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Uncertainty quantification in image segmentation using the
Ambrosio–Tortorelli approximation of the Mumford–Shah energy

Michael Hintermüller, Steven-Marian Stengl, Thomas M. Surowiec

Abstract

The quantification of uncertainties in image segmentation based on the Mumford–Shah model
is studied. The aim is to address the error propagation of noise and other error types in the original
image to the restoration result and especially the reconstructed edges (sharp image contrasts).
Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of mea-
surable selections of its solutions as well as sampling-based methods and the limitations of other
popular methods. Numerical examples illustrate the theoretical findings.

1 Introduction

In the use of modern imaging techniques in medicine and embedded artificial intelligence systems for
an automated investigation of anatomical structure or the classification of objects (human, tree, cloud,
etc.), one of the fundamental steps is the division of a given image into distinct areas with characteristic
properties, see, e.g., [Par10, Chapter 2] and [Ban08, Part II]. In this context, image segmentation is
concerned with the problem of identifying regions with approximately homogeneous features (such
as color or gray values, texture, etc.) within given image data. The boundary curve separating such
homogeneous features is call the edge set or simpy the edge.

Over the years, different approaches have been proposed in order to accomplish this task by solving,
e.g., suitably defined partial differential equations or by minimizing appropriate energies. The latter
technique leads to variational models; see, e.g., [KWT87, CKSS97, GG84, MS89, Cha95, Coh97,
HR03, HR04, HL09] and the monographs [MS95], [AFK08, Chapter 4] or [CS05, Chapter 7] as well as
the references therein for an overview.

In this work, we focus on the Mumford–Shah energy (model)

MSg(u,Γ) :=
1

2

∫
Ω\Γ
|∇u|2dx+ αH1(Γ) +

β

2
‖u− g‖2

L2(Ω),

which was introduced in [MS89]. Here, g ∈ L2(Ω) is a given grayscale image, possibly degraded by
noise, where Ω ⊂ R2 represents the image domain, and α, β > 0 are given parameters. Further,
H1 denotes the one-dimensional Hausdorff-measure. In order to discuss the structure of MSg, we
note that the third term is a least-squares data fitting term involving our desired reconstruction u and
the data g. It is inspired by a maximum likelihood argument regarding the statistical properties of
the underlying noise. Since the Mumford–Shah model aims to establish a division in monochromatic
regions the (generalized) gradient of the reconstructed image is minimized (penalized when viewed
together with the choices of α and β) over the complement of the edge set Γ in Ω. This motivates
the first term in MSg. In order to achieve a certain robustness in finding Γ with respect to noise the
length of the edge set is penalized in the second term. Moreover, penalizing the length of Γ secures a
Caccioppoli property of the edge set.
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M. Hintermüller, S.-M. Stengl, T. M. Surowiec 2

The aim associated with the above Mumford–Shah model typically is to find a restored image u :
Ω → R and an edge set Γ, which separates homogeneous regions of interest, by minimizing MSg;
see (MS) below. In this context, the Hausdorff-term in MSg is one ingredient yielding existence of a
minimizing pair (ug,Γg). We note that such a minimizer is attached to the specific realization of the
noise ξ contained in the data, i.e., g = g0 + ξ with g0 representing the underlying true image.

Obviously, the location of Γg within Ω is influenced by the specific realization ξ of an associated
random process and might not properly reflect the location of the true edge Γg0 pertinent to g0. Indeed,
rather than computing Γg one is merely interested in estimating the uncertainty in the location of the
reconstructed edge set, given statistical properties of the underlying random process. This brings us
into the realm of uncertainty quantification of geometric objects.

In general, one of the fundamental components of predictive estimation in uncertainty quantification
is to analyze how uncertainty propagates through a given mathematical model; also known as model
prediction [Smi13, Chap. 9]. We observe that the vast majority of the existing literature on the prop-
agation of uncertainty is concerned with well-defined systems whose (unique) solutions are given by
real numbers, vectors, matrices, or distributed parameters; see e.g., [Smi13, Chap. 9, Chap. 10] or for
an introduction with emphasis on methods also [Sul15].

However, within the context of image processing (segmentation, in particular), variational models of
crack propagation, or free discontinuity problems in general, the output of the model is a geometric
quantity, which itself does not even live in a linear space; see [AFP00] and the references therein. Due
to the associated complexity, we emphasize the role played by the geometric variable (the edge set). In
fact, of the existing methods for the propagation of uncertainty: direct evaluation of the mean and vari-
ance of a quantity of interest, sampling methods, perturbation methods, and spectral representations,
only sampling methods appear to be possible.

In contrast to inverse problems, where Bayesian techniques admitting probability densities to charac-
terize the true value are utilized, we are here confronted rather with a kind of forward problem. It is
also worth mentioning that the model considered in this work yields solution pairs consisting of the
restored image and associated edge set, which is not guaranteed to be unique due to a lack of strict
convexity of the objective in the Mumford–Shah problem.

Our intention here is to therefore draw attention to an important but somewhat neglected class of
problems for uncertainty quantification. As a means of investigating these models, in particular the
edge set, we later propose the notion of generalized cumulative distribution function and pointwise
quantiles. Of course, pointwise averages, variances, etc. are also conceivable. However, we believe
that an estimation of the probability of an edge appearing within a given image patch (or a patch of
pixels in the discrete setting) is the more valuable information.

Let us now return to the Mumford–Shah model and introduce the associated variational framework.
Given sufficient Sobolev regularity of u on the set Ω\Γ, this leads us to the following minimization
problem:

minimize MSg(u,Γ) over (u,Γ) ∈ A,
withA := {(u,Γ) : Γ ⊂ Ω closed and u ∈ H1(Ω\Γ)}.

(MS)

Note that (MS) constitutes the renown Mumford–Shah problem. The interested reader is referred to
the original paper [MS89] for more details, and for a condensed overview including a discussion of
the existence of solutions we point to [AFP00] and the references therein. Uniqueness of a solution
cannot be expected in general as it can be seen in a one-dimensional counter example in [CS05,
Section 7.4.5]. The analytic difficulties arise due to the set-variable Γ as well as u being an element
of a space depending on this set. Moreover, we have the Hausdorff measure directly appearing in
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Uncertainty quantification in image segmentation 3

the functional. These aspects not only significantly complicate the analysis of (MS), but they also
challenge the numerical treatment.

An elegant way to address these issues is due to Ambrosio and Tortorelli (cf. [AT92]). Driven by the an-
alytical notion of Γ-convergence, the main idea is to treat the edge set along with its Hausdorff measure
by a phase field approach. In fact, the so-called Ambrosio–Tortorelli functional AT gε : H1(Ω)×K →
R is defined by

AT gε (u, z) :=
1

2

∫
Ω

z2|∇u|2dx+
α

2

(
ε

∫
Ω

|∇z|2dx+
1

4ε

∫
Ω

(z − 1)2dx

)
+
β

2

∫
Ω

|u− g|2dx

+
η

2

∫
Ω

|∇u|2dx,

together with the constraint set

K :=
{
y ∈ H1(Ω) : 0 ≤ y ≤ 1 almost everywhere (a.e.) on Ω

}
.

As before, the quantity u ∈ H1(Ω) denotes the restored image. The geometric quantity Γ, on the
other hand, is approximated by the function z ∈ H1(Ω), which can be interpreted as an edge indica-
tor. In this context, the zero-level set of z is associated with an edge and the level set associated with
z = 1 relates to the absence of such an edge. From this we see that the first term in AT gε refers to
the first term of (MS). The second and third terms approximate the Hausdorff measure. The remaining
terms are the data fitting term as well as an additional regularization for the phase field variable z
with weighting factor η > 0. This term ensures coercivity. In [AT92], it is shown that the sequence of
minimization problems

minimize AT gε (u, z) over (u, z) ∈ H1(Ω)×K, (AT)

Γ-converges in the strong L1(Ω;R2)-topology to the original Mumford–Shah problem (MS) as ε→ 0

and η = o(ε), with o(t)
t
→ 0 as t→ 0.

As motivated above, given noisy observations g, we are interested in studying the influence of random
errors and other data transformation effects in the image data on the reconstruction of edges in the
image. The degradation model underlying our study is given by

g = Lg0 + ξ,

where L is a linear continuous operator from L2(Ω) to L2(Ω), i.e., L ∈ L(L2(Ω)). Note that L may
model image blur, subsampling or Fourier and wavelet transforms, respectively, to mention only a few.
Moreover, ξ ∈ L2(Ω) is an oscillating map with zero mean. From a stochastic point of view L and ξ
constitute realizations of stochastic processes. We also assume that L does not annihilate constant
functions, i.e. L1 6= 0.

Since Γ in (MS) is a set, a mathematically meaningful notion of uncertainty propagation of this object
is not immediately clear. In view of this, the Ambrosio–Tortorelli formulation offers a transformation of
this geometric feature to a functional variable which is more amenable to the study of the propagation
of uncertainty. Taking account of the additional data transformation operator L in our model AT gε
becomes

AT gε (u, z) :=
1

2

∫
Ω

z2|∇u|2dx+
α

2

(
ε

∫
Ω

|∇z|2dx+
1

4ε

∫
Ω

(z − 1)2dx

)
+
β

2

∫
Ω

|Lu− g|2dx

+
η

2

∫
Ω

|∇u|2dx,
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which constitutes the segmentation model under investigation in this paper.

The rest of the paper is organized as follows. In Section 2 we provide a collection of important results
on the Ambrosio–Tortorelli functional concerning properties of the functional as well as first-order
conditions for its minimizers. These will be used in Section 3 to give a mathematical justification of
random processed image and edge indicators in the sense of measurable selections based on the
theorem of Kuratowski–Ryll-Nardzewski. In Section 4 we briefly discuss frontiers of popular techniques
in uncertainty quantification before we turn our attention to sampling based methods. We conclude our
work in Section 5 with numerical examples.

2 Properties of the deterministic problem

Now we collect several properties of the Ambrosio–Tortorelli functional and its minimizers. In order to
reduce technicalities in the subsequent proofs we establish the following norm equivalence. Below,
‖ · ‖L2(Ω) denotes the usual L2(Ω)-norm on a bounded domain Ω ⊂ Rd and H1(Ω) is the Sobolev
space of functions in L2(Ω) with generalized gradient in L2(Ω)d, see e.g. [AF03].

