
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

An assessment of two classes of variational multiscale

methods for the simulation of incompressible turbulent

flows

Naveed Ahmed1, Volker John2

submitted: March 5, 2020

1 Gulf University for Science and Technology
Department of Mathematics and Natural Sciences
Kuwait City, Kuwait
E-Mail: ahmed.n@gust.edu.kw

2 Weierstrass Institute
Mohrenstr. 39, 10117 Berlin, Germany
and Freie Universität Berlin
Dep. of Mathematics and Computer Science
Arnimallee 6, 14195 Berlin, Germany
E-Mail: volker.john@wias-berlin.de

No. 2698

Berlin 2020

2010 Mathematics Subject Classification. 76F65.

Key words and phrases. Incompressible turbulent flows, residual-based VMS method, SUPG method,
projection-based VMS method, turbulent channel flows, LSC preconditioner.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


An assessment of two classes of variational multiscale
methods for the simulation of incompressible turbulent

flows
Naveed Ahmed, Volker John

Abstract

A numerical assessment of two classes of variational multiscale (VMS) methods for
the simulation of incompressible flows is presented. Two types of residual-based VMS
methods and two types of projection-based VMS methods are included in this assess-
ment. The numerical simulations are performed at turbulent channel flow problems with
various friction Reynolds numbers. It turns out the the residual-based VMS methods, in
particular when used with a pair of inf-sup stable finite elements, give usually the most
accurate results for second order statistics. For this pair of finite element spaces, a flex-
ible GMRES method with a Least Squares Commutator (LSC) preconditioner proved
to be an efficient solver.

1 Introduction

Let Ω ⊂ R3 be a bounded domain with boundary Γ and (0, T ) be a bounded time inter-
val. Incompressible flows are modeled by the incompressible Navier–Stokes equations (in
dimensionless form): Find a velocity field u : (0, T ] × Ω → R3 and a pressure field
p : (0, T ]× Ω→ R such that

∂tu− 2ν∇ · D (u) + (u · ∇)u+∇p = f in (0, T ]× Ω,
∇ · u = 0 in (0, T ]× Ω,

u(0,x) = u0 in Ω,
(1)

where D (u) = (∇u + (∇uT ))/2 is the velocity deformation tensor, ν is the kinematic
viscosity, u0 is a given initial velocity field, and f represents given body forces. System (1)
has to be equipped with boundary conditions on Γ.

In particular, the behavior of turbulent incompressible flows is modeled with (1). There is
no mathematical definition of what is a turbulent flow. A generally used characterization
from the physical point of view is that turbulent flows possess a wide range of physically
important scales, ranging from very large ones to very small ones. The smallest scales
are important for the energy dissipation. From the point of view of numerical simulations,
turbulent flows might be characterized as those whose range of important scales cannot be
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resolved by the affordable fineness of the discrete model, where the fineness depends on the
grid and, e.g., in the case of finite elements, on the polynomial degree. It turns out that in this
situation, standard approaches like central finite differences or the Galerkin finite element
method fail, i.e., the corresponding simulations usually blow up in finite time. These standard
discretizations try to simulate the behavior of all important persistent scales. However, since
usually most of the important persistent scales of turbulent flows cannot be represented
by the affordable fineness of the discretization, these so-called unresolved scales cannot be
simulated. The remedy consists in utilizing a so-called turbulence model, which should model
the impact of the unresolved scales on the resolved scales. There are numerous proposals
of turbulence models, see [26, 30] to mention just two standard references.

One class of turbulence models are Variational Multiscale (VMS) methods. VMS methods
use a mathematical approach for defining a turbulence model, which might be enriched
with a turbulence model based on physical insight into turbulent flows. The principal ideas
of VMS methods were developed in [17, 16]. VMS methods are based on the variational or
weak formulation of the underlying equation. A scale separation into resolved and unresolved
scales is performed by projections into appropriate function spaces. Recent reviews of these
models can be found in [2, 28]. For the sake of brevity, only a few important aspects, in
particular from [2], will be mentioned here.

Several realizations of VMS methods can be found in the literature. One can distinguish
between two-scale VMS methods, which just use a decomposition into resolved and unre-
solved scales, and three-scale VMS methods, where the resolved scales are decomposed
once more in large resolved scales and small resolved scales. For all of these methods, one
can find numerical studies in the literature, see the surveys presented in [2]. But there are
only very few numerical comparisons of these methods among each other. The lack of such
comparisons was mentioned as the main reason why it is not possible so far to provide a
recommendation which VMS method(s) should be used in practice.

As already discussed in [2], we think that assessments of different numerical methods should
be performed with the same code. In this way, a number of algorithmic choices, which might
possess an unknown impact on the computational results, can be chosen to be the same for
all methods, like the concrete finite element spaces, the explicit or implicit temporal treatment
of certain terms, or the stopping criterion for the solver. All realizations of VMS methods go
along with a considerable work for their implementation. Most probably, there are only few
codes providing more than one VMS method. We think that this is a major reason why only
a small number of papers with numerical comparisons of VMS methods is available. To be
concrete, we are only aware of comparisons between the following classes of VMS methods.
Two versions of a three-scale Algebraic VMS-Multigrid method were compared in [13, 14, 27]
with the two-scale residual-based VMS method from [6]. In [20], a three-scale VMS method
that is based on a projection of the velocity deformation tensor, from [18], is compared with
a three-scale VMS method which uses bubble functions for scale separation. Recently, a
comparison of the residual-based VMS method from [6], a simplification of this method, and
two local projection stabilization (LPS) methods was presented in [3]. This comparison was
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performed for a complex flow in two dimensions. However, it is well known that real turbulent
flows possess important properties which cannot occur in two-dimensional flows, like vortex
stretching.

