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Randomized optimal stopping algorithms
and their convergence analysis
Christian Bayer, Denis Belomestny, Paul Hager,

Paolo Pigato, John G. M. Schoenmakers

Abstract

In this paper we study randomized optimal stopping problems and consider corresponding
forward and backward Monte Carlo based optimization algorithms. In particular we prove the
convergence of the proposed algorithms and derive the corresponding convergence rates.

1 Introduction

Optimal stopping problems play an important role in quantitative finance, as some of the most liquid
options are of American or Bermudan type, that is, they allow the holder to exercise the option at any
time before some terminal time or on a finite, discrete set of exercise times, respectively. Mathemat-
ically, the price of an American or Bermudan option is, hence, given as the solution of the optimal
stopping problem

sup
τ∈T

EZτ ,

where Zt denotes the discounted payoff to the holder of the option when exercising at time t, and
T denotes the set of all stopping times taking values in [0, T ] in the American case and the set of
stopping times taking values in the set of exercise dates {t0, . . . , tJ} in the Bermudan case. Here E
stands for the expectation w.r.t. some risk neutral measure. In this paper, we restrict ourselves to the
Bermudan case, either because the option under consideration is of Bermudan type or because we
have already discretized the American option in time.

1.1 Background

Due to the fundamental importance of optimal stopping in finance and operations research, numerous
numerical methods have been suggested. If the dimension of the underlying driving process is high
then deterministic methods become inefficient. As a result most state-of-the-art methods are based
on the dynamic programming principle combined with Monte Carlo. This class includes regression
methods (local or global) [17, 8], mesh methods [11] and optimization based Monte Carlo algorithms
[1, 7]. Other approaches include the quantization method [3] and stochastic policy iteration [16] for
example. While the above methods aim at constructing (in general suboptimal) policies, hence lower
estimations of the optimal stopping problem, the dual approach independently initiated by [19] and
[15] has led to a stream of developments for computing upper bounds of the stopping problem (see,
for instance, [10] and the references therein).

In this paper, we revisit optimization-based Monte Carlo (OPMC) algorithms and extend them to the
case of randomized stopping times. The idea behind OPMC methods is to maximize a MC estimate of
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the associated value function over a family of stopping policies thus approximating the early exercise
region associated to the optimal stopping problem rather than the value function. This idea goes back
to [1]. For a more general formulation see for instance [20], Ch. 5.3, and [7] for a theoretical analysis.
One problem of OPMC algorithms is that the corresponding loss functions are usually very irregular,
as was observed in [7] and [4]. In order to obtain smooth optimization problems, the authors in [9] and
[4] suggested to relax the problem by randomizing the set of possible stopping times. For example,
in the continuous exercise case, it was suggested in [4] to stop at the first jump time of a Poisson
process with time and state dependent rate. The advantage of this approach is that the resulting
optimization problem becomes smooth. In general the solution of the randomized optimal stopping
problem coincides with the solution of the standard optimal stopping problem, as earlier observed in
[13].

Let us also mention the recent works [5, 6] that use deep neural networks to solve optimal stopping
problems numerically. These papers show very good performance of deep neural networks for solving
optimal stopping problems, especially in high dimensions. However a complete convergence analysis
of these approaches is still missing. A key issue in [5, 6] is a kind of smoothing of the functional rep-
resentations of exercise boundaries or policies in order to make them suited for the standard gradient
based optimization algorithms in the neural network based framework. In fact, we demonstrate that the
randomized stopping provides a nice theoretical framework for such smoothing techniques. As such
our results, in particular Corollary 4.8, can be interpreted as a theoretical justification of the neural
network based methods in [5, 6].

Summing up, the contribution of this paper is twofold. On the one hand, we propose general OPMC
methods that use randomized stopping times, instead of the ordinary ones, thus leading to smooth op-
timization problems. On the other hand, we provide a thorough convergence analysis of the proposed
algorithms that justify the use of randomized stopping times.

The structure of the paper is as follows. In Section 2 we introduce the precise probabilistic setting.
In the following Section 3 we introduce the forward and the backward Monte Carlo methods. Conver-
gence rates for both methods are stated and proved in Section 4. In Section 5 we describe a numerical
implementation and present some numerical results for the Bermudan max-call. Finally, there is an
appendix with technical proofs presented in Section A and with a reminder on the theory of empirical
processes in Section B.

2 Randomized optimal stopping problems

Let (Ω,F , (Fj)j≥0) be a given filtered probability space, and (Ω0,B) be some auxiliary space that is

“rich enough” in some sense. A randomized stopping time τ is defined as a mapping from Ω̃ := Ω×Ω0

to N (including 0) that is measurable with respect to the σ-field F̃ := σ {F ×B : F ∈ F , B ∈ B} ,
and satisfies

{τ ≤ j} ∈ F̃j := σ {F ×B : F ∈ Fj, B ∈ B} , j ∈ N.

While abusing notation a bit,F andFj are identified with σ {F × Ω0 : F ∈ F} ⊂ F̃ and σ {F × Ω0

: F ∈ Fj} ⊂ F̃j, respectively. Let further P be a given probability measure on (Ω,F), and P̃ be its

extension to (Ω̃, F̃) in the sense that

P̃ (Ω0 × F ) = P (F ) for all F ∈ F .

In this setup we may think of P as the measure governing the dynamics of some given adapted
nonnegative reward process (Zj)j≥0 on (Ω,F , (Fj)j≥0). We then may write (with E denoting the
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Randomized optimal stopping algorithms 3

expectation with respect to the “overall measure” P̃)

E [Zτ ] = E

[
∞∑
j=0

Zjpj

]
(1)

with
pj := E

[
1{τ=j}

∣∣Fj] = P̃ (τ = j| Fj) .

Hence the sequence of nonnegative random variables p0, p1, . . . , is adapted to (Fj)j≥0 and satisfies

∞∑
j=0

pj =
∞∑
j=0

E
[
1{τ=j}

∣∣F] = 1 a.s.