Lemma 1. Let L ∈ L(L2(Ω)) with L1 6= 0. Then the norm

|||u|||2 := ‖∇u‖2
L2(Ω) + ‖Lu‖2

L2(Ω)

and the usual H1-norm, i.e., ‖u‖2
H1(Ω) = ‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω), are equivalent on H1(Ω).

Proof. Let u ∈ H1(Ω) be chosen arbitrarily. At first we see

|||u|||2 = ‖∇u‖2
L2(Ω) + ‖Lu‖2

L2(Ω) ≤ ‖∇u‖2
L2(Ω) + ‖L‖2

L(L2(Ω))‖u‖2
L2(Ω)

and hence |||u||| ≤ max
(
1, ‖L‖L(L2)

)
‖u‖H1(Ω), where ‖ · ‖L(L2) denotes the operator norm for

linear bounded operators from L2(Ω) to L2(Ω).
For proving the inverse inequality we define the quantity m := 1

λd(Ω)

∫
Ω
udx ∈ R, where λd de-

notes the d-dimensional Lebesgue measure, and let CP > 0 be the Poincaré constant, which is the
(smallest) real number fulfilling the Poincaré inequality

‖u−m‖L2(Ω) ≤ CP‖∇u‖L2(Ω) for all u ∈ H1(Ω),

see e.g. [ABM14, Corollary 5.4.1]. Using the above we find

‖u‖2
H1(Ω) = ‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω) = ‖∇u‖2

L2(Ω) + ‖u−m‖2
L2(Ω) + λd(Ω)m2

≤ (1 + C2
P )‖∇u‖2

L2(Ω) + λd(Ω)
1

‖L1‖2
L2(Ω)

‖mL1‖2
L2(Ω)

≤ (1 + C2
P )‖∇u‖2

L2(Ω) + 2λd(Ω)
1

‖L1‖2
L2(Ω)

(
‖L(u−m)‖2

L2(Ω) + ‖Lu‖2
L2(Ω)

)
≤

(
1 + C2

P + 2λd(Ω)C2
P

‖L‖2
L(L2(Ω))

‖L1‖2
L2(Ω)

)
‖∇u‖2

L2(Ω) + 2λd(Ω)
1

‖L1‖2
L2(Ω)

‖Lu‖2
L2(Ω)

≤ max

(
1 + C2

P + 2λd(Ω)C2
P

‖L‖2
L(L2(Ω))

‖L1‖2
L2(Ω)

, 2λd(Ω)
1

‖L1‖2
L2(Ω)

)
|||u|||2,

which completes the proof.
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Uncertainty quantification in image segmentation 5

From now on we equip the Sobolev spaceH1(Ω) for the processed image u with the new norm ||| · |||,
whereas the norm of the z-component remains unchanged. Next we consider continuity properties of
the Ambrosio–Tortorelli functional.

Theorem 2. The mapping AT gε : H1(Ω)×K → R is weakly lower semi-continuous.

Proof. Let (un, zn) ⇀ (u, z) be a weakly convergent sequence in H1(Ω)×K . Then there exists a
subsequence (not relabeled) such that the limes inferior is attained and zn → z converges additionally
pointwise almost everywhere (Fischer-Riesz). Using Lebesgue’s dominated convergence theorem we
obtain zn∇un ⇀ z∇u in L2(Ω;Rd). Eventually we obtain by the weak lower semi-continuity of the
L2-norm that

AT gε (u, z) =
1

2
‖z∇u‖2

L2(Ω;Rd) +
η

2
‖∇u‖2

L2(Ω;Rd) +
β

2
‖Lu− g‖2

L2(Ω)

+
α

8ε
‖z − 1‖2

L2(Ω) +
αε

2
‖∇z‖2

L2(Ω)

≤ lim inf
n→∞

1

2
‖zn∇un‖2

L2(Ω;Rd) + lim inf
n→∞

η

2
‖∇un‖2

L2(Ω;Rd) + lim inf
n→∞

β

2
‖Lun − g‖2

L2(Ω)

+ lim inf
n→∞

α

8ε
‖zn − 1‖2

L2(Ω) + lim inf
n→∞

αε

2
‖∇zn‖2

L2(Ω)

≤ lim inf
n→∞

AT gε (un, zn),

which proves the lower-semicontinuity of AT gε .

Using the direct method of calculus of variations in combination with the two previous lemmas, it is
not difficult to derive the existence of a solution of (AT). Due to the nonconvexity of AT gε uniqueness
cannot be expected in general.

For the sake of characterizing the set of minimizers we turn our attention to first-order optimality
conditions. The derivation of a corresponding system is challenged by the nonsmoothness of AT gε
with respect to the H1(Ω)×H1(Ω)-topology together with the presence of the constraint set K . We
address these issues by using a truncation argument. In fact, for all u, z ∈ H1(Ω) with z ∈ L∞(Ω)
it holds that AT gε (u, z) <∞ as well as

AT gε (u,max(min(z, 1), 0)) ≤ AT gε (u, z).

The constraint set is then substituted by z ∈ X with X := H1(Ω) ∩ L∞(Ω) together with the norm
‖ · ‖2

X := ‖ · ‖2
H1(Ω) + ‖ · ‖2

L∞(Ω). Consequently, we obtain

min
(u,z)∈H1(Ω)×K

AT gε (u, z) = min
(u,z)∈H1(Ω)×X

AT gε (u, z), (1)

and the respective sets of minimizers coincide. The advantage of the righthand side formulation in (1)
lies in the fact that the Ambrosio–Tortorelli functional is continuously Fréchet-differentiable onH1(Ω)×
X with derivative

〈DAT gε (u, z), (ϕ, ψ)〉H1×X =

∫
Ω

(
(z2 + η)∇u∇ϕ+ β(Lu− g)Lϕ

)
dx

+

∫
Ω

(
zψ|∇u|2 + αε∇z∇ψ +

α

4ε
(z − 1)ψ

)
dx

=: a(u, z;ϕ) + b(u, z;ψ).
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M. Hintermüller, S.-M. Stengl, T. M. Surowiec 6

Here, 〈·, ·〉 denotes the dual pairing between H1(Ω) ×X and its dual. Then the stationarity system
associated with the problem on H1(Ω)×X in (1) in its weak form reads

ag(u, z;ϕ) =

∫
Ω

(z2 + η)∇u∇ϕdx+ β

∫
Ω

(Lu− g)Lϕdx = 0 for all ϕ ∈ H1(Ω), (2a)

b(u, z;ψ) =

∫
Ω

|∇u|2zψdx+ αε

∫
Ω

∇z∇ψdx+
α

4ε

∫
Ω

(z − 1)ψdx = 0 for all ψ ∈ X. (2b)

Utilizing coercivity properties of the involved inner products, one readily obtains the a priori bounds

min(η, β)|||u||| ≤ β‖g‖L2(Ω), and (3a)

min
(
αε,

α

4ε

)
‖z‖H1(Ω) ≤

α

4ε
λd(Ω)

1
2 . (3b)

Moreover, we deduce z ∈ K , which results from (2b) by testing with ψ = −(z − 1)+ + (−z)+ with
(·)+ = max{0, ·} in a pointwise sense; see also [BOS10, Prop. 1.3].

After clarifying existence of solutions and first-order necessary conditions we next draw our attention
to the following convergence result.

Theorem 3. Suppose there exists a bounded sequence ((uj, zj))j∈N ⊂ H1(Ω)×X such that

|ag(uj, zj;ϕ)| ≤ µj|||ϕ||| ∀ϕ ∈ H1(Ω), (4a)

|b(uj, zj;ψ)| ≤ νj‖ψ‖H1(Ω) ∀ψ ∈ X. (4b)

Further, let (µj, νj) → 0 and zj ∈ K for all j ∈ N. Then there exist a point (u∗, z∗) and a subse-
quence such that

(ujk , zjk)→ (u∗, z∗) in H1(Ω;R2), and (u∗, z∗) solves (2).

Proof. The result follows from a straight forward adaptation of the proof in [BOS10, Theorem 4.1].

The above result is useful when studying properties of solution sets of (2) and for the convergence
analysis of a splitting-type algorithm in function space for iteratively solving (2). We continue here by
studying such a splitting method and postpone the former aspect to Section 3.

Algorithm 1: Splitting Method

Data: parameters α, β, ε, η, image data g, starting values u0 ∈ H1(Ω), z0 ∈ K
Result: u ∈ H1(Ω), z ∈ K fulfilling (2)

1 for j = 0, 1, 2, . . . do
2 uj+1 = argminu∈H1(Ω)AT

g
ε (u, zj);

3 zj+1 = argminz∈K AT
g
ε (uj+1, z);

4 end

We note that the algorithm splits the overall nonconvex minimization problem into the iterative solution
of two subsequent problems. Indeed within one iteration, in each step a convex quadratic minimization
problem needs to be solved, which is equivalent to solving a linear partial differential equation (PDE),
respectively. The convergence of this iteration scheme can then be obtained by applying a result due
to [Hae10] concerning the decay of the distance of two consecutive image iterates.
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Corollary 4. Let (uj, zj)j∈N be the sequence generated by the splitting algorithm. Then there exists
a stationary point (u∗, z∗) ∈ H1(Ω)×X and a subsequence such that

(ujk , zjk)→ (u∗, z∗) (strongly) in H1(Ω;R2).

Proof. Adapting [Hae10, Lemma 2.3.9 and Theorem 2.3.10], we obtain

∞∑
j=1

|||uj+1 − uj|||2 <∞, which implies lim
j→∞
|||uj+1 − uj||| = 0.

Since uj+1 = argminu∈H1(Ω)AT
g
ε (u, zj) it holds that

ag(uj+1, zj;ϕ) = 0 for all ϕ ∈ H1(Ω).

Hence we obtain for every ϕ ∈ H1(Ω) that

|ag(uj, zj;ϕ)| = |ag(uj+1, zj;ϕ)− ag(uj, zj;ϕ)|

=

∣∣∣∣∫
Ω

(z2
j + η)(∇uj+1 −∇uj)∇ϕdx+ β

∫
Ω

(Luj+1 − Luj)Lϕdx

∣∣∣∣
≤ (1 + η)‖∇uj+1 −∇uj‖L2(Ω)‖∇ϕ‖L2(Ω) + β‖Luj+1 − Luj‖L2(Ω)‖Lϕ‖L2(Ω)

≤ max(1 + η, β)|||uj+1 − uj||| · |||ϕ|||.

