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ON OPTIMAL RANDOM NETS 

PETER MATHE 

December 2, 1992 

ABSTRACT. The possibility to approximate bounded linear mappings 
between Banach spaces depends on the degree of compactness. One way 
to measure this degree of compactness is the scale of entropy numbers, cf. 
[CS90]. In the usual (worst-case) setting of numerical analysis this scale 
has been studied for a long time. 

Recent research is concerned with the study of the so-called average-case 
and randomized (Monte Carlo) settings. We propose the respective coun-
terparts of the entropy numbers in these settings and obtain their behavior 
for Sobolev embeddings. It turns out that, at least in this situation, ran-
domly chosen nets may not improve the approximability of operators in the 
Monte Carlo setting. However, we can use the results to improve previous 
estimates for average Kolmogorov numbers, as obtained in [Mat91]. 

1. INTRODUCTION, GENERAL 

The theoretical understanding of the efficiency and optimality of numerical algo-
rithms is widely studied. In recent years emphasis is laid on the average behavior of 
algorithms and on the investigations of the efficiency of stochastic methods for solv-
ing numerical problems approximately. The reader is referred to the monographs 
[TWW88, Nov88]. A strict formalization of the notion of efficiency and optimal-
ity led to s-scales or related pseudo-s-scales. This is well-known in Approximation 
Theory, see [Mat90, Pin85] and has been generalized by the author to the so-called 
average-case and Monte Carlo settings, see [Mat91]. This way it is possible to study 
model problems as e.g. function approximation using a discretization technique, in-
troduced by Maiorov in 1975, see [Mai75], which is now basic part of the theory 
of s-numbers as developped by Pietsch, cf. [Pie80, Kon86]. It turns out that most 
classes of approximative numerical methods have respective counterparts within the 
area of s-numbers, see [Mat91] for details. 

This note is concerned with the study of the so-called entropy numbers of op-
erators. Although this scale has no immediate interpretation within the language 
of approximative numerical methods its study turned out to be important, see 
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2 PETER MATHE 

[Pie80, CS90, Kon86]. Moreover, the entropy of compact sets in various spaces 
has been studied since Kolmogorov and Tichomirov in the late 50s, [KT59]. The 
author suggests appropriate average and Monte Carlo counterparts to the entropy 
numbers. 

The study of random nets has close connections to stochastic methods for global 
optimization. Detailed results in this direction can be found in Sukharev [Suk89, 
Chapter 4.], where quantities related to ours are studied, but in a much more special 
situation. Also, a special case was used by Maiorov in his recent paper [Mai91], 
implicitely. 

Given a metric space [Y,p], an element y0 E Y and E > 0, denote by B(y0 ,E) := 
{y E Y,p(y,y0 ) < E} the open E-ball around y0 in Y. Let us introduce the (usual) 
notion of E-entropy of a (continuous) mapping S: [X,r]---+ [Y,p]. Let <I>(Y) be 
the set of all finite subsets of Y. Any element F E <I>(Y) is called a net. Given 
F E <I>(Y) define 

c(S, F, Y) 

( 

and for n EN_ 

inf { £ > 0, 

inf { E > 0, 

S(X) C LJ B(y,E)} 
yEF 

sup inf p(S(x),y) < E}) 
xEX yEF 

En(S,Y) := inf {E(S,F,Y), card(F)::; n}. 

It is the aim of this note to introduce the respective notion in the average and 
Monte Carlo settings, too, derive some general results and give applications to the 
entropy behavior of Sobolev embeddings. 

As a consequence we are able to improve previous estimates, given in Mathe, 
[Mat91, §3, Corollary 4., §4, Corollary 2.], showing, that the logarithmic factor is 
superflous. 

Let us now turn to the description of the average and Monte Carlo E-entropy. By 
a random net of a subset in Y we shall understand a randomly chosen set of points. 
It is clear that emphasis is laid on nets, where the number of points is finite. To 
make this precise we shall introduce the necessary notation. 

Given a metric space [Y, p] denote by 23(Y) the Borel er-algebra. The set <I>(Y) 
of all finite subsets of Y will be given the er-algebra 23°q,(Y), generated by all sets 

{F, card(F n A)< t}, A E 23(Y), t ER, 

which is the smallest er-algebra, such that the mappings F ---+ card(F n A) are 
measurable for all sets A E 23(Y). 

Let be given a metric space [Y, p]. 

