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Transport and continuity equations with (very) rough noise
Carlo Bellingeri, Ana Djurdjevac, Peter Friz, Nikolas Tapia

Abstract

Existence and uniqueness for rough flows, transport and continuity equations driven by general
geometric rough paths are established.
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1 Introduction

We consider the transport equation, here posed (w.l.o.g.) as terminal value problem. This is,8><>:−@tu(t; x) =
dX
i=1

fi(x) ·Dxu(t; x)Ẇ i
t ≡ Γut(x)Ẇt in (0; T )×Rn;

u = g on {T} ×Rn:

(1.1)

for fixed T > 0, with vector fields f = (f1; : : : ; fd) driven by a C1-driving signalW = (W 1; : : : ;W d).
The canonical pairing of Du = Dxu = (@x1u; : : : ; @xnu) with a vector field is indicated by a dot, and
we already used the operator / vector notation

Γi = fi(x) ·Dx ; Γ = (Γ1; : : : ; Γd):
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C. Bellingeri, A. Djurdjevac, P. Friz, N. Tapia 2

By the methods of characteristics, the unique (classical) C1;1 transport solution u : [0; T ]×Rn → R,
is given explicitly by

u(s; x) = u(s; x ;W ) := g(Xs;x
T ) ; (1.2)

provided g ∈ C1 and the vector fields f1; : : : ; fd are nice enough (C1
b will do) to ensure a C1 solution

flow for the ODE 8><>:Ẋ
s;x
t =

dX
i=1

fi(X
s;x
t )Ẇ i

t ≡ f (Xt)Ẇt ;

Xs;x
s = x :

In turn, solving this ODE with random initial data induces a natural evolution of measures, given by the
continuity - or forward equation8><>:@t =

dX
i=1

divx(fi(x)t) dW i
t in (0; T )×Rn;

(0) = — on {0} ×Rn :

Well-posedness of the “trinity” transport/flow/continuity will depend on the regularity of the data. For
W ∈ C1 we have an effective vector field

b(t; x) =
dX
i=1

fi(x)Ẇ i
t

which is continuous in t ∈ [0; T ] and inherits the regularity of f . In particular, f ∈ C1 will be sufficient
for a C1;1-flow. In a landmark paper, DiPerna–Lions [9] and then Ambrsosio [1], showed that the
transport problem (weak solutions) is well-posed under bounds on div b (rather than Dxb) which in
turn leads to a generalized flow. Another fundamental direction may be called regularisation by noise,
based on the observation that generically Ẋ = f0(X) + (noise) is much better behaved than the
noise-free problem, see e.g. [3, 5, 6, 10, 11, 21].

Our work is not concerning with DiPerna-Lions type analysis, nor regularisation by noise. In fact, our
driving vector fields will be very smooth, to compensate for the the irregularity of the noise, which we
here assumed to be very rough. (This trade-off is typical in rough paths and regularity structures.)

Specifically, we continue a programme started independently by Bailleul–Gubinelli [2] (see also [7]) and
Diehl et al. [8] and take W as rough path, henceforth called W . As in these works, we are interested in
an intrinsic notion of solution. (Rough path stability of transport problems was already noted in [4]). The
contribution of this article is a treatment of rough noise of arbitrarily low regularity. Based on a suitable
definition of solution, carefully introduced below, we can show

Theorem 1.1. Assume W is a weakly geometric rough path of Hölder regularity with exponent
‚ ∈ (0; 1]. Assume f has 2b‚−1c+ 1 bounded derivatives. Then there is a unique spatially regular
(resp. measure-valued) solution to the rough transport (resp. continuity) equation with regular terminal
data (resp. measure-valued initial data).