The goal of the present paper consists in assessing approaches from two classes of VMS
methods: two-scale residual-based VMS methods, originally proposed in [6], and three-scale
projection-based VMS methods, proposed in [18]. In addition, a reduced version of the
two-scale residual-based VMS method, a SUPG/PSPG/grad-div method (Streamline Up-
wind Petrov–Galerkin, pressure stabilized Petrov–Galerkin) is incorporated in the numerical
studies. Besides the assessment of these two classes of VMS methods, there are some
additional aspects that extend the available literature. For instance, besides utilizing equal
order pairs of finite element spaces in the residual-based VMS methods, also an inf-sup
stable pair is used. Firstly, both cases require different parameters in these methods and
secondly, for inf-sup stable pairs, the unnecessary pressure-pressure coupling is neglected
such that one obtains saddle point problems in contrast to the equal order pair. Another new
aspect of this paper is the application of the eddy viscosity model proposed by Verstappen
in [33] in the projection-based VMS method. In the literature, so far only the Smagorinsky
model, which is also included in our studies, was applied.

The numerical studies are performed at standard benchmark problems for incompressible
turbulent flow simulations, namely turbulent channel flows problems. In a preliminary study,
a good value of one of the parameters of the residual-based VMS method, when using an
inf-sup stable pair of finite element spaces, is determined. Another preliminary study in-
vestigates the choice of a parameter in the Verstappen eddy viscosity model. After having
determined appropriate parameters, all methods are assessed at the turbulent channel flow
problems. It turns out that the residual-based VMS methods often computed more accu-
rate results, in particular with respect to second order quantities of interest. Concerning the
efficiency of the simulations, a flexible GMRES method with a Least Squares Commutator
(LSC) preconditioner proved to be an efficient approach in the case of the used inf-sup stable
pair of finite element spaces.

The paper is organized as follows. Section 2 describes the studied VMS methods in some
detail. The numerical results, first concerning the parameter studies mentioned above and
then with respect to assess the VMS methods among each other, are presented in Section 3.
A summary is provided in Section 4.

2 Variational Multiscale Methods

This section provides a brief description of the VMS methods that were involved in our com-
putational studies. One can find detailed descriptions of these methods at several places in
the literature, e.g., in [2].

Consider for simplicity of notation the case of homogeneous Dirichlet boundary conditions
on (0, T ] × Γ. To define a variational formulation of the Navier–Stokes equations (1), the
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velocity space V = [H1
0 (Ω)]3 and the pressure space Q = L2

0(Ω) are introduced. Let
(·, ·) denote the L2(Ω) inner product for scalar- and vector-valued functions with respect to
Ω. Then, a variational formulation of (1) reads as follows: Find (u, p) : (0, T ] → V × Q
such that for all (v, q) ∈ V ×Q

(∂tu,v) + 2ν(D (u) ,D (v)) + ((u · ∇)u,v)− (∇ · v, p) = 〈f ,v〉,
(∇ · u, q) = 0,
u(0,x) = u0 in Ω.

(2)

Here, 〈·, ·〉 denotes the duality pairing between V and its dual V ∗ = [H−1(Ω)]
3
. The

convective term will be denoted by

n(u,v,w) = ((u · ∇)v,w), u,v,w ∈ V .

In our numerical studies, conforming spaces V h × Qh are considered, i.e., V h ⊂ V and
Qh ⊂ Q.

As temporal discretization, the BDF2 (backward difference formula of order 2) method is
applied. Denoted by uhn ∈ V h and phn ∈ Qh approximations of the velocity and pressure
fields at time instance tn, then the approximation of the time derivative ∂tu of the velocity
field is defined by

Dtu
h
n+1 =

1

2∆t

(
3uhn+1 − 4uhn − uhn−1

)
, n ≥ 2.

In the first step, the backward Euler method was applied. To reduce the computational com-
plexity associated with the considered VMS methods, a semi-implicit (IMEX) version of the
BDF2 method was utilized. For this version, the convection field and the pressure were ob-
tained by means of a linear extrapolation:

ûhn+1 = 2uhn − uhn−1 and p̂hn+1 = 2phn − phn−1.