In this paper we shall study discrete time optimal stopping problems of the form

Y ?
j = sup

τ∈T̃ [j,J ]

E[Zτ |Fj], j = 0, . . . , J, (2)

where T̃ [j, J ] is the set of randomized stopping times taking values in {j, . . . , J}. It is well-known
(see [9] and [13]) that there exists a family of ordinary stopping times τ ?j , j = 0, . . . , J, solving (2)
that satisfies the so-called consistency property τ ?j > j =⇒ τ ?j = τ ?j+1. That is, at the same time,

Y ?
j = sup

τ∈T [j,J ]

E[Zτ |Fj], j = 0, . . . , J

where T [j, J ] is the set of the (usual) F -stopping times. Studying (2) over a larger class of stopping
times is motivated by the fact that the set of randomized stopping times is convex, see [9].

From now on we consider the Markovian case with Zj = Gj(Xj), where (Xj)j≥0 is a Markov chain
on (Ω,F , (Fj)Jj=0) with values in Rd and (Gj)j≥0 is a sequence of Rd → R+ functions. We also
shall deal with consistent families of randomized stopping times (τj)

J
j=0 satisfying j ≤ τj ≤ J with

τJ = J and τj > j =⇒ τj = τj+1. Such a consistent family (τk), together with a corresponding
family of conditional exercise probabilities

pk,j := E
[
1{τk=j}

∣∣Fj] , j = k, . . . , J, (3)

may be constructed by backward induction in the following way. We start with τJ = J almost surely
and set pJ,J = 1 reflecting the fact that, since Z ≥ 0 by assumption, stopping at J is optimal provided
one did not stop before J. Assume that τk with k ≤ τk ≤ J, and pk,j, j = k, . . . , J, satisfying (3),
are already defined for some k with 0 < k ≤ J.

Next take some uniformly distributed random variable U ∼ U [0, 1], independent from F and τk, and
a function hk−1 ∈ H withH being a class of functions mapping Rd to [0, 1]. We then set

τk−1 =

{
k − 1, U < hk−1(Xk−1),

τk, U ≥ hk−1(Xk−1)

and

pk−1,j =

{
hk−1(Xk−1) j = k − 1

(1− hk−1(Xk−1)) pk,j j ≥ k.
(4)
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Obviously, we then have for j ≥ k,

E
[
1{τk−1=j}

∣∣Fj] = E
[
1{τk=j}E

[
1U≥hk−1(Xk−1)

∣∣Fj ∨ τk] |Fj]
= (1− hk−1(Xk−1))E

[
1{τk=j}

∣∣Fj] = pk−1,j.

That is, (3) with k replaced by k − 1 is fulfilled.

It is immediately seen that, by the above construction, the thus obtained family of randomized stopping
times (τk)

J
k=0 is consistent, and that

E[Zτk |Fk] = E

[
∞∑
j=k

Zjpk,j

∣∣∣∣∣Fk
]

(5)

with hJ ≡ 1 by definition, and where

pk,j = hj(Xj)

j−1∏
l=k

(1− hl(Xl)), j = k, . . . , J. (6)

Hence each (conditional) probability pk,j is a function of Xk, . . . , Xj by construction, and so in par-
ticular it is measurable with respect to the σ- algebra Fj. In view of (1), (2), and (6), we now consider
the following optimization problems

Y j = sup
h∈HJ−j

E

[
J∑
l=j

Zlhl(Xl)
l−1∏
r=j

(1− hr(Xr))

∣∣∣∣∣Fj
]
, j = 0, . . . , J − 1, (7)

where empty products are equal to 1 by definition, and the supremum is taken over vector functions
h = (h0, . . . , hJ−1) ∈ HJ−j. It is well known, that the optimal process (Snell envelope) (Y ?

j ) can
be attained by using indicator functions (hj) of the form hj(x) = 1S?j (x) in (7), where the stopping
regions (S?j ) have the following characterization

S?j = {x ∈ Rd : Gj(x) ≥ Cj(x)}, Cj(x) = E[Y ?
j+1|Xj = x], j = 0, . . . , J − 1,

with S?J = Rd by definition. A family of optimal stopping times (τ ?j )j=0,...,J solving (2) can then be
defined as a family of first entry times

τ ?j = min{j ≤ l ≤ J : Xl ∈ S?l }, j = 0, . . . , J. (8)

Note that this definition implies that the family (τ ?j )Jj=0 is consistent.

3 Monte Carlo optimization algorithms

We now propose two Monte Carlo optimization algorithms for estimating Y ?
0 in (2). The first one (for-

ward approach) is based on simultaneous optimization of a Monte Carlo estimate for (7) over the
exercise probability functions h0, . . . , hJ , whereas in the second approach these functions are esti-
mated step by step backwardly from hJ down to h0 based on (4). The latter procedure is referred to
as the backward approach.

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020
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3.1 Forward approach

Let us consider the empirical counterpart of the optimization problem (7) at time j = 0. To this end
we generate a set of independent trajectories of the chain (Xj) :

DM :=
{

(X
(m)
0 , . . . , X

(m)
J ), m = 1, . . . ,M

}
and consider the optimization problem

sup
h∈HJ

{
1

M

M∑
m=1

[
J∑
l=0

Gl(X
(m)
l )hl(X

(m)
l )

l−1∏
r=0

(1− hr(X(m)
r ))

]}
. (9)

Let hM be one of its solutions. Next we generate newN independent paths of the chain (Xj)
J
j=0 and

build an estimate for the optimal value Y ?
0 as

YM,N =
1

N

N∑
n=1

[
J∑
l=0

Gl(X
(n)
l )hM,l(X

(n)
l )

l−1∏
r=0

(1− hM,r(X
(n)
r ))

]
(10)

Note that the estimate YM,N is low biased, that is, E[YM,N |DM ] ≤ Y ?
0 . The algorithms based on (9)

and (10) are referred to as forward algorithms in contrast to the backward algorithms described in the
next section.

In Section 4.1 we shall study the properties of the estimate YM,N obtained by the forward approach.
In particular we there show that YM,N converges to Y ?

0 as N,M →∞, and moreover we derive the
corresponding convergence rates.