This should be compared with [2, 8], which both treat the “level-2 case”, with Hölder noise of exponent
‚ > 1=3. Treating the general case, i.e. with arbitrarily small Hölder exponent, requires us in particular
to fully quantify the interaction of iterated integrals, themselves constrained by shuffle-relations, and the
controlled structure of the PDE problem at hand. In fact, the shuffle relations will be seen crucial to
preserve the hyperbolic nature of the rough transport equation. This is different for (ordinary) rough
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Transport and continuity equations with (very) rough noise 3

differential equations where the shuffle relations can be discarded at the price of working with branched
(think: Ito-type) rough paths. For what it’s worth, our arguments restricted to the (well-known) level-2-
case still contain some worthwhile simplifications with regard to the existing literature, e.g. by avoiding
the analysis of an adjoint equation [8] and showing uniqueness for weak solutions of the continuity
equations via a small class of test functions. On our way we also (have to) prove some facts on
(controlled) geometric rough paths of independent interest, not (or only in the branched setting [16, 17])
available in the literature.

Relation to existing works: Unlike the case of rough transport equation, when it comes to stochastic
constructions it is impossible to mention all related works stretching over more than four decades,
from e.g. Funaki [15], Ogawa [23] to recent works such as [24] with fractional noise and Russo–Valois
integration.

The many benefits of a robust theory of stochastic partial differential equations, by combining a
deterministic RPDE theory with Brownian and more general noise, are now well documented and need
not be repeated in detail. Let us still recall one example of interest: multidimensional fractional Brownian
motion admits a canonical geometric rough path lift (see e.g. [12]) 1=4 < ¸ < H, which constitutes
an admissible rough noise for our rough transport and continuity equations. Various authors (see for
example Unterberger [26], Nualart and Tindel [22], etc.) have constructed “renormalised” canonical
fractional Brownian rough paths for any H > 0, fully covered by Theorem 1.1.

Notations

We fix once and for all a time T > 0. In what follows we abbreviate estimates of the form |(a)− (b)| .
|t − s|‚ by writing (a) =

‚
(b). Given ‚ ∈ (0; 1) we denote by C‚ the classical Hölder space, i.e.

consisting of functions f : [0; T ]→ R such that

sup
t 6=s

|ft − fs |
|t − s|‚ <∞:

Throughout the paper we say geometric rough path, when we really mean weakly geometric rough
path (since we only work with this type of rough path, the difference [13] will not matter to us).

2 Rough paths

We start by reviewing the definition of geometric rough paths of roughness ‚ ∈ (0; 1) and controlled
rough paths. We will do so in a Hopf-algebraic language following [17], but before we will introduce
some basic concepts.

A word of length p ≥ 1 over the alphabet {1; : : : ; d} is a tuple w = (i1; : : : ; ip) ∈ {1; : : : ; d}p,
and we set |w | := p. We denote by " the empty word, which is by convention the unique word with
zero length. Given two non-empty words v = (i1; : : : ; ip) and w = (ip+1; : : : ; ip+q), we denote by
vw := (i1; : : : ; ip; ip+1; : : : ; ip+q) their concatenation. By definition "w = w" = w . We observe that
in any case |vw | = |v |+ |w |. The concatenation product is associative but not commutative.

The symmetric group Sp acts on words of length p by permutation of its entries, that is, ff:w :=
(iff(1); : : : ; iff(p)). Given two integers p; q ≥ 1, a (p; q)-shuffle is a permutation ff ∈ Sp+q such that

ff(1) < ff(2) < · · · < ff(p) and ff(p + 1) < ff(p + 2) < · · · < ff(p + q):

We denote by Sh(p; q) the set of all (p; q)-shuffles.
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2.1 The shuffle algebra

The shuffle product was introduced by Ree [25] to study the combinatorial properties of iterated integrals,
following K.-T. Chen’s work. Let d ≥ 1 be fixed, and consider the tensor algebra H over Rd , which is
defined to be the direct sum

H :=
∞M
p=0

(Rd)⊗p:

A linear basis for H is given by pure tensors ei1 ⊗ · · · ⊗ eip , p ≥ 1 where {e1; : : : ; ed} is a basis
of Rd , and the additional element 1 which generates R⊗0 := R1. In order to ease the notation we
denote, for a word w = (i1; : : : ; ip), ew := ei1 ⊗ ei2 ⊗ · · ·⊗ eip . By definition, the set {ew : |w | = p}
is a linear basis for (Rd)⊗p for any p ≥ 0.