The BDF2 scheme is of second order and it is strongly A-stable. Its use facilitates in particular
the application of the two-scale residual-based VMS and the SUPG method in comparison
with the Crank–Nicolson scheme, which is also of second order, A-stable, but not strongly
A-stable. This is because in the Crank–Nicolson scheme residuals at former time instances
are needed, which is not the case for BDF2. Despite the favorable properties of BDF2, this
method does not seem to be used widely in combinations with VMS methods. We are aware
of [10] for applying it in combination with a residual-based VMS method and of the two-
dimensional studies from [3].
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An assessment of two classes of VMS methods for turbulent flows 5

2.1 Two-Scale Residual-Based (RB-)VMS Method

This two-scale VMS method was proposed in [6]. It has the form: Find uh : (0, T ] →
V h, ph : (0, T ]→ Qh satisfying(

∂tu
h,vh

)
+
(
2νD

(
uh
)
,D
(
vh
))

+ n
(
uh,uh,vh

)
+
(
∇ · uh, qh

)
−
(
∇ · vh, ph

)
− κis

(
reshm,∇qh

)
−
(
reshc ,∇ · vh

)
+ n

(
reshm,u

h,vh
)

+n
(
uh, reshm,v

h
)

+ n
(
reshm, res

h
m,v

h
)

= 〈f ,vh〉 (3)

for all
(
vh, qh

)
∈ V h ×Qh, with(

reshm
reshc

)
=

(
τm

(
f − ∂tuh + ν∆uh −

(
uh · ∇

)
uh −∇ph

)
−τc

(
∇ · uh

) )
. (4)

The term −
(
reshc ,∇ · vh

)
is known as grad-div stabilization. In (4), τm is a vector-valued

and τc is a scalar stabilization parameter. For pairs of finite element spaces that satisfy the
discrete inf-sup condition, there is κis = 0, else it is κis = 1.

To the best of our knowledge, one can find in the literature only numerical studies with RB-
VMS methods using so-called equal order spaces, i.e., the finite element spaces for velocity
and pressure are of the same principal form, e.g., in [6, 11, 13, 10]. In this case, it is κis = 1
and there is a pressure-pressure coupling via the term −

(
reshm,∇qh

)
such that the RB-

VMS method (3) does not lead to a saddle point problem. However, the RB-VMS methodol-
ogy can be applied of course also with inf-sup stable pairs of finite element spaces. In this
case, a pressure-pressure coupling is not necessary for stabilization and it was not used
in our simulations since κis = 0 was set. In this way, one has to solve finally saddle point
problems and tailored solvers for such problems can be utilized, see Section 3.5. In addition,
this approach avoids the assembling of a block matrix and the performance of unnecessary
matrix-vector multiplications. The numerical studies presented in this paper consider as well
equal order as inf-sup stable pairs of finite element spaces.

The fully discrete linearized semi-implicit RB-VMS formulation of (3) reads: Find
(
uhn+1, p

h
n+1

)
∈

V h ×Qh such that(
Dtu

h
n+1,v

h
)

+
(
2νD

(
uhn+1

)
,D
(
vh
))

+ b
(
ûhn+1,u

h
n+1,v

h
)

+
(
∇ · uhn+1, q

h
)

−
(
∇ · vh, phn+1

)
− κis

(
reshm,n+1,∇qh

)
−
(
reshc,n+1,∇ · vh

)
+n
(
reshm,n+1, û

h
n+1,v

h
)

+ n
(
ûhn+1, res

h
m,n+1,v

h
)

+n
(
reshm,n+1, r̂es

h
m,n+1,v

h
)

= 〈fn+1,v
h〉 (5)

for all
(
vh, qh

)
∈ V h ×Qh, where the residuals are given by

reshm,n+1 = τm

(
fn+1 −Dtu

h
n+1 + ν∆uhn+1 −

(
ûhn+1 · ∇

)
uhn+1 −∇phn+1

)
,

r̂eshm,n+1 = τm

(
fn+1 −Dtû

h
n+1 + ν∆ûhn+1 −

(
ûhn+1 · ∇

)
ûhn+1 −∇p̂hn+1

)
,

reshc,n+1 = −τ̂c
(
∇ · uhn+1

)
.
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Thus, the fully discrete RB-VMS method combined with the semi-implicit BDF2 scheme re-
quires only the solution of one linear problem at each time instance. As the notation suggests,
the stabilization parameters τm and τ̂c do not depend on the concrete time instance.

As already mentioned, both equal-order and inf-sup stable pair of finite elements are used
in the numerical studies. A crucial issue is the choice of the stabilization parameters in (5).

For equal order pairs of finite element spaces, the proposal given in [6, Eqs. (63)–(69)] was
used. In this proposal, one needs the value of the constant cinv of an inverse estimate, which
is usually not known in practice. In [6], there is no concrete value given and we could not
find such a value in the reference provided in this paper. However, cinv is multiplied with
the square of the viscosity, which is a very small factor for turbulent flows, such that the
term with cinv is most probably of minor importance. In fact, we performed simulations with
cinv ∈ {1, 50, 100} and could not observe substantial differences in the results. For brevity,
these results are not presented in detail. All results presented below were computed with
cinv = 50.

In the case of inf-sup stable pairs of finite element spaces, it is known from the Oseen
equations that the stabilization parameters have to be chosen in a different way, e.g., see
[23, Rem. 5.24]. The grad-div parameter τ̂c has to be chosen as a constant and the SUPG
parameter in the form τm = τmI, where I is the identity matrix and τm = O(h2K), with
hK being a local width of the mesh cell K . Since anisotropic mesh cells are used in the
numerical studies, there are several proposals for defining the local mesh width. Based on
our experience, e.g., see [22] or [23, Ex. 8.128], we used for hK the length of the shortest
edge of K . All simulations were performed with τm = 0.25 h2K . Note that because of
the scaling with h2K , the SUPG parameter is usually of minor impact in the case of inf-sup
stable pairs of finite element spaces. For choosing an appropriate grad-div parameter τ̂c,
preliminary numerical studies were performed that are presented in Section 3.2.

