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Phase transitions for the Boolean model of continuum
percolation for Cox point processes

Benedikt Jahnel, András Tóbiás, Eli Cali

Abstract

We consider the Boolean model with random radii based on Cox point processes. Under a
condition of stabilization for the random environment, we establish existence and non-existence
of subcritical regimes for the size of the cluster at the origin in terms of volume, diameter and
number of points. Further, we prove uniqueness of the infinite cluster for sufficiently connected
environments.

1 Introduction and previous work

The study of Boolean models based on stationary point processes in Rd traces back to the early 60’s
of the past century, when Gilbert [G61] introduced the model in the context of ad-hoc communication
networks. The occurrence or absence of an infinite connected component in the set of points in Rd

that have at least one point of the point process in their vicinity has served as a prototypical example
of a phase transition ever since. More precisely, the model is defined via a simple stationary point
process X = (Xi)i∈I in Rd with finite intensity λ > 0 for d ≥ 1. Every Xi ∈ X carries an i.i.d. mark
%i ≥ 0, which represents the random interaction radius ofXi. We will assume in the whole manuscript
that P(% > 0) > 0, where % denotes a nonnegative radius random variable. The associated Boolean
model is then given by the union of balls centered at the points in X , with corresponding radii, i.e.,

C =
⋃
i∈I

B%i(Xi).

In the past 60 years this model has attracted much attention, especially when the underlying point
process is given by a homogeneous Poisson point process with intensity λ > 0, see for exam-
ple [MR96, G08, ATT16, H85], and many more contributions. In the following theorem, we start by
summarizing some known results on coverage and uniqueness.

Theorem 1.1 ( [MR96, Propositions 3.1 and 7.3, and Theorems 3.1, 3.6 and 7.4]). Let C be the
Boolean model based on a stationary point process X in Rd with finite intensity λ > 0 and with
i.i.d. radii distributed as %.

1 Complete coverage. Let d ≥ 1. If E[%d] = ∞, then P(C = Rd) = 1. If X is a homogeneous
Poisson point process, then E[%d] <∞ implies that P(C = Rd) = 0.

2 One-dimensional triviality. Let d = 1 and X a homogeneous Poisson point process. If E[%d] <
∞, then P(C contains no unbounded connected component) = 1.

3 Uniqueness. Let d ≥ 1. If esssup(%) = ∞, then P(C contains at most one unbounded
component) = 1. If X is a homogeneous Poisson point process, then P(C contains at most
one unbounded component) = 1 holds independent of the distribution of %.
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B. Jahnel, A. Tóbiás, E. Cali 2

As already mentioned in part (2) of Theorem 1.1, among the main objects of interest in the Boolean
model are the maximal connected components, the clusters, and in particular, the cluster that contains
the origin, which we denote by Co ⊂ C. For any measurable A ⊂ Rd, writing |A| for the Lebesgue
volume, diam(A) = sup{|x − y| : x, y ∈ A} for the diameter, and X(A) = #(X ∩ A) for the
number of points of X in A, the following critical intensities can be defined via Co,

λvp = inf{λ > 0: P(|Co| = ∞) > 0},
λdp = inf{λ > 0: P(diam(Co) = ∞) > 0},
λnp = inf{λ > 0: P(X(Co) = ∞) > 0},

and for all s > 0,

λv(s) = inf{λ > 0: E[|Co|s] = ∞},
λd(s) = inf{λ > 0: E[diam(Co)

s] = ∞},
λn(s) = inf{λ > 0: E[X(Co)

s] = ∞}.

In the next theorem, we present a summary of the known results on the non-triviality of these critical
intensities in the case where X is a homogeneous Poisson point process.

Theorem 1.2 ( [MR96, Theorem 3.2], [G08, Theorem 2.1 and 2.2] and [GT18, Theorem 2]). Let d ≥ 2,
s > 0 and consider the Boolean model based on a homogeneous Poisson point process with i.i.d. radii
distributed as %.

1 We have that λvp <∞, λdp <∞, and λnp <∞.

2 If E[%d] <∞, then λvp > 0, λdp > 0, and λnp > 0.

3 If E[%d+s] <∞, then λv(s/d) > 0, λd(s) > 0, and λn(s/d) > 0.

4 If E[%d+s] = ∞, then λv(s/d) = 0, λd(s) = 0, and λn(s/d) = 0.

Proof. For part (1), λvp < ∞ is proved in [MR96, Theorem 3.2] and λdp < ∞ is an immediate
consequence of λvp < ∞. Further, λnp < ∞ is an immediate consequence of λvp < ∞ in case
esssup(%) <∞. However, via a straightforward coupling argument, it also holds in case esssup(%) =
∞. For part (2), the fact that E[%d] < ∞ implies λvp > 0 is proved in [G08, Theorem 2.1]. The
statement that E[%d] < ∞ implies λdp > 0 follows from a straightforward adaptation of the proof
of [G08, Theorem 2.1], noting that 2 supx∈Co

|x| ≥ diam(Co). Finally, the fact that E[%d] < ∞
implies λnp > 0 follows by yet another simple adaptation of the proof of [G08, Theorem 2.1], since

P(X(Co) = ∞) ≤ P(X(Co) ≥ X(Bα(o))),

where the right-hand side tends to zero for small λ as α tends to infinity. For parts (3) and (4), note that
the equivalence between λv(s/d) > 0 andE[%d+s], as well as the equivalence between λn(s/d) > 0
andE[%d+s], is proved in [GT18, Theorem 2]. Finally, the equivalence between λd(s) > 0 andE[%d+s]
is provided in [G08, Theorem 2.2].

In view of Theorem 1.2, in particular we have that, as soon as E[%d] < ∞, there exists a nontrivial
subcritical phase for volume percolation in the Poisson case, see part (2). Moreover, there are regimes
where there exists a subcritical phase for volume percolation, however, the expected cluster size at the
origin is infinite in terms of the number of points in the cluster. Similarly, various regimes for finite and
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Phase transitions for the Boolean model for Cox point processes 3

infinite expected cluster size and expected diameter are available. In case of almost surely bounded
radii, we have a number of identities for the critical intensities in the case of Poisson point processes,
see [MR96, Theorem 3.4, 3.5, and Proposition 3.2], a topic that we will not address further in this
manuscript.

The vast majority of available results for continuum percolation are for the Boolean model based on
Poisson point processes. However, apart from the statements for general stationary point processes
already presented above, there are by now a number of assertions available for continuum percolation
based on a variety of point processes other than the Poisson point process. For example, in [J16,M18,
M75, S13] percolation properties for the Boolean model based on a large class of stationary Gibbs
point processes are considered for fixed radii. In [CD14], percolation in the Boolean model is proved
to exist for dense Gibbs point processes with quermass interaction, where the radii are random but
not i.i.d. Further, in [GKP16], the authors study a class of repelling point processes in R2 that include
the Ginibre ensemble as well as the Gaussian zero process, with fixed radii. For the Gaussian zero
process, they establish uniqueness of the infinite cluster and non-triviality of continuum percolation. For
the Ginibre ensemble, they also prove uniqueness of the infinite cluster; the non-triviality of continuum
percolation for this point process was already verified in [BY14]. In the same direction, in [BY13],
the authors study clustering and percolation for a family of stationary point processes that exhibit
negative association, such as general determinantal point processes and some perturbed lattices,
see also [GY05]. These processes may cluster less than the Poisson point process but still have non-
trivial percolation properties in the associated Boolean model with non-random radii. The paper [BY13]
also presents an example of a stationary Cox point process with stronger clustering properties than
the Poisson point process, but which nevertheless percolates for all positive non-random radii. Finally,
in [HJC19], non-triviality of percolation is shown for the Boolean model with non-random radii, based
on stabilizing Cox point processes with sufficiently connected support. This is the starting point for our
investigation presented in this paper, and we will refer to these results frequently in what follows.

2 Setting and main results

We are interested in the setting where X is a Cox point process, i.e., a Poisson point process with a
random intensity measure. To be more precise, we consider random elements Λ in the space M of
Borel measures on Rd equipped with the evaluation σ-algebra. In the whole manuscript we assume
Λ to be stationary and normalized so that it satisfies E[Λ([0, 1]d)] = 1. Then, for λ > 0, we let X be
a Cox point process with intensity measure λΛ and call Λ its directing measure. The particular case
where Λ equals the Lebesgue measure corresponds to a homogeneous Poisson point process with
intensity λ. Figure 1 provides an illustration of a realization of the Boolean model based on a Cox point
process, where the directing measure Λ is given by the edge-length measure on a Poisson–Voronoi
tessellation, see Section 3.1.2 for more details.

Under conditions of stabilization and connectedness, see below, we essentially reproduce the known
picture for the Poisson case also for the Cox case. Let us start by noting that some known results for
general stationary point processes, as for example the one-dimensional triviality or the first part of the
complete-coverage result from Theorem 1.1, immediately transfer to the case of Cox point processes.
In the next few results, we recover the statements of Theorem 1.1 related to Poisson point processes.
We start by giving an extension of the second statement in part (1) in Theorem 1.1. Here, Λ is called
ergodic if P(Λ ∈ E) ∈ {0, 1} for all measurable and translation-invariant events E ⊂ M.
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B. Jahnel, A. Tóbiás, E. Cali 4

Figure 1: Realization of a Boolean model (blue) based on a Cox point processes (red) with directing
measure given by a realization of a Poisson–Voronoi tessellation (black).

Proposition 2.1 (No complete coverage). Let d ≥ 1 and C be the Boolean model based on a Cox
point process with stationary intensity measure λΛ and with i.i.d. radii distributed as %. If E[%d] <∞,
then P(C = Rd) < 1 for all λ > 0. If additionally Λ is ergodic, then P(C = Rd) = 0.