Since b(uj, zj;ψ) = 0 for all ψ ∈ X , we see that the conditions of Theorem 3 are fulfilled with
µj = max(1 + η, β)|||uj+1 − uj||| and νj = 0. Hence, the assertion follows.

We point out that the last estimate can also be used as a numerically useful stopping criterion for the
splitting algorithm.

With these results at hand we are now able to derive finer properties of the dependence of the solutions
of the minimization problem and the first-order system on the given image data, respectively.

3 Existence of measurable selections

Next we introduce the concept of uncertain edges. As motivated earlier, we assume that the real
image is inaccessible due to corruption by (random) noise and a deterministic degradation operator.
The resulting data are therefore modeled by a random variable g. Rather than addressing the issue of
finding a reconstruction of the image along with an edge set, we seek to study the propagation of noise
into the solution. For the reasons mentioned above, we focus on the Ambrosio–Tortorelli approximation
(AT) of the Mumford–Shah energy. The main issue now is to establish existence of random variables of
solutions as well as their characterization. For this purpose we define the following set-valued solution
operators Smin,Sstat : L2(Ω) ⇒ H1(Ω;R2) defined by

Smin(g) := argmin{AT gε (u, z) : (u, z) ∈ H1(Ω)×K},
Sstat(g) := {(u, z) ∈ H1(Ω)×K : (u, z) solves (2) for g}.

We start by providing structural properties of these operators.

Theorem 5. Let S ∈ {Smin,Sstat}. Then the following properties hold true:

DOI 10.20347/WIAS.PREPRINT.2703 Berlin 2020



M. Hintermüller, S.-M. Stengl, T. M. Surowiec 8

(i) S has nonempty and compact values.

(ii) For all closed sets C ⊂ H1(Ω)×K it holds that S−1(C) ⊂ L2(Ω) is closed,

where we use S−1(C) := {g ∈ L2(Ω) : S(g) ∩ C 6= ∅}.

Proof. We split the proof into several steps. Below C ⊂ H1(Ω)×K always denotes a closed set.

Step 1 (Nonemptiness). Since we know that the Ambrosio–Tortorelli problem has a minimizer for every
g ∈ L2(Ω), it holds that Smin(g) 6= ∅. Since every minimizer fulfils the stationarity system, Sstat(g) 6=
∅ follows, as well.

Step 2 (Smin(g) is closed). Let m := min(u,z)∈H1(Ω)×K AT
g
ε (u, z). Then we rewrite

Smin(g) = argmin{AT gε (u, z) : (u, z) ∈ H1(Ω)×K}
= {(u, z) ∈ H1(Ω)×K : AT gε (u, z) ≤ m} =: levmAT

g
ε .

Since according to Theorem 2 the Ambrosio–Tortorelli functional is (weakly) l.s.c. onH1(Ω)×K with
respect to the H1(Ω;R2)-topology, we find that Smin(g) is closed.

Step 3 (Sstat(g) and Smin(g) are compact). Let (un, zn)n∈N ⊂ Sstat(g) be a sequence of stationary
points. Then this sequence is bounded in H1(Ω)×X by the a priori estimate (3), and zn ∈ K holds
true, as well. We apply Theorem 3 with µj = νj = 0 and get the existence of a stationary point
together with a strongly H1(Ω;R2)-convergent subsequence. Thus, the compactness of Sstat as well
as the compactness of Smin(g) (using Step 2) are established.

Step 4 (Proof of (ii) for Sstat). Let (gn)n∈N ⊂ S−1
stat(C) be a (strongly) L2(Ω)-convergent sequence

with limit g ∈ L2(Ω). We show g ∈ S−1
stat(C). For this purpose, let (un, zn)n∈N ⊂ C be a sequence

of stationary points for gn, n ∈ N. Then, 0 ≤ zn ≤ 1 holds almost everywhere and

agn(un, zn;ϕ) = 0 ∀ϕ ∈ H1(Ω),

b(un, zn;ψ) = 0 ∀ψ ∈ X,

for every n ∈ N. Again, we get the boundedness of ((un, zn))n∈N in H1(Ω) × X by the uniform
boundedness of ‖gn‖L2(Ω), n ∈ N, combined with the a priori bound (3). Moreover, we find

|ag(un, zn;ϕ)| = |ag(un, zn;ϕ)− agn(un, zn;ϕ)| =
∣∣∣∣β ∫

Ω

(gn − g)Lϕdx

∣∣∣∣
≤ β‖gn − g‖L2(Ω)‖Lϕ‖L2(Ω).

Since gn → g in L2(Ω), the conditions of Theorem 3 are fulfilled for g with µn = β‖gn − g‖L2(Ω)

and νn = 0. Hence, there exists a stationary point (u∗, z∗) together with a strongly H1(Ω;R2)-
convergent subsequence of (un, zn)n∈N. Since (un, zn) ⊂ C for all n ∈ N and C is closed, we
obtain (u∗, z∗) ∈ C . Therefore, Sstat(g) ∩ C 6= ∅ and, hence, g ∈ S−1

stat(C).

Step 5 (Proof of (ii) for Smin). Let (gn)n∈N ⊂ S−1
min(C) be a strongly L2(Ω)-convergent sequence

with limit g ∈ L2(Ω). We show g ∈ S−1
min(C). Take (un, zn)n∈N ⊂ C as a corresponding sequence

of minimizers for gn, n ∈ N. For all n ∈ N and all (u, z) ∈ H1(Ω)×K it thus holds that

AT gnε (un, zn) ≤ AT gnε (u, z).
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Uncertainty quantification in image segmentation 9

Since every minimizer is a stationary point, we obtain from the arguments of step 4 a stationary point
(u∗, z∗) ∈ C and a strongly H1(Ω;R2)-convergent subsequence (unk

, znk
)k∈N. Then (u∗, z∗) is

also a minimizer. In fact, we have

AT gε (u∗, z∗) ≤ lim inf
k→∞

AT gε (unk
, znk

)

= lim inf
k→∞

(
AT

gnk
ε (unk

, znk
) + β(Lunk

− gnk
, gnk
− g)L2(Ω) +

β

2
‖gnk

− g‖2
L2(Ω)

)
= lim inf

k→∞
AT

gnk
ε (unk

, znk
) ≤ lim

k→∞
AT

gnk
ε (u, z) = AT gε (u, z).

Since (u, z) was arbitrary, we conclude that (u∗, z∗) is also a minimizer for g. Hence S−1
min(C) is

closed. This completes the proof.

The aim is to construct a random variable, whose values are the solutions of (AT) for the given image
and for almost every realization of noise. This quantity then defines an associated reconstructed image
and edge indicator, respectively. Therefore we aim at using the Kuratowski–Ryll-Nardzewski measur-
able selection theorem, which we state here for ease of reference and refer the interested reader to
[Bee93, Theorem 6.6.7].

Theorem 6 (Kuratowski and Ryll-Nardzewski). Let Y be a Polish space, B(Y ) the Borel algebra on
Y , (Ξ,F) a measurable space and Ψ : Ξ ⇒ Y a set-valued operator such that

(i) Ψ(ξ) is nonempty and closed for all ξ ∈ Ξ, and

(ii) for all U ⊂ Y open, it holds that Ψ−1(U) = {ξ ∈ Ξ : Ψ(ξ) ∩ U 6= ∅} ∈ F .

Then there exists a measurable selection, i.e. a mapping Ψsel : Ξ→ Y such that Ψsel(ξ) ∈ Ψ(ξ) for
all ξ ∈ Ξ.

Given the notation of Theorem 6 we note that the fulfilment of the condition Ψ−1(C) ∈ F for all closed
subsets C ⊂ Y implies assumption (ii). Indeed, let U ⊂ Y be an arbitrary open set U ⊂ Y . By U c

we denote the complement of U in Y . Rewriting U gives

U = {y ∈ Y : dist(y, U c) > 0} =
{
y ∈ Y : ∃n ∈ N : dist(y, U c) ≥ 1

n

}
=
∞⋃
n=1

{
y ∈ Y : dist(y, U c) ≥ 1

n

}
=
∞⋃
n=1

Cn,

with Cn := {y ∈ Y : dist(y, U c) ≥ 1
n
} = (dist( · , U c))−1([ 1

n
,+∞)) as a closed set for every

n ∈ N. Then we obtain

Ψ−1(U) = {ξ ∈ Ξ : Ψ(ξ) ∩ U 6= ∅} = {ξ ∈ Ξ : ∃n ∈ N : Ψ(ξ) ∩ Cn 6= ∅}

=
∞⋃
n=1

Ψ−1(Cn).

Since Ψ−1(Cn) ∈ F by assumption, we have Ψ−1(U) ∈ F .

Based on this observation, we are now able to prove the existence of measurable selections for the
operators Smin and Sstat.
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Corollary 7. Let S ∈ {Smin,Sstat}. Then there exist Borel functions usel : L2(Ω) → H1(Ω) and
zsel : L2(Ω)→ K such that (usel(g), zsel(g)) ∈ S(g) for all g ∈ L2(Ω).

Proof. Set Ψ ∈ {Smin,Sstat}, Ξ = L2(Ω),F = B(L2(Ω)) be the Borel algebra and Y = H1(Ω)×
K . Since H1(Ω;R2) is a separable Hilbert space it is a Polish space. As closed subsets of Polish
spaces are Polish as well (see [TSE16, Proposition A.1] or use [AB06, Corollary 3.5]) also Y ⊂
H1(Ω)2 is a Polish space and hence the assumptions of Theorem 6 are fulfilled.

For the moment we focus on the denoising case, i.e., L = idL2(Ω). Due to the analytical difficul-
ties concerning the edge set as a geometric quantity, we have drawn our attention to the Ambrosio–
Tortorelli model. In the following we temporarily return to the original Mumford–Shah model. In fact, it is
possible to derive a result similar to the one above for the processed image only. For this sake we first
discuss a reformulation of the Mumford–Shah problem (MS) based on special functions of bounded
variations.