2.2 Reduced RB-VMS Method, SUPG Method

The term n
(
uh, reshm,v

h
)

and n
(
reshm, res

h
m,v

h
)

in (3) are computationally somewhat
involved. Neglecting these terms leads to the traditional SUPG/PSPG/grad-div method (stream-
line upwind Petrov–Galerkin, pressure stabilization Petrov–Galerkin). This method will be
denoted briefly by SUPG in the following. Of course, there is the question concerning the
impact of the neglected terms in the results of numerical simulations. Recent studies of a
two-dimensional flow at high Reynolds number in [3] do not show an advantage of using the
RB-VMS method (3) instead of the SUPG method. To investigate this question also for tur-
bulent flows, the SUPG method is included in the numerical studies presented in this paper.

The fully discrete SUPG method considered in the numerical studies is obtained by neglect-
ing the last two terms on the left-hand side of (5).
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An assessment of two classes of VMS methods for turbulent flows 7

2.3 Three-Scale Projection-Based (PB-)VMS Method

In this VMS method, proposed in [18] based on ideas from [24], a physically based tur-
bulence model is applied to fluctuations of the velocity deformation tensor. To this end, a
finite-dimensional space LH of symmetric 3 × 3 tensor-valued functions is needed. Then,
the fully implicit three-scale PB-VMS method discretized in time using the semi-implicit BDF2
method reads: Find

(
uhn+1, p

h
n+1,GH

n+1

)
∈ V h ×Qh × LH satisfying(

Dtu
h
n+1,v

h
)

+
(
2νD

(
uhn+1

)
,D
(
vh
))

+ n(ûhn+1,u
h
n+1,v

h)

−
(
∇ · vh, phn+1

)
+
(
νT,n+1

(
D
(
uhn+1

)
−GH

n+1

)
,D
(
vh
))

= 〈fn+1,v
h〉(

∇ · uhn+1, q
h
)

= 0,(
D
(
uhn+1

)
−GH

n+1,LH
)

= 0, (6)

for all
(
vh, qh

)
∈ V h × Qh and LH ∈ LH . In (6), νT,n+1 is a non-negative function

that usually depends on the finite element velocity. Note that the fluctuations of the velocity
deformation tensor are defined by a L2(Ω) projection.

In the literature, so far only the Smagorinsky model [31]

νT,n+1 = CSδ
2‖D

(
uhn+1

)
‖F (7)

seemed to be used, where CS is a user-chosen constant, δ is proportional to a local mesh
width, and ‖ · ‖F is the Frobenius norm of a tensor. The numerical simulations presented
in Section 3 were performed with δ = 2hK , where hK is the shortest edge of the mesh
cell K . Numerical studies, e.g., in [22], showed that this measure of the filter width is more
appropriate than, e.g., measures that depend on the cubic root of the volume of K . In a
vicinity of the boundary, a van Driest damping [26, p. 599] of the following form is utilized

νT,n+1 = CSδ
2

(
1− exp

(
−y

+

26

))
‖D
(
uhn+1

)
‖F, if y+ < 5,

where y+ is the viscous length scale. From previous numerical studies, it is known that good
choices for the user-chosen constant are usuallyCS ∈ [0.01, 0.02], e.g., see [23, Ex. 8.277,
8.279, 8.280]. For brevity, only results obtained with CS = 0.015 will be presented here.

The numerical studies presented in this paper use, besides the Smagorinsky model (7), also
an eddy viscosity model proposed by Verstappen in [33]. Investigating the question when
eddy viscosity damps subgrid scales sufficiently, a model was derived, whose simplest form
is

νT,n+1 = 6

(
δVer
π

)2
∣∣det

(
D
(
uhn+1

))∣∣
‖D
(
uhn+1

)
‖2F

, (8)

where δVer is also here the user-chosen filter width. A study for determining an appropriate
value of δVer within the framework of the PB-VMS method is presented in Section 3.3. Note
that at walls with no-slip boundary condition, the eddy viscosity model (8) vanishes, since
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det
(
D
(
uhn+1

))
= 0 because the directional derivatives of the velocity in all tangential

directions vanish.

One can find in the literature so far simulations with the PB-VMS method only in combina-
tion with a fully implicit Crank–Nicolson scheme. Note that, in contrast to the residual-based
methods, using the Crank–Nicolson scheme does not increase the complexity of implement-
ing the PB-VMS method.

The PB-VMS method (6) leads to a saddle point problem. Hence, the finite element velocity
and pressure space need to satisfy the discrete inf-sup condition. In [18], it was shown that
an efficient implementation of (6) is only possible if LH consists of discontinuous functions.
Possible choices that were used in the literature are piecewise constant (P0) or piecewise
linear (P disc

1 ) tensors. An adaptive choice of the projection space was proposed in [21],
however this approach is considerably more complicated to implement than the case of a
fixed space LH and it will not be considered in this paper. In our experience, e.g., see [23,
Ex. 8.279, 8.280], results obtained with piecewise constant tensors were usually among the
best results for this method. For brevity, only results with LH = (P0)

3×3 will be presented in
Section 3. The corresponding method is denoted by PB-VMS0.