The space H is endowed with a product� : H ⊗H → H, called the shuffle product, defined on pure
tensors as

ei1···ip � eip+1···ip+q =
X

ff∈Sh(p;q)

eff:(i1;:::;ip+q):

There is also another operation, called the deconcatenation coproduct ∆: H → H ⊗H, defined by

∆ew :=
X
uv=w

eu ⊗ ev : (2.1)

The shuffle product and the deconcatenation coproduct satisfy a compatibility relation (which will not
play any role in the sequel), turning the tripe (H;�;∆) into a graded connected bialgebra. This implies
the existence of a linear map S : H → H, called the antipode, turning (H;�;∆; S) into a Hopf algebra.
In our particular setting, S can be explicitly computed on basis elements by S(ei1···ip) = (−1)peip ···i1 .

The coproduct endows the dual space H∗ with an algebra structure via the convolution product given,
for g; h ∈ H∗, by

〈g ? h; x〉 := 〈g ⊗ h;∆x〉:

On pure tensor this yields

〈g ? h; ew〉 =
X
uv=w

〈g; eu〉〈h; ev〉:

A character is a linear map g ∈ H∗ such that 〈g; x � y〉 = 〈g; x〉〈g; y〉 for all x; y ∈ H. It is a
standard result (see e.g. [20]) that the collection of all characters on H forms a group G under the
convolution product whose identity is the function 1∗ ∈ H∗, defined by 1∗(eb) = 0 for every word b and
1∗(1) = 1. The inverse of an element g ∈ G can be computed by using the antipode: g−1 = g ◦ S.

Given N ≥ 0, we consider the step-N truncated tensor algebra

HN =
NM
p=0

(Rd)⊗p:

Definition 2.1. A step-N truncated character is a linear map g ∈ H∗N such that

〈g; x � y〉 = 〈g; x〉〈g; y〉 (2.2)

for all x ∈ (Rd)⊗p and y ∈ (Rd)⊗q with p + q ≤ N.
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It is not hard to show that the set G(N) of all step-N truncated characters is also a group under
the convolution product, whose identity is again 1∗. Denoting by e∗1 ; : : : ; e

∗
d the basis of Rd dual to

{e1; : : : ; ed}, we introduce the dual basis (e∗a ) of H∗N in the canonical way, that is, for a word w we
denote by e∗w the unique linear map on HN such that

〈e∗w ; ev〉 = ‹w (v):

The convolution product of two of these basis elements can be explicitly computed. Indeed, by definition

〈e∗u ? e∗v ; ew〉 =
X
u′v ′=w

〈e∗u ; eu′〉〈e∗v ; ev ′〉

which is nonzero if and only if w = uv , in which case 〈e∗u ? e∗v ; ew〉 = 1. Therefore e∗u ? e
∗
v = e∗uv . For

this reason this product is also known as the concatenation product.

2.2 Geometric rough paths

We now recall the notion of geometric rough paths. The group G(N) can be endowed with a sub-additive
homogeneous norm ‖ · ‖N : G(N) → R+, see [19] for further details. This allows us to define a left
invariant metric on G(N) by setting

dN(g; h) := ‖h−1g‖N :

Definition 2.2. Let N‚ := b‚−1c denote the integer part of ‚−1. A geometric rough path of regularity
‚ is a ‚-Hölder path W : [0; T ]→ (G(N‚); dN). The set of all geometric rough paths of regularity ‚
will be denoted by C‚ .