For this purpose we recall that the space of functions of bounded variation BV (Ω) is defined as the
set of L1-functions with bounded total variation. The latter quantity is given by

|Du|(Ω) := sup

{∫
Ω

u div p dx : p ∈ C1
0(Ω;Rd), |p(x)|∞ ≤ 1 for all x ∈ Ω

}
.

Accordingly we have BV (Ω) = {u ∈ L1(Ω) : |Du|(Ω) < +∞}. Equipped with the norm
‖u‖BV = ‖u‖L1(Ω) + |Du|(Ω) the space BV (Ω) is a Banach space. The distributional deriva-
tive Du of u ∈ BV (Ω) is a Radon measure which can be decomposed according to

Du = ∇u · λd + (u+ − u−)νSuHd−1 Su + Cu.

Here, the first term is the part of Du that is absolutely continuous with respect to the Lebesgue
measure with ∇u denoting its density. The terms u+, u− are the so-called upper respectively lower
limits of u and Su := {x ∈ Ω : u+(x) > u−(x)} represents the jump set. The second term denotes
the part of the measure that is absolutely continuous with respect to the Hausdorff measure restricted
to Su, which we denote here as Hd−1 Su. The remaining part is singular with respect to both the
Lebesgue and Hausdorff measure and is referred to as the Cantor part of Du. For the definition
of approximate limits as well as further details the reader is referred to [ABM14, Section 10],[EG91,
Section 5] as well as to the monograph [AFP00].

The space of special functions of bounded variation is then defined as

SBV (Ω) := {u ∈ BV (Ω) : Cu = 0},

which is the subspace of BV -functions with vanishing Cantor part.

Using the above notation it is possible to provide the following equivalent reformulation of the Mumford–
Shah problem, originally proposed by [DGCL89], as a problem with the processed image contained in
the SBV -space, i.e.,

minimize MSgSBV (u) over u ∈ SBV (Ω) with

MSgSBV (u) :=
1

2

∫
Ω

|∇u|2dx+ αHd−1(Su) +
β

2
‖u− g‖2

L2(Ω).
(MS-SBV)

We note that a solution must fulfil u ∈ L2(Ω) and ∇u ∈ L2(Ω;Rd) for the value of the functional
to be finite. Observe further that this formulation has the advantage that the edge set does not enter
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Uncertainty quantification in image segmentation 11

as an explicit variable, but it is rather encoded in the function u through a jump. On the other hand,
a potential drawback of this approach is given by the fact that now u is contained in a space that is
neither reflexive nor separable. For details on the equivalence of the two formulations as well as the
existence proof for g ∈ L∞(Ω) the reader is referred to [DGCL89] or to [AFP00, Section 7].

For (MS-SBV) we are now able to derive an analogous version of Theorem 5, when we consider the
solution operator as a mapping from L∞(Ω) to L2(Ω). Let us briefly discuss the requirement on g.
In fact, from a practical view point an image signal is the product of a technical measurement process
producing data in a fixed and finite range. Therefore the image signal will typically be essentially
bounded. From the mathematical viewpoint we seek to apply a result by Ambrosio addressing SBV
functions as well as Theorem 6. In order to do so, we need bounded sequences in L∞(Ω) and a
separable solution space L2(Ω) ⊃ SBV (Ω).

Theorem 8. Let T : L∞(Ω) ⇒ L2(Ω) be the solution mapping of the Mumford–Shah problem
(MS-SBV), i.e., T (g) := argmin {MSgSBV (u) : u ∈ SBV (Ω)}. Then the following properties hold:

(i) T has nonempty and compact values.

(ii) For all closed sets C ⊂ L2(Ω) it holds that T−1(C) ⊂ L2(Ω) is closed.

Before we provide the proof, we also state that there exists a measurable selection of minimizers, i.e.,
a Borel function usel : L∞(Ω)→ L2(Ω) with usel(g) ∈ T (g) for all g ∈ L∞(Ω).

Proof. Let g ∈ L∞(Ω).
Step 1 (The set T (g) ⊂ L2(Ω) is compact). We know that the Mumford–Shah problem has a solution
(cf. [Amb90, Example 5.2]). Hence T (g) 6= ∅. Let (un)n∈N ⊂ T (g) ⊂ SBV (Ω) be a sequence of
solutions. By the same truncation argument as in [Amb90] we obtain ‖un‖L∞(Ω) ≤ ‖g‖L∞(Ω) for all
n ∈ N. Thus, (un)n∈N is uniformly bounded and by using

m := min
v∈SBV (Ω)

MSgSBV (v) = MSgSBV (un) ≥ 1

2

∫
Ω

|∇un|2dx+ αHd−1(Sun),

we obtain that the conditions of the compactness result of Ambrosio [Amb89] are fulfilled. Hence, there
exist a subsequence (unk

)k∈N as well as u ∈ SBV (Ω) ∩ L∞(Ω) such that unk
→ u almost every-

where and the gradients ∇unk
⇀ ∇u converge weakly in L2(Ω;Rd). Due to the L∞-boundedness

we obtain unk
→ u in L2(Ω) by dominated convergence. Moreover, we get by the lower semi-

continuity of the norm and the second part of Ambrosio’s compactness result that

m ≤MSgSBV (u) ≤ lim inf
n→∞

MSgSBV (un) = m

and eventually u ∈ T (g). This proves the compactness of T (g) in L2(Ω).
Step 2 (T−1(C) ⊂ L∞(Ω) is closed for all closed subsets C ⊂ L2(Ω)). Let C ⊂ L2(Ω) be
closed. We choose an arbitrary sequence (gn)n∈N ⊂ T−1(C) convergent in L∞(Ω) towards g ∈
L∞(Ω). Then for all n ∈ N there exists un ∈ T (gn) that minimizes the corresponding Mumford–
Shah functional. It thus holds that MSgnSBV (un) ≤ MSgnSBV (v) for all v ∈ SBV (Ω). By plugging in
v = 0 and using the uniform boundedness of gn in L∞ we recognize that the conditions of Ambrosio’s
compactness result are fulfilled, and therefore a subsequence (unk

)k∈N as well as a limit u exist. By
the above arguments we see unk

→ u in L2(Ω) and by the closedness assumption also u ∈ C .
Together with the convergence of (gnk

)k∈N, we find analogously to Step 1 that

MSgSBV (u) ≤ lim inf
n→∞

MS
gnk
SBV (unk

) ≤ lim inf
n→∞

MS
gnk
SBV (v) = MSgSBV (v)
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for all v ∈ SBV (Ω). Thus, u ∈ T (g) ∩ C , and therefore T−1(C) is a closed subset of L∞(Ω). We
obtain the existence of a measurable selection again by the theorem of Kuratowski–Ryll-Nardzewski.

While the above result provides some theoretical insights into the behavior of the computed image, it
does not yield a way of how to treat the jump sets respectively the edge sets. We therefore return to
the Ambrosio–Tortorelli approximation.

So far we have discussed measurable selections of operators on function space with respect to their
topologies and induced Borel algebras. We consider now an abstract probability space (Ξ,F ,P)
together with a random variable g : (Ξ,F ,P) → (L2(Ω),B(L2(Ω))). If we consider now a mea-
surable selection g 7→ (usel(g), zsel(g)) of minimizers (stationary points), then the composition ξ 7→
(usel(g(ξ)), zsel(g(ξ))) is a random variable of minimizers (stationary points). We refer to the respec-
tive components simply as ξ 7→ (u(ξ), z(ξ)).

After establishing the existence of measurable selections, the next step is to derive a variational char-
acterization, i.e. we seek to interpret selections of stationary points as solutions of a stochastic partial
differential equation (SPDE) and, respectively, selections of minimizers as minimizer of an optimization
problem. For this purpose we need to introduce elements of Bochner space theory.

First we equip the (abstract) measurable space (Ξ,F) with a probability measure P. The resulting
measure space induces a Lebesgue integral for R-valued random variables denoted by

E[ · ] :=

∫
Ξ

( · ) dP,

provided the argument is Lebesgue integrable. For a measurable set M ∈ F , we define the charac-
teristic function as

1M(ξ) :=

{
1 if ξ ∈M,
0 else,

and remark that E [1M ] = P[M ] holds. Let now V be a separable Banach space and p ∈ [1,+∞].
The space of Bochner p-integrable functions is denoted by

Lp(Ξ,F ,P;V ) = {v : Ξ→ V : v is measurable with ‖v‖V ∈ Lp(Ξ,F ,P)}.

Since we do not change (Ξ,F), we also denote the above space by LpP(V ). For all v ∈ LpP(V ) the
Bochner integral

E[v] :=

∫
Ξ

v dP

exists and is referred to as the expectation. Since the Lebesgue integral is just a special case of the
Bochner integral with V = R, there is no risk of confusion. For an overview on Bochner spaces the
interested reader is referred to e.g. [HvNVW16, Section 1]. For V = H1(Ω) we also write HP :=
L2
P(H1(Ω)) as well as

XP := {v ∈ HP : ∃C ∈ (0,∞) : |v| ≤ C holds λd ⊗ P-a.e.},

where we write λd ⊗ P for the product measure on Ω × Ξ, equipped with its product σ-algebra
B(Ω)⊗F . The spaces are equipped with the norms

‖ · ‖2
HP

:= E
[
||| · |||2

]
, and

‖ · ‖2
XP

:= E
[
‖ · ‖2

H1(Ω)

]
+ ‖ · ‖2

L∞(Ω×Ξ,λd⊗P)
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Uncertainty quantification in image segmentation 13

respectively. In any case, for our random edge indicator z ∈ XP we obtain 0 ≤ z ≤ 1 holding
λd⊗P-almost everywhere, and in combination with the a priori estimate (3b) the boundedness in XP
and L∞P (H1(Ω)). If we, moreover, assume that g ∈ LpP(L2(Ω)), then also u ∈ LpP(H1(Ω)). From
now on let g ∈ L2

P(L2(Ω)).