We next lift the result in part (2) in Theorem 1.1 to the level of Cox point processes with ergodic
intensity measures.

Proposition 2.2 (One-dimensional triviality). Let d = 1 and C be the Boolean model based on a Cox
point process with ergodic intensity measure λΛ and with i.i.d. radii distributed as %. If E[%d] < ∞,
then C contains no unbounded component, almost surely.

Let us note that (at least) for Λ a convex combination of finitely many ergodic measures, the statement
of Proposition 2.2 should also hold. For the uniqueness result, we need the following condition on
the connectedness of the directing measure Λ. Let us write Qr(x) = [−r, r]d + x for the box with
sidelength 2r, centered at x ∈ Rd and abbreviate Qr = Qr(o) and Ac(x) = Rd \ A for A ⊆ Rd.
Further, let us write

supp(Λ) = {x ∈ Rd : Λ(Qε(x)) > 0 for every ε > 0}

for the support of a measure Λ and ΛA for the restriction of Λ to the set A, i.e., ΛA(B) = Λ(A∩B)
for measurable A,B ⊂ Rd.

Definition 2.3 (Essential r-connectedness). Let r > 0. We say that the stationary random measure Λ
is essentially r-connected if there exists a random field of connectivity radii R = {Rx}x∈Rd , defined
on the same probability space as Λ, such that

1 (Λ, R) are jointly stationary,

2 limα↑∞ P(supy∈Qα∩Qd Ry ≥ α) = 0, and

3 for all α ≥ 1, whenever supy∈Q2α∩Qd Ry < α/2, we have that for all x, y ∈ supp(ΛQα) there
exists a finite sequence of points (x1, . . . , xl) ⊂ supp(ΛQ2α) such that |xi−xi+1| < r for all
i ∈ {0, 1, . . . , l + 1} where x = x0 and y = xl+1.
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Let us mention that our definition of essential r-connectedness is different from the definition of asymp-
totic essential connectedness as presented in [HJC19]. One of the differences is that essential r-
connectedness does not imply stabilization, see below. However, for many directing measures both
connectedness conditions can be verified. We comment on this further and present examples for es-
sentially r-connected directing measures in Section 3. Equipped with these definitions, we can now
state our result on the uniqueness of the unbounded component for Cox point processes.

Proposition 2.4 (Uniqueness). Let d ≥ 1 and C be the Boolean model based on an ergodic Cox point
process with stationary intensity measure λΛ and with i.i.d. radii distributed as %. If r = esssup(%) <
∞ and Λ is essentially r-connected, then C has at most one unbounded cluster, almost surely.

Recall that if esssup(%) = ∞, then Theorem 1.1 already implies uniqueness of the infinite cluster
for any stationary point process. Note that the Propositions 2.1, 2.2 and 2.4 establish a version of
Theorem 1.1 for Cox point processes. Their proof can be found in Section 4.1. Before we come to
our main result, in which we present conditions under which a version of Theorem 1.2 is available
for Cox point processes, we need to introduce the following condition on spatial decorrelation of the
directing measures. For this we define for all measurable A,B ⊂ Rd the distance dist(A,B) =
inf{|x− y| : x ∈ A and y ∈ B}.

Definition 2.5 (Stabilization). We say that the stationary random measure Λ is φ-stabilizing if there
exists a random field of stabilization radii R = {Rx}x∈Rd , defined on the same probability space as
Λ, such that

1 (Λ, R) are jointly stationary,

2 limα↑∞ φ(α) = 0, where φ(α) = P(supy∈Qα∩Qd Ry ≥ α), and

3 for all α ≥ 1, the random variables(
f(ΛQα(x))1{ sup

y∈Qα(x)∩Qd

Ry < α}
)
x∈ψ

are independent for all bounded measurable functions f : M → [0,∞) and finite ψ ⊂ Rd, as
long as dist(x, ψ \ x) > 3α for all x ∈ ψ.

Note that φ-stabilization for Λ implies that Λ is ergodic. This can be easily seen by verifying a mixing
condition for local events. We present examples for φ-stabilizing directing measures in Section 3. Here
comes our main result.

Theorem 2.6. Let d ≥ 2, s > 0 and consider the Boolean model based on a Cox point process with
stationary intensity measure λΛ and with i.i.d. radii distributed as %.

1 If Λ is φ-stabilizing with sufficiently large esssup(%), then λvp <∞, λdp <∞ and λnp <∞.

2 Let E[%d] <∞. If Λ is φ-stabilizing, then λvp > 0, λdp > 0 and λnp > 0.

3 Let E[%d+s] < ∞. If Λ is φ-stabilizing with
∫∞
0
αs−1φ(α)dα < ∞, then λv(s/d) > 0 and

λd(s) > 0. Further, λn(s/d) > 0 if Λ is φ-stabilizing with
∫∞
0
αs−1φ(α)dα <∞ and∫ ∞

0

αs−1E
[
(Λ(Bα)− |Bα|)1{Λ(Bα)− |Bα| ≥ c|Bα|}

]
dα <∞ for some c > 0. (1)
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4 Let E[%d+s] = ∞. If Λ is ergodic, then λv(s/d) = 0, λd(s) = 0 and λn(s/d) = 0.

Let us comment on the result, the proof of which can be found in Section 4.2. A version of the state-
ment that λvp < ∞ has been first proved under a condition of asymptotic essential connectedness
in [HJC19] for fixed positive radii. Also the statement that λvp > 0, for stabilizing directing mea-
sures, has been first proven for the case of fixed nonnegative radii in [HJC19]. The statement that
λvp < ∞ for stabilizing directing measures if the (fixed) radius is sufficiently large is already con-
tained in [T18] as a side remark. The same assertion for random radii follows from [JT19b, Theorem
1.1], but since [JT19b] uses a rather different notation, we provide a self-contained proof for part (1)
of Theorem 2.6 in the present paper. The integrability conditions on the stabilization probability φ of
the directing measures are often easy to verify for particular examples as we will exhibit in Section 3.
Condition (1) establishes integrability of the expected overshoot of the directing measure with respect
to its expectation. It can be guaranteed with the help of some moment conditions on the environment,
which we present now and further use in Section 3.

Lemma 2.7. Condition (1) holds if any of the following two conditions holds,

lim sup
α↑∞

α−d logE[exp(βΛ(Bα))] <∞ for some β > 0, (2)

lim sup
α↑∞

αs−d(β−1)+εE
[∣∣Λ(Bα)− |Bα|

∣∣β] <∞ for some β > 1 and ε > 0. (3)

We prove this lemma in Section 4.3. In the next section we present and discuss a number of examples
of Cox point processes in order to illustrate the generality and also limitations of our results.

3 Examples

3.1 Boundedness, φ-stabilization, essential r-connectedness and ergodicity

As has been discussed already in [HJC19], often, directing measures Λ can be categorized as either
being absolutely continuous or singular with respect to the Lebesgue measure on Rd.

3.1.1 Absolutely continuous directing measures

We say that Λ is an absolutely continuous directing measure if Λ(dx) = `xdx is given via a non-
negative random field (`x)x∈Rd , where dx denotes the Lebesgue measure on Rd. A stationary and
absolutely continuous directing measure is called bounded if there exists M > 0 such that `o < M
almost surely. Let us consider some examples of such random fields.

Example 3.1 (Bounded absolutely continuous directing measures). Bounded environments can be
constructed via random fields of the form `x = λ11{x ∈ Ξ} + λ21{x 6∈ Ξ}, where Ξ ⊂ Rd is a
random closed set and λ1, λ2 ≥ 0. For example, Ξ could be given as an independent Boolean model
C̄, see Figure 2 for an illustration. Note that in case both λ1, λ2 > 0, then Λ is essentially r-connected
for any r > 0. In this case it is also asymptotically essentially connected in the sense of [HJC19].

As a corollary of Theorems 1.2 and 2.6, let us note that the existence of a subcritical phase for a Cox–
Boolean model where the Cox point process has an absolutely continuous, bounded, and ergodic
directing measure, behaves the same way as in the case of the Poisson point process.
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Phase transitions for the Boolean model for Cox point processes 7

Figure 2: Realization of a Boolean model (blue) based on a Cox point process (red) with directing
measure given by an independent Poisson–Boolean model with fixed radii (green).

Corollary 3.2. The statements of part (2) of Theorem 1.2 remain true if Poisson point processes are
replaced by Cox point processes with ergodic, absolutely continuous, and bounded directing mea-
sures.

The proof of this corollary can be found in Section 4.3. The analogous statement does in general not
hold for the existence of a supercritical phase as presented in part (1) of Theorem 1.2, as already
mentioned in [HJC19]. For example, it may fail in the case of Example 3.1 when C̄ is the Poisson–
Boolean model with constant radii and either λ1 or λ2 is zero, see [T18].

We say that a φ-stabilizing directing measure Λ is b-dependent if there exists b > 0, such that
φ(α) = 0 for all α > b. Further, we call a φ-stabilizing directing measure Λ exponentially stabilizing
if there exist c > 0, such that φ(α) ≤ exp(−cα) for all sufficiently large α > 0.

Example 3.3 (Unbounded b-dependent absolutely continuous directing measures). As an exam-
ple of an unbounded absolutely continuous environment consider the shot-noise field, where `x =∑

i∈I κ(Yi − x), with (Yi)i∈I a homogeneous Poisson point process and κ : Rd → [0,∞) inte-
grable. If κ is additionally compactly supported and the diameter of the support is given by b, then
the associated directing measure is b-dependent. If the support of κ has Lebesgue measure equal
to infinity, then there exists no φ such that the associated directing measure is φ-stabilizing. For any
r > 0, in general, the shot-noise field is also not essentially r-connected and also not asymptotically
essentially connected in the sense of [HJC19]. However, there are cases when it is asymptotically
essentially connected, see [T18, Section 2.5.1].