Definition 1. A random net on Y is a probability Pon [<P(Y), 23°q,(Y)] 

Remark. It is clear, that every net FE <P(Y) can be identified with a simple count-
ing measure <I> of the form <I> = LyEF 8y, see [MKM78, 1.2]. Using this identification 
we could equivalently speak of random nets as point processes on phase space [Y, p], 
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see again [MKM78, 1.2] for details. Observe, that the cardinality of realizations F 
may vary. 

To measure the quality of a random net P on Y we need some measurability 
result. 

Lemma 1. 
(1) Foreveryx E Y the mappingF-+ infyEFP(x,y) is(93<I>(Y~93(R))measurable. 
(2) The cardinality F-+ card(F} is (93<I>(Y), 93(R))-measurable. 

Proof: Item (2) follows immediately from the definition of the O"-algebras, while 
( 1) follows from the simple observation 

. {FE <I>(Y),inf {p(x,y), y E F} < t} ={FE <I>(Y),card(Fn B(x,t)) 2: 1}. D 

Given a random net P on Y and a mapping S : X -+ Y let 

c(S,P,Y) :=sup{! inf {p(S(x),y),y E F}dP(F), x ES} 

and 
MC - card(P) := j card(F)dP(F). 

As above we continue to introduce the Monte Carlo €-entropy as 

E~c(S, Y) :=inf {c(S,P, Y), MC - card(P) :<; n}. 
The average counterpart can be obtained, giving any Borel probability µ on X 

and net F E <I>(Y) by 

c(S, F, µ) 

En(S,µ) 
and 

J inf p(S(x),y)d1t(x), 
yEF 

inf {c(S,F,µ), card(F) ~ n}, 

cnavg(S, Y) { (S ) '- := sup En ,µ , µ(X) = 1}. 
Let us illustrate these quantities by a simple (discrete) example. 

Example: Let M, card(M) = m be a finite set, considered as metric space with 
metric p(x, y) = 1 if x :j:. y. S: M-+ M shall be the identity. It is easy to see, that 

En(S, M) = , { 1 n < m 
0 n 2: m 

while it is· a good exercise to check 

E~c(S, M) = E~v 9 (S, M) =max { 0, m ~ n}. 

This can be achieved by a uniform choice of n distinct points from M and uniform 
distribution on M, respectively. Another way of choosing a net of n points on the 
average by chance is to choose one single point with probability p = :;,-:._~ and the 
whole set M with probability 1- p. Thus the MC-cardinality(P) of such a random 
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net Pis = n while the €-entropy En(S, P, M) = :::::~. In either case we can observe 
that the average and Monte Carlo counterparts yield better behavior than En ( S, M). 

Our main interest lies in the consideration of entropy numbers for linear operators 
acting between (real) Banach spaces. Let X, Y be real Banach spaces and denote by 
L(X, Y) the set of all bounded linear operators acting between X and Y. Denote by 
Bx the closed unit ball in X. In case of linear spaces X and Y it is more appropriate 
to have a logarithmic scale. Thus let us define the usual entropy numbers of a linear 
operator ·s E L(X, Y), cf. [Pie80], at this place. 

e.( S) '=inf {e > O, them ace q :<; 2•-', y,, ... , y, E Y with S(Bx) C ;Y, B(y;, <)} . 
With our notation this means en(S) = .s2n-1(S, Y). The same way we define the 
nth Monte Carlo entropy number e:c( S) := E~nc_ 1 ( S, Y), average entropy number 
e~vg(S) := E~~~ 1 (S,Y) and en(S,µ) = E2n-1(S,µ). 

It is immediate from these definitions, that we have e:c(S) ::; en(S). 
Since the function (x,F) E Bx X <I>(Y)--+ infyEF llSx - YllY E JR+ may not be 

product measurable the following representation is helpful. 

Lemma 2. Let X be a separable Banach space. Then we have for any operator 
SE L(X,Y) 

e~v 9 (S) =sup {en(S,ft), µ(Bx)= 1, µdiscrete}. 

Proof: It suffices to prove the right-hand side to be an upper bound for e~v9 (S). 
Let fl be any probability on Bx and F be any net on Y. The function 

x E Bx --+inf {llSx - Ylly, y E F} ER+ 

is bounded and continuous on Bx, such that for any sequence of measures µn, 
converging to µ in the weak topology we have 

j inf {llSx - Ylly, y E F} dµn(x)--+ j inf {llSx - Ylly, y E F} dµ(x). 