3 Numerical Studies

Numerical studies were performed at turbulent channel flow problems. These problems, de-
fined in [25], are standard benchmark problems for assessing numerical methods for incom-
pressible turbulent flow simulations.

3.1 Turbulent Channel Flows, Setup of the Simulations

Here, only a brief description of the examples are given because one can find such descrip-
tions at many places in the literature. The description below follows [23, Ex. D.12].

Turbulent channel flows at three Reynolds numbers (based on the friction velocity) are con-
sidered: Reτ ∈ {180, 395, 590}. The flow domain in the case Reτ = 180 is given by

Ω = (−2π, 2π)× (0, 2)×
(
−2

3
π,

2

3
π

)
and for the two higher Reynolds numbers, it is defined by

Ω = (−π, π)× (0, 2)×
(
−π

2
,
π

2

)
.

The body force in the Navier–Stokes equations is f = (1, 0, 0)T . In all cases, there are no-
slip boundary conditions u = 0 at the walls y = 0 and y = 2. In the other two directions,
periodic boundary conditions are described. An initial velocity field is obtained by adding
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An assessment of two classes of VMS methods for turbulent flows 9

some random noise to the known mean velocity profile from [25], see [15] or [23, Ex. D.12]
for details.

Simulations were performed in the time interval [0, 40]. In the first ten time units, the flows
were allowed to develop and statistics of the flow were computed in [10, 40].

For discretizing the equations, finite element methods on hexahedral grids were utilized.
Concretely, for the RB-VMS and the SUPG methods, the pairs Q2/P

disc
1 and Q2/Q2 were

used. Here, Q2 is the space of continuous piecewise polynomials, where in each term each
factor might be a monomial up to degree two. The space P disc

1 consists of discontinuous
functions that are piecewise linear. The pair Q2/P

disc
1 of finite element spaces is inf-sup

stable whereas the pair Q2/Q2 is not. To the best of our knowledge, numerical simulations
of the RB-VMS method with inf-sup stable finite elements cannot be found so far in the liter-
ature. In addition, simulations with the RB-VMS method using equal order spaces of higher
order than first order are also rare in the literature. We are solely aware that in [6] second
order NURBS were utilized for the RB-VMS method and P2/P2 elements in [10]. For the
PB-VMS0 method, the inf-sup stable pair Q2/P

disc
1 was used and, as already mentioned,

the projection space LH = (P0)
3×3. The use of higher order than Q1 finite element spaces

for the velocity is based on our experience that the computational results are generally con-
siderably more accurate if Q2 elements are used. Their implementation is not much more
involved than those of Q1 elements.

The hexahedral grids were of tensor product type. The mesh widths in stream-wise (x) and
spanwise (z) direction were chosen to be equidistant. In normal direction (y), the meshes
were refined towards the walls. There are several proposals in the literature on how to per-
form this refinement. From our own experience, e.g., see [19], choosing the nodes accord-
ingly to

yi = 1− cos

(
iπ

Ny

)
, i = 0, . . . , Ny,

where Ny is the number of mesh cells in wall normal direction, is an appropriate way. For
different Reynolds numbers, grids with different fineness were utilized: a coarse grid for
Reτ = 180, a medium refined grid for Reτ ∈ {395, 590}, and a fine grid for Reτ = 590.
Some data of the grids and the corresponding number of degrees of freedom are summa-
rized in Table 1.

As already mentioned at the beginning of Section 2, BDF2 was used as temporal discretiza-
tion. The length of the equidistant time step was set to be ∆t = 0.004 for Reτ = 180 and
∆t = 0.002 for the other two Reynolds numbers.

For assessing the computational results, the standard reference mean profiles from [25] were
used. As first order statistics, the mean velocity profile was considered, where the averaging
is performed in space and time, denoted by 〈〈·〉s〉t. The difference to this profile is defined
by

umean,sim − umean,ref . (9)

Second order statistics that were monitored are one component of the Reynolds stress ten-
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Table 1: Information on the used grids, where d.o.f. denotes the number of degrees of free-
dom. The space Q2 includes always Dirichlet nodes.

coarse medium fine
mesh cells 8× 16× 8 16× 32× 16 32× 64× 32
d.o.f. P disc

1 4 096 32 768 262 144
d.o.f. Q2 (scalar) 8 448 66 560 528 384
d.o.f. all Q2/P

disc
1 29 440 232 448 1 847 296

d.o.f. all Q2/Q2 33 792 266 240 2 113 536

sor
Th12,mean = 〈〈uh1uh2〉s〉t − 〈〈uh1〉s〉t〈〈uh2〉s〉t

and one rms (root mean squared) turbulence intensity

uh1,rms =

∣∣∣∣∣Th11,mean −
1

3

3∑
j=1

Thjj,mean

∣∣∣∣∣
1/2

.

The description of the solvers for the arising linear systems of equations is postponed to
Section 3.5, where the computational costs of the methods will be discussed.

All simulations were performed with the code PARMOON [12, 34] at compute servers HP
BL460c Gen9 2xXeon, Fourteen-Core 2600MHz, using 14 processors for the coarse and
medium grid and 21 processors for the fine grid. The parallelization was performed on the
basis of MPI.