3.2 Backward approach

The forward approach in the previous sections can be rather costly especially if J is large, as it requires
optimization over a product spaceHJ . In this section we propose an alternative approximative method
which is based on a backward recursion. Fix again a class H of functions h : Rd → [0, 1]. We

construct estimates ĥJ , . . . , ĥ0 recursively using a set of trajectories

DM :=
{(
X

(m)
0 , X

(m)
1 , . . . , X

(m)
J

)
, m = 1, . . . ,M

}
.

We start with ĥJ ≡ 1. Suppose that ĥk, . . . , ĥJ are already constructed, then define

ĥk−1 := arg sup
h∈H

Q̂k−1(h, ĥk . . . , ĥJ) (11)

with

Q̂k−1(hk−1, . . . , hJ) :=

=
1

M

M∑
m=1

[
J∑

j=k−1

Gj(X
(m)
j )hj(X

(m)
j )

j−1∏
l=k−1

(1− hl(X(m)
l ))

]
(12)

in view of (7).
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Remark 3.1. Note that the optimal functions h?j(x) = 1{x∈S?j }, j = 0, . . . , J−1, can be sequentially
constructed via relations

h?k−1 := arg sup
h∈H

[Qk−1(h, h?k, . . . , h
?
J)], h?J ≡ 1,

where

Qk−1(hk−1, hk, . . . , hJ) := E

[
J∑

j=k−1

Zjhj(Xj)

j−1∏
l=k−1

(1− hl(Xl))

]
, (13)

(see also (5) and (6)), provided that h?1, . . . , h
?
J ∈ H. This fact was used in [6] to construct approxima-

tions for h?j , j = 0, . . . , J, via neural networks. Although it might seem appealing to consider classes
of functions H : Rd → {0, 1}, this may lead to nonsmooth and nonconvex optimization problems.
Here we present general framework allowing us to balance between smoothness of the class H and
its ability to approximate h?j , j = 0, . . . , J, see Section 4.2.

Working all the way back we thus end up with a sequence ĥJ , . . . , ĥ0 and, similar to (10), may next
obtain a low-biased approximation ŶM,N via an independent re-simulation with sample size N. By
writing

Q̂k−1(hk−1, . . . , hJ) =

1

M

M∑
m=1

(
Gk−1(X

(m)
k−1)−

J∑
j=k

Gj(X
(m)
j )hj(X

(m)
j )

j−1∏
l=k

(1− hl(X(m)
l ))

)
hk−1(X

(m)
k−1)

+
1

M

M∑
m=1

J∑
j=k

Gj(X
(m)
j )hj(X

(m)
j )

j−1∏
l=k

(1− hl(X(m)
l ))

we see that the backward step (11)-(12) is equivalent to

ĥk−1 = arg sup
h∈H

Q̂k−1(h, ĥk . . . , ĥJ)

= arg sup
h∈H

M∑
m=1

h(X
(m)
k−1)

×

(
Gk−1(X

(m)
k−1)−

J∑
j=k

Gj(X
(m)
j )ĥj(X

(m)
j )

j−1∏
l=k

(1− ĥl(X(m)
l ))

)

=: arg sup
h∈H

M∑
m=1

ξ
(m)
k−1h(X

(m)
k−1) (14)

Advantage of the backward algorithm is its computational efficiency: in each step of the algorithm we
need to perform optimization over a space H and not over the product space HJ as in the forward
approach.

4 Convergence analysis

In this section we provide a convergence analysis of the procedures introduced in Section 3.1 and
Section 3.2 respectively.

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020



Randomized optimal stopping algorithms 7

4.1 Convergence analysis of the forward approach

We make the following assumptions.

(H) Denote for any h1,h2 ∈ HJ ,

dX(h1,h2) :=

√√√√√E

∣∣∣∣∣
J−1∑
j=0

|h1,j(Xj)− h2,j(Xj)|
j−1∏
l=0

(1− h2,l(Xl))

∣∣∣∣∣
2


Assume that the class of functionsH is such that

log[N (δ,HJ , dX)] ≤ Aδ−ρ (15)

for some constant A > 0, any 0 < δ < 1 and some ρ ∈ (0, 2), where N is the minimal
number (covering number) of closed balls of radius δ (w.r.t. dX ) needed to cover the classH.

(G) Assume that all functions Gj, j = 0, . . . , J, are uniformly bounded by a constant CZ .

(B) Assume that the inequalities

P
(
|Gj(Xj)− Cj(Xj)]| ≤ δ

)
≤ A0,jδ

α, δ < δ0 (16)

hold for some α > 0, A0,j > 0, j = 1, . . . , J − 1, and δ0 > 0.

Remark 4.1. Note that

dX(h1,h2) ≤
J−1∑
j=0

‖h1,j − h2,j‖L2(PXj ),

where PXi stands for the distribution of Xi. Hence (15) holds if

max
j=0,...,J−1

log[N (δ,H, L2(PXj))] ≤
(
A′

δ

)ρ
(17)

for some constant A′ > 0.

Theorem 4.2. Assume that assumptions (H), (G) and (B) hold. Then for any U > U0 and M > M0

it holds with probability at least 1− δ,

0 ≤ Y ?
0 − E[YM,N |DM ] ≤ C

(
log2(1/δ)

M

) 1+α
2+α(1+ρ)

(18)

with some constants U0 > 0, M0 > 0 and C > 0, provided that

0 ≤ Y ?
0 − Y 0 ≤ DM−1/(1+ρ/2), (19)

for a constant D > 0, where Y 0 is defined in (7).

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020
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Proof. Denote

Q(h) := E

[
J∑
j=0

Zjpj(h)

]
, ∆(h) := Q(h?)−Q(h)

with

pj(h) := hj(Xj)

j−1∏
l=0

(1− hl(Xl)), j = 0, . . . , J.