Our first target is the SPDE-characterization. For this purpose, let (u, z) be a random variable of
stationary points. Choosing arbitrary ϕ ∈ HP and ψ ∈ XP we prove the measurability of ξ 7→
ag(ξ)(u(ξ), z(ξ);ϕ(ξ)) as well as ξ 7→ b(u(ξ), z(ξ);ψ(ξ)). The proof is only carried out for the
latter one as the proof for the former is analogous.

Indeed, for c ∈ R we consider the preimage of (−∞, c] under b, which is

B := {(u′, z′, ψ′) ∈ H1(Ω)×K ×BL∞

R (0) : b(u′, z′;ψ′) ≤ c},

where R > 0 and BL∞
R (0) := {ψ̃ ∈ X : ‖ψ̃‖L∞ ≤ R}. We seek to show the closedness of B

in H1(Ω;R3). Let (u′n, z
′
n, ψ

′
n) → (u′, z′, ψ′) converge in H1(Ω;R3). By dominated convergence

there exists a subsequence (not relabeled) such that z′n and ψ′n converge pointwise almost every-
where. It also holds that∣∣∣∣∫

Ω

|∇u′n|2z′nψ′ndx−
∫

Ω

|∇u′|2z′ψ′dx
∣∣∣∣

=

∣∣∣∣∫
Ω

(
|∇u′n|2 − |∇u′|2

)
z′nψ

′
ndx−

∫
Ω

|∇u′|2(z′ψ′ − z′nψ′n)dx

∣∣∣∣
≤ R‖∇u′n −∇u′‖L2(Ω) · ‖∇u′n +∇u′‖L2(Ω) +

∣∣∣∣∫
Ω

|∇u′|2(z′ψ′ − z′nψ′n)dx

∣∣∣∣ .
By the strong convergence of ∇u′n the first part tends to zero, and by the pointwise convergence
of z′nψ

′
n and |∇u′|2|z′nψ′n − z′ψ′| ≤ 2R|∇u′|2 the second part approaches zero by dominated

convergence, as well. Hence we obtain

b(u′, z′;ψ′) = lim
n→∞

b(u′n, z
′
n;ψ′n) ≤ c,

yielding (u′, z′, ψ′) ∈ B. By the H1-measurability of u, z and ψ we get with R := ‖ψ‖XP that

{ξ ∈ Ξ : b(u(ξ), z(ξ), ψ(ξ)) ≤ c} = {ξ ∈ Ξ : (u(ξ), z(ξ), ψ(ξ)) ∈ B} ∈ F

holds for all c ∈ R. This implies the measurability of ξ 7→ b(u(ξ), z(ξ);ψ(ξ)). Analogously we obtain
the measurability of ag(·)(u( · ), z( · );ϕ( · )).

Using the Cauchy-Schwarz inequality we obtain for u, ϕ ∈ HP and z, ψ ∈ XP

E [|ag(u, z;ϕ)|] ,E [|b(u, z;ψ)|] <∞.

Hence, every measurable selection of stationary points fulfils the SPDE-system (in weak form)

E [ag(u, z;ϕ)] = 0 for all ϕ ∈ HP, (5a)

E [b(u, z;ψ)] = 0 for all ψ ∈ XP. (5b)

Consequently, every measurable selection of stationary points is also a solution of the SPDE (5). The
converse holds true as well. Let ϕ∗ ∈ H1(Ω) and ψ∗ ∈ X arbitrary. Then we define the following
events

AΞ := {ξ ∈ Ξ : ag(ξ)(u(ξ), z(ξ);ϕ∗) ≥ 0},
BΞ := {ξ ∈ Ξ : b(u(ξ), z(ξ), ψ∗) ≥ 0}.
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Plugging ϕ = ϕ∗1AΞ
− ϕ∗1Ac

Ξ
and ψ = ψ∗1BΞ

− ψ∗1Bc
Ξ

into (5) we obtain

0 = E [ag(u, z;ϕ)] = E
[
ag(u, z;ϕ∗)1AΞ

− ag(u, z;ϕ∗)1Ac
Ξ

]
= E [|ag(u, z;ϕ∗)|]

and analogously 0 = E [|b(u, z;ψ∗)|], from which we deduce a(u, z;ϕ∗) = 0 P-a.s. as well as
b(u, z;ψ∗) = 0 P-a.s. for all ϕ∗ ∈ H1(Ω) and ψ ∈ X . From this we see the equivalence of the
scenariowise interpretation of (2) and the SPDE-system (5).

After the characterization of stationary points we want to characterize measurable selections of mini-
mizers in a manner similar to the interchange of minimization and integration in [RWW09, Chapter 14,
Section F]. For this purpose we define the constraint set

KP := {v ∈ HP : 0 ≤ v ≤ 1 holds λd ⊗ P-almost everywhere}

and formulate the following minimization problem

minimize E [AT gε (u, z)] over (u, z) ∈ HP ×KP. (6)

Using the same arguments as for the deterministic Ambrosio–Tortorelli problem we obtain the following
result.

Theorem 9. The problem (6) admits a solution, and one can relax the constraint z ∈ KP to z ∈ XP,
i.e.,

min
(u,z)∈HP×XP

E [AT gε (u, z)] = min
(u,z)∈HP×KP

E [AT gε (u, z)] .

Moreover, the functional E[AT gε (·, ·)] : HP × XP → R is Fréchet differentiable, and for every
minimizer (u, z) ∈ HP ×XP the stationarity system (5) is satisfied.

Let (u∗, z∗) be a measurable selection of minimizers and (ū, z̄) a minimizer of (6). From this we obtain
AT gε (u∗, z∗) ≤ AT gε (ū, z̄) P-a.s. Taking the expectation yields E[AT gε (u∗, z∗)] ≤ E[AT gε (ū, z̄)].
Since (ū, z̄) minimizes (6), it holds that E[AT gε (ū, z̄)] ≤ E[AT gε (u∗, z∗)]. Hence (u∗, z∗) is a solu-
tion of (6) and it follows by the above scenariowise inequality that AT gε (u∗, z∗) = AT gε (ū, z̄) P-a.s.
The solution of the minimization problem for the space of Banach space valued random variables is
therefore identical to the solution in the sense of P-almost every scenario. We summarize our findings
on the characterization of measurable selections in the following theorem.

Theorem 10. Let g ∈ L2
P(L2(Ω)). A random variable (u, z) ∈ HP ×KP is a solution of (6) if and

only if it is a P-a.s. measurable selection of minimizers, and it solves (5) if and only if it is a P-a.s.
measurable selection of stationary points.

The purpose of this section is to give a mathematical meaning to random processed image and
edges. The approximation of the Mumford–Shah problem yields the existence of random variables
that solve the nondeterministic problem scenario-wise. In this sense, a measurable selection of mini-
mizers serves the purpose of a random reconstruction and a random edge. Our numerical treatment
of noise propagation in the following section is based on this observation.

4 Numerical methods

As we are concerned with computing the influence of the signal’s randomness on the edge, our prob-
lem class falls into the realm of forward problems in the terminology of uncertainty quantification (UQ).
For the sake of accessibility, we briefly summarize some of the main challenges also when designing
numerical solution schemes.
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1 The solution may be non-unique.

2 Due to the lack of convexity of the solution sets, we are unable to use the Michael selection
theorem (cf. [Bee93, Theorem 6.6.3]) to establish the existence of continuous selections.

These facts challenge the use of many popular methods in UQ. Indeed:

3 The Wiener Chaos expansion is significantly troubled by the local constraint 0 ≤ z ≤ 1. The
global orthonormal expansion is not compatible to the pointwise inequality constraints. For a
computational approach in this direction we refer to [PKP13].

4 Stochastic collocation is essentially an interpolation method and necessarily needs point eval-
uations and continuous dependence on the parameter.

The above techniques seek to approximate the entire random variable by discrete objects. A different
approach is based on the definition of a quantity of interest and its approximation using the techniques
of statistics and numerics. In this paper we employ Monte-Carlo based techniques, which rely on the
strong law of large numbers in a Hilbert space setting. The latter one is stated here for the sake of
convenience. For a proof see, e.g., [CZ11].

Theorem 11. Let H be a separable Hilbert space and (Zn)n∈N a sequence of pairwise independent,
identically distributed (iid.) random variables in L1

P(H) with E[Z1] = m. Then

m̂n :=
1

n

n∑
i=1

Zi → m converges P-a.s.,

i.e., P [limn→∞ ‖m̂n −m‖H = 0] = 1 holds true. If, additionally, (Zn)n∈N is a family in L2
P(H), then

m̂n → m in L2
P(H), as well.

4.1 Generalized confidence intervals

In our context, one important quantity of interest is concerned with the identification of regions, where
it is more likely to encounter an edge. In this sense, we would like to obtain a notion of confidence
intervals for the edge indicator. To achieve this, we first provide a pointwise generalization of cumulative
distributional functions (cdfs) in the following definition.

Definition 12. Let Z be an L2(Ω)-valued random variable. The function F : L2(Ω) → L∞(Ω) is
defined pointwise almost everywhere by

F (τ)(x) := P[Z(x) ≤ τ(x)]

for τ ∈ L2(Ω) and is called the generalized cumulative distribution function (gcdf) of Z .

Note that the above pointwise definition is justified by the Fubini theorem on integration on product
spaces. Using this, we choose a level of significance s ∈ (0, 1) and define for z – interpreted as a
random variable in L2

P(L2(Ω)) only – the pointwise quantile τs for (almost all) x ∈ Ω by

τs(x) := inf{t ≥ 0 : P[z(x) ≤ t] ≥ s}.
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This defines a one-sided confidence interval (the lower bound is zero), and two questions immediately
arise: (i) Why is this object measurable, and (ii) how can this object be estimated in practice? Both
questions are answered by using the following method.