Example 3.4 (Unbounded stabilizing absolutely continuous directing measures). Keeping the Exam-
ple 3.1 in mind, consider the directing measure based on the random field given by
`x = λ

∑
i∈I 1{|Yi − x| < %i} where λ > 0 and (Yi)i∈I is an independent homogeneous Poisson

point processes with intensity µ and with i.i.d. marks %i, distributed according to %. This is essentially
an environment coming from a Poisson–Boolean model with random radii, where instead of consid-
ering C, we count the number of balls in C containing a given point x. In particular, this environment
is unbounded. Again, if b = esssup(%) < ∞, then Λ is b-dependent and stochastically dominated
from above by a shot-noise field, see Example 3.3. If even essinf(%) > 0, then it is also stochastically
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dominated from below by a shot-noise field. For esssup(%) < ∞, this model is not essentially r-
connected for any r > 0. However, it is asymptotically essentially connected, in the sense of [HJC19],
for all fixed finite % and sufficiently large µ. If esssup(%) = ∞ and E[%d+s] <∞ for s > 0, then Λ is
φ-stabilizing with

∫∞
0
αs−1φ(α)dα <∞. Indeed, define the stabilization radii

Ry = sup{%i : |Yi − y| < %i, Yi ∈ Y },

as the largest radius of a ball in C that contains y ∈ Rd. Then, indeed, for x, z ∈ Rd with |x−z| > 3α,

ΛQα(x)1{ sup
y∈Qα(x)∩Qd

Ry < α} and ΛQα(z)1{ sup
y∈Qα(z)∩Qd

Ry < α} (4)

are independent, since, under the stabilization event (4),
(
C ∩ Qα(x)

)
∩ B%i(Yi) = ∅ for all Yi ∈

Y ∩Qc
2α(x). Moreover, using Campbell’s formula,

φ(α) ≤ P
(
#(Yi ∈ Y : %i ≥ α, |Yi| < %i + 2α) ≥ 1

)
≤ µ

∫ ∞

α

|B2α+r|ν(dr),

where ν = P ◦ %−1, and hence for all s > 0, there exists a constant c, only depending on s and the
dimension, such that ∫ ∞

0

αs−1φ(α)dα ≤ c

∫ ∞

0

rd+sν(dr),

which is finite by assumption. Note that such an example, where there is stabilization but it is not
necessarily exponential, was not provided in [HJC19, T18]. Finally, if for some β > 0 we have that
E[exp(β%)] <∞, then

φ(α) ≤ µ

∫ ∞

α

|B2α+r|ν(dr) ≤ µvd exp(−βα)
∫ ∞

0

rd exp(βr/3)ν(dr) ≤ c exp(−βα),

for some constant c > 0, writing vd = |B1|, since rd exp(βr/3) ≤ exp(βr) for sufficiently large r.
Hence, in this case, the directing measure is even exponentially stabilizing. Similarly, one can show
that if E[%d] < ∞ but E[%d+s] = ∞, then the associated Λ is φ-stabilizing but

∫∞
0
αs−1φ(α)dα =

∞. Finally, note that in case E[%d] = ∞, then `o is equal to infinity, almost surely, and hence the
model is not well-defined, see [MR96, Section 3.1].

3.1.2 Singular directing measures

We say that a directing measure Λ is singular if Λ(dx) is almost surely singular with respect to the
Lebesgue measure dx on Rd. We already gave an illustration of a singular directing measure given
by the edge-length measure of a Poisson–Voronoi tessellation in Figure 1. More formally, a large class
of singular environments can be constructed via random segment processes S ⊂ Rd, by defining
directing measures Λ(A) = ν1(S ∩ A) for any measurable A ⊂ Rd, where ν1 denotes the one-
dimensional Hausdorff measure.

Example 3.5 (Stabilizing singular directing measures). A particularly interesting class of segment
processes are tessellation processes in R2. Most prominently the Poisson–Voronoi and the Poisson–
Delaunay tessellations, see [M89] for more background on tessellation processes. It has already
been observed in [HJC19] that both the Poisson–Voronoi and the Poisson–Delaunay tessellation
give rise to exponentially stabilizing directing measures that are asymptotically essentially connected,
see [HJC19, Section 3] for details. From this it is clear that they are also essentially r-connected for
any r > 0.
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Example 3.6 (Essentially r-connected but not stabilizing directing measures). Another particularly
interesting class of segment processes is the Manhattan grid in R2, see for example [JT19], which is
defined as follows. Let Y = (Yv, Yh) be the tuple where Yv = {Yi,v}i∈Iv and Yh = {Yi,h}i∈Ih are
two independent simple stationary point processes on R. Then, the Manhattan grid is defined as

S = S(Y ) =
⋃

i∈Iv, j∈Ih

(R× {Yi,h}) ∪ ({Yj,v} × R).

The singular directing measure Λ corresponding to the Manhattan grid is essentially r-connected for
all r > 0. Indeed, for (x, y) ∈ R2 define the connectivity radius

R(x,y) = inf
{
r > 0: [y, y + r) ∩ Yh 6= ∅ and [x, x+ r) ∩ Yv 6= ∅

}
.

In words, R(x,y) is the smallest distance within which, measured from (x, y), there is a horizontal
line of the Manhattan grid above (x, y) and a vertical line on the right of (x, y). Clearly, for R =
(R(x,y))(x,y)∈R2 , points (1) and (2) of Definition 2.3 are satisfied. Assume now that for some α > 0,
sup(x,y)∈Qα∩Qd R(x,y) < α. Then in particular, for (x, y) = (0, α), there is a horizontal line lh of the
Manhattan grid above (x, y) within distance at most α. Further, for (x, y) = (α, 0), there is a vertical
line lv on the right of (x, y) within distance at most α. Now, any vertical (respectively horizontal) line
of S intersecting with Qα intersects with lh (respectively lv) within Q2n. Since lh and lv also intersect
within Q2n, it follows that supp(ΛQα) is entirely connected within one single connected component of
supp(ΛQ2α), which implies that condition (3) of Definition 2.3 also holds.

Since S consists of infinite lines, Λ is not φ-stabilizing for any φ. Hence, the vast majority of the
results of [HJC19] is not applicable in the case of the Cox point process with directing measure λΛ.
In particular, for constant radii, also in the simplest nontrivial case when both Yv and Yh are Poisson
processes, both existence of a subcritical case and the one of a supercritical phase for percolation are
unknown. Nevertheless, thanks to the fact that Λ is essentially r-connected and also ergodic, some
of the results of the present paper that are not necessarily true for any stationary Cox point process
can be applied for Manhattan grids. Namely, Proposition 2.4 holds for them, i.e., there is at most one
unbounded cluster, also if the radii are bounded. Further, part (4) of Theorem 2.6 implies that for %
sufficiently heavy-tailed, if a certain moment of the volume, diameter and point-number of Co is infinite
for the Poisson point process, then the same holds for the Manhattan grid.

An even more fundamental segment process in R2 is the Poisson line tessellation, see for exam-
ple [JT19, M89], which is also ergodic but not φ-stabilizing for any φ. We expect that it is also essen-
tially r-connected and this can be verified similarly to the case of Manhattan grids, but we refrain from
presenting here the details.

3.1.3 Pathological behaviour of non-ergodic examples

In the case of constant radii where % ≡ r > 0 holds almost surely, it is easy to show that λvp = λdp =
λnp. Now, as already mentioned, if Λ is φ-stabilizing, then this critical intensity is positive for any r > 0
and finite for all sufficiently large r > 0. In Section 3.1.1 we explained that λvp = λdp = λnp = ∞
occurs for some relevant φ-stabilizing examples for small r > 0. In contrast, the lack of a subcritical
phase is often thought of as a pathology. A general construction of examples of Λ with this property
can be found in [T19, Section 4.2.3.3]. The simplest one among these examples is the mixed Poisson
point process, which also lacks a subcritical phase in the case of general nonzero random radii, as the
following example shows.
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Example 3.7 (Zero critical intensity). The stationary mixed Poisson point process is the Cox point
process with directing measure Λ(dx) = Zdx, where Z is a non-negative random variable with
E[Z] = 1. Then, Λ is not ergodic and in particular not φ-stabilizing. We claim that for d ≥ 2, if
esssup(Z) = ∞ and % satisfies P(% > 0) > 0, then λvp = λdp = λnp = 0. Indeed, then we
can choose ε > 0 and p ∈ (0, 1] such that P(% > ε) = p > 0. Now, let λ > 0 and consider
the Cox point process X with directing measure λZdx for λ > 0. Then, the independent thinning
Xε = {Xi ∈ X : %i > ε} of X is a Cox point process with nonzero intensity Zpλdx. Now, in the
event {Z > 2λc(ε)/(pλ)} that has positive probability, this intensity is greater than 2λc(ε), where
λc(ε) denotes the critical intensity for percolation of the Boolean model with constant radii ε based
on a Poisson point process. Thus,

⋃
Xi∈Xε B%i(Xi) stochastically dominates the Boolean model of

a Poisson point process of supercritical intensity, hence, almost surely it contains a cluster including
infinitely many points of X , which also has infinite volume as well as infinite diameter. It follows that
λvp = λdp = λnp = 0, as wanted. Note that in case essinf(Z) > 0, the mixed Poisson point process
is also essentially r-connected for any r > 0. However, since Λ is not ergodic, our uniqueness result
is technically not applicable, but thanks to a comparison to the Poisson point process, there cannot
be more than one unbounded cluster. Still, the number of unbounded clusters may not be constant
almost surely.