By definition of the increments Wst := W−1
s ?Wt satisfy the so-called Chen’s relations

Wst = Wsu ?Wut (2.3)

for all 0 ≤ s; u; t ≤ T . Moreover, by construction of the homogeneous norm ‖ · ‖N , for any word w
such that |w | ≤ N‚ one has

sup
t 6=s

|〈Wst ; ew〉|
|t − s||w |‚ <∞: (2.4)

2.3 Controlled rough paths and rough integrals

One of the main goals of rough paths theory is to give meaning to solutions of controlled equations of
the form

dXt =
dX
i=1

fi(Xt) dW i
t ; (2.5)

for some collection of sufficiently regular vector fields f1; : : : ; fd on Rn and where the driving signals
W 1; : : : ;W d are very irregular. The general philosophy is that if the smoothness of the vector fields
compensates the lack of regularity of the driving signals, then we can still have existence of solutions
given that we reinterpret the equation in the appropriate sense. The central ingredient for proving this
kind of results is the notion of controlled rough path which we now recall.

DOI 10.20347/WIAS.PREPRINT.2696 Berlin 2020



C. Bellingeri, A. Djurdjevac, P. Friz, N. Tapia 6

Definition 2.3 ([16, 12]). Let W ∈ C‚ and 1 ≤ N ≤ N‚ + 1. A rough path controlled by W is a path
X : [0; T ]→ HN−1 if for any word w such that |w | ≤ N − 1 the path t 7→ 〈e∗w ;Xt〉 ∈ C‚ and

〈e∗w ;Xt〉 =
(N−|w |)‚

〈Wst ? e
∗
w ;Xs〉 : (2.6)

for all s < t . We denote by DN‚
W the (vector) space of paths X satisfying (2.6).

We say that a path X : [0; T ]→ R is controlled by W if there exists a controlled path X ∈ D
N‚
W such

that 〈1∗;Xt〉 = Xt ; we call X a controlled rough path above (the controlled path) X.

Remark 2.4. The definition in [12] seems more restrictive in that one always take N = N‚ , which is
the minimal value of N required for rough integration. The case N = N‚ + 1 is convenient to keep
track of the additional information obtained by rough integration, see Remark 2.7.

Remark 2.5. Alternatively, by writing X and W as the sums

Xs =
X

|w |≤N−1

〈e∗w ;Xs〉ew ; Wst =
X
|v |≤N

〈Wst ; ev〉e∗v ;

the condition in eq. (2.6) can be explicitly written

〈e∗w ;Xt〉 =
(N−|w |)‚

X
0≤|v |≤N−|w |

〈e∗wv ;Xs〉〈Wst ; ev〉; (2.7)

for any word w .

By construction of the vector space D
N‚
W , the quantity

‖X‖W ;N‚ :=
X

0≤|w |<N

sup
s<t

|〈e∗w ;Xt〉 − 〈Wst ? e
∗
w ;Xs〉|

|t − s|(N−|w |)‚ ;

is finite for any X ∈ D
N‚
W . We can easily show that ‖ · ‖

D
N‚
W

is a seminorm and, it becomes a Banach
space under the norm

‖X‖
D
N‚
W

:= max
|w |≤N−1

|〈e∗w ;X0〉|+ ‖X‖W ;N‚:

We extend the notion of controlled rough path above a vector-valued path X : [0; T ] → Rn. In this
case, the path X takes values in (HN−1)n, that is, each component path 〈e∗w ;X〉 is a vector of Rn,
which we denote by

〈e∗w ;X〉 = (〈e∗w ;X〉1; : : : ; 〈e∗w ;X〉n):

Then we require the bound in eq. (2.6) to hold componentwise, or equivalently, we can replace the
absolute value of the left-hand side by any norm on Rn. We denote this space by (DN‚

W )n.

Using the higher-order information contained in the controlled rough path X ∈ D
N‚
W , we recall the

rigorous notion of rough integral of X against W . For its proof see [12].