Define also ∆M(h) :=
√
M(QM(h)−Q(h)) with

QM(h) :=
1

M

M∑
m=1

[
J∑
j=0

Z
(m)
j hj(X

(m)
j )

j−1∏
l=0

(1− hl(X(m)
l ))

]

and put ∆M(h′,h) := ∆M(h′)−∆M(h). Let h be one of the solutions of the optimization problem
suph∈HJ Q(h). SinceQM(hM) ≥ QM(h), we obviously have

∆(hM) ≤ ∆(h) +

[
∆M(h?,h) + ∆M(hM ,h

?)
]

√
M

. (20)

Set εM = M−1/(2+ρ) and derive

∆(hM) ≤ ∆(h) +
2√
M

sup
h∈HJ : ∆X(h?,h)≤εM

|∆M(h?,h)|

+ 2
∆

(1−ρ/2)
X (h?,hM)√

M
sup

h∈HJ : ∆X(h?,h)>εM

[
|∆M(h?,h)|

∆
(1−ρ/2)
X (h?,h)

]
, (21)

where

∆X(h1,h2) :=

√√√√√E

∣∣∣∣∣
J∑
j=0

Zjpj(h1)−
J∑
j=0

Zjpj(h2)

∣∣∣∣∣
2
, h1,h2 ∈ HJ .

The reason behind splitting the r. h. s. of (20) into two parts is that the behavior of the empirical process
∆M(h∗,h) is different on the sets {h ∈ HJ : ∆X(h∗,h) > εM} and {h ∈ HJ : ∆X(h∗,h) ≤
εM}. The following lemma holds.

Lemma 4.3. It holds

∆X(h1,h2) ≤ CZdX(h1,h2)

for any h1,h2 ∈ HJ .

Lemma 4.3 immediately implies that

log
(
N (δ,HJ ,∆X)

)
≤ J log

(
N (δ,H, dX)

)
(22)

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020



Randomized optimal stopping algorithms 9

whereN (δ,S, d) is the covering number of a class S w.r.t. the pseudo-distance d. Hence due to the
assumption (H) we derive from [22] that for any h ∈ HJ and any U > U0,

P

(
sup

h′∈HJ ,∆X(h,h′)≤εM
|∆M(h,h′)| > Uε

1−ρ/2
M

)
≤ C exp

(
− U

ερMC
2

)
(23)

and

P

(
sup

h′∈HJ ,∆X(h,h′)>εM

|∆M(h,h′)|
∆

1−ρ/2
X (h,h′)

> U

)
≤ C exp(−U/C2), (24)

P

(
sup

h′∈HJ
|∆M(h,h′)| > z

√
M

)
≤ C exp(−Mz2/C2B) (25)

with some constants C > 0, B > 0 and U0 > 0. To simplify notations denote

W1,M := sup
h∈HJ : ∆X(h∗,h)≤εM

|∆M(h∗,h)|,

W2,M := sup
h∈HJ : ∆X(h∗,h)>εM

|∆M(h∗,h)|
∆

(1−ρ/2)
X (h∗,h)

and setA0 := {W1,M ≤ Uε
1−ρ/2
M } for some U > U0. Then the inequality (23) leads to the estimate

P(Ā0) ≤ C exp(−Uε−ρM /C2).

Furthermore, since ∆(h) ≤ DM−1/(1+ρ/2) and ε1−ρ/2
M /

√
M = M−1/(1+ρ/2), we get onA0

∆(hM) ≤ C0M
−1/(1+ρ/2) + 2

∆
(1−ρ/2)
X (h∗,hM)√

M
W2,M (26)

with C0 = D + 2U . Now we need to find a bound for ∆X(h∗,hM) in terms of ∆(hM). This is
exactly the place, where the condition (16) is used. The following proposition holds.

Proposition 4.4. Suppose that the assumption (BA) holds for δ > 0, then there exists a constant
cα > 0 not depending on J such that for all h ∈ HJ it holds

∆X(h?,h) ≤ cα
√
J∆α/(2(1+α))(h),

where cα depends on α only.

Let us introduce a set

A1 :=
{

∆(hM) > C0(1− κ)−1M−1/(1+ρ/2)
}

for some 0 < κ < 1. Thus we get onA0 ∩ A1

∆(hM) ≤ C1
∆α(1−ρ/2)/(2(1+α))(hM)

κ
√
M

W2,M ,

where the constant C1 depends on α but not on ρ. Therefore

∆(hM) ≤ (κ/C1)−νM−ν/2Wν
2,M

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020
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with ν := 2(1+α)
2+α(1+ρ/2)

. Applying inequality (24) toWν
2,M and using the fact that ν/2 ≤ 1/(1 + ρ/2)

for all 0 < ρ ≤ 2, we finally obtain the desired bound for ∆(hM),

P
({

∆(hM) > (V/M)ν/2
}
∩ A1

)
≤

P
({

∆(hM) > (V/M)ν/2
}
∩ A0 ∩ A1

)
+ P(Ā0)

≤ C exp(−
√
V /B) + C exp

(
−UMρ/(2+ρ)/C2

)
which holds for all V > V0 and M > M0 with some constant B depending on ρ and α.

4.2 Convergence analysis of the backward approach

In this section we study the properties of the backward algorithm and prove its convergence. The
following result holds.

Proposition 4.5. For any k > 1 and any hk−1, . . . , hJ ∈ H, one has that

0 ≤ Qk−1(h?k−1, . . . , h
?
J)−Qk−1(hk−1, . . . , hJ) ≤ Qk(h

?
k, . . . , h

?
J)−Qk(hk, . . . , hJ)

+ E
[(
Zk−1 − C?

k−1

) (
h?k−1(Xk−1)− hk−1(Xk−1)

)]
.

Note that Zk−1 − C?
k−1 ≥ 0 if h?k−1(Xk−1) = 1 and Zk−1 − C?

k−1 < 0 if h?k−1(Xk−1) = 0 due to
the dynamic programming principle.

This implies the desired convergence.