In the following, similar example, λvp = λdp = λnp = 0 also holds if esssup(%) is sufficiently large
but λvp = λdp = λnp = ∞ if esssup(%) is small and positive.

Example 3.8 (Zero critical intensity only for large radii). Let Λ′ be any φ-stabilizing intensity measure
such that λnp(r) = ∞ for sufficiently small constant radii r > 0 and λnp(r) < ∞ for large enough
constant radii r. Recall that for non-random radii λnp(r) = λdp(r) = λvp(r). Let rc = inf{r >
0: λnp(r) < ∞} denote the critical radius for the existence of a supercritical phase. Let now Z
be an unbounded random variable with E[Z] = 1 that is independent of Λ′ and define the intensity
measure Λ via Λ(dx) = ZΛ′(dx). Then, Λ is not ergodic. Now, if r > rc, then the Cox point process
associated to Λ satisfies λnp = 0, analogously to the case of Example 3.7. In contrast, for r < rc we
have λnp = ∞. Note that it is also easy to see that that λnp(rc) ∈ {0,∞}.

It is an interesting open question whether there exists an ergodic directing measure where for the
associated Cox–Boolean model λvp, λdp or λnp are equal to zero without complete coverage, and
also whether the non-existence of moments described in part (4) of Theorem 2.6 can occur for an
ergodic directing measure Λ without assuming E[%d+s] = ∞.

3.2 Expected overshoot of the directing measure

In this section, we present examples for which the overshoot condition, Condition (1), holds. Let us
start with the following statement for b-dependent environments with sufficient integrability.

Lemma 3.9. Let Λ be stationary and b-dependent for some b > 0. Then, Condition (1) holds if

E
[∣∣Λ(Bb)− |Bb|

∣∣2k] <∞ for some 1 + (1 + s)/d < k ∈ N.

The proof rests on an application of Lemma 2.7 and is presented in the Section 4.3. Note that
Lemma 3.9 can be used to show that Condition (1) holds for example for the shot-noise field as
presented in Example 3.3. Indeed, in case b = diam

(
supp(κ)

)
< ∞ and κmax = sup{κ(x) : x ∈

Rd} <∞, we have for any n ∈ N

E
[
Λ(Bb)

n
]
≤ (c1|Bb|)nE

[
#(Y ∩B2b)

n
]
≤ c(κmax|Bb|)n(µ|B2b|)n,
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where c is a constant depending only on n and µ, the intensity of the underlying Poisson point process.
But this implies that for all k ∈ N

E
[
|Λ(Bb)− |Bb||2k

]
<∞.

Let us next verify that the unbounded stabilizing absolutely continuous directing measure exhibited in
Example 3.4 also satisfies Condition (1). For this, we verify the Condition (3) in Lemma 2.7 for β = 2k
with k ∈ N sufficiently large. For the directing measure presented in Example 3.4 we can re-express
the 2k-th central moment in terms of the complete Bell polynomials Gn, see [GST19], i.e.,

E
[(
Λ(Bα)− |Bα|

)2k]
= E

[(∑
i∈I

|B%i(Yi) ∩Bα| − |Bα|
)2k]

= G2k(0, u2, . . . , u2k),

where

uj =

∫ ∫ (
λµ|Br(x) ∩Bα|

)j
ν(dr)dx ≤ (λµ)j(2α)d

∫
rd(j+1)ν(dr)

is the j-th cumulant of
∑

i∈I |B%i(Yi)∩Bα| and ν = P◦%−1. In particular, using the recursive formula
for Bell polynomials, if

∫
rd(2k+1)ν(dr) < ∞, then there exists a constant c > 0, only depending on

d, k, ν, λ and µ, such that

G2k(0, u2, . . . , u2k) ≤ cαdk.

Hence, Condition (3) is verified once we have that s− d(2k − 1)− 1 + dk < −1, which is the case
if
∫
rd(2k+1)ν(dr) <∞ for some k > (s+ 1)/d.

Finally, we establish Condition (1) for the stationary singular but not b-dependent environment defined
via the Poisson–Delaunay tessellation, as presented in Example 3.5.

Lemma 3.10. The Condition (1) holds for Λ(dx) = ν1(S ∩ dx), where S is the edge set of the
Delaunay tessellation based on a homogeneous Poisson point process Y in R2.

We give the proof in Section 4.3. Let us note that Lemma 3.10 also holds for example for the Poisson–
Voronoi tessellation in R2, but we do not present a proof for this statement.

4 Proofs

Recall for all x ∈ Rd the notations Qr(x) = Qr + x, where Qr is the box of side length 2r centered
at the origin, and Br(x) = Br + x, where Br is the ball of radius r centered at the origin. Further, let
ν denote the distribution of % and vd = |B1|. Also, for any set A ⊂ Rd, we define the Boolean model
based on the points in A,

C(A) =
⋃

i∈I : Xi∈A

B%i(Xi),

and let Cx(A) ⊂ C(A) denote the cluster in C(A) that contains x ∈ Rd.
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4.1 Proofs of Propositions 2.1, 2.2, and 2.4

Proof of Proposition 2.1. Let Vn = nd − |C ∩Qn/2| denote the volume of the vacant region in Qn/2.
Then, we have the following estimate for the expected volume fraction,

n−dE[Vn] = n−dE
[ ∫

Qn/2

1{x 6∈ C}dx
]
= P(o 6∈ C)

= E
[∏
i∈I

P(|Xi| ≥ %i)
]
= E

[
exp

(∑
i∈I

logP(|Xi| ≥ %i)
)]

= E
[
exp

(
− λ

∫
Λ(dx)P(% > |x|)

)]
= E

[
exp

(
− λE[Λ(B%)]

)]
≥ exp

(
− λE[Λ(B%)]

)
= exp

(
− λvdE[%d]

)
> 0,

where we used first stationarity, then the representation of the Laplace transform for i.i.d. marked
Poisson point processes and finally Jensen’s inequality. Now, E[Vn] > 0 implies that P(Vn > 0) > 0
for all n ∈ N and hence with positive probability C 6= Rd. Since this is a translation-invariant event,
under ergodicity, P(C = Rd) = 0.

Proof of Proposition 2.2. As in the proof of Proposition 2.1, by Jensen’s inequality,

P(o 6∈ C) = E[exp(−λE[Λ(B%)])] ≥ exp(−λvdE[%d]) > 0.

Since Λ is ergodic, we conclude using the same arguments as in [MR96, Corollary 3.1].

Proof of Proposition 2.4. The proof rests on a generalization of the Burton–Keane argument pre-
sented in the proof of [MR96, Theorem 3.6] additionally using the FKG inequality for Poisson point
processes. First note that, by ergodicity, the number of infinite clusters in C is almost surely equal to
a constant K ∈ N0 ∪ {∞} for all possible choices of the parameters, see for example [MR96, Sec-
tion 3.6]. Let us first exclude the case that 2 ≤ K < ∞. We do this by contradiction and as-
sume that the number of unbounded clusters is equal to K almost surely for some K < ∞. Let
r = esssup(%) <∞ and ε > 0 and consider the event

En = {for all unbounded clusters C ⊂ C(Qc
3n) : dist(C,Q3n) < r − ε and

there exists X1, . . . , Xl ∈ X ∩Q3n such that |Xj −Xj+1| < %j + %j+1

for all j = 1, . . . , l − 1, B%1(X1) ∩ C 6= ∅ and Xl ∈ Qn}.

In words, in the eventEn, all the unbounded clusters, restricted to the parts that come from Cox points
outsideQ3n, intersect a small neighborhood aroundQ3n and are moreover connected toQn, with one
point in Qn. Note however that in the event En, the Cox points in Q3n that establish the connection to
Qn do not necessarily have to be different for different unbounded clusters of C(Qc

3n). Next, consider
the event

Fn = {for all x, y ∈ supp(Λ) ∩Qn there exist X1, . . . , Xl ∈ X ∩Q2n such that

|Xj −Xj+1| < %j + %j+1 for all j = 1, . . . , l − 1, x ∈ B%1(X1) and y ∈ B%l(Xl)}

that any pair of locations in supp(Λ)∩Qn is connected by a finite path of Cox points inQ2n with over-
lapping balls. Now, in the eventEn∩Fn, theK unbounded clusters of C(Qc

3n) are in fact connected in
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the Boolean model C and henceK ∈ {0, 1}. Thus, it suffices to prove that P(En∩Fn) > 0. In partic-
ular, it suffices to prove that P(En∩Fn∩Gn) > 0, whereGn = {sup{Ry : y ∈ Q2n∩ Qd} < n/2}
is the event which guarantees that supp(ΛQn) is r-connected in supp(ΛQ2n). For this, note that

P(En ∩ Fn ∩Gn) = E[1{Λ ∈ Gn}P(En ∩ Fn|Λ)] ≥ E[1{Λ ∈ Gn}P(En|Λ)P(Fn|Λ)],

where we used the FKG inequality. To see that the FKG inequality is indeed applicable, for any mea-
surable set B ⊆ Rd, we write PΛ

B for a Poisson point process with intensity measure λΛB . Then,

P(En ∩ Fn|Λ) =
∫ ∫

1{ω1 ∪ ω2 ∈ En}1{ω2 ∈ Fn}PΛ
Q2n

(dω2)P
Λ
Qc

2n
(dω1),

where we used the independence of the Poisson point processes and the fact that Fn only depends
on Poisson points in Q2n. Conditioned on ω1, the functions ω2 7→ 1{ω1 ∪ ω2 ∈ En} and ω2 7→
1{ω2 ∈ Fn} are both increasing, and hence, by the FKG inequality for Poisson point processes, see
for example [LP17, Theorem 20.4],

P(En ∩ Fn|Λ) ≥
∫ ∫

1{ω1 ∪ ω2 ∈ En}PΛ
Q2n

(dω2)P
Λ
Qc

2n
(dω1)

∫
1{ω2 ∈ Fn}PΛ

Q2n
(dω2)

= P(En|Λ)P(Fn|Λ).