Since the set of discrete probabilities is dense among all probabilities on Bx, see 
[Bil68, App. III, Thm.4) the proof can be finished. D 

As a consequence we obtain the following result, relating the Monte Carlo entropy 
numbers to the average counterpart, in a standard manner, see [HM92, Mat91). 

Corollary 1. Let X be a separable Banach space, S E L(X, Y) be a bounded linear 
operator. Then we have 

The proof can be carried out as in the papers cited above, applying Fubini's Theorem 
only for discrete measures on Bx, which is always possible. An application of the 
above Lemma 2 gives the desired inequality. Under the above assumptions we thus 
have te~':i-91 ( S) ::; e:c( S) ::; en ( S). 
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The following observation is useful, in order to apply the discretization tech-
nique. Given any operator S E L(X, Y), Banach spaces X 0 , Y0 and operators 
TE L(X0 ,X),RE L(Y,Y0 ) we have 

e~vg(RST) :S: llRl!e~vg(S)llTll· 
In fact all scales en, e~vg and e~c form pseudo-s-scales, which can be proven easily, 
see [Mat9lj; 

Let us close this section with the following estimate, an analogue of [Pie80, Thm. 
12.3.3]. Such kind of argument is also contained in [Mai91]. It is necessary to have 
some further average s-scale, the scale of the average Kolmogorov numbers, see 
[Mat90, Part B, p.59] and [Mat91]. Given any linear operator S E L(X, Y), any 
probabilityµ on Bx let 

inf {j t~f llSx - Yllydµ(x ), Lis a subspace in Y with dim(L) < n}, 
and 

d~v 9 (S) := sup{dn(S,µ), µ(Bx)= 1}. 

Theorem 1. Let S E L(X, Y) be any linear operator, µ be any probability on Bx 
and let 1 :S: 2n :S: m. Then we have 

em(S, µ) ::; dn(S, µ) + 32 · r :::,' j llSxllydµ(x ), 

and consequently 

Proof: Fix c > 0 and choose a subspace Ln C Y with dim(Ln) < n such that 
dn(S,µ)::; (l+c)finfyEL,.llSx-yllyd/t(x). Let a:= 2fl1Sxllydµ(x) and G := 
2a:By n Ln. A volume argument, cf. [Pie80, 12.1.13] yields a b-net G0 C Y of G 
with cardinality card(G0 )::; (1 + 4o"'r- 1 • Using this net G0 we obtain 

c(S,Go,µ) j inf llSx -yllydµ(x) yEG6 

< j inf inf {llSx - zllY + llz - YllY} dµ(x) yEG6 zEG 

< j inf llSx - zllydµ(x) + b. 
zEG 

Putting m := flog2 card( G 0 )l + 1 we have card( G 6 ) ::; 2m-t, hence 

em(S,µ)::; (1 + c)dn(S,µ) + b. 
By the definition of m we obtain 
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m-1 

which implies 8 :s; 16arn=-r-, finishing the proof. D 

2. THE ENTROPY OF SOBOLEV EMBEDDINGS 

In this section we are going to study the behavior of the entropy numbers of 
Sobolev embeddings in different settings. Let 1 :s; p :s; oo, r, s E N, r, s ~ 1 and 
let w;([o, 1]3) denote the Sobolev spaces o.n [O, 1]8, see [Tri78]. If 1 :s; q :s; oo, and 
the relation ; > * - ~ is valid, then the canonical embedding Ir,p,q : w;([o, 1]')-+ 
Lq([O, 1]') exists and is compact. The behavior of the (usual) entropy numbers in 
these cases is known, cf. [Kon86, prop. 3.c.9]: 

Theorem 2. Let 1 :s; p, q :s; oo, r s E N If !::. > .!. - .!. then , • p q' 

(I ) . -r/• en r,p,q :::::: n . 