Theorem 4.6. Assume (G) and suppose that

max
j=0,...,J−1

N (δ,H, L2(PXj)) ≤
(
A
δ

)V
(27)

holds for some V > 0 andA > 0. Then with probability at least 1− δ, and k = 1, . . . , J,

0 ≤ Qk−1(h?k−1, . . . , h
?
J)−Qk−1(ĥk−1, . . . , ĥJ) . J

√
V log(JA)

M
+

+ J

√
log(1/δ)

M
+

J−1∑
l=k−1

inf
h∈H

E [(Zl − C?
l ) (h?l (Xl)− h(Xl))] , (28)

where . stands for inequality up to a constant depending on CZ .

Remark 4.7. A simple inequality

J−1∑
l=k−1

inf
h∈H

E [(Zl − C?
l ) (h?l (Xl)− h(Xl))] ≤ CZ

J−1∑
l=k−1

inf
h∈H
‖hl − h?l ‖L2(PXl )

shows that we can chose class H to minimise infh∈H ‖h − h?j‖L2(PXj ). Consider classes H of the
form:

Hn,r(R) :=

{
n∑
i=1

aiψ(Aix+ b), Ai ∈ Rr×d, ai ∈ R, b ∈ Rr,
n∑
i=1

|ai| ≤ R

}
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where ψ : Rr → R is infinitely many times differentiable in some open sphere in Rr and r ≤ d. Then
according to Corollary B.3,

inf
h∈Hn,r(R)

‖h− h?j‖L2(PXj ) ≤ C(d, δ)n−
1
2d

+δ

for arbitrary small δ > 0 and large enough R > 0, provided that each measure PXj is regular in the
sense that

PXj
(
S?j \ (S?j )

ε
)
≤ ad ε, (29)

where for any set A in Rd we denote by Aε the set Aε := {x ∈ Rd : dist(x,A) ≤ ε}. Moreover,
it is not difficult to see that (27) holds forHn,r with V proportional to n and A proportional to R, see
Lemma 16.6 in [14].

Corollary 4.8. Remark 4.7 implies that the second term in (28) converges to 0 at the rateO(n−1/(2d)+δ)
as n→∞, where n is the number of neurons in the approximating neural network. On the other hand,
the constantA in (27) is proportional to n, so that we get

Qk−1(h?k−1, . . . , h
?
J)−Qk−1(ĥk−1, . . . , ĥJ) . J

√
nJ log(A)

M
+

+J

√
log(1/δ)

M
+

J

n1/(2d)
.

By balancing two errors we arrive at the bound

0 ≤ Qk−1(h?k−1, . . . , h
?
J)−Qk−1(ĥk−1, . . . , ĥJ) . J

(√
J

M1+1/d
+

√
log(1/δ)

M

)
with probability 1 − δ. In fact, this gives the overall error bounds for the case of one layer neural
networks based approximations.

Proof. Using (11), (12), (13), we have

0 ≤ Qk−1(h?k−1, . . . , h
?
J)−Qk−1(ĥk−1, . . . , ĥJ)

= inf
hk−1∈H

(
Qk−1(h?k−1, . . . , h

?
J)− Q̂k−1(hk−1, ĥk, . . . , ĥJ)

)
+ Q̂k−1(ĥk−1, . . . , ĥJ)−Qk−1(ĥk−1, . . . , ĥJ)

≤ inf
hk−1∈H

(
Qk−1(h?k−1, . . . , h

?
J)−Qk−1(hk−1, ĥk, . . . , ĥJ)

)
+ 2 sup

hk−1,...,hJ∈H

∣∣∣Qk−1(hk−1, hk, . . . , hJ)− Q̂k−1(hk−1, hk, . . . , hJ)
∣∣∣

≤ Qk(h
?
k, . . . , h

?
J)−Qk(ĥk, . . . , ĥJ)

+ inf
hk−1∈H

E
[(
Zk−1 − C?

k−1

) (
h?k−1(Xk−1)− hk−1(Xk−1)

)]
(30)

+ 2 sup
hk−1,...,hJ∈H

∣∣∣Qk−1(hk−1, hk, . . . , hJ)− Q̂k−1(hk−1, hk, . . . , hJ)
∣∣∣ , (31)

where the last step follows from Proposition 4.5. Set

gh(Xk−1, . . . , XJ) =
J∑

j=k−1

Zjhj(Xj)

j−1∏
l=k−1

(1− hl(Xl)), h = (hk−1, . . . , hJ),
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then

Q̂k−1(hk−1, . . . , hJ)−Qk−1(hk−1, . . . , hJ)

=
1

M

M∑
m=1

{
gh(X

(m)
k−1, . . . , X

(m)
J )− E[gh(X

(m)
k−1, . . . , X

(m)
J )]

}
.

Now consider the class G := {gh, h ∈ H(J−k+1)} of uniformly bounded functions on Rd(J−k+1).
Indeed we have |gh| ≤ CZ . Moreover

N (δ,G, L2(P )) ≤ (A/δ)JV (32)

under (27). Denote

Z =
√
M sup

hk−1,...,hJ∈H

∣∣∣Qk−1(hk−1, hk, . . . , hJ)− Q̂k−1(hk−1, hk, . . . , hJ)
∣∣∣ ,

then the Talagrand inequality (see [21] and [12]) yields

P(Z ≥ E[Z] +
√
x(4CZE[Z] +M) + CZx/3) ≤ e−x,

where

E[Z] ≤
√
MJ log(ACZ)

provided (32) holds.

5 Implementation of the Bermudan max-call

In this section we implement the pricing of the Bermudan max-call, a benchmark example in the
literature [2]. As underlying we take a d-dimensional Black & Scholes model, with log-price dynamics
given by

dX i
t = σdW i

t + (r − δ − σ2

2
)dt, i = 1, . . . , d,

where X i
0 = 0 and W i, i = 1, . . . , d, are independent Brownian Motions. Parameters σ, r, δ rep-

resent respectively volatility, interest, and dividend rate. The corresponding stock prices are given by
Sit = Si0 exp(X i

t), t ∈ [0, T ]. Our goal is the price of a Bermudan max-call option, given by the
following representation,

sup
τ∈T

E[e−rτ max
i=1,...,d

(Siτ −K)+],

where T is the set of stopping times in {t0 = 0, t1, t2, . . . , tJ = T} adapted to the process X =
(X1, . . . , Xd), and (·)+ denotes the positive part.

