
WeierstraB-Institut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e. V. 

Delayed exchange of stabilities in singularly 
perturbed systems 

Nikolai N. Nefedov1 , Klaus R. Schneider2· 

submitted: 30th September 1996 

1 Moscow State University 
Faculty of Physics 
Department of Mathematics 
119899 Moscow 
Russia 
e-mail: nefedov@mt384.phys.msu.su 

2 Weierstrass Institute 
for Applied Analysis 
and Stochastics 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 
e-mail: schneider@wias-berlin.de 

Preprint No. 270 
Berlin 1996 

1991 Mathematics Subject Classification. 34D15, 34El5. 
Key words and phrases. Singular perturbation, delayed loss of stability, delayed exchange of sta-
bilities, upper and lower solution. 



Edited by 
WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400): c=de;a=d400-gw;p= WIAS-BERLIN ;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 



Abstract 

We consider a scalar nonautonomous singularly perturbed differential equation 
whose degenerate equation has two solutions which intersect at some point. These 
solutions represent families of equilibria of the associated equation where at least 
one of these families loses its stability at the intersection point. We study the behav-
ior of the solution of an initial value problem of the singularly perturbed equation in 
dependence on the small parameter. We assume that the solution stays at the be-
ginning near a stable branch of equilibria of the associated system where this branch 
loses its stability at some critical time tc. By means of the method of upper and 
lower solutions we determine the asymptotic delay t* of the solution for leaving the 
unstable branch. The obtained result holds for the case of transcritical bifurcation 
as well as for the case of pitchfork bifurcation. We consider. some examples where 
we prove that a well-known result due to N:R. Lebovitz and R.J. Schaar about an 
immediate exchange of stabilities cannot be applied to singularly perturbed systems 
whose right hand side depends on c:. 

1 Introduction 

We consider. the singularly perturbed equation 

du 
c "dt == g( u, t, c) 

and study the initial value problem . 

u(t0 ,c) u0
, tEit:=={tER:to<t<ti} 

for sufficiently small c. 

The so-called associated equation to ( 1.1) 

du 
dr == g(u, t, 0) 

(1.1) 

(1.2) 

(1.3) 

in which t has to be considered as a parameter, plays an important role in the asymptotic 
study of the initial value problem (1.1), (1.2) w1th respect to c. If we set c == 0 in (1.1) 
we get the degenerate equation 

g(u, t, 0) == 0. (1.4) 

A solution u ·== c.p(t) of the degenerate equation (1.4) represents a branch of equilibria of 
the associated equation (1.3). If we assume that (1.4) has an isolated solution u == c.p(t) 
and that u0 lies in the region of attraction of the asymptotically stable equilibrium point 
c.p(t0 ) of (1.3) then the asymptotic behavior of the solution u(t,u0 ,c) of (1.1), (1.2) can be 
determined according to the standard theory of singularly perturbed differential systems 
[10, 16, 22, 23, 24, 25, 26] and we have 

limu(t,u0 ,c)==c.p(t) for tEft. 
e-+O 
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In what follows we consider the case that the degenerate equation (1.4) has two solutions 
which intersect for t = tc. Generically, this implies that the associated equation exhibits 
either the case of transcritical bifurcation or the case of .pitchfork bifurcation (see Fig. 1 
and Fig. 2, respectively, where the bold line means stability and the dotted line instabil-
ity). In both cases, at least one of these solutions loses its stability at t '= tc as a family of 
equilibria of the associated system. If we assume that u0 belongs to the basin of attracti.on 
of a stable equilibrium point of the associated equation (1.3) fort = t 0 then for sufficiently 
s'mall 6 the solution u( t, u0 , 6) of ( 1.1), (1.2) stays near the stable branch of equilibria of 
the associated equation (1.3) for t0 < t < tc. For t > tc it can stay near another stable 
branch intersecting the old one (immediate exchange of stabilities) or it stays for some 
time interval near the unstable branch and jumps then to another stable branch (delayed 
exchange of stabilities, delayed loss of stability) or it exhibits a failure of exchange of 
stabilities. Conditions for an immediate exchange of stabilities have been obtained by 
N.R. Lebovitz and R.J. Schaar (14,, 15] for singularly perturbed systems whose right hand 
side does not depend on 6. In the case of transcritical bifurcation, N.N. Nefedov and K.R. 
Schneider [17] have derived corresponding results for more general systems by means of 
the technique of differential inequalities. In section 3 we show that the result of Lebovitz 
and Schaar mentioned before cannot be applied to systems whose right hand sides depend 
on 6. 