3.2 Determining an Appropriate Value for τn+1
c in the RB-VMS and

SUPG Method

All considered methods possess parameters that have to be chosen and their concrete
choice might have a considerable impact on the computational results. The choices used in
our simulations were already discussed to some extent at the end of Sections 2.1 and 2.3. An
open issue from these discussions was an appropriate value for τc in the RB-VMS and SUPG
methods for the case of using the inf-sup stable pair Q2/P

disc
1 of finite element spaces.

Preliminary computational studies were performed for determining an appropriate value for
τc and results for the turbulent channel flow at Reτ = 180 obtained on the coarse grid
are presented in Figures 1 and 2. Very similar results are obtained for the RB-VMS and
the SUPG methods, such that for the sake of brevity, only results for the SUPG method are
shown. From Figure 1, where a wider range for this parameter is considered, it can be seen
that the best results are obtained for τc = 0.3. Smaller values of this parameter lead to a
less accurate curve for Th12,mean whereas larger values give also less accurate results with
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Figure 1: Turbulent channel flow at Reτ = 180, coarse grid, SUPG method with Q2/P
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1 ,

results for different values of τc
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results for different values of τc.
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Figure 3: Turbulent channel flow at Reτ = 395, medium grid, PB-VMS0 method with Ver-
stappen eddy viscosity (8), different values of the filter width constant δVer.

respect to the mean velocity profile. Having a closer look to this range of the parameter, see
Figure 2, reveals that τc = 0.3 is indeed an appropriate value. Altogether, we decided to
use τc = 0.3 for all subsequent simulations with the RB-VMS and the SUPG methods in
combination with the Q2/P

disc
1 pair of finite element spaces.

3.3 Determining an Appropriate Value for δVer in the Verstappen Eddy
Viscosity Model (8)

As already explained at the end of Section 2.1, we chose as local mesh width hK the length
of the shortest edge of the mesh cell K . Then, the ansatz δVer = CVerhK was studied for
the local filter width in the Verstappen eddy viscosity model (8).

Again, preliminary numerical studies were performed for determining an appropriate value
for CVer. Results for the turbulent channel flow at Reτ = 395 computed on the medium
grid are presented in Figures 3 and 4. Figure 3 shows that better results are obtained with
intermediate values of the considered set of values. Too large values lead to inaccurate
mean velocity profiles and too small values to inaccurate results concerning Th12,mean. More
detailed studies presented in Figure 4 reveal that the best results are obtained with CVer ∈
{1.5, 1.6}. Among these values, the error in the mean velocity is somewhat smaller for
CVer = 1.5 and the result for Th12,mean is a little bit better for CVer = 1.6. The results
for uh1,rms, not shown here for brevity, are almost identical for both values. We decided to
use CVer = 1.5 in all other simulations of the PB-VMS method with the Verstappen eddy
viscosity model presented in this paper.

Comparing the final scaling that was used in our simulations with the somewhat more com-
plicated approach utilized in [33], one finds that the scaling in our simulations is a little bit
smaller. For example, close to the walls, for anisotropic mesh cells, the scaling is approxi-
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Figure 4: Turbulent channel flow at Reτ = 395, medium grid, PB-VMS0 method with Ver-
stappen eddy viscosity (8), different values of the filter width constant δVer.

mately 1.5h2K in [33] and 1.37h2K here, where in both cases hK is again the length of the
shortest edge ofK . Note that in [33], the proposed eddy viscosity model was used as a LES
model and not within a VMS method.

3.4 Assessment of the VMS Methods with Respect to the Reference
Profiles

The computational results with respect to the reference profiles for the turbulent channel
flows at Reτ ∈ {180, 395, 590} are presented in Figures 5–8. The choice of the parameters
for the individual methods is given in Sections 2.1, 2.3, 3.2, and 3.3.

Turbulent channel flow at Reτ = 180. The results for this case are presented in Figure 5.
Concerning the mean velocity profile, one can see that there are notable differences between
the RB-VMS and SUPG methods, on the one hand, and the PB-VMS0 methods, on the other
hand, in particular close to the wall. Whereas the former methods predict a mean velocity that
is too small, since there is a negative value of (9), the latter methods give an over-prediction.
For the RB-VMS and the SUPG methods, the results with the Q2/P

disc
1 pair are somewhat

more accurate than with the Q2/Q2 pair. Considering the PB-VMS0 methods, better results
are obtained with the Verstappen model in comparison with the Smagorinsky model.

The profile for Th12,mean was predicted more accurately with the RB-VMS and SUPG methods
than with the PB-VMS0 methods. Again, within these classes of methods, the Q2/P

disc
1

behaves better for the former classes, in particular for the SUPG method, and the Verstappen
model for the latter class.

With respect to uh1,rms, there are only minor differences between all obtained results. The
best one is computed with the PB-VMS0 method using the Verstappen model. Here, the use
of Q2/Q2 leads to a little bit better results for the RB-VMS and SUPG methods than the use
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Figure 5: Turbulent channel flow at Reτ = 180, coarse grid. Comparisons with reference
profiles.

of the Q2/P
disc
1 pair of spaces.

In summary, the different classes of VMS methods give different results, in particular with
respect to the mean velocity profile close to the boundary and the profile of Th12,mean. The
RB-VMS and SUPG methods are considerably more accurate for Th12,mean For these meth-
ods, somewhat better results are obtained with the Q2/P

disc
1 pair of finite element spaces.