Theorem 2.6. Let W ∈ C‚ and X ∈ D
N‚‚
W . For every i ∈ {1; : : : ; d} there exists a unique real

valued path in C‚

t 7→
Z t

0

Xu dW i
u := lim

|ı|→0

X
[a;b]∈ı

X
0≤|w |≤N‚−1

〈e∗w ;Xa〉〈Wab; ewi〉; (2.8)
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where ı is a sequence of partitions of [0; t] whose mesh |ı| converges to 0. We call it the rough
integral of X with respect to W i . Moreover one has the estimateZ t

0

Xu dW i
u −

Z s

0

Xu dW i
u −:

Z t

s

Xu dW i
u =

(N‚+1)‚

X
0<|w |≤N‚

〈e∗w ;Xs〉〈Wst ; ewi〉; (2.9)

for any s < t . Introducing the function
R ·

0
Xu dW i

u : [0; T ]→ HN‚ given byfi
1∗;

Z t

0

Xu dW i
u

fl
:=

Z t

0

Xu dW i
u ;

fi
e∗wi ;

Z t

0

Xu dW i
u

fl
:= 〈e∗w ;Xt〉 (2.10)

and zero elsewhere, one has
R ·

0
Xu dW i

u ∈ D
(N‚+1)‚
W .

Remark 2.7. Differently from the general definition of the D
N‚
W spaces, in order to define the rough

integral it is necessary to start from a controlled rough path X ∈ D
N‚‚
W . The operation of integration on

controlled rough path comes also with some quantitative bounds. Looking at the definition, it is also
possible to prove there exists a constant C(T; ‚;W ) > 0 depending on T , ‚, W such that‚‚‚‚Z ·

0

Xu dW i
u

‚‚‚‚
D

(N‚+1)‚

W

≤ C(T; ‚;W )‖X‖
D
N‚‚

W

:

Therefore the application X 7→
R
X dW i is a continuous linear map.

The second operation we introduce is the composition of a controlled rough path and a smooth
function. Given a smooth function ffi : Rn → R, its k-th derivative at x ∈ Rn is the multilinear map
Dkffi(x) : (Rn)⊗k → R such that for v 1; : : : ; v k ∈ Rn,

Dkffi(x)(v 1; : : : ; v k) =
nX

¸1;:::;¸k=1

@kffi

@x¸1 · · · @x¸k
(x)v 1

¸1
· · · v k¸k : (2.11)

To ease notation we define

@¸ffi(x) :=
@kffi

@x¸1 · · · @x¸k
(x) =

@kffi

@x i11 · · · @x inn
(x)

for a word ¸ = (¸1; : : : ; ¸k) ∈ {1; : : : ; n}k ; of course, such ¸ induces a multi-index i =
(i1; : : : ; in) ∈ Nn, where ij counts the number of entries of ¸ that equal j .

We note that Dkffi(x) is symmetric, meaning that for any permutation ff ∈ Sk we have that

Dkffi(x)(v 1; : : : ; v k) = Dkffi(x)(vff(1); : : : ; vff(k)):

Remark 2.8. Observe that we also use the notion of word in this case, albeit with a different alphabet.
In order to avoid confusion we reserve latin letters such as u; v ; w , etc for words on the alphabet
{1; : : : ; d}, introduced in the beginning of Section 2, and greek letters such as ¸; ˛, etc for words on
the alphabet {1; : : : ; n} as above.

With these notations, Taylor’s theorem states that if ffi : Rn → Rm is of class Cr+1(Rn;Rm) then for
any j = 1; : : : ; m one has the identity

ffij(y) =
rX

k=0

1

k!
Dkffij(x)

`
(y − x)⊗k

´
+ O(|y − x |r+1) (2.12)
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In what follows, for any finite number of words u1; : : : ; uk we introduce the set

Sh(u1; : : : ; uk) := {w : 〈e∗w ; eu1 � : : :� euk 〉 6= 0}:

Since the shuffle product is commutative, for any permutation ff ∈ Sk we have that

Sh(u1; : : : ; uk) = Sh(uff(1); : : : ; uff(k)):

Thanks to this notation, we can prove Faà di Bruno’s formula (see also [18]). We denote by P(m) the
collection of all partitions of {1; : : : ; m}. Given ı = {B1; : : : ; Bp} ∈ P(m), we let #ı := p denote
the number of its blocks, and for each block we denote by |B| its cardinality.