5.1 Backward approach

In order to implement a randomized stopping strategy we need some suitable parametric choice for h.
For example we may take hl(x) to be the composition of a polynomial in x with the logistic function
ex

1+ex
(cf. [6, Framework 3.1] and [5, Section 2.2]), i.e.

hl(x) = hθl(x) =
e
polgθl

(x)

1 + e
polgθl (x)

, l = 0, ..., J, (33)
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where polgθ(x) is a polynomial of degree g in x and θ is the vector of its coefficients. As another
example we may compose polynomials in x with a Gumble type distribution function β(x) := 1 −
exp(− exp(x)), i.e.

hl(x) = hθl(x) = 1− exp(− exp(polgθl(x))), l = 0, ..., J. (34)

Both functions are smooth approximations of the indicator function. Let us choose the latter and carry
out the backward procedure in Section 3.2. Assume that we have already determined parameters
θ̂k, . . . , θ̂J−1 (hence the corresponding functions ĥk, . . . , ĥJ−1, ĥJ = h?J = 1). Now, according to

(14), the estimate of θ̂k−1 is given by the maximization over θ of the function

L̂k−1(hθ, ĥk, . . . , ĥJ) =
M∑
m=1

ξ
(m)
k−1hθ(X

(m)
k−1), (35)

where ξ(m)
k−1 is as in (14). The corresponding gradient is given by

∇θL̂k−1(hθ, ĥk, . . . , ĥJ) =
M∑
m=1

ξ
(m)
k−1∇θhθ(X

(m)
k−1). (36)

The parametric choice (34) allows for the following representation of the θ-gradient. We may write
straightforwardly

∇θhθ(x) = (1− hθ(x)) exp (polgθ(x)) ∇θpol
g
θ(x) (37)

and since θ is the vector of the coefficients of polgθ , the gradient ∇θpolθ is the vector of monomials
in x of degree less or equal than g. Injecting this representation in (36) we get an explicit expression
for the gradient of the objective function that we can feed into the optimization algorithm. In fact, the
catch of the randomization is the smoothness of hθ in (34) with respect to θ. This in turn allows for
gradient based optimization procedures with explicitly given objective function and gradient. However,
a non-trivial issue is how to find the global maximum, at each step, of the function L̂. This is also a
well know issue in machine learning, see for instance [6, Section 2.6] or [5, Section 2.3]. We do not
dig into this question in the present paper and just refer to [5, 6] for relevant literature.

5.2 Forward approach

We can alternatively write hj(Xj) = h(Xj, tj) with h(x, t) = hθ(x, t) a function depending on a
parameter θ to be optimized. In this case we use the forward approach, since the backward induction
cannot be used with this type of parametrization.

As an example (analogous to (34)), we consider

hθ(x, t) = 1− exp(− exp(polgθ(x, t))), (38)

with polgθ polynomial of degree g in x and t, from which

∇θh(x, t) = exp(− exp(polgθ(x, t))) exp(polgθ(x, t))∇θpol
g
θ(x, t)

= (1− hθ(x, t)) exp(polgθ(x, t))∇θpol
g
θ(x, t)

As before, we want to maximize over θ the payoff

P = E
[ J∑
j=1

Zj(Xj)p
θ
j(X1, . . . , Xj)

]
.
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S0 K Backward, g = 3 Forward, g = 4 NN price in [6] 95% CI in [2]

90 100 8.072 8.055 8.072 [8.053, 8.082]
100 100 13.728 13.882 13.899 [13.892, 13.934]

Table 1: Bermudan max-call prices for Black-Scholes model, with d = 2, T = 3, J = 9 and r =
0.05, δ = 0.1, σ = 0.2.

We have

∇θP = E
[ J∑
j=1

Zj(Xj)∇θp
θ
j(X1, . . . , Xj)

]
with pθj(X1, . . . , Xj) as in (6). Explicit computations give now

∇θp
θ
j(X1, . . . , Xj) = pθj(X1, . . . , Xj)(

1

hθ(Xj, tj)
exp(polgθ(Xj, tj))∇θpol

g
θ(Xj, tj)−

j∑
l=1

exp(polgθ(Xl, tl))∇θpol
g
θ(Xl, tl)

)

for j = 1, . . . , J . We can compute ∇θP and use in the optimization this explicit expression for the
gradient of the loss function.

5.3 Numerical results

We take parameters r = 0.05, δ = 0.1, σ = 0.2 (as in [2, 6]). We first compute the stopping functions
h in (34) using the backward method with M = 107 trajectories. The price is then re-computed using
107 independent trajectories. We compute each step in the backward optimization as described in the
previous section, using polynomials of degree three in the case of two stocks (ten parameters for each
time in t0, t1, . . . , tJ ). We take J = 9 and T = 3, with ti = i/3, i = 1, . . . , 9.

Then, we also implement the time-dependent stopping function in (38) and optimize it using the for-
ward method on the same example, this time using polynomials of degree four. Results and relative
benchmark are given in Table 5.3. We report results obtained in [6] using neural networks (NN) and
the confidence intervals (CI) given in [2].

The experiments were also repeated with the alternative parametrization (33), with comparable nu-
merical results.

A Proofs of auxiliary results

A.1 Proof of Lemma 4.3

Set

T =
J∑
j=0

Zjh1,j(Xj)

j−1∏
l=0

(1− h1,l(Xl))−
J∑
j=0

Zjh2,j(Xj)

j−1∏
l=0

(1− h2,l(Xl)).
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We have

T =
J∑
j=0

Zj (h1,j(Xj)− h2,j(Xj))

j−1∏
l=0

(1− h2,l(Xl))

+
J∑
j=0

Zjh1,j(Xj)

[
j−1∏
l=0

(1− h1,l(Xl))−
j−1∏
l=0

(1− h2,l(Xl))

]
.