The phenomenon of delayed loss of stability in the case of Hopf bifurcation with a slowly 
varying bifurcation parameter was observed first by M.A. Shishkova (21] in 1973 from 
the school of L.S. Pontryagin. This c~se is equivalent to the case of pitchfork bifurcation 
for equations (1.1 ). She used the method of asymptotic expansion to estimate the delay. 
Her results have have been extended by S. Karimov [11] and A.I. Neishtadt (18, 19]. The 
occurence of delayed exchange of stabilities in the case of transcritical bifurcation was 
noticed first by R. Haberman [9] in 1979. His conjecture about the delay was proved by 
St. Schecter [20] by means differential inequalities, similar results have been obtained 
by F. and M. Diener [2] in the frame of canard solutions by using nonstandard analy-
sis. Further studies on delayed exchange of ,stabilities can be found in [1], especially we 
would like to mention the investigations of T. Erneux and P. Mandel [4, 5] who have . 
also emphasized its importance for applications in laser dynamics [6, 7, 8]., In what fol-
lows we study the phenomenon of delayed loss of stability for singularly perturbed scalar 
nonautonomous equations by means of the method of upper and lower solutions. This 
approach provides a simple but very efficient method to determine the asymptotic delay 
in exchange of stabilities for the case of transcritical bifurcation as well as for the case 
of pitchfork bifurcation. Under generic conditions, corresponding problems for higher di-
mensional singularly perturbed systems can be reduced to scalar equations by means of 
invariant manifolds. 

2 Main result 

We consider the initial value problem (1.1), (1.2) under the following assumptions 
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(Ai). g : U x It x Jeo -+ R is continuous and twice continuously differentiable with respect 
to u and c. U is an open bounded interval containing the origin, Jeo is defined by 
Ie0 ·:= {c ER: 0 < c <co}, co> 0. 

(A2). g(O, t, c) = 0 for (t, c) E ft x Jeo (I means the closure of I). There is a tc E (to, ti) 
such that 

gu(O,t,O) < 0 for [to,tc), Yu(O,t,0) > 0 for ·t E (tc,ti]. 

Assumption (A2 ) implies that u = 0 is a solution of equation (1.1) in It for all c E Je
0

, 

and that u = 0 is an equilibrium point of the associated system which is exponentially 
asymptotically stable for t E [to, tc) an.cl unstable for t E (tc, ti]. 
In what follows we distinguish the cases u0 > 0 and u0 < 0. Since the asymptotic behavior 
of the solution u(t, u0 , c) of (1.1), (1.2) with respect to c strongly depends·on the solution 
set of the degenerate equation we introduce the following assumptions on this set. 

(At). The solution set of the degenerate equation g(u, t, 0) = 0 in (U x ft) nu~ 0 consists 
of the two curves u = 0 and u = 'l/J+(t), i/J+ E C0 ([tc, ti], R+) with 1/J+(tc) = 0. 

(A3 t)· The solution set of the degenerate equation g( u, t, 0) = 0 in (U x It) nu :::; 0 consists 
' - 0 - . of the two curves u = 0 and u = i/J-,t( t), 'l/J-,t E C ([to, tc], R ) with 'l/J-,t( t.c) = 0. 

(A3,P). The solution set of the degenerate equation g( u, t, 0) = 0 in (U x It) nu :::; 0 consists 
of the two curves u = 0 and i/J-,p(t) E C0 ([tc, ti], R-) with with i/J-,p(tc) = 0. 

The subindices t and p characterize the transcritical and the pitchfork bifurcation. 

u 

u=O .. 
to •• •• tc .. .. .. .. .. .. .. 
, ... ·(= ij;_(t) 

Fig. 1. Transcritical bifurcation 

u 

u=O 
to 

Fig. 2. Pitchfork bifurcation 

In order to describe the delay in the exchange of stabilities we introduce the functions 
G(t, c) and G(t) by 

G(t,c) := r gu(O,s,c)ds, G(t) := G(t,0). lto (2.1) 

From assumption (A2 ) we get that G(t) 0 has at most one root t t* in (to, t1). 
Therefore, we assume 
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(A4 .) G(t) == 0 has a root t* in (t0 ,t1 ). 

It is easy to see that t* is such that 

t* > tc, G1(t*) > 0. (2.2) 

(As.) There is a positive number c0 such that [-c0 , c0] EU and 

g(u, t,c):::; 9u(O, t,c)u for to:::; t:::; t*, c E fe:0 , juj:::; Co. 

u 
u 

u = G(t) 

t t 

Fig. 3. u == 9u(O, t, 0) Fig. 4. u==G(t) 

First we consider the case u0 > 0. 

