. PENDING PROOFS

We prove Lemmas 2.1 and 2.3 in the following two subsections.

B.1. Proof of Lemma 2.1. We apply Ito’s product rule to x(t)xT (t) and obtain

d
(
x(t)xT (t)

)
= dx(t)xT (t) + x(t)dxT (t) + dx(t)dxT (t).

Inserting (1a) yields

dx(t)xT (t) + x(t)dxT (t) =Ax(t)xT (t)dt+

q∑

i=1

√
v(t)Nix(t)xT (t)dWi(t)

(47)

+ x(t)xT (t)ATdt+

q∑

i=1

√
v(t)x(t)xT (t)NT

i dWi(t).

With (1a) and using that dWi(t)dWj(t) = kijdt, we find

dx(t)dxT (t) = v(t)

q∑

i,j=1

Nix(t)xT (t)NT
j kijdt.(48)

Let ei denote the ith unit vector. Then, we have

kij = eTi K
1
2K

1
2 ej =

q∑

k=1

〈K 1
2 ei, ek〉2〈K

1
2 ej, ek〉2.

Using this fact, we obtain that

q∑

i,j=1

Nix(t)xT (t)NT
j kij =

q∑

k=1

(
q∑

i=1

Nix(t)〈K 1
2 ei, ek〉2

)(
q∑

j=1

Njx(t)〈K 1
2 ej, ek〉2

)T

≥ 0

is a positive semidefinite matrix. Hence, we can enlarge the right-side of (48) by replacing v
by its bound c. This leads to

dx(t)dxT (t) ≤ c

q∑

i,j=1

Nix(t)xT (t)NT
j kijdt.(49)

We apply the expected value to both sides of (47) and (49). Since the Ito integrals have mean
zero, we have

d

dt
E
[
x(t)xT (t)

]
≤ AE

[
x(t)xT (t)

]
+ E

[
x(t)xT (t)

]
AT + c

q∑

i,j=1

NiE
[
x(t)xT (t)

]
NT
j kij,

which concludes the proof.
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B.2. Proof of Lemma 2.3. We combine (4) with (5) and obtain

Ẏ (t) ≥ L(Y (t)),

where Y := Z −X . We define the difference function D(t) := Ẏ (t)− L(Y (t)) ≥ 0 and
consider the following perturbed differential equation

Ẏε(t) = L(Yε(t)) +D(t) + εI

with parameter ε ≥ 0 and initial state Yε(0) = Y (0) + εI . We see that Y0(t) = Y (t) for all
t ∈ [0, T ] since Y0−Y solves (5) with initial condition zero. Since Yε continuously depends
on ε and the initial data, we have limε→0 Yε(t) = Y0(t) = Y (t) for all t ∈ [0, T ].

We want to prove that Yε(t) is positive definite for all t and all ε > 0. To do so, let us
assume the converse, i.e., there is a ũ 6= 0 and a t̃ > 0 such that ũTYε(t̃)ũ ≤ 0. We
know that fε(u, t) := uTYε(t)u is positive at t = 0 for all u ∈ Rn \ {0} since Y (0) ≥ 0
by assumption. Since fε is non-positive in some point (ũ, t̃) and due to the continuity of
t 7→ Yε(t), there is a point t0 ∈ (0, t̃] for which

uT0 Yε(t0)u0 = 0 and uT0 Yε(t)u0 > 0, t < t0,(50)

for some u0 6= 0, whereas uTYε(t0)u ≥ 0 for all other u ∈ Rn. Since L is resol-
vent positive, 0 = uT0 Yε(t0)u0 = 〈Yε(t0), u0u

T
0 〉F implies 0 ≤ 〈L(Yε(t0)), u0u

T
0 〉F =

uT0L(Yε(t0))u0 by Theorem A.2. Hence, we have

uT0 Ẏε(t)u0

∣∣∣
t=t0

= uT0L(Yε(t0))u0 + uT0D(t0)u0 + ε ‖u0‖2
2 > 0.

Consequently, we know that there are t < t0 close to t0 for which uT0 Yε(t)u0 < 0. This
contradicts (50) and hence our assumption is wrong such that Yε(t) is positive definite for all
t ∈ [0, T ] and ε > 0. Taking the limit of ε→ 0, we obtain Y (t) ≥ 0 for all t ∈ [0, T ] which
concludes the proof.
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