We will rely on this result later. Such estimates are obtained by a discretization 
technique, allowing to reduce the problem to finite dimensional approximation prob-
lems. Lower bounds are obtained especially easy, see [Pin85, Ch. VII, Th. 2.1]. 
Thus we are led to consider the entropy numbers of the following finite dimensional 
mappings I;;q: l;'-+ l';. Given 1 :s; p :s; oo denote by B;' := {x E Rm, llxllP :s; 1} 
the closed unit ball in z; and>..; the Lebesgue measure (normalized) on B;'. 
Lemma 3. For all m, n EN we have 

eavg (1m ) > m 2-n/m. 
n oo,1 - 2e 

Proof: Choose any net Fon Rm with card(F) :s; 2n-l and let E := s(J;,,1,F,>..7;,). 
An application of Chebyshev's inequality yields 

hence 
1 
2 

>..: ({x, inf {llx - Ylli, 1 
y E F} :s; 2E}) ~ 2, 

< >..7;,({x, inf{llx-yll1, 

< I:>..: (y + 2EB~) 
y E F} :s; 2E}) 

yEF 

< 2n-1(2sr vol(Br') 
vol( Br;:,) 

2n+m-1Em (m!)-1 

Using the well-known estimate m! ~ (7 )m we conclude 

(1) 

and consequently e (Im >._m) > m 2-n/m. O n oo,1' oo - 2e 

The following result is a slight refinement of an estimate by [Mai91 ]. 
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Corollary 2. For 1 ::; p, q ::; oo and n E N we have 

e~vg (!:~) ;:::::: n1fq-l/p, n E N. 

Proof: The lower estimate is obtained from Lemma 3 and 

e~vg (1:,1)::; llI:,plle~vg (1;::q) l!I;.i1ll· 
To prove. the upper bound we remind of the fact, that e~v g ( 1;::q) ::; en (I;::q). The 
upper bound in the case 1 ::; q ::; p ::; oo can be estimated by the norm llI;::q II, while 
the remaining case 1 ::; p < q ::; oo is more complicated, but it has been proven 
by Hollig, see [Kon86, 3.c.8], that en(If,100 ) ::; C 10g(m~n)+l for some constant C and 
log2 m ::; n ::; m. Therefore the result follows from a factorization argument. D 

The above estimate also improves an estimate given for the average Kolmogorov 
numbers, as presented in [Mat91, §3, Corollary 4. (iii)]. 
Corollary 3. For 1 ::; p::; oo we have 

d~vgu:.~);:::::: n 1- 1!P, n EN. 

Proof: It suffices to prove the lower estimate. The same argument as in Corollary 
2. provides 

m1-1/p 
e~vg(I;::1) ~ 2e rkfm' k E N. 

Since drvg(I;::1) = llI;::1 II = m 1- 1IP, we may apply Theorem 1. to obtain 
m1-1/p 

davg (Im ) > 2e (2-k/m - 64ernf(k-l)) . n+l p,l -

Letting m = 2n = l8k we get 
davg(J2n) > n p,l 

> 

> 

davg (J2n) 
n+l p,l 

m1-1/p ) 
2e ( rl/18 - 64er9 

nl-1/p 

10' 
finishing the proof of the lower bound. D 

The above result also leads to a sharp lower bound for the behavior of the Monte 
Carlo Kolmogorov numbers, presented in [Mat91, §4, Corollary 2. (ii)]. In the case 
of Sobolev embeddings Ir,p,l there was given a lower bound, which was sharp only 
up to a logarithmic factor. Next we show that this factor is indeed superflous. 
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The main results can now be stated as follows. 

Theorem 3. Let 1 ~ p, q ~ oo, r s E N. [F !:. > .!. - !. then 
' J • p q' 

(1) 
avg (J ) ~ me (J ) ~ -r/s en rlp,q - en r,p,q - n . 

(2) Moreover 

d~vu(Ir,p,1) x d';;c(Ir,p,1) x dn(Ir,p,1) x n-rf•. 

Proof: The proof is immediate, because of the well-known inequality 
eavg(I ) > c. n-r/s+1/p-1fqeav 9 (I2n) 

n r,p,q - n p,q ' 

for some c > 0, which can be proven for arbitrary pseudo-s-scales, cf. Pinkus [Pin85, 
Ch. VII, Th. 2.1). Especially, we have an analogous inequality for d~vg(Ir,p, 1 ). The 
upper bound for item (1) follows from Theorem 2. while the upper bound for item 
(2) was already given in (Mat91). D 

Concluding Remark. The above result has shown, that random nets will not im-
prove the entropy behavior of Sobolev embeddings. The same arguments as above 
will yield the same conclusion for embedding maps between B8sov spaces, see (Tri78) 
for the definition and (Kon86, 3.c.9] for the decrease of the (usual) entropy numbers. 
Thus the following question arises naturally: Are there operators between Banach 
spaces, such that the behavior of the Monte Carlo entropy numbers is significantly 
better than using deterministic nets? 
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