To continue, let us abbreviate en(Λ) = P(En|Λ) and fn(Λ) = P(Fn|Λ). Note that the event En is
implied by the event that all K unbounded clusters have a non-empty intersection with the box Qn.
Hence, by ergodicity, for all ε1, there exists n1 ∈ N such that for all n ≥ n1, P(En) > 1− ε1. Hence,
there exists c > 0 such that P

(
Hn

)
> 1−ε1, whereHn = {en(·) > c}. This can be easily checked

via contradiction. Moreover, by the assumption of essential r-connectedness, for all ε2 > 0, there
exists n2 ≥ n1 such that for all n ≥ n2 we have that P(Gn) > 1 − ε2 and hence, for sufficiently
small ε1 and ε2, also P(Gn ∩Hn) > 0 for all sufficiently large n. Hence, for such n,

E[1{Λ ∈ Gn}en(Λ)fn(Λ)] ≥ E[1{Λ ∈ Gn ∩Hn}en(Λ)fn(Λ)] > cE[1{Λ ∈ Gn ∩Hn}fn(Λ)]

and, in order for the expression on the right-hand side to be positive, it suffices to prove that fn(Λ) > 0
for almost all Λ ∈ Gn∩Hn. But this is true since conditioned on Λ, underGn, points can be connected
via sufficiently many Poisson points, which has positive probability.

What remains to be proved is that P(K = ∞) = 0. Consider the event

E ′
n = {there is an unbounded cluster C that contains a Cox point X1 ∈ Qn and

C ∩Qc
2n contains at least three unbounded clusters}.

Using the exact same arguments as in the proof of [MR96, Theorem 3.6], the claim follows once we
have shown that P(E ′

n) > 0. In order to show this, recall the definitions of the events Fn andGn from
above and note that P(E ′

n) ≥ P(E ′′
n ∩ Fn ∩Gn), where

E ′′
n = {there exist at least three unbounded clusters C ⊂ C(Qc

3n) : dist(C,Q3n) < r − ε and

there exists X1, . . . , Xl ∈ X ∩Q3n such that |Xj −Xj+1| < %j + %j+1

for all j = 1, . . . , l − 1, B%1(X1) ∩ C 6= ∅ and Xl ∈ Qn}.

But this probability is positive, which can be seen using the same arguments as in the first part of the
proof.
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4.2 Proof of Theorem 2.6

We prove the four parts of Theorem 2.6 individually. Let us start with the proof of part (1) which uses
coupling arguments.

4.2.1 Existence of a supercritical phase for percolation

Proof of part (1) of Theorem 2.6. As for the assertion that λvp < ∞ in case Λ is φ-stabilizing and
esssup(%) is sufficiently large, let us note that it was observed in [T18, Corollary 2.5] that if Λ is
φ-stabilizing, then

R = inf
{
r > 0: λvp <∞ for the Boolean model

⋃
i∈I

Br(Xi)
}

is positive and finite. Hence, the proof of the assertion reduces to a simple coupling argument as
follows. Let us assume that esssup(%) > R, then there exists r > R such that p = P(% > r) > 0.
Now, for i ∈ I let

%−i = r1{%i ≥ r}

and considerX− = {Xi : i ∈ I, %−i = r}, which is an independent thinning of the Cox point process
X with probability p, and hence a Cox point process with intensity pλΛ thanks to the Colouring
Theorem, see [Kin93]. Further, since %−i ≤ %i almost surely, we have C− =

⋃
Xi∈X− B%−i

(Xi) ⊂ C.

Now, by the definition of R, one can choose λ > 0 such that C− exhibits volume percolation with
probability 1, and hence so does C. This together with the stationarity of C implies that |Co| = ∞
holds with positive probability, and therefore λvp < ∞. Again, λdp < ∞, since λdp ≤ λvp. Finally,
since in the supercritical regime for volume percolation, the unbounded cluster in C− already contains
infinitely many points, so does C, which implies that also λnp <∞.

4.2.2 Existence of a subcritical phase for percolation

The proof of part (2) of Theorem 2.6 rests on a generalization of arguments first presented in [G08],
for Poisson–Boolean models, which leverage scaling properties of the process. Recall that Cx(A)
denotes the connected component of the Boolean model based on points in A that contains x, then
we define for any x ∈ Rd and α > 0 the event

G(x, α) = {
(
Cx(B10α(x)) ∪Bα(x)

)
6⊂ B8α(x)}

that the cluster of x, only using points in B10α(x), reaches beyond B8α(x). Then, we have the follow-
ing lemma.

Lemma 4.1. Consider the Boolean model based on the Cox point process X with stationary intensity
measure λΛ, where Λ is φ-stabilizing. Then, there exists a constant c > 0, depending only on d, such
that for all α > 0, we have

P(G(o, 10α)) ≤ cP(G(o, α))2 + λc

∫ ∞

α

rdν(dr) + 2cφ(10α) and

P(G(o, α)) ≤ cλαd.
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Proof of Lemma 4.1. Consider the event

H ′(α) = {there exists Xi ∈ X ∩B100α : %i ≥ α},

and let Kα denote a finite subset of the sphere Sα = {x ∈ Rd : |x| = α} such that

Sα ⊂
⋃
x∈Kα

B1(x).

Then, a small generalization of the arguments presented in the proof of [G08, Lemma 3.3] gives

P(G(o, 10α)) ≤ P
(( ⋃

k∈K10

G(αk, α)
)
∩
( ⋃
l∈K100

G(αl, α)
))

+ P(H ′(α))

≤
∑

k∈K10, l∈K100

E[P(G(αk, α)|Λ)P(G(αl, α)|Λ)] + P(H ′(α)),

since
(
G(o, 10α) \ H(α)

)
⊂

((⋃
k∈K10

G(αk, α)
)
∩
(⋃

l∈K100
G(αl, α)

))
. Then, using φ-

stabilization,

E
[
P(G(αk, α)|Λ)P(G(αl, α)|Λ)

]
≤ E

[
1{ sup

y∈Q10α(αk)∩Qd

Ry < α}P(G(αk, α)|Λ)

× 1{ sup
y∈Q10α(αl)∩Qd

Ry < α}P(G(αl, α)|Λ)
]
+ 2φ(10α),

and hence, for some c1 > 0 only depending on the dimension, by stationarity,

P(G(o, 10α)) ≤ c1P(G(o, α))2 + 2c1φ(10α) + P(H ′(α)).

Finally, as in [G08, Lemmas 3.5 and 3.6], there exist constants c2, c3 > 0, depending only on the
dimension, such that

P(H ′(α)) ≤ λc2

∫ ∞

α

rdν(dr) and P(G(o, α)) ≤ λc3α
d.

This finishes the proof.

Next, recall that by X(A) we denote number of points of X in A ⊂ Rd. Consider

M = sup{|x| : x ∈ Co},

the largest distance to the origin of any point in the cluster of the origin. We have the following esti-
mates.

Lemma 4.2. Consider the Boolean model based on the Cox point process X with stationary intensity
measure λΛ. Then, there exists a constant c > 0, only depending on d, such that for all α > 0, we
have

P(M ≥ 9α) ≤ P(G(o, α)) + λc

∫ ∞

α

rdν(dr) and

P(Xλ(Co) > Xλ(B8α)) ≤ P(G(o, α)) + λc

∫ ∞

α

rdν(dr).
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Proof of Lemma 4.2. Consider the event,

H(α) = {there exists Xi ∈ X ∩Bc
10α : |Xi| ≤ 9α + %i}.

Then, by [G08, Lemma 3.2],

P(M ≥ 9α) ≤ P(G(o, α)) + P(H(α)).

Moreover, we have that
(
G(o, α)c ∩H(α)c

)
⊂ {Co ⊂ B8α} since, under the event H(α)c, points

outsideB9α cannot help the clusterCo to reach outside ofB8α. But since {Co ⊂ B8α} ⊂ {X(Co) ≤
X(B8α)}, we have

P(X(Co) > X(B8α)) ≤ P(G(o, α)) + P(H(α)).

Finally, by [G08, Lemma 3.4], there exist constants c > 0, only depending on the dimension, such that

P(H(α)) ≤ λc

∫ ∞

α

rdν(dr),

which finishes the proof.

We will also need the following essential result about convergence and integrability properties of func-
tions satisfying some scaling inequality.

Lemma 4.3 ( [G08, Lemma 3.7]). Let f and g be two bounded measurable functions from [1,∞] to
[0,∞). Additionally, let f be bounded by 1/2 on [1, 10], g be bounded by 1/4 on [1,∞] and assume

f(α) ≤ f(α/10)2 + g(α), for all α ≥ 10.

Then, limα↑∞ g(α) = 0 implies that limα↑∞ f(α) = 0. Moreover, if s ∈ [0,∞) is such that∫∞
1
αsg(α)dα <∞, then

∫∞
1
αsf(α)dα <∞.

The first statement of Lemma 4.3 can be used to prove existence of a subcritical phase for percolation.