Theorem 2.1 Assume the hypotheses (A1 ) - (As) with (A3 ) == (At) to be valid. Then 
for sufficiently small c and u0 > 0 there exists a unique solution of (1.1), (1.2) satisfying 

for t E (to, t*) 
for t E (t*, i1]. 

Proof. To establish this result we apply the method of upper and lower solutions. The 
·functions u(t,c) and y_(t,c) are called upper and lower solutions of (1.1), (1.2), resp., on 
the interval ( t0 , i), if they satisfy for t == t0 

and for t0 < t < i 

du 
g(u, t, c ), c ._ > dt 

du 
g(y_, t, c ). c-= < dt 

(2.3) 
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Under !he assumption (A1), the existence of an upper and lower solution of (1.1), (1.2) 
on (t0 , t) implies the existence of a unique solution of (1.1), (1.2) in (to, i). 
Without loss of generality we may assume u0 :::; co where c0 has been introduced in (A5 ). 

In cas~ u0 > co, according to the assumptions (A1), (A2), and (A3 )+, for each arbitrarily 
small 8 > 0 there Js a sufficiently small e such tha! the solution u(t, u0 , c) of (1.1), (1.2) 
exists on (t0 , t0 + 8) for c E le and satisfies u(t0 + ·5, u0 , c) :::; c0 (see [25]). 
Now we construct an upper solution u(t, .c) to (1.1), (1.2) on (t 0 , t*) in the form 

u(t,c) == uoeG(t,e)/e (2.4) 

where G(t, c) is introduced in (2.1). It is easy to check that u(t, c) satisfies 

du 
c dt == 9u(O, t,c) u, u(to,c) == u0

. (2.5) 

Let c1 , c1 :::; co, be a given (small) positive number. Then, by assumption (Ai), there 
. exists a positive number ft such that 

G( t, c) / c :::; G( t) / c + K for to :::; t :::; t*, c E Iw 

Let v be an arbitrarily small positive number. From the assumptions (A2 ) and (A4 ) it 
follows the existence of an c( v), 0 < c( ii) :::; c1 , such that 

G(t,c)::;o 
G(t, c)/c:::; G(t)/c + n, < 0 

By (2.4) and (2.6) we have 

for 
for 

to :::; t :::; to + v 

to+ lJ ::=; t ::=; t* - v, c E Je(v)· 

u( t, c) :::; Co for to :::; t :::; t* -:- v, c E Je(v)' 

and by assumption (As) it holds for to ::=; t ::=; tc - v, c E Je(v) 

du · 
c dt -g(u,t,c) ==gu(O;t,c)u-g(u,t,c) 2:: O. 

(2.6) 

Thus, u(t, c) satisfies the first inequality in (2.3) and is an upper solution of (1.1), (1.2) 
on (t0 ,t* -v) for c E Je(v)· In the case u0 > 0, assumption (A2) implies that u = 0 is a 
trivial lower solution of (1.1), (1.2) in (t 0 , t1 ). Hence (1.1), (1.2) has a unique solution in 
(to, t* - v) for c E Je(v)· 
Since v is any small positive number we get from (2.6) 

lim u( t' c) == 0 for to < t < t*. 
e-+0 

Therefore, t* is a lower bound for the time where the solution u(t, u0 , c) of (1.1), (1.2) 
escapes from the unstable solution u _ 0, that is, t* yields a lower bound for the delay of 
the exchange of the stabilities. 
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To obtain an upper estimate for the escape time we construct a nontrivial lower solution 
of (1.1), (1.2) on some interval (t0 ,I) with t* < t <ti in the form 

y_(t, £, r;, 8) = r; e[G(t,e)-S(t-to)]/e (2.7) 

where r; and 8 are small positive numbers independent of£. Concerning r; we suppose 

r;:::; min(u0 ,7/J+(t*)/2). 

It is obvious that y_( t, £, r;, 8) fulfills 

y_(to, £, r;, 8) 
du 

f,-= 
dt 

Hence, we have 

r; < uo' 

(gu(O, t,c,)- 8) y_. 

du 
E d;- g(y_, t,c,) = 9u(O, t,c,)y_- g('J£, t,c,) - by_. 