Lemma 2.9. For any couple of functions g : Rn → Rn and f : Rn → R sufficiently smooth and every
m ≥ 1, letting h := f ◦ g one has the identity

Dmh(x)(v1; : : : ; vm) =
X

ı∈P(m)

D#ıf (g(x))(D|B1|g(x)(vB1); : : : ; D|Bp |g(x)(vBp))

where vB := (vi1; : : : ; viq) for B = {i1; : : : ; iq}.
In particular, for any word ¸ = (¸1; : : : ; ¸m) we have

@¸h(x) =
mX
k=1

1

k!

X
˛1;:::;˛k

¸∈Sh(˛1;:::;˛k)

Dk f (g(x))(@˛1g(x); : : : ; @˛kg(x)): (2.13)

Proof. We proceed by induction on m. For m = 1 the formula reads

Dh(x)v = Df (g(x))Dg(x)v

which is the usual chain rule. Suppose the formula holds for some m ≥ 1. Then, applying the chain
rule to each of the terms we get

Dm+1h(x)(v1; : : : ; vm+1) =
X

ı∈P(m)

kX
l=1

D#ı+1f (g)
`
D|B1|gvB1; : : : ; D

|Bl |+1g(vBl ; vm+1); : : : ; D|Bk |gvBk
´

+
X

ı∈P(m)

D#ı+1f (g(x))(D|B1|g(x)vB1; : : : ; D
|Bk |g(x)vBk ; Dg(x)vm+1)

=
X

ı′∈P(m+1)

D#ı′f (g(x))
“
D|B

′
1|g(x)(vB′1); : : : ; D|B

′
p |g(x)(vB′

k′
)
”

where the last identity follows from the fact that every partition ı′ ∈ P(m + 1) can be obtained by
either appending m + 1 to one of the blocks of some partition ı ∈ P(m) or by adding the singleton
block {m + 1} to it.

Given a word ¸ = (¸1; : : : ; ¸m), we evaluate the previous formula in the canonical basis vectors
v1 = e¸1; : : : ; vm = e¸m to obtain

@¸h(x) = Dmh(x)(v1; : : : ; vm)

=
X

ı∈P(m)

D#ıf (g(x))(@¸B1g(x); : : : ; @¸Bk g(x))
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Transport and continuity equations with (very) rough noise 9

where ¸B = (¸i1; : : : ; ¸iq) if B = {i1; : : : ; ip}. It is now clear that for any choice of ı ∈ P(m) the
words ¸B1; : : : ; ¸Bk satisfy ¸ ∈ Sh(¸B1; : : : ; ¸Bk ). Conversely, if ¸ ∈ Sh(˛1; : : : ; ˛k), there is a
partition ı = {B1; : : : ; Bk} with Bj = is such that ˛j = ¸Bj . Moreover, for any choice of such a
partition, any of the k! permutations of its blocks result in the same evaluation by symmetry of the
differential. Thus

@¸h(x) =
mX
k=1

1

k!

X
˛1;:::;˛k

¸∈Sh(˛1;:::;˛k)

Dk f (g(x))(@˛1g(x); : : : ; @˛kg(x)):

Remark 2.10. This result should be well-known to experts, yet the closest reference we found in the
literature [18] only covers the scalar case (and does not immediately yield the multivariate case).

Using a similar technique we show a version of this identity for controlled rough paths.

Theorem 2.11. Let W ∈ C‚ , 1 ≤ N ≤ N‚ + 1, X ∈ (DN‚
W )n, and ffi ∈ CN(Rn;Rm) and set

Xt := 〈1;Xt〉. We introduce the path Φ(X) : [0; T ]→ (HN−1)m defined by 〈1∗;Φ(X)t〉j = ffij(Xt)
and for any j = 1; : : : ; m, and any non-empty word w by the identity

〈e∗w ;Φ(X)t〉j :=

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dkffij(Xt)(〈e∗u1
;Xt〉; : : : ; 〈e∗uk ;Xt〉): (2.14)

Then Φ(X) is also a controlled rough path belonging to (DN‚
W )m.

Remark 2.12. A similar statement in the setting of branched rough paths [16, Lemma 8.4] is known
and somewhat easier due to the absence of shuffle relations.