Proof of part (2) of Theorem 2.6. We assume that E[%d] < ∞ and Λ to be φ-stabilizing. In order
to prove that λvp > 0 and λdp > 0, it suffices to show that limα↑∞ P(M ≥ 9α) = 0 for all
sufficiently small λ. For λnp > 0, it suffices to show that limα↑∞ P(Xλ(Co) > Xλ(B8α)) = 0 for all
sufficiently small λ. But those two statements are true if limα↑∞ P(G(0, α)) = 0, by an application
of Lemma 4.2. In order to show limα↑∞ P(G(0, α)) = 0 we apply the Lemmas 4.1 and 4.3 for proper
choices of f and g. For this, first define

αc = inf{x ≥ 1: φ(α) < (4c)−2 for all α ≥ x},

and note that αc < ∞ by the assumption of φ-stabilization. Based on this, we make the following
definitions. In case E[%d] ≥ 1,

A = 10αc and λo =
(
2c2E[%d](100αc)

d
)−1

, (5)

f(α) = cP(G(o, Aα)) and g(α) = λc2
∫ ∞

Aα/10

rdν(dr) + 2c2φ(Aα/10). (6)
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Then, indeed, using Lemma 4.1, we have that

f(α) ≤ c2λ(Aα)d ≤ (10αcα)
d

2E[%d](100αc)d
≤ 1

2
, for all 1 ≤ α ≤ 10 and λ < λo,

g(α) ≤ 1

8αdc
+ 2c2φ(αcα) ≤

1

4
, for all 1 ≤ α and λ < λo, and

f(α) ≤ c2P(G(o, Aα/10))2 + λc2
∫ ∞

Aα/10

rdν(dr) + 2c2φ(Aα/10)

= f(α/10)2 + g(α) for all α ≥ 10.

Hence, since limα↑∞ g(α) = 0, an application of Lemma 4.3 gives the result. On the other hand, in
case E[%d] < 1, we set

A = 10αc and λo = (2c2(100αc)
d)−1,

and we again define the functions f and g according to (6). Then, again using Lemma 4.1, we have
that,

f(α) ≤ c2λ(Aα)d ≤ (10αcα)
d

2(100αc)d
≤ 1

2
, for all 1 ≤ α ≤ 10 and λ < λo

g(α) ≤ 1

2(100αc)d
+ 2c2φ(αcα) ≤

1

4
, for all 1 ≤ α and λ < λo, and

f(α) ≤ c2P(G(o, Aα/10))2 + λc2
∫ ∞

Aα/10

rdν(dr) + 2c2φ(Aα/10)

= f(α/10)2 + g(α) for all α ≥ 10.

Hence, again an application of Lemma 4.3 gives the result.

4.2.3 Existence of moments

In this section we prove part (3) of Theorem 2.6 by establishing regimes of sufficiently small λ, such
that moments for the volume, the diameter, and the number of points in the cluster of the origin exist.

Proof of part (3) of Theorem 2.6. In this proof we use the statement about integrability from Lemma 4.3.
Let s > 0 and recall the definitions of the functions f and g from (6). Under the assumption that∫∞
0
αs−1φ(α)dα <∞ and E[%d+s] <∞ we have that∫ ∞

0

αs−1g(α)dα = λc2
∫ ∞

0

αs−1

∫ ∞

αcα

rdν(dr)dα + 2c2
∫ ∞

0

αs−1φ(αcα)dα

= λc2α−s
c

∫ ∞

0

αs−1

∫ ∞

α

rdν(dr)dα + 2c2α−s
c

∫ ∞

0

αs−1φ(α)dα

= s−1λc2α−s
c

∫ ∞

0

rd+sν(dr) + 2c2α−s
c

∫ ∞

0

αs−1φ(α)dα <∞.

Hence, for λ sufficiently small, i.e., λ < λo where λo was defined in (5), by an application of the
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Lemmas 4.3 and 4.2, we obtain

∞ >

∫ ∞

0

αs−1f(α)dα = c

∫ ∞

0

αs−1P(G(o, Aα))dα

≥ c

∫ ∞

0

αs−1P(M ≥ 9Aα)dα− λc2
∫ ∞

0

αs−1

∫ ∞

Aα

rdν(dr)dα

= c(9A)−s
∫ ∞

0

αs−1P(M ≥ α)dα− λc2A−s
∫ ∞

0

rd+sν(dr)

= c(9A)−sE[M s]− λc2A−sE[%d+s].

Hence, E[M s] < ∞. Since diam(Co) ≤ M and |Co| ≤ Md, also E[diam(Co)
s] < ∞ and

E[|Co|s/d] <∞. This provides the proof for the existence of moments for the volume and diameter of
Co.

For the existence of moments for the number of points in Co, note that under the assumptions∫∞
0
αs−1φ(α)dα <∞ and E[%d+s] <∞, we have, as above, that∫ ∞

0

αs−1g(α)dα = λc2
∫ ∞

0

αs−1

∫ ∞

Aα/10

rdν(dr)dα + 2c2
∫ ∞

0

αs−1φ(Aα/10)dα <∞.

Hence, for λ is sufficiently small, by an application of the Lemmas 4.3 and 4.2, we have

∞ >

∫ ∞

0

αs−1f(α)dα = c

∫ ∞

0

αs−1P(G(o, Aα))dα

≥ c

∫ ∞

0

αs−1P(X(Co) > X(B8Aα))dα− λc2
∫ ∞

0

αs−1

∫ ∞

Aα

rdν(dr)dα

= c(8A)−s
∫ ∞

0

αs−1P(X(Co) > X(Bα))dα− λc2α−s
c E[%d+s],

and it suffices to verify that
∫∞
0
αs−1P(X(Co) > X(Bα))dα <∞ implies that E[X(Co)

s/d] <∞.
It will be convenient to rescale α in such a way that the expected number of points in a ball is given
by the dimensionless scalar integration variable. For this we replace α by (α/λvd)

1/d, write B′
α =

B(α/λvd)1/d
, and calculate∫ ∞

0

αs−1P(X(Co) > X(Bα))dα =
1

d
(λvd)

−s/d
∫ ∞

0

αs/d−1P
(
X(Co) > X(B′

α)
)
dα

=
1

d
(λvd)

−s/d
∫ ∞

0

αs/d−1
∑
k≥0

P
(
X(B′

α) < k,X(Co) = k
)
dα.

Next, for any t > 1, we can further bound from below,∫ ∞

0

αs/d−1
∑
k≥0

P
(
X(B′

α) < k,X(Co) = k
)
dα ≥

∫ ∞

0

αs/d−1
∑
k≥tα

P(X(B′
α) < k,X(Co) = k)dα

≥
∫ ∞

0

αs/d−1
∑
k≥tα

P(X(Co) = k)dα−
∫ ∞

0

αs/d−1
∑
k≥tα

P(X(B′
α) ≥ k)dα

= t−s/d
∫ ∞

0

αs−1
∑
k≥α

P(X(Co) = k)dα−
∫ ∞

0

αs/d−1
∑
k≥tα

P(X(B′
α) ≥ k)dα

=
1

d
st−s/dE

[
X(Co)

s/d
]
−

∫ ∞

0

αs/d−1
∑
k≥tα

P(X(B′
α) ≥ k)dα,
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and thus it suffices to show that
∫∞
0
αs/d−1

∑
k≥tα P(X(B′

α) ≥ k)dα < ∞ for some t > 1. For
this, we fix constants t > t′ > 1 and separate terms in which the environment underachieves and
overachieves its expected intensity,∑

k≥tα

P(X(B′
α) ≥ k) = E

[
1{λΛ(B′

α) < t′α}
∑
k≥tα

P(X(B′
α) ≥ k|Λ)

]
+ E

[
1{λΛ(B′

α) ≥ t′α}
∑

k≥tλΛ(B′
α)

P(X(B′
α) ≥ k|Λ)

]

+ E
[
1{λΛ(B′

α) ≥ t′α}
dtλΛ(B′

α)e−1∑
k=dtαe

P(X(B′
α) ≥ k|Λ)

]
.

(7)

For the last summand in (7), we have

E
[
1{λΛ(B′

α) ≥ t′α}
dtλΛ(B′

α)e−1∑
k=dtαe

P(X(B′
α) ≥ k|Λ)

]
≤ E

[
1{λΛ(B′

α) ≥ t′α}(dtλΛ(B′
α)e − 1− dtαe)

]
≤ tE

[
1{λΛ(B′

α)− α ≥ (t′ − 1)α}(λΛ(B′
α)− α)

]
.