Algorithm 2: Bisection method

Data: generalized cdf F , level of significance s ∈ (0, 1)
Result: pointwise quantile τs

1 Set t`0 = 0 and tu0 = 1 as t`0, t
u
0 ∈ L2(Ω);

2 for n = 0, 1, 2, . . . do
Calculate the mid point:

3 tmid
n = 1

2
(t`n + tun);

Update the upper/ lower bound:
4 t`n+1 = 1{F (tmid

n )≥s}t
`
n + 1{F (tmid

n )<s}t
mid
n ;

5 tun+1 = 1{F (tmid
n )<s}t

u
n + 1{F (tmid

n )≥s}t
mid
n ;

6 end

By definition the above sequences are nondecreasing, respectively, nonincreasing and almost every-
where it holds that t`n ≤ t`n+1 (tun ≥ tun+1) and, moreover, F (t`n) < s ≤ F (tun) for all n ∈ N. By the
monotonicity we also obtain the inequality 0 ≤ t`n < tun ≤ 1 and hence the convergence t`n ↗ t∗
and tun ↘ t∗ pointwise almost everywhere on Ω. Due to the measurability of t`n, t

u
n, we obtain by

the pointwise convergence, that the limits are measurable as well. Moreover, by construction we get
|t`n+1 − tun+1| ≤ 1

2
|t`n − tun| and inductively |t`n − tun| ≤ 2−n almost everywhere. Therefore we get

t∗ = t∗.
In addition, t∗ is the pointwise quantile of interest, which is equivalent to stating that for all t̃ ≤ t∗ with
λd(A) > 0 with A := {x ∈ Ω : t̃(x) < t∗(x)} also P[z < t̃] < s holds a.e. on A. Indeed, by the
choice of t̃ there exists for all x ∈ A a number n = n(x) ∈ N with t̃(x) < t`n(x). Hence, by defining
An := {x ∈ Ω : t̃ < t`n} we see that An ⊂ An+1 and A =

⋃∞
n=1An. By the construction of

(t`n)n∈N it holds that P[z < t̃] ≤ P[z ≤ t`n] < s almost everywhere on An. We then see the required
inequality P[z < t̃] < s almost everywhere on A and have thus shown t∗ = τs.

In practice the exact gcdf is unknown and hence an approximation is needed. For this sake we define
the empirical quantiles in full analogy to the classical case of R-valued random variables.

Definition 13. Let Z be an L2(Ω)-valued random variable. Consider an iid. family of samples (Zi)i∈N
with distribution PZ . The empirical gcdf is defined as the mapping

τ 7→ Fn(τ) :=
1

n

n∑
i=1

1{Zi≤τ} (∈ L∞(Ω) for every realization) .

For proving convergence of (Fn)n∈N as introduced in Definition 13, we recall the statistical theory for
R-valued random variables and refer the reader to [vdV00] for proofs and additional information.

Lemma 14. Let (Fn)n∈N be a sequence of cdfs of associated R-valued random variables and let F
be the cdf of an R-valued random variable. We assume Fn(t) → F (t) for all t ∈ R. Let s ∈ (0, 1)
such that the quantile function F−1 is continuous in s. Then we have F−1

n (s)→ F−1(s).

Proof. See [vdV00, Lemma 21.2 in a stronger form].

Based on the preceding lemma we now prove a convergence result for the s-quantiles of the empirical
gcdfs.
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Theorem 15. Let Z be an R-valued random variable with cdf F : R→ [0, 1] and (Zi)i∈N be an iid.
family of samples with distribution PZ . For n ∈ N we denote by Fn the empirical cdf. For a level of
significance s ∈ (0, 1), chosen such that the quantile function F−1 is continuous in s, the empirical
quantiles F−1

n (s)→ F−1(s) converge with probability 1. If, moreover, 0 ≤ Z ≤ 1 holds P-a.s., then
in addition we get F−1

n (s)→ F−1(s) in Lp(Ξ,F ,P) for all p ∈ [1,∞).

Proof. Using the strong law of large numbers we get Fn(t)→ E[Fn(t)] = F (t) P-a.s for all t ∈ R.
By Lemma 14 we know that for every realization of Fn the corresponding quantiles converge and
therefore F−1

n (s) → F−1(s) with probability 1. If we assume 0 ≤ Z ≤ 1, we get immediately 0 ≤
F−1
n (s), F−1(s) ≤ 1. By dominated convergence we see that for all p ∈ [1,∞) also E[|F−1

n (s) −
F−1(s)|p]→ 0 converges.

After the above preparations, we can formulate a function space valued version of the previous theo-
rem. For this, we need to extend the continuity assumption for the quantile in Lemma 14 on the level
of significance to our situation. Note further that the gcdf induces for almost all x ∈ R a cdf of an
R-valued random variable reading as R 3 t 7→ P[z(x) ≤ t] = F (t)(x). Hence one can interpret
the quantile function in a pointwise fashion as a function s 7→ (F ( · )(x))−1 (s) for almost all x ∈ Ω.
This observation leads to the following assumption.

Assumption 16. Let s ∈ (0, 1) be fixed such that

N := {x ∈ Ω : s 7→ (F ( · )(x))−1 (s) is not continuous in s}

has Lebesgue measure zero.

Utilizing Theorem 15 in a pointwise fashion, we obtain the following result.

Theorem 17. Let z ∈ KP and (zi)i∈N be iid. samplings according to the distribution Pz. Moreover,
fix the level of significance s ∈ (0, 1) fulfilling Assumption 16 with respect to the gcdf of z. Then the
sequence of pointwise empirical s-quantiles τs,n converges to the s-quantile τs for almost all points
with probability 1 and in Lp(Ω× Ξ) for all p ∈ [1,∞), i.e.

‖τs,n − τs‖Lp(Ω×Ξ) → 0.

Proof. Since for almost all x ∈ Ω the function t 7→ P[z(x) ≤ t] = F (t)(x) is a cdf, we can apply
Theorem 15 pointwise and obtain the convergence of F−1

n (s) → F−1(s) pointwise λd ⊗ P-almost
everywhere. Due to the pointwise restriction of z we know almost surely that τs,n ∈ [0, 1] a.e. on Ω.
Since |τs,n − τs| ≤ 1 holds λd ⊗ P-a.e. we derive by dominated convergence

‖τs,n − τs‖pLp(Ω×Ξ) =

∫
Ω

E [|τs,n − τs|p] dx→ 0,

which ends the proof.

In this subsection we have encountered the pointwise quantile as quantity of interest for the investiga-
tion of random edges. The associated convergence analysis yields a foundation for a sample-based
approximation method for the gcdf and the pointwise quantile. The bisection method from the be-
ginning of this section can then be used to efficiently approximate the empirical quantile for a given
sample size.
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4.2 Variance reduction by control variates

In contrast to the previous section, where we focus on quantiles, we discuss here the expected value
as a quantity of interest. Therefore we consider the random edge indicator as an object in L2

P(L2(Ω))
and aim at employing the Monte-Carlo method here as well. Since the convergence order is always 1

2
,

the convergence speed is merely depending on the variance. Associated acceleration methods aim at
the formulation of a new random variable with the same expectation as the original one, but a smaller
variance. Several such methods do exist mainly in finite dimensions (cf. [Owe13] for an overview). We
pursue an approach based on control variates. For convenience we first review the one-dimensional
case aiming at an infinite-dimensional generalization.

Let Z ∈ L2(Ξ,F ,P) be an R-valued random variable. Our aim is to estimate E [Z]. Suppose, we
have another random variable Y , called the control variate, together with its (exact) expected value.
Then we sample from the variable

Zλ = Z + λ (Y − E [Y ])

for a yet to be chosen λ ∈ R. Obviously, it holds that E [Zλ] = E [Z] and the variance of Zλ is
minimal with respect to the weighting parameter λ for the choice

λ = −Cov (Z, Y )

Var (Y )

where Cov (Z, Y ) := E [(Z − E [Z]) · (Y − E [Y ])] and Var (Y ) := E [(Y − E [Y ])2]. The min-
imal variance for Zλ then becomes

Var (Zλ) = Var (Z)− Cov (Z, Y )2

Var (Y )
,

and, when Cov (Z, Y ) 6= 0, a variance reduction is achieved (when compared to Z). Of course, this
concept can be extended to m control variates (Y (j))mj=1 by defining

Zλ = Z +
m∑
j=1

λj
(
Y (j) − E

[
Y (j)

])
.

The optimal λ = (λ1, . . . , λm)> then reads

λ = −C+
Y cZ ,

where CY =
(
Cov

(
Y (i), Y (j)

))
i,j=1...,m

∈ Rm×m denotes the covariance matrix of Y and the

quantity cZ = (Cov
(
Z, Y (j)

)
)j=1,...m ∈ Rm denotes the covariance vector of the control variates

and the desired target. For a matrix A ∈ Rm×m we denote its Moore-Penrose-inverse by A+. In the
same way as in the previous section we extend the above methodology in a pointwise fashion and
introduce for this aim the following notation.

For U, V ∈ L2
P(L2(Ω)) we define the pointwise covariance as

C [U, V ] = E [(U − E [U ])(V − E [V ])] ∈ L1(Ω),

where E is the expectation defined via the Bochner integral. Further we define the pointwise variance
as

V [U ] := C [U,U ] = E
[
(U − E [U ])2]
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in contrast to the variance of U , which reads

Var (U) = E
[
‖U − E [U ] ‖2

L2(Ω)

]
=

∫
Ω

V [U ] dx.

For a random variable Z ∈ L2
P(L2(Ω)), a family (Y (j))j=1,...,m ⊂ L2

P(L2(Ω)) of control variates,
and a measurable function λ : Ω→ Rm we consider the random variable

Zλ = Z +
m∑
j=1

λj(Y
(j) − E

[
Y (j)

]
).

The pointwise minimization of V [Zλ] with respect to λ gives us the minimizer of Var (Zλ) due to the
Fubini theorem. Next we prove its measurability.

Lemma 18. The mapping induced by the Moore-Penrose inverse ( · )+ : Rm×m → Rm×m with
A 7→ A+ is measurable.

Proof. By Theorem 3.4 in [Alb72] it holds that

A+ = lim
δ↘0

(A>A+ δ2Im)−1A>.

LetGLm(R) denote the set of invertible matrices. Since the mapping ( · )−1 : GLm(R)→ GLm(R)
is continuous, the functions fk : Rm×m → Rm×m defined by

A 7→ fk(A) =

(
A>A+

1

k
Im

)−1

A>

are continuous and thus measurable. Due to the pointwise convergence A+ = limk→∞ fk(A) also
the mapping ( · )+ is measurable.

Hence we have proven the following result.

Proposition 19. The mapping λ : Ω→ Rm, defined by λ = −C+
Y cZ , is measurable.

Proof. Since the composition as well as the multiplication of measurable functions are measurable as
well, we obtain the measurability of λ using the preceding Lemma.