Due to the simple identity

K∏
k=1

ak −
K∏
k=1

bk =
K∑
k=1

(ak − bk)
k−1∏
l=1

al

K∏
r=k+1

br,

we derive

j−1∏
l=0

(1− h1,l(Xl))−
j−1∏
l=0

(1− h2,l(Xl)) =

j−1∑
l=0

(h2,l(Xl)− h1,l(Xl))
l−1∏
s=0

(1− h2,s(Xs))

j−1∏
m=l+1

(1− h1,m(Xm)).

Hence

T =
J∑
j=0

Zj (h1,j(Xj)− h2,j(Xj))

j−1∏
l=0

(1− h2,l(Xl))

+
J∑
j=0

Zjh1,j(Xj)

j−1∑
l=r

(h2,l(Xl)− h1,l(Xl))
l−1∏
s=0

(1− h1,s(Xs))

j−1∏
m=l+1

(1− h2,m(Xm))

=
J∑
j=0

Zj (h1,j(Xj)− h2,j(Xj))

j−1∏
l=0

(1− h2,l(Xl))

+
J−1∑
l=0

(h2,l(Xl)− h1,l(Xl))
l−1∏
s=0

(1− h2,s(Xs))

{
J∑

j=l+1

Zjh1,j(Xj)

j−1∏
m=l+1

(1− h1,m(Xm))

}

and

|T | ≤ CZ

J−1∑
j=0

|h1,j(Xj)− h2,j(Xj)|
j−1∏
l=r

(1− h2,l(Xl)).

A.2 Proof of Proposition 4.4

Lemma A.1. Let (τ1,j) and (τ2,j) be two consistent families of randomized stopping times, then

Er
[
Zτ1,r − Zτ2,r

]
= Er

[
J−1∑
l=r

{
Zl − El

[
Zτ1,l+1

]}
(q1,l − q2,l)

l−1∏
k=r

(1− q2,k)

]
with qi,j = P̃ (τi,j = j) , i = 1, 2, and Er[·] = E[·|Fr].

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020



C. Bayer, D. Belomestny, P. Hager, P. Pigato, J. Schoenmakers 16

Proof. We have

Er
[
Zτ1,r − Zτ2,r

]
=
{
Zr − Er

[
Zτ1,r+1

]} (
P̃ (τ1,r = r)− P̃ (τ2,r = r)

)
+ Er

[(
Er+1

[
Zτ1,r+1 − Zτ2,r+1

])
P̃ (τ2,r > r)

]
=
{
Zr − Er

[
Zτ1,r+1

]}
(q1,r − q2,r)

+ Er
[(
Er+1

[
Zτ1,r+1 − Zτ2,r+1

])
(1− q2,r)

]
.

By denoting ∆r = Er
[
Zτ1,r − Zτ2,r

]
, we derive the following recurrent relation

∆r =
{
Zr − Er

[
Zτ1,r+1

]}
(q1,r − q2,r) + Er [∆r+1] (1− q2,r) ,

where all quantities with index r are Fr−measurable.

Using the property (8) we derive an important corollary.

Corollary A.2. It holds for any consistent family (τr)
J
r=0 of randomized stopping times,

E
[
Zτ?r − Zτr

]
= E

[
J−1∑
l=0

∣∣∣Zl − El
[
Zτ?l+1

]∣∣∣ |q?l − ql| l−1∏
k=r

(1− qk)

]
,

where ql = P̃ (τl = l) and q?l = 1{τ?l =l}.

Denote

Al := {|Gl(Xl)− C?
l (Xl)| > δ} , l = 0, . . . , J − 1,

then

∆(h) ≥ E

[
J−1∑
l=0

1Al

∣∣∣Zl − El
[
Zτ?l+1

]∣∣∣ |q?l − ql| l−1∏
k=0

(1− qk)

]

= δ

{
E

[
J−1∑
l=0

|h?l (Xl)− hl(Xl)|
l−1∏
k=0

(1− hk(Xk))

]
−

J−1∑
l=0

P
(
Al
)}

.

Due to (B)
J−1∑
l=0

P
(
Al
)
≤ A0δ

α, A0 =
J−1∑
l=0

A0,l

and hence

∆(h) ≥ δ

{
d2
X(h?,h)

J
− A0δ

α

}
≥ δ

{
∆2
X(h?,h)

JC2
Z

− A0δ
α

}
due to Lemma 4.3. Taking maximum of the right hand side in δ, we get

∆X(h?,h) ≤ cα
√
J∆α/(2(1+α))(h)

for some constant cα depending on α only.
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A.3 Proof of Proposition 4.5

By (13) we may write,

0 ≤ Qk−1(h?k−1, h
?
k, . . . , h

?
J)−Qk−1(hk−1, hk, . . . , hJ)

= E
[
Zk−1h

?
k−1(Xk−1)− Zk−1hk−1(Xk−1)

]
+ E

[
(1− h?k−1(Xk−1))E

[
J∑
j=k

Zjh
?
j(Xj)

j−1∏
l=k

(1− h?l (Xl))

∣∣∣∣∣Fk−1

]]

− E

[
(1− hk−1(Xk−1))E

[
J∑
j=k

Zjhj(Xj)

j−1∏
l=k

(1− hl(Xl))

∣∣∣∣∣Fk−1

]]
= E

[(
Zk−1 − C?

k−1

)
h?k−1(Xk−1) + C?

k−1 − Zk−1hk−1(Xk−1)
]
−Qk(hk, . . . , hJ)

+ E

[
hk−1(Xk−1)E

[
J∑
j=k

Zjhj(Xj)

j−1∏
l=k

(1− hl(Xl))

∣∣∣∣∣Fk−1

]]
= Qk(h

?
k, h

?
k, . . . , h

?
J)−Qk(hk, . . . , hJ)

+ E
[(
Zk−1 − C?

k−1

) (
h?k−1(Xk−1)− hk−1(Xk−1)

)]
+ E

[
hk−1(Xk−1)

(
E

[
J∑
j=k

Zjhj(Xj)

j−1∏
l=k

(1− hl(Xl))

∣∣∣∣∣Fk−1

]
− C?

k−1

)]
≤ Qk(h

?
k, h

?
k, . . . , h

?
J)−Qk(hk, . . . , hJ)

+ E
[(
Zk−1 − C?

k−1

) (
h?k−1(Xk−1)− hk−1(Xk−1)

)]
.