(2.8) 

(2.9) 

(2.10) 

By (2.2), G(t) has a simple zero at t = t* changing its sign from minus to plus for increasing 
. t. Thus, for sufficiently small positive 8, G(t)-8(t-t0 ) has a simple zero at t = t* + ~(8) 

with ~(8) > 0 and ~(8)-+ 0 as 8-+ 0. This implies that there is an c,2 (8),c,2(8):::; c,(v), 
such that for c, E Je2 , G(t,c;)-8(t-to) has a simple root att = t(c,,8) := t*+~(8)+!l(c;) 
where !1( c;) -+ 0 as c, -+ 0. We choose c,2 ( 8) so small that ~( 8) + !1( c;) > 0. Hence, we 
have 

y_(t, c,, r;, 8):::; r; for t0 :::; t:::; t(c,, 8) 

with y_(t(c,,8),c;,r;,8) = r;. 
(2.11) 

From the assumptions (Ai) and (A2 ) it follows the existence of a positive constant K,2 

sµch that fort E [tq, ti], c, E h1' lul:::; co 
9u(O, t, € )u - g( u, t, €) = 9u(O, t, € )u - g( u, t, €) - g(O, t, €) :::; K,2U

2
• (2.12) 

If we assumer; :::; 8 / K, 2 then we get from (2.12), (2.11) and (2.10) 

dy_ . 2 
f, dt - g(y_, t, f,) = -8y_ + K,2'JJ. :::; 0, 

that is, y_(t, c,) is a lower solution of (1.1), (1.2) for t0 :::; t:::; t(c,, 8). 
Let !1(8) be the supremum of ID(c)I for c, E Je2 (8). Then, to given sufficiently small 8, 
G( t, c,) - 8( t - t0 ) is positive for t :> t* + ~( 8) + n := t( 8). To construct a lower solution 
for t( c,, 8) :::; t :::; t( 8) we set 

y_(t, c;, r;, 8) := r; for t(c;, 8):::; t:::; t(8). 

According to (2.8) and to the assumptions (A2), (At) we may choose c,2 so small that 

g(r;, t, c;) 2: /o > 0 for t E (t*, ti),€ E Ie2 
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such that the second inequality in (2.3) is fulfilled. Therefore, we have 

JJ.(t,c,rJ,8) ~ rJ for t E (t0 ,i(8)), 
u(t(8),u0 ,c) '2 JJ.(t(8),c,rJ,8) == rJ > 0, 

where rJ does not depend on c. Since rJ lies in the domain of attraction of the equilibrium 
point ¢+ (t( 8)) of the associated equation ( 1.3) for t == t( 8) we may apply Tichonov's 
theorem (23, 24] which says that·under our hypotheses, fort '2 t(8), u(t,u0 ,c) is attracted 
exponentially by the stable root y == 'l/J+(t). As 8 does not depend on c and can be chosen 
arbitrarily small, the proof of the theorem is complete. 

Now we consider a negative initial value u0 in case of pitchfork bifurcation. 

Theorem 2.2 Assume the hypotheses (A1) - (A5) with (A3 ) to be valid. Then for suffi-
ciently small c and u0 < 0 there exists a unique solution of (1.1), (1.2) satisfying 

for t E (to, t*), 
for t E (t*, t1]. 

Proof. The proof follows the same· line as the proof of Theorem 2.2. In the case u0 < 0, 
the functions 

v(t, c) :== uOeG(t,e)/e and y_(t, c) :== rye[G(t,e)+8(t-t0 )]/e, rJ ~ Uo 

provide upper and lower solutions of (1.1), (1.2), respectively. 

Remark 2.3 Under the conditions of Theorem 2.1 and Theorem 2.2) the solution of the 
initial value problem (1.l)) (1.2) stays near the solution u = 0 fort E (tc, t*) which is 
an unstable equilibrium point of the associated equation (l.3) for that t-interval before it 
exponentially approaches the stable branches of equilibria y == ¢+ ( t) or y == 'l/J-( t) resp. 
of the associated equation (1.3). Both theorems describe the phenomenona of delayed 
exchange qf stabilities in singularly perturbed systems. 

Remark 2.4 If we assume that g is C2 in all variables then by combining Theorem 2.1 
and Theorem 2.2 wzth the results in [24] we get the following asymptotic behavior .of the 
solution of (1.1), (1.2) 

0 { o+O(c) 
u(t, u , c) == 'l/J±(t) + O(c) 

where v is any small positive number. 

for t E [to + v, t* - v], 
for t ·E [t* + v, t1]. . 

FinaJly we study the initial value problem (1.1), (1.2) with negative u0 in case of trans-
cri ti cal bifurcation. 
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Theorem 2.5 Assume the hypotheses (A1 ) - (As) with (A3 ) = (A3,t) to be valid. Ad-
ditionally we assume that the initial value u0 belongs to the domain of attraction of the 
solution u = 0 of the associated equation (1.3) fort = ta. Then for sufficiently small c 
and u0 < 0 there exists a unique solution of (1.1), (1.2) on (t 0 , t*) satisfying 

limu(t,c)=O fortE(to,t*), 
e-l-0 

for t > t* the solution u( t, c) escapes from u = 0. 