There are usually only negligible differences between the results computed with RB-VMS
and SUPG if the same pair of finite element spaces is used. Concerning the PB-VMS0 meth-
ods, the use of the Verstappen model leads to more accurate results than the application of
the Smagorinsky model.

Turbulent channel flow at Reτ = 395. Computational results obtained for this example are
displayed in Figure 6. Their evaluation reveals a few differences in comparison to the flow at
Reτ = 180.

The PB-VMS0 method with the Verstappen model under-predicts the mean velocity close
to the boundary. Concerning this reference profile, the PB-VMS0 methods computed better
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Figure 6: Turbulent channel flow at Reτ = 395, medium grid. Comparisons with reference
profiles.

results in the center of the channel. Among these methods, the Smagorinsky model gives
the more accurate velocity profile. However, with respect to Th12,mean and uh1,rms, the profiles
obtained with the Verstappen model are somewhat closer to the reference profiles.

Like in the Reτ = 180 case, the RB-VMS and SUPG methods lead to considerably better
results for Th12,mean, compared with the PB-VMS0 methods. Also the profiles for uh1,rms are a
little bit more accurate. For the SUPG methods, the results with respect to the mean velocity
and Th12,mean are slightly more accurate if the Q2/P

disc
1 pair of spaces was used, instead of

the Q2/Q2 pair.

Summarizing, the most striking difference of the results computed with the various VMS
methods is the different accuracy with respect to Th12,mean. Again, the RB-VMS and SUPG
methods lead to notably more accurate results. All results computed with the RB-VMS and
SUPG methods are rather similar. For the PB-VMS0 methods, the second order quantities
of interest are predicted somewhat more accurately if the Verstappen model was used.

Turbulent channel flow at Reτ = 590. Computational studies for this case were performed
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Figure 7: Turbulent channel flow at Reτ = 590, medium grid. Comparisons with reference
profiles. Note that the curves for the SUPG methods are often on top of the corresponding
curves for the RB-VMS methods.

on the medium and the fine grid, see Figures 7 and 8 for the corresponding results. On the
medium grid, the PB-VMS0 methods predict a more accurate mean velocity in the center of
the channel, in particular the PB-VMS0 method with Smagorinsky model. On the fine grid,
however, the results of the PB-VMS0 methods are not longer more accurately for the mean
velocity and among these methods, the Verstappen model gives a somewhat better result.
Concerning both second order quantities of interest, the RB-VMS and SUPG results are
clearly more accurate than the results obtained with the PB-VMS0 methods. There are al-
most no visible differences between the curves of the RB-VMS and the SUPG method for the
same pair of finite element spaces. On the medium grid, the results for Th12,mean computed
with the pair Q2/P

disc
1 are slightly better than those computed with the pair Q2/Q2. For all

other second order quantities of interest, the curves for both pairs of finite element spaces
are almost on top of each other.

In summary, the most notable observation for turbulent channel flow at Reτ = 590 is that the
predictions of the second order quantities of interest are computed much more accurately
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Figure 8: Turbulent channel flow at Reτ = 590, fine grid. Comparisons with reference pro-
files. Note that the curves for the SUPG methods are often on top of the corresponding
curves for the RB-VMS methods.

for the RB-VMS and SUPG methods compared with the PB-VMS0 methods.

3.5 Computational Costs

The main goal of our numerical studies was the assessment of the VMS methods with re-
spect to the accuracy of the results and a comprehensive comparison of them with respect
to efficiency is beyond the scope of the paper. But of course, we tried to perform efficient
simulations utilizing the methods that were provided by the used code.

As already mentioned, the simulations were performed with a MPI parallelized code using
14 processors for the coarse and medium grid and 21 processors for the fine grid.

By construction, a computational overhead of all methods consists in assembling additional
terms compared with the Galerkin finite element discretization of the Navier–Stokes equa-
tions. For the RB-VMS and the SUPG methods, these residual-based terms are calculated
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by local computations. For the PB-VMS0 methods, an assembling of some matrices con-
nected with the space LH is necessary at the initial time and then the assembling of the
additional terms in each discrete time requires few matrix-vector products with these ma-
trices, see [18] or [23, Rem. 8.275] for details. Thus, the computational overhead for all
methods is comparable from the point of view of assembling.

The arising linear systems of equations were solved iteratively, with the flexible GMRES
method [29] as iterative solver. For efficient simulations, this method has to be equipped with
an appropriate preconditioner. The stopping criterion for the flexible GMRES method was
that the Euclidean norm of the residual vector was below 7 · 10−7.

Using the inf-sup stable pair of finite element spaces Q2/P
disc
1 leads in all considered VMS

methods to a linear saddle point problem to be solved in each time instance of the IMEX
method. A study of solvers for linear saddle point problems was presented recently in [1].
This study considered laminar flows, the Galerkin finite element method, and serial simu-
lations. For time-dependent problems, it was demonstrated in [1] that the so-called Least
Squares Commutator (LSC) preconditioner from [7, 9] works efficiently. In particular, the ef-
ficiency of this preconditioner benefits from small time steps. For the simulations presented
here, we used the same preconditioner, but now for turbulent flows, the VMS methods, and
parallel simulations. For brevity, only the most important components of this preconditioner
will be described, for a detailed description, we refer to the original sources [7, 9]. In the LSC
preconditioner, one has to solve in each preconditioning step two systems for the pressure,
where the matrix can be interpreted as a discretization of a scaled Poisson equation, and
one system for the velocity. The matrix for the pressure system is the same for all time in-
stances. The same strategy as in [1] was used, i.e., this matrix was explicitely computed,
factorized with a parallel sparse solver, concretely with MUMPS [4, 5], and afterwards the
triangular systems with the factors were solved. Note that the expensive steps, the explicit
computation and the factorization of the matrix, have to be performed only in the first time
step. The velocity system was solved iteratively with BiCGStab [32] and the SSOR precon-
ditioner with relaxation parameter ω = 1. A so-called inexact solve was performed, stopping
the BiCGStab iteration after having reduced the Euclidean norm of the residual by the factor
104.