5 Numerical examples

Our numerical methods are next applied to a selection of real world images. In this respect, the given
image data is a (discrete) pixel matrix (Gjk)

m
j,k=1 of size m ×m with values between 0 (black) and

255 (white). In order to utilize our continuous framework we interpret this pixel mask as a function in
L∞(Ω) with Ω := (0,m)2. This is done by decomposing Ω (up to null sets) into open squares of size
1 and rewriting

g0 =
m∑

j,k=1

Gjk1Qjk
,

with Qjk := (0, 1)2 + (j − 1,m− k). Concerning the underlying degradation models, we focus on
two cases: (i) white noise and (ii) randomized motion blur.
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5.1 White noise model

In this setting we assume L := idL2(Ω) and that the pixel values are corrupted by a family of indepen-
dent, normally distributed random variables, whose standard deviation is σ > 0 for all pixels. Then the
random variable reads as

ξ =
m∑

j,k=1

σ · ξjk1Qjk
,

where ξjk ∼ N (0, 1) are iid. with standard normal distribution. In our experiments we set σ = 40.

5.2 Motion blur model

In addition to the noise model above we now also consider the motion blur operator L̂` ∈ L(L2(Ω))
with horizontal movement defined by

L̂`g0(x) :=
1

2

∫ 1

−1

g0(x+ t`v)dt with ` ∼ U(0, ¯̀),

and v = (1, 0)> the direction of motion. The parameter ` controls the velocity of the motion, re-
spectively the strength of the blurring effect. Since the integration domain exceeds Ω we extend the
argument g0 by zero outside its domain. In our model we assume the parameter ` ∼ U(0, ¯̀) to be a
uniformly distributed random variable, where we choose ¯̀ = m

4
to be one fourth of the image size. In

view of our underlying degradation framework, we decompose the above object into

g = L̂`g0 = Lg0 + ξ,

with L ∈ L(L2(Ω)) the linear operator such that Lg0 = E
[
L̂`g0

]
holds for all g0 ∈ L2(Ω) and

ξ := L̂`g0 − Lg0 as centered random variable. The expected value is the subject of the following
auxiliary result.

Lemma 20. Let L̂`g(x) := 1
2

∫ 1

−1
g(x+ t`v)dt as above and ` ∼ U(0, ¯̀) be a uniformly distributed

random variable with parameter ¯̀> 0. Then the operator L has the form

Lg(x) = E
[
L̂`g
]

(x) =
1

2

∫ 1

−1

g(x+ t¯̀v)(− log |t|)dt for x ∈ Ω.

Proof. It is easily seen that for each g ∈ C∞0 (Ω) the mapping ` 7→ L̂`g is (Lipschitz-)continuous.
Using ‖L̂`‖L(L2(Ω)) ≤ 1 for all ` ∈ R (shown similary to the proof of ‖L‖L(L2(Ω)) ≤ 1 below) and the

density of C∞0 (Ω) in L2(Ω) we obtain by the Banach–Steinhaus theorem the continuity of ` 7→ L̂`g
for all g ∈ L2(Ω) and hence the measurability of the above random variable.
For the calculation of the expected value choose again g ∈ C∞0 (Rd) arbitrarily. Then we obtain by
direct computation

E
[
L̂`g
]

(x) =
1
¯̀

∫ ¯̀

0

1

2

∫ 1

−1

g(x+ t`v)dtd` =
1

2

∫ 1

0

∫ 1

−1

g(x+ t` · ¯̀v)dtd`

=
1

2

∫ 1

0

1

`

∫ `

−`
g(x+ t · ¯̀v)dtd` =

1

2

∫
M

1

`
g(x+ t · ¯̀v)d2(t, `) =: (∗).
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0-1 1

1 `

t
t

interval (|t|, 1)

Figure 1: Depiction of the set of integration M with a vertical slice at t.

The set of integration M is depicted in Figure 1. Now we change the order of integration by slicing the
set vertically instead of horizontally. A slice at t ∈ (−1, 1) reads then as the interval (|t|, 1). Hence
we proceed and obtain

(∗) =
1

2

∫ 1

−1

∫ 1

|t|

1

`
g(x+ t · ¯̀v)d`dt =

1

2

∫ 1

−1

g(x+ t · ¯̀v)

∫ 1

|t|

1

`
d`dt

=
1

2

∫ 1

−1

g(x+ t · ¯̀v)(− log |t|)dt.

Finally, we obtain the boundedness of L by

‖Lg‖2
L2(Ω) ≤

∫
Rd

|Lg|2(x)dx

=
1

4

∫
Rd

∫ 1

−1

∫ 1

−1

g(x+ t · ¯̀v)g(x+ s · ¯̀v)(− log |t|)(− log |s|)dtdsdx

=
1

4

∫ 1

−1

∫ 1

−1

(∫
Rd

g(x+ t · ¯̀v)g(x+ s · ¯̀v)dx

)
(− log |t|)(− log |s|)dsdt

≤ 1

4
‖g‖2

L2(Ω)

(∫ 1

−1

(− log |t|)dt
)2

= ‖g‖2
L2(Ω),

from which we deduce the relation for L2(Ω) by using again the density of C∞0 (Ω) in L2(Ω).

5.3 Experimental setup

As set of test images we take the image of the cameraman as well as an MRI scan of a human head
in side view (see Figure 2 below). Since both of our methods are sample based, we need to minimize
the Ambrosio–Tortorelli functional for each sample. This task can be parallelized. Of course we are
unable to solve the minimization problem exactly and hence employ the finite element method (FEM)
proposed in [BOS10] in combination with the splitting method for the corresponding discretization. In
order to obtain an FE mesh, we divide each of the above mentioned pixel squares into two triangles
by inserting alternately a diagonal; see Figure 3. Since the FEM approximation needs resources not
depending on the image (like parts of the local stiffness matrices), we are able to share them among
the minimization processes in order to reduce computational overhead. Our implementation is done in
MATLAB. For the numerical solution of the PDEs we use the software package AFEM [AFE].

In the white noise case we use the parameters α = 75, β = 1, ε = 10−2 and η = ε1.1, and
in the motion blur case we change to the parameters α = 50, β = 10 for the cameraman and

DOI 10.20347/WIAS.PREPRINT.2703 Berlin 2020



M. Hintermüller, S.-M. Stengl, T. M. Surowiec 22

Figure 2: Left: image of the camera man, Right: MRI of the human head.

· · ·

· · ·

· · ·

(0, n) (1, n) (2, n)

(0, n− 1)

(0, n− 2)

Figure 3: Depiction of the used triangulation in the upper left corner of the domain Ω = (0,m)×(0, n).

α = 20, β = 10 for the MRI. Since in the latter case the noise component ξ is depending on the
original image, a change of parameters is justified.

Moreover, we emphasize that it is difficult to obtain the mass matrix with entries (Lλi, Lλj)L2(Ω)

exactly, where λi are nodal basis functions. Hence we are working with the interpolations IT Lλi
instead, where IT : C(Ω̄)→ C(Ω̄) denotes the nodal interpolation operator defined by

(IT y) (x) :=

(n+1)(m+1)∑
i=1

y(xi)λi,

with (xi)i=1,...,(n+1)(m+1) being the coordinates of the nodes.

5.4 Pointwise quantiles

Firstly we consider the pointwise quantiles in order to detect areas, where an edge is likely to be found.
As level of significance we take s = 0.9 for the noise model cases. For the motion blur case we take
s = 0.5 – obtaining the median – and s = 0.1 to better study the behavior of the quantiles. The visual
results are depicted in Figure 4.

We note that the quantiles of experiments for the white noise case do not differ significantly from the
edge indicators of the original images. In fact, on samples of edge indicators one can see little dark
spots generated by the algorithm. Since they are not very distinct and their position is random, the
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Figure 4: Numerical results for the quantiles. Top row: white noise model with s = 0.9, Middle row:
motion blur model with s = 0.5, Bottom: motion blur model with s = 0.1 Left: Cameraman, Right:
MRI.
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quantile does not react sensitive to them. A more sensitive reaction can be seen for the expected
values in the following section.

In the motion blur model the reconstruction behavior has an influence. Since our blurring operator and
the actually applied L̂` differ, the reconstruction part tries to transport intensity where it would normally
not belong to. This behavior leads to high oscillations (especially for small `) as well as doubling effects
(especially for big `) in the corresponding reconstructed image. This results in the horizontal motion of
strongly indicated edges as well as weak, blurred edges. Only very small parts of the edges – mainly
horizontal ones – remain at the same position.

In order to further clarify this effect, we resort to an additional synthetic test image similar to the one
from [HS06] for the parameters α = 20, β = 10 and evaluate the quantiles using only 200 samples
for a descending series of levels of significance. The results can be found in Figure 5.

One observes that for high levels of significance (s = 0.9 and s = 0.75) the only clearly recognizable
edges are the horizontal ones (upper and lower edge of the bar, the lower edge of the triangle and at
the upper and lower poles of the circle). When reducing s the moving edges gain importance, which
results in gray areas around the places corresponding to the circle and the triangle. As it can be seen
in the result for s = 0.3, the presence of distinct edges next to each other leads – due to the motion
blur – to an overlap.This results in the detection of an edge at a position where for the original image
no edge occurs at all. For low levels of significance s = 0.2 and s = 0.1 the edges corresponding
to the original image are duplicated in horizontal direction around their original positions. In the last
image this results in a broad band of edges.

Coming now back to our images considered in Figure 4 we can build on the above observations to
get an improved understanding of the mechanisms leading to these results. As we have seen, edges
in different directions occur in the quantile for very different values of s. Thus, we use here two levels
s = 0.5 and s = 0.1 to get a better understanding. Again, we observe for the first value only gray
areas as well as prolonged horizontal edges (e.g the shoulder of the cameraman and the top of the
head in the MRI example). For the lower value of s = 0.1 we observe doubled edges around the
ones for the original images. In the cameraman image on the left and right boundary, grey horizontal
‘oscillations’ can be observed. This effect occurs since the image function has been extended by 0
outside of Ω. Since the background is originally grey we generate here an edge (in contrast to the MRI
image, where the background was already black in the first place). This also leads to some oscillatory
effects on the left side due to ”collisions” of the boundary and the man. We note that since our synthetic
test image is an extreme example we do not have here such large bands of edges, but we still find
duplications of edges.