Proof. The proof is based on the same upper and lower solutions as in the proof of 
Theorem 2.2. 

Remark 2.6 Theorem 2.5 describes the phenomenon of delayed loss of stability .in sin-
gularly perturbed equations. 

3 Examples 

We start with the simple example 

du 
€-

dt 
u(-1,c) 

The associated equation 

u(t-u), tE(-1,2), 
uo. 

du 
dT = u(t - u) 

has two families of steady state solutions 

u = cp1 (t) = t and u = cp2(t) = 0. 

(3.1) 

The right hand side of equation (3.1) fulfills all conditions of Theorem 2.1 such that we 
have a delayed exchange of stabilities for u0 > 0: for sufficiently small c and u0 > 0, the 
solution u(t, u0 , c) of (3.1) stays near u = 0 fort E (-1, 1), and it has a transition layer 
near the point t = 1 from the unstable root u = 0 to the stable one u = t . . All these 
properties can be verified directly since (3.1) is a Riccati equation whose exact solution 
can be calculated. 

Remark 3.1 By means of the change of variables u = t-y we can rewrite equation (3.1) 
in the form 

dy 
€-

dt 
y(-1,c) 

y(y -·t) + c, t E (-1, 2), 
yo= -1 - uo. 

(3.2) 
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Fig. 5 shows three trajectories of equation {3.2) with c = 0.01. The trajectory with the 
starting point Pf = (to == -0.8, Yo == -0.3) exhibits a failure of the e~change of stabilities, 
while the trajectory with the starting point Pd == (to= -0.8, y0 == -1.3) shows a delayed 
exchange of stabilities. Both trajectories are separated by the trajectory y == t. 
If we drop c on the right hand side of (3.2) we get the equation 

dy 
f, -. == y(y - t). 

dt . (3.3) 

At the first glance, we would conclude. that the behavior of the trajectories of the equations 
(3.2) and (3.3) is qualitatively the same for small c. But it is easy to check that equation 
(3.3) fulfills all hypotheses of a theorem of N.R. Lebovitz and R.J. Schaar [14] if y0 satisfies 
-oo < y0 < 0, that is, y0 lies in the domain of attraction of the equilibrium point y == -1 
of the associated system 

dy - == y(y - t) dr 
for t == -1. According to that theorem there is no delayed exchange of stabilities. There-
fore, we can conclude that the mentioned theorem of N.R. Lebovitz and R.J. Schaar [14] 
cannot be applied to systems whose right hand side depends on c. 

Fig. 5. Failure of exchange and delayed 
exchange of stabilities in equation (3.2) 
with c == 0.01. 

r 

to t* t 

Fig. 6. Delayed Hopf bifurccation in 
equation (3.8) with c = 0.01, t0 == 
.....,0.7, ro = 5 

The following example represents a slightly simplified problem considered by M.A. Shishkova 
[21] describing the normal form of a generic Hopf bifurcation when the bifurcation pa-
rameter is slowly changing in time. 

dx 
dr 
dy 
dr 

y + x(cr - x2 - y2
), 

-x + y(cr - x 2 
- y2

) 

where c is a small parameter. 
Introducing the slow time t by cT = t we get from (3.4) 
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dx 
€-dt 

dy 
€-dt 

y + x(t-" x2 -y2
), 

-x + y(t - x 2 
- y2

). 

(3.5) 

By means of polar coordinates x = r cos <.p, y = r sin <.p system (3.5) can be rewritten as 

dr 
€-dt 

d<.p 
€-dt 1. 

Concerning (3.6) we note that the corresponding associate equation 

dr ( 2) dr =rt - r 

has two families of steady states 

r = <.p1(t) = 0, t = 7/J2(r) = r 2
• 

(3.6) 

(3.7) 

Since we may restrict our investigation to the case r ~ 0, we can describe the second 
family of steady states of (3.7) by r = <.p2(t) ,= Vt, t ~ 0. Thus, we are able to apply 
Theorem 2.1 and get a delayed Hopf bifurcation. If we consider the initial value problem 

dr 
€-dt 
r(to) 

r(t - r2 ), 

ro, to< 0. 
(3.8) 

then the asymptotic delay t* satisfies t,* = .:_t0 • Fig. 6 shows the solution of (3.8) with 
c = 0.07, to= -:-0.7, ro == 5. 
These examples show how efficiently the method of differential inequalities can be ap-
plied to study the phenomenon of delayed exchange of stabilities in singularly perturbed 
equations. 
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