Before going into the proof, we introduce some more notation. If X is a controlled path, L ∈
ℒ((Rn)⊗k ;Rm), t ≥ 0 and u1; : : : ; uk are words, we let

L(t; u1; : : : ; uk) := L(〈e∗u1
;Xt〉; : : : ; 〈e∗uk ;Xt〉)

Proof. It is sufficient to prove the result when m = 1. We first prove the result for the case of
〈1∗;Φ(X)t〉 = ffi(Xt). By Taylor expanding ffi up to order N around Xs we get that

ffi(Xt) =
N‚

N−1X
k=0

1

k!
Dkffi(Xs)

`
(Xt − Xs)⊗k

´
Since X ∈

“
D
N‚
W

”n
, according to Remark 2.5, we have

〈1∗;Xt −Xs〉 =
N‚
〈Wst − 1∗;Xs〉 =

X
0<|u|<N

〈e∗u ;Xs〉〈Wst ; eu〉: (2.15)

Plugging this estimate into the above equation and using the character property of Wst in (2.2) we
obtain

ffi(Xt) =
N‚

N−1X
k=0

1

k!

X
u1;:::;uk

Dkffi(Xs)(s; u1; : : : ; uk)〈Wst ; eu1 � · · ·� euk 〉

=
N−1X
k=0

1

k!

X
u1;:::;uk

X
|w |≤N

Dkffi(Xs)(s; u1; : : : ; uk)〈e∗w ; eu1 � · · ·� euk 〉〈Wst ; ew〉
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so the desired estimate follows.

Now we show the bound (2.6) for all words w 6= 1. By fixing an integer 1 ≤ k ≤ |w | and words
u1; : : : ; uk such that w ∈ Sh(u1; : : : ; uk) we consider the term

Dkffi(Xt)(t; u1; : : : ; uk): (2.16)

Again, since X is controlled by W , plugging the estimate in Remark 2.5 into (2.16) and using the
multilinearity :of the derivative we obtain

Dkffi(Xt)(t; u1; : : : ; uk) =
(N−|w |)‚

X
v1;:::;vk

Dkffi(Xt)(s; u1v1; : : : ; ukvk)〈Wst ; ev1 � · · ·� evk 〉:

(2.17)
Performing a Taylor expansion of Dkffi up to order N − |w | between Xt and Xs , we obtain

Dkffi(Xt)(s; u1v1; : : : ; ukvk) =
(N−|w |)‚

N−|w |−1X
m=0

1

m!
Dk+mffi(Xs)

`
(Xt − Xs)⊗m; 〈e∗u1v1

;Xs〉; : : : ; 〈e∗ukvk ;Xs〉
´
:

(2.18)
Combining the estimates (2.17) and (2.18) with (2.15) into the definition of 〈e∗w ;Φ(X)t〉, we obtain the
identity

〈e∗w ;Φ(X)t〉 =
(N−|w |)‚

|w |X
k=1

N−1−|w |X
m=0

X
u1;:::;uk

w∈Sh(u1;:::;uk)

X
v1;:::;vk
z1;:::;zm

1

k!m!
Dk+mffi(Xs)(u1v1; : : : ; ukvk ; z1; : : : ; zm)

× 〈Wst ; ev1 � · · ·� evk � ez1 � · · ·� ezm〉:
(2.19)

Since the derivative Dk+mffi(Xs) is symmetric we can replace it with

k!m!

(k +m)!

X
IktJm={1;:::;m+k}

Dk+mffi(Xs)(ui1vi1; : : : ; zj1; : : : ; uikvik ; : : : ):

Replacing this expression in the right-hand side of (2.19), it is now an easy but tedious exercise to
verify the resulting expression is equal to the sum

X
0≤|u|<N−|w |

|w |+|u|X
l=1

X
v1;:::;vl

wu∈Sh(v1;:::;vl )

1

l !
Dlffi(Xs)(s; v1; : : : ; vl)〈Wst ; ec〉:

Thereby proving the result.