5.5 Expected values

In this section we utilize the control variates technique to obtain the expected values of the edge
indicators. Besides the mean values themselves we also want to access the variance reduction effect.
In our experiments we use a total of 3 (respectively 4) control variates (yj) for the noise-only model
(respectively motion blur model). Their choice is heuristic and specified in Table 1 below. For the noise
case we choose a different edge detection approach using filter-based methods which is way cheaper
than the Mumford–Shah or Ambrosio–Tortorelli based methods, respectively. Therefore we use the
so-called Marr–Hildreth filter, which reads

∆(kσ ? g)(x) = ∆

(∫
R2

kσ( · − y)g(y)dy

)
(x) =

∫
R2

(∆kσ)(x− y)g(y)dy,
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Figure 5: Numerical results of the pointwise quantiles applied to the synthetic test image in the upper
left corner. Results for the levels of significance (from top to bottom, from left to right; starting in the
upper right corner) s = 0.9, 0.75, 0.5, 0.4, 0.3, 0.2 und 0.1.
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noise model motion blur model

y1 := |∆(k1 ? g)| y1 := |∆(k1 ? v1)|
y2 := exp(−0.005 · y1) y2 := |∆(k1 ? v2)|
y3 := g y3 := exp(−0.005 · y1)

y4 := exp(−0.005 · y2)

Table 1: Overview of the applied control variates.

where kσ := exp(− 1
2σ
|x|2) denotes the Gaussian kernel. The idea is to apply a smoothing step

to reduce on the one hand the possible influence of noise and, on the other hand, to increase the
regularity from an image signal in L2(R2) to a smoothed signal in C∞(R2). The application of the
Laplacian seeks to find sources and valleys in the gradient map, which resort to rapid changes in
the gradient. Due to its structure the Marr-Hildreth filter is also called Laplacian of Gaussian in the
literature. For more details on this the interested reader is referred to [CS05, section 2.6.2] and the
references therein.

As control variates we then choose its absolute value as well as the exponential of its weighted nega-
tive. Especially the latter has a chance to behave at least locally similar to the edge indicator obtained
by our model. Additionally we use the original image to get the noise applied to the image itself.

For motion blur, a direct application of the above technique would be inappropriate. Due to the pres-
ence of the operator L we first apply a reconstruction step to the image based on the following con-
sideration: Having the edge indicator given, one would just need to solve the linear equation (2a) to
obtain the restored image. Since the real edge indicator is not given and expensive to calculate, we
perform the reconstruction with respect to the two extreme cases, z = 1 corresponding to the a priori
assumption of no edge occurring in the image at all, and z = 0 corresponding to the case of edges
appearing everywhere in the image. Based on this, we consider the functions v1, v2 ∈ H1(Ω) as
solutions of the PDEs

−η∆v1 + βL∗Lv1 = βL∗g in Ω,
∂v1

∂ν
= 0 on ∂Ω,

−(1 + η)∆v2 + βL∗Lv2 = βL∗g in Ω,
∂v2

∂ν
= 0 on ∂Ω,

where L∗ is the adjoint of L and ν denotes the outward unit normal to ∂Ω. In this sense we obtain
two reconstructions of the image with respect to two different parameter choices. As for the noise
model case we apply again the Marr-Hildreth filter to v1, v2 and use the absolute values as well as an
exponential of its weighted negative.

To study the variance reduction effect, we compare the variances of the edge indicator z with the
ones of the modified variable zcv. Since our approach is based on the pointwise application of control
variates we moreover investigate where the variance has been reduced. For this sake we plot the dif-
ference of the pointwise variances V [z]−V [zcv]. We remark here that mathematically the difference
can never be negative, but since our multiplier and our variances are just estimations, it can happen
that scattered negative values do occur. Hence the plots have been truncated at zero from below to
give a clearer view. Note that in the Figure 7 the colormap is inverted for better visibility.

An overall number of 1000 samples has been generated, where 100 of them have been used to
approximate the multipliers for the control variates. Consequently, for the estimation of mean, variance
and difference of pointwise variances the other 900 were used.

For the noise case we see in Figure 6 that the background is considerably darker in comparison to
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Figure 6: Numerical Results for the expected values. Top: white noise model, Bottom: motion blur
model. Left: Cameraman, Right: MRI.

image degradation type Var (z) Var (zcv) ratio

cameraman noise 305.808 185.297 1.650
MRI noise 285.167 171.889 1.659

cameraman motion blur 1580.497 616.192 2.565
MRI motion blur 1739.972 601.837 2.891

Table 2: Variance reduction effects.

the quantiles. This behavior is caused by the isotropic distribution of little dark spots generated by
the noise. Besides that, there is again a strong similarity to the edge indicator of the original image.
Moreover, a noticeable variance reduction can be observed. By considering the plots of the difference
of the pointwise variances we see a bigger improvement in regions, where many edges are close to
each other.

For the motion blur model we see horizontal edges pulled longer. By closer inspection one finds several
edges parallel and near to the original ones, such that they form a weak blurred band. This is caused
by the motion of edges in horizontal direction described in the previous section. A significantly higher
variance reduction effect can be observed, which is not surprising as the Mumford–Shah model has
been designed to reduce the effect of noise. Regarding the difference of the pointwise variances we
find the highest reductions in close proximity to the edges of the original image.
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Figure 7: Differences of variance operators V [z] − V [zcv] Top: white noise model, Bottom: motion
blur model. Left: Cameraman, Right: MRI.

6 Conclusion

In this paper, we studied the influence of errors in images on edges resulting from an image segmen-
tation procedure. Due to the inherent difficulty of performing uncertainty quantification for a geometric
quantity we transitioned to the Ambrosio–Tortorelli problem to profit from the accessible vector space
structure. Despite the lack of convexity or unique solutions we were able to establish a rigorous theoret-
ical foundation for selections of solutions. To perform a quantitative treatment we proposed numerical
methods addressing quantiles and the expected values and applied them to practically meaningful
images and instances of the considered degradation model.

Since uncertainty quantification of geometric objects is a relatively new and scarcely investigated topic
we offer here a possible access point for researchers dealing with problems having a similar geomet-
ric structure. From the practical viewpoint, our results might be of importance to obtain a qualitative
understanding of the uncertainty associated with (reconstructed) edges in certain medical or machine
vision applications.

7 A word of caution at the end

As an addendum we want to emphasize that the white noise model considered in this work cannot
be interpreted as a pixelwise projection of a random variable with values in L2(Ω). In the following
we will make use of techniques from probability theory, which can for example be found in [Kle13]. In
contrast to before let Ω = (0, 1)2 and define for n ∈ N a uniform grid Qn = (Qn

jk)
n

j,k=1
such that
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the area of a square around every pixel is 1
n2 . Precisely speaking, we are going to show that there

exists no random variable ξ∗ ∈ L2
P such that the white noise with respect to this grid ξQ has the same

distribution as ΠQξ
∗, where the operator ΠQ ∈ L(L2(Ω)) is the piecewise projection onto the pixel

grid defined by

ΠQg :=
n∑

j,k=1

1

|Qjk|

∫
Qjk

gdx · 1Qjk
.

Having λ2(Qn
jk) = 1

n2 we introduce the orthonormal system (enjk)
n
j,k=1 with enjk := n1Qn

jk
and rewrite

the projection ΠQn as

ΠQng =
n∑

j,k=1

(enjk, g)L2(Ω) · enjk.

The white noise reads as

ξn = ξQn = n
n∑

j,k=1

ξjk1Qn
jk

=
n∑

j,k=1

ξjke
n
jk,

with (ξjk)
n
j,k=1 a family of independent, identically distributed random variables with standard normal

distribution. It is straight forward to show that ΠQnξ2n = ξn holds for all n. For proving the non-

existence of ξ∗ as described above we assume the contrary. Using the fact that diam(Qn
jk) =

√
2
n

goes to zero for n → ∞ one can show by the density of smooth functions in L2(Ω) combined
with a version of the Banach–Steinhaus theorem (cf. [Wer06, Korollar IV 2.5]) that the operators ΠQn

converge pointwise to the identity on L2(Ω).

Hence ΠQnξ
∗ → ξ∗ converges λ2 ⊗ P-a.e. In particular this yields that ξn – having the same dis-

tribution as ΠQnξ
∗ – must converge in distribution to ξ∗ meaning that the corresponding probability

distributions µn are weakly convergent in the sense of measures. This implies especially the pointwise
convergence of the respective characteristic functions, reading for an arbitrary v ∈ L2(Ω) as

ϕn(v) :=

∫
L2(Ω)

exp(iC(w, v)L2(Ω))dµn(w) = E
[
exp

(
iC(ξn, v)L2(Ω)

)]
,

towards the characteristic function of ξ∗. The computation of ϕn yields

ϕn(v) : = E
[
exp

(
iC(ξn, v)L2(Ω)

)]
= E

[
exp

(
iC

n∑
j,k=1

ξjk(e
n
jk, v)L2(Ω)

)]

= E

[
n∏

j,k=1

exp
(
iCξjk(e

n
jk, v)L2(Ω)

)]
=

n∏
j,k=1

E
[
exp

(
iCξjk(e

n
jk, v)L2(Ω)

)]
=

n∏
j,k=1

exp

(
−1

2
(enjk, v)2

L2(Ω)

)
= exp

(
−1

2

n∑
j,k=1

(enjk, v)2
L2(Ω)

)

= exp

(
−1

2
‖ΠQnv‖2

L2(Ω)

)
.

As we have seen above the linear operators ΠQn converge pointwise to the identity, such that we
deduce the convergence

ϕn(v)→ exp

(
−1

2
‖v‖2

L2(Ω)

)
for all v ∈ L2(Ω).
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Since we have assumed that the µn converge weakly, this implies that the characteristic function
of the distribution of ξ∗ must be exp

(
−1

2
‖v‖2

H

)
. But according to [MR04, Proposition 1.2.11] there

exists no probability measure with this particular characteristic function. This yields the anticipated
contradiction.

Hence we deduce that the term white noise is only justified with respect to a given pixel grid.
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