B Some auxiliary results

Let X ⊂ Rd and let π be a probability measure on X . We denote by C(X ) a set of all continuous
(possibly piecewise) functions on X and by Cs(X ) the set of all s-times continuously differentiable
(possibly piecewise) functions on X . For a real-valued function h on X ⊂ Rd we write ‖h‖Lp(π) =
(
∫
X |h(x)|pπ(x)dx)1/p with 1 ≤ p < ∞. The set of all functions h with ‖h‖Lp(π) < ∞ is denoted

by Lp(π). If λ is the Lebesgue measure, we write shortly Lp instead of Lp(λ). The (real) Sobolev
space is denoted by W s,p(X ), i.e.,

W s,p(X ) := {u ∈ Lp : Dαu ∈ Lp, ∀|α| 6 s} , (39)

where α = (α1, . . . , αd) is a multi-index with |α| = α1 + . . . + αd and Dα stands for differential
operator of the form

Dα =
∂|α|

∂xα1
1 . . . ∂xαdd

. (40)

Here all derivatives are understood in the weak sense. The Sobolev norm is defined as

‖u‖W s,p(X ) =
∑
|α|≤r

‖Dαu‖Lp .

Theorem B.1 (Theorem 2.1 in [18]). Let 1 ≤ r ≤ d, p ≥ 1, n ≥ 1 be integers, ψ : Rr → R be
infinitely many times differentiable in some open sphere in Rr and moreover, there is b ∈ Rr in this

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020



C. Bayer, D. Belomestny, P. Hager, P. Pigato, J. Schoenmakers 18

sphere such thatDαψ(b) 6= 0 for all α. Then there are r×d real matrices {Aj}nj=1 with the following
property. For any f ∈ W s,p(X ) with s ≥ 1 there are coefficients aj(f)∥∥∥∥∥f −

n∑
i=1

ai(f)ψ(Ai(·) + b)

∥∥∥∥∥
Lp(X )

≤
c‖f‖W s,p(X )

ns/d
,

where c is an absolute constant. Moreover, aj are continuous linear functionals on W s,p(X ) with∑n
j=1 |aj| ≤ C and C depending on ‖f‖Lp(X ).

For any set A ⊂ Rd let

Aε = {x ∈ Rd : ρA(x) ≤ ε}, ρA(x) = inf
y∈A
|x− y|.

Lemma B.2. Let a set A ⊂ Rd be convex. Then for any ε > 0 there exists a infinitely differentiable
function ϕA with 0 ≤ φ ≤ 1, such that

ϕA(x) =

{
1, x ∈ A,
0, x ∈ Rd \ Aε

and for any multiindex α = (α1, . . . , αd)

|DαϕA(x)| ≤ Cα
ε|α|

, x ∈ Rd

with a constant Cα > 0.

Corollary B.3. Let S ⊆ Rd be convex and let function ψ satisfy the conditions of Theorem B.1. Then
for any fixed s > d, there are r × d real matrices {Aj}nj=1 and b ∈ Rr with the following property∥∥∥∥∥1S(·)−

n∑
i=1

ai(S)ψ(Ai(·) + b)

∥∥∥∥∥
L2(π)

≤ Cs
εsns/d

+
√
π(S \ Sε)

for some constantCs > 0 and some real numbers a1, . . . , an depending on S such that
∑n

i=1 |ai| ≤
Q where Q is an absolute constant.

Proof. Due to Lemma B.2, there is an infinitely smooth function φS such that

sup
x∈Rd
|1S(x)− φS(x)| ≤ π(S \ Sε).

According to Theorem B.1, we have with p =∞

sup
x∈Rd

∣∣∣∣∣ϕS(x)−
n∑
i=1

ai(S)ψ(Aix+ b)

∣∣∣∣∣ ≤ Cs
εsns/d

for some matrices r × d real matrices {Aj}nj=1 and real numbers a1, . . . , an depending on S.
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[14] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk, A distribution-free theory of
nonparametric regression, Springer Series in Statistics, Springer-Verlag, New York, 2002. MR
1920390 (2003g:62006)

[15] Martin Haugh and Leonid Kogan, Pricing American options: A duality approach., Oper. Res. 52
(2004), no. 2, 258–270.

[16] Anastasia Kolodko and John Schoenmakers, Iterative construction of the optimal Bermudan stop-
ping time., Finance Stoch. 10 (2006), no. 1, 27–49.

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020



C. Bayer, D. Belomestny, P. Hager, P. Pigato, J. Schoenmakers 20

[17] Francis A. Longstaff and Eduardo S. Schwartz, Valuing American options by simulation: a simple
least-squares approach, Review of Financial Studies 14 (2001), no. 1, 113–147.

[18] Hrushikesh N. Mhaskar, Neural Networks for Optimal Approximation of Smooth and Analytic
Functions, Neural Computation 8 (1996), no. 1, 164–177.

[19] Leonard C. G. Rogers, Monte Carlo valuation of American options, Mathematical Finance 12
(2002), no. 3, 271–286.

[20] John Schoenmakers, Robust Libor modelling and pricing of derivative products, Chapman &
Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2005. MR
2138789 (2005m:91005)

[21] Michel Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab. 22
(1994), no. 1, 28–76. MR 1258865

[22] Sara A Van de Geer, Applications of empirical process theory, vol. 91, Cambridge University
Press Cambridge, 2000.

DOI 10.20347/WIAS.PREPRINT.2697 Berlin 2020


	Introduction
	Background

	Randomized optimal stopping problems
	Monte Carlo optimization algorithms
	Forward approach
	Backward approach

	Convergence analysis
	Convergence analysis of the forward approach
	Convergence analysis of the backward approach

	Implementation of the Bermudan max-call
	Backward approach
	Forward approach
	Numerical results

	Proofs of auxiliary results
	Proof of Lemma 4.3
	Proof of Proposition 4.4
	Proof of Proposition 4.5

	Some auxiliary results