Remark 2.13. A similar proof gives quantitative bounds on the application X → Φ(X). Indeed for any
ffi ∈ CN

b (Rn;Rm) it is possible to prove that this application is locally Lipschitz on D
N‚
W .

3 Rough Differential Equations

Now we come to the definition of solution of the RDE8><>:dXt =
dX
i=1

fi(Xt) dW i
t ;

X0 = x:

(3.1)
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We assume that the vector fields f1; : : : ; fd are of class at least CN‚ , so that by Theorem 2.11 the

composition fi(Xt) can be lifted to a controlled path Fi :
“
D
N‚‚
W

”n
→
“
D
N‚‚
W

”n
.

Definition 3.1. A path X : [0; T ] → Rn is a solution of (3.1) if there exists a controlled path X ∈“
D
N‚‚
W

”n
satisfying 〈1∗;Xt〉 = Xt such that

Xt −Xs =
dX
i=1

Z t

s

Fi(X)u dW i
u: (3.2)

for all s; t ∈ [0; T ].

Remark 3.2. We stress that (3.2) is an equation in D
N‚‚
W , which in fact implies that 〈e∗w ;Xt〉 = Fw (Xt)

for all words w with |w | ≤ N‚ − 1.

Remark 3.3. If X ∈ D
N‚‚
W satisfies eq. (3.2), it can also be regarded as an element of D

(N‚+1)‚
W , by

eq. (2.8). Therefore we freely treat solutions to RDEs as elements of either of these spaces.

By solving a fixed point equation on
“
D
N‚‚
W

”n
(see e.g. [12]) of the form

Xt = X0 +
dX
i=1

Z t

0

Fi(X)u dW i
u

with (see below for the definition of the functions Fw : Rn → Rn)

X0 =
X

|w |≤N‚−1

Fw (x)ew ∈
`
HN‚−1

´n
:

We can prove that there exists a unique global solution of (3.2) if the vector fields are of class CN‚+1
b .

We recall this interesting expansion of the solution.

Proposition 3.4 (Davie’s expansion). A path X : [0; T ] → Rn is the unique rough path solution to
eq. (2.5) in the sense of Definition 3.1 if and only if

Xt =
(N‚+1)‚

X
0≤|w |≤N‚

Fw (Xs)〈Wst ; ew〉 (3.3)

and the coefficients of its lift X ∈ (D
N‚+1
W )n are given by 〈e∗w ;Xt〉 = Fw (Xt) where the functions

Fw : Rn → Rn are recursively defined by by F" := id and

Fiw (x) := DFw (x)fi(x): (3.4)

Remark 3.5. By eq. (2.7) this results actually implies the chain of estimates, for all words |w | ≤ N‚ ,

Fw (Xt) =
(N‚+1−|w |)‚

X
0≤|u|≤N−|w |

Fwu(Xs)〈Wst ; eu〉:

Proof of Proposition 3.4. Suppose that X is a rough solution to eq. (2.5) in the sense of Definition 3.1.
We define the functions Fw : Rn → Rn recursively by Fi(x) := fi(x) and

Fwi(x) :=

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dk fi(x)(Fu1(x); : : : ; Fuk (x)) (3.5)
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Now it is an easy but tedious verification to show that these functions satisfy Fiw (x) = DFw (x)fi(x);
this identity essentially amounts to a reiterated use of the Leibniz rule. The form of the coefficients
of X is shown by induction, it being clear for a single letter i = 1; : : : ; d . If w is any word with
0 ≤ |w | ≤ N − 1 and i ∈ {1; : : : ; d} by definition

〈e∗wi ;Xt −X0〉 =

*
e∗wi ;

dX
j=1

Z t

0

Fj(X)u dW j
u

+
= 〈e∗w ;Fi(X)t〉

where, in the second identity we have used eq. (2.10). By Theorem 2.11, the last coefficient equals

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dk fi(Xt)(t; u1; : : : ; uk) = Fwi(Xt)

by the induction hypothesis. Then we obtain eq. (