Utilizing the equal order pair Q2/Q2 introduces a pressure-pressure block in the linear sys-
tem of equations due to the stabilization with respect to the violation of the discrete inf-sup
condition. The LSC preconditioner can be extended to stabilized discretizations with first or-
der velocity and pressure finite element spaces, see [8]. We are not aware of an extension
to equal order pairs of finite element spaces of higher order. For this reason, the other type
of preconditioner that was studied in [1] was utilized, namely a geometric multigrid method.
The multiple discretization type of this method and a Vanka smoother were used. The Vanka
smoother is a block Gauss–Seidel method. The multigrid F-cycle was applied with three pre
and three post smoothing steps. For details concerning this preconditioner, we refer to [23,
Chapter 9.2.2] and [1].

Information with respect to the computing times and the number of flexible GMRES iterations
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Table 2: Efficiency of the VMS methods. First row for each method: computing time for the
interval [0, 40] in seconds, rounded to three leading digits; second row for each method:
average number of flexible GMRES iterations per time step, rounded to the first digit after
the comma. Note that 10 000 time steps were performed for Reτ = 180 and 20 000 time
steps for the other Reynolds numbers.

Reτ = 180 Reτ = 395 Reτ = 590 Reτ = 590
coarse medium medium fine

RB-VMS 1.61e4 1.65e5 2.10e5 1.31e6
Q2/P

disc
1 7.6 6.4 10.9 5.5

RB-VMS 2.02e5 1.49e6 1.51e6 6.84e6
Q2/Q2 3.2 2.9 3.0 3.6
SUPG 2.09e4 2.06e5 2.17e5 3.82e6
Q2/P

disc
1 9.5 10.2 10.9 19.5

SUPG 2.01e5 1.24e6 1.26e6 5.58e6
Q2/Q2 3.2 2.9 3.0 2.9
PB-VMS0 1.02e4 8.19e4 7.85e4 8.05e5
Smagorinsky 7.7 5.8 5.9 6.8
PB-VMS0 9.70e3 8.59e4 8.97e4 7.65e5
Verstappen 7.4 5.8 5.9 6.8

are provided in Table 2. It should be noted that the individual LSC steps might take different
times since there is usually a different number of BiCGStab iterations for the velocity system.
The most efficient simulations were performed with the PB-VMS0 method. Obviously, the
LSC preconditioner works well. Only a slight dependency of the number of flexible GMRES
iterations on the Reynolds number can be observed. For the RB-VMS and SUPG methods
with the Q2/P

disc
1 pair of finite element spaces, flexible GMRES with LSC needed usually

more iterations (with one exception) and always more time than for PB-VMS0. In three situ-
ations, the simulations were considerably more efficient for the RB-VMS method, compared
with the SUPG method. Thus, the additional terms of the RB-VMS method seemed to pos-
sess a positive impact on the efficiency of the LSC preconditioner. In the equal order case,
the multigrid preconditioner worked very well concerning the number of flexible GMRES it-
erations, but quite inefficiently with respect to computing times. One preconditioning step is
simply too expensive. As already observed in [1], this preconditioner does not take advan-
tage from small time steps. Finding and implementing a more efficient solver will be future
work.

4 Summary

The most important conclusions from the numerical studies are as follows:
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� Taking the results for all quantities of interest into account, the RB-VMS and SUPG
methods gave more accurate results than the PB-VMS0 methods. This observation
holds true in particular for the second order statistics, and there in particular for the
Reynolds stress tensor Th12,mean.

� There were usually only little differences between the results obtained with the RB-
VMS methods and the SUPG methods.

� The results computed with the inf-sup stable pair Q2/P
disc
1 of finite element spaces

within the RB-VMS and the SUPG methods were often slightly more accurate than
the result computed with the equal order finite element pair Q2/Q2 and the same
methods.

� Concerning the PB-VMS0 methods, the Verstappen eddy viscosity model gave often
more accurate results than the Smagorinsky eddy viscosity model.

� The LSC preconditioner worked usually efficiently for the methods with the inf-sup sta-
ble pair Q2/P

disc
1 . It needed less computing time for the PB-VMS methods than for

the RB-VMS and the SUPG methods. The additional terms of the RB-VMS method,
in comparison with the SUPG method, seemed to have a positive impact on the effi-
ciency of the LSC preconditioner.

On the basis of our studies, the RB-VMS method with the Q2/P
disc
1 pair of finite element

spaces can be recommended. The results with the SUPG method and the same pair of
spaces were almost identical, but the simulations were less efficient.
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