By Condition (1), this summand is finite. For the first summand in (7), note that conditioned on Λ,
X(B′

α) is a Poisson random variable with parameter Λ(B′
α). Hence in the event that λΛ(B′

α) < t′α,
since t > t′, we can apply Poisson concentration inequalities for P(X(B′

α) ≥ k|Λ) in case k ≥ tα,
which leads to an upper bound given by

E
[
1{λΛ(B′

α) < t′α}
∑
k≥tα

P(X(B′
α) ≥ k|Λ)

]
≤

∑
k≥tα

exp
(
− t′α(

k

t′α
log

k

t′α
+ 1− k

t′α
)
)

≤ c1

∫ ∞

tα

dx exp
(
− t′α(

x

t′α
log

x

t′α
+ 1− x

t′α
)
)
,

for some constant c1 > 0. In particular, by a change of variables, we have∫ ∞

0

αs/d−1E
[
1{λΛ(B′

α) < t′α}
∑
k≥tα

P(X(B′
α) ≥ k|Λ)

]
dα

≤ c1

∫ ∞

0

αs/d
∫ ∞

t/t′
dx exp

(
− t′α(x log x+ 1− x)

)
dα

= c1

∫ ∞

t/t′

∫ ∞

0

αs/d exp
(
− t′α(x log x+ 1− x)

)
dαdx

= c1Γ(s/d+ 1)t′−(s/d+1)

∫ ∞

t/t′
dx(x log x+ 1− x)−(s/d+1)dx

≤ c1Γ(s/d+ 1)t′−(s/d+1)

∫ ∞

t/t′
dx(x log(t/t′) + 1− t/t′)−(s/d+1)dx <∞,

where Γ is the Gamma function. Finally, for the second summand in (7), using again Poisson concen-
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tration inequalities, for some c3 > 0, we have

E
[
1{λΛ(B′

α) ≥ t′α}
∑

k≥tλΛ(B′
α)

P(X(B′
α) > k|Λ)

]
≤ E

[
1{λΛ(B′

α) ≥ t′α}
∑

k≥tλΛ(B′
α)

exp
(
− λΛ(B′

α)(
k

λΛ(B′
α)
log k

λΛ(B′
α)

+ 1− k
λΛ(B′

α)
)
)]

≤ c3

∫ ∞

t

E
[
1{λΛ(B′

α) ≥ t′α}λΛ(B′
α) exp

(
− λΛ(B′

α)(x log x+ 1− x)
)]
dx.

Now, separating terms and using that λΛ(B′
α) ≥ t′α, λΛ(B′

α)−α ≥ (t′− 1)α and y exp(−yz) ≤
1/z for all y, z > 0, we can estimate

λΛ(B′
α) exp

(
− λΛ(B′

α)(x log x+ 1− x)
)
= α exp

(
− λΛ(B′

α)(x log x+ 1− x)
)

+ (λΛ(B′
α)− α) exp

(
− (λΛ(B′

α)− α)(x log x+ 1− x)
)
exp

(
− α(x log x+ 1− x)

)
≤ α exp

(
− t′α(x log x+ 1− x)

)
+ (x log x+ 1− x)−1 exp

(
− α(x log x+ 1− x)

)
.

Hence, using the same strategy as above, we obtain the upper bound∫ ∞

0

αs/d−1E
[
1{λΛ(B′

α) ≥ t′α}
∑

k≥tλΛ(B′
α)

P(X(B′
α) > k|Λ)

]
dα

≤ c3

∫ ∞

t

∫ ∞

0

αs/d exp
(
− t′α(x log x+ 1− x)

)
dαdx

+ c3

∫ ∞

t

(x log x+ 1− x)−1

∫ ∞

0

αs/d−1 exp
(
− α(x log x+ 1− x)

))
dαdx

≤ c3
(
Γ(s/d+ 1)t′−(s/d+1) + Γ(s/d)

) ∫ ∞

t

dx(x log(t/t′) + 1− t/t′)−(s/d+1)dx,

which is finite. This concludes the proof.

4.2.4 Non-existence of moments

In this part we finish the proof of Theorem 2.6 by verifying part (4) using a generalization of the proof
presented for [MR96, Theorem 3.2].

Proof of part (4) of Theorem 2.6. Let E[%d+s] = ∞ and assume Λ to be ergodic. We may assume
that E[%d] < ∞, otherwise there is nothing to prove, see Theorem 1.1 part (1). Let us start by
considering moments of the diameter of Co. We reproduce the strategy used for [G08, Lemma 3.9].
Note that for all α ≥ 0

P(diam(Co) ≥ α) ≥ P(there exists Xi ∈ X such that |Xi|+ α < %i)

= E
[
1− exp

(
− λ

∫ ∞

0

Λ(Br+α)ν(dr)
)]

= 1− E
[
exp

(
− λ

∫ ∞

α

Λ(Br)ν(dr)
)]
.

By ergodicity of Λ, for all ε ∈ (0, 1), there exists an R > 0 such that the event

{(1− ε)|Br| < Λ(Br), for all r > R}
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has probability at least 1/2, and hence, conditioned on this event, for α > R, we can further bound

P(diam(Co) ≥ α) ≥ 1

2
− 1

2
E
[
exp

(
− λvd(1− ε)

∫ ∞

α

rdν(dr)
)]
.

Since E[%d] <∞, there exists a constant c > 0 such that

1

2
− 1

2
E
[
exp

(
− λvd(1− ε)

∫ ∞

α

rdν(dr)
)]

≥ c

∫ ∞

α

rdν(dr),

and thus, since E[%d+s] = ∞,

E[diam(Co)
s] ≥

∫ ∞

R

αs−1P(diam(Co) ≥ α)dα ≥ c

∫ ∞

R

αs−1

∫ ∞

α

rdν(dr)dα = ∞.

This proves the case for the diameter. For the volume, we can use the same arguments. In particular,
for all α > R, there exists a finite constant c > 0 such that we can estimate

P(|Co| ≥ |Bα|) ≥ P(there exists Xi ∈ X such that |Xi|+ α < %i) ≥ c

∫ ∞

α

rdν(dr),

and thus,

E[|Co|s/d] ≥
∫ ∞

R

αs−1P(|Co| ≥ αd)dα = v
s/d
d

∫ ∞

R/v
1/d
d

αs−1P(|Co| ≥ |Bα|)dα = ∞.

This proves the case for volumes. Finally, for the number of points in Co, as in the proof for the
existence of a subcrititical regime, we need extra arguments. We follow the general approach used
in [MR96]. It will be convenient to assume the radii to be integer-valued by setting ρ = b%c. This is no
restriction since E[%d+s] = ∞ if and only if E[ρd+s] = ∞. Note that conditioned on Λ, the Poisson
point process XΛ can be seen as a superposition of independent Poisson point processes XΛ,j with
intensities P(ρ = j)λΛ(dx). The number of direct neighbors Xi of the origin in Co coming from the
process XΛ,j such that |Xi| ≤ j/2 is denoted by NΛ

j = XΛ,j(Bj/2). Note that here, different from
our guiding example for this part of the proof, [MR96, Theorem 3.2], it will be very useful to have the
extra factor 1/2 in the radius. Further, let

MΛ = max{j ≥ 0: NΛ
j > 0},

and put MΛ = −1 in case NΛ
j = 0 for all j ≥ 0. Note that the event {MΛ = m} depends only on

the processes XΛ,j for j ≥ m, where we write XΛ,−1 = ∅. Hence,

E[X(Co)
s/d|Λ] =

∞∑
m=−1

E[X(Co)
s/d1{MΛ = m}|Λ]

=
∞∑

m=−1

P(MΛ = m|Λ)E[X(Co)
s/d|Λ,MΛ = m]

≥
∞∑

m>ko

P(MΛ = m|Λ)E[X(Co)
s/d|Λ,MΛ = m],
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where ko = min{i ≥ 1: P(ρ = i) > 0}. Now, for the first term,

P(MΛ = m|Λ) =
(
1− P(NΛ

m = 0|Λ)
) ∏
j>m

P(NΛ
j = 0|Λ)

=
(
1− exp

(
− P(ρ = m)λΛ(Bm/2)

))
exp

(
− λ

∑
j>m

P(ρ = j)Λ(Bj/2)
)

≥ P(ρ = m)λΛ(Bm/2) exp
(
− λ

∑
j≥m

P(ρ = j)Λ(Bj/2)
)
,

where we used that 1− exp(−x) ≥ x exp(−x) for all x ≥ 0. For the second term, note that under
the event {MΛ = m} with m > ko, there exists at least one Cox point Xi with |Xi| ≤ m/2 and
Bm(Xi) ⊂ Co. In particular, Bm/2 ⊂ Bm(Xi) and hence, for all Cox points Xj ∈ Bm/2 we have
Xj ∈ Co. Thus, we can estimate using independence,

E[X(Co)
s/d|Λ,MΛ = m] ≥ E[XΛ,ko(Bm/2)

s/d|Λ].

Next, we distinguish two cases.

Case s/d ≥ 1: In this case, x 7→ xs/d is convex and hence, using Jensen’s inequality,

E[XΛ,ko(Bm/2)
s/d|Λ] ≥

(
P(ρ = ko)λΛ(Bm/2)

)s/d
.

Then, putting everything together, we have that

E[X(Co)
s/d] ≥ λ1+s/dP(ρo = ko)

s/d
∑
m>ko

P(ρ = m)

× E
[
Λ(Bm/2)

1+s/d exp
(
− 2λ

∑
j≥m

Λ(Bj/2)P(ρ = j)
)]
.

To finish this case, by ergodicity of Λ, there exists an N ∈ N such that the event

{1− ε <
Λ(Bm/4)

|Bm/4|
< 1 + ε, for all m > N} (8)

has probability at least 1/2, and hence, conditioned on this event and assuming that E[ρd] <∞,

E[X(Co)
s/d] ≥ 1

2
((1− ε)λ)1+s/dP(ρo = ko)

s/d

×
∑

m≥N∨(ko+1)

P(ρ = m)|Bm/4|1+s/d exp
(
− 2λ

∑
j≥m

|Bj/2|(1 + ε)P(ρ = j)
)
= ∞,

by the assumptions. Finally, we consider the other case.

Case s/d < 1: In this case, note that for a Poisson random variable L with parameter µ, we can
estimate

E[Ls/d] = e−µ
∑
n≥0

ns/d
µn

n!
= µe−µ

∑
n≥1

ns/d−1 µn−1

(n− 1)!
= µe−µ

∑
n≥0

(n+ 1)s/d−1µ
n

n!
,

where x 7→ (x+ 1)s/d−1 is convex. Hence, again via Jensen’s inequality,

E[Ls/d] ≥ µ(µ+ 1)s/d−1 ≥ µ

µ+ 1
µs/d.
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We can now use this to estimate

E[XΛ,ko(Bm/2)
s/d|Λ] ≥

cΛ(Bm/2)

cΛ(Bm/2) + 1

(
cΛ(Bm/2)

)s/d
,

where we abbreviated c = P(ρ = ko)λ. Putting things together and using again ergodicity via the
event (8), we have

E[X(Co)
s/d] ≥ λcs/d

∑
m>ko

P(ρ = m)E
[
Λ(Bm/2)

1+s/d cΛ(Bm/2)

cΛ(Bm/2) + 1

× exp
(
− 2λ

∑
j≥m

Λ(Bj/2)P(ρ = j)
)]

≥ 1

2
λcs/d(1− ε)1+s/d

∑
m≥N∨(ko+1)

P(ρ = m)|Bm/4|1+s/d
c|Bm/2|(1− ε)

c|Bm/2|(1 + ε) + 1

× exp
(
− 2λ

∑
j≥m

|Bj/2|(1 + ε)P(ρ = j)
)]
.

Now, assuming that ε < 1/3, there existsK ∈ N, such that c|Bm/2|(1−ε)/(c|Bm/2|(1+ε)+1) >
1/2, for all m ≥ K . Hence, since E[ρd] <∞, we finally have that,

E[X(Co)
s/d] ≥ 1

4
λcs/d(1− ε)1+s/d

∑
m≥N∨K∨(ko+1)

P(ρ = m)|Bm/4|1+s/d

× exp
(
− 2λ

∑
j≥m

|Bj/2|(1 + ε)P(ρ = j)
)]

= ∞.

This finishes the proof.

4.3 Proofs of Lemma 2.7, Corollary 3.2, and Lemmas 3.9 and 3.10

Proof of Lemma 2.7. The proof relies on two applications of the Markov inequality. Let (Bi
α)0≤i≤n

denote a finite partition of Bα, then

E
[
(Λ(Bα)− |Bα|)1{Λ(Bα)− |Bα| ≥ c|Bα|}

]
=

n∑
i=0

E
[
(Λ(Bi

α)− |Bi
α|)P

(
Λ(Bα)− |Bα|

gec|Bα|
∣∣Λ(Bi

α)
)]
.

Now we can apply the Markov inequality in two different ways for any β > 0,

P
(
Λ(Bα)− |Bα| ≥ c|Bα|

∣∣Λ(Bi
α)
)]

≤ exp(−βc|Bα|)E
[
exp

(
β(Λ(Bα)− |Bα|)

)∣∣Λ(Bi
α)
]

and

P
(
Λ(Bα)− |Bα| ≥ c|Bα|

∣∣Λ(Bi
α)
)]

≤ (c|Bα|−β)E
[∣∣Λ(Bα)− |Bα|

∣∣β∣∣Λ(Bi
α)
]
.

Using the tower property and the fact that x exp(βx) ≤ β−1 exp(2βx), we thus arrive at

E
[
(Λ(Bα)− |Bα|)1{Λ(Bα)− |Bα| ≥ c|Bα|}

]
≤ β−1 exp(−βc|Bα|)E

[
e2β(Λ(Bα)−|Bα|)

]
E
[
(Λ(Bα)− |Bα|)1{Λ(Bα)− |Bα| ≥ c|Bα|}

]
≤ (c|Bα|−β)E

[∣∣Λ(Bα)− |Bα|
∣∣β+1]

.
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Hence, using Condition (2), there exist c1, c2, c3 > 0, such that∫ ∞

0

αs−1E
[
(Λ(Bα)− |Bα|)1{Λ(Bα)− |Bα| ≥ c|Bα|}

]
dα

≤ c1 + β−1

∫ ∞

c2

αs−1 exp(−β(c+ 2)|Bα|+ c3|Bα|)dα,

which is finite for sufficiently large c. On the other hand, writing vd = |B1| again and using the other
inequality,∫ ∞

0

αs−1E
[
(Λ(Bα)− |Bα|)1{Λ(Bα)− |Bα| ≥ c|Bα|}

]
dα

≤ (cvd)
−β

∫ ∞

0

αs−1−dβE
[∣∣Λ(Bα)− |Bα|

∣∣β+1]
dα.

Hence, if β > 0, using Condition (3), there exist c1, c2 > 0, such that∫ ∞

0

αs−1−dβE
[∣∣Λ(Bα)− |Bα|

∣∣β+1]
dα ≤ c1 +

∫ ∞

c2

α−(1+ε)dα,

which is finite.

Proof of Corollary 3.2. There exists a coupling such that the Boolean model C described in the corol-
lary is almost surely included in a Boolean model C ′ based on a Poisson point process with intensity
λMdx with the same radius distribution %, where M = esssup`o is the bounding constant. Hence,
whenever the latter Boolean model satisfies λvp > 0, λdp > 0 or λnp > 0, then the same assertion
holds for C. Similarly, for s > 0, if C ′ satisfies λv(s) > 0, λd(s) > 0 or λn(s) > 0, then the same
holds for C. We conclude that E[%d] < ∞ implies all the assertions λvp > 0, λdp > 0 and λnp > 0
for C. Further, if for s > 0, E[%d+s] < ∞, then λv(s/d) > 0, λd(s) > 0 and λn(s/d) > 0 hold for
C.

Assume now that % is such that at least one of the assertions λvp > 0, λdp > 0 or λnp > 0 fails
for C ′. Then in fact all of these assertions fail and we have that E[%d] = ∞. Hence, by Theorem 1.1
part (1), we conclude that P(C = Rd) = 1, and hence λvp = λdp = λnp = 0 for C as well, as
required.

Finally, assume now that for some s > 0 we have λv(s/d) = 0 for C ′. Then it follows from Theo-
rem 1.2 that E[%d+s] = ∞. But then, since Λ is ergodic, it follows from Theorem 2.6 that λv(s/d) = 0
holds also for C ′. Using analogous arguments, we conclude that λd(s) = λn(s/d) = 0 for C ′ implies
E[%d+s] = ∞ and thus also λv(s) = λn(s/d) = 0 for C. Therefore, the corollary follows.

Proof of Lemma 3.9. We verify the Condition (3) from Lemma 2.7 for β = 2k. For convenience, let
us replace Bα by cubes Qα/2(x) of sidelength α > 0. Then, assuming α/b ∈ N,

E
[∣∣Λ(Qα/2)− αd

∣∣2k] = E
[∣∣ ∑
z∈bZd∩Qα/2

Y b
z

∣∣2k] = ∑
z1,...,z2k∈bZd∩Qα/2

E
[
Y b
z1
· · ·Y b

z2k

]
,

where Y b
z = Λ(Qb/2(z)) − bd. Note that, as soon as one of the zi is isolated within (z1, . . . , z2k),

we have E
[
Yz1 · · ·Yz2k

]
= 0. But, the number of possible configurations of the (z1, . . . , z2k), such
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that none of the points is isolated is upper bounded by (α/b)dk(2k(2d+ 1))k. Hence, using Hölder’s
inequality, ∑

z1,...,z2k∈bZd∩Qα

E
[
Y b
z1
· · ·Y b

z2k

]
≤ (α/b)dk(2k(2d+ 1))kE

[
(Y b

o )
2k
]
.

Finally, under our assumptions, we have that E
[
(Y b

o )
2k
]
< ∞ and k > 1 + (1 + s)/d, and thus

lim supα↑∞ αs−d(2k−1)+ε+dk = 0 for some ε > 0. Hence, Condition (3) is satisfied.

Proof of Lemma 3.10. First, we can use the much weaker estimate∫ ∞

0

αs−1E
[
(Λ(Bα)− |Bα|)1{Λ(Bα)− |Bα| ≥ c|Bα|}

]
dα

≤ c1 + c2

∫ ∞

1

αs−1−2βE
[
Λ(Bα)

β+1
]
dα,

where c2 = ((c + 1)vd)
−β . Next, we introduce the stabilization radii as in the proof of [JT19, Propo-

sition 2.3]. We define

R = min{r ∈ N : r ≥ 2α and ∀z ∈ Zd with ‖z‖∞ = 2, Qr(rz) ∩ Y 6= ∅}, (9)

the finest discretization of Rd into boxes such that every box in the 2-annulus contains Poisson points
in Y . Note that R is almost surely finite. Then, for k ∈ N such that k > d2αe,

P(R ≥ k) ≤ P
(
∃z ∈ Z2 with ‖z‖∞ = 2 such that Qk−1((k − 1)z) ∩ Y = ∅

)
≤ 16 exp(−λ(k − 1)2).

Note that once k > d2αe, the right-hand side does not depend on α. Now, the crucial observation is
that, on the event that R = k, Delaunay edges intersecting Bα must have both endpoints within the
ball B2k, for details see the proof of [JT19, Proposition 2.3]. Hence, we can use Hölder’s inequality to
estimate for 1 ≤ β ∈ N,

E
[
Λ(Bα)

β+1
]
≤ 2α

∑
k≥2α

E
[
(Y (Q6k)

β+11{R = k}
]

≤ 2α
∑
k≥2α

E
[
Y (Q6k)

2(β+1)
]1/2P(R = k)1/2

≤ c3α
∑
k≥2α

(36k2λ)β+1 exp(−λ(k − 1)2/2),

for some constant c3 > 0, coming from lower-order terms in the evaluation of the moments of the
Poisson random variable Y (B6k). Hence, there exists a finite constant c4 > 0 such that∫ ∞

1

αs−1−2βE
[
Λ(Bα)

β+1
]
dα ≤ c4

∑
k≥1

ks+3 exp(−λ(k − 1)2/2),

which is finite. This finishes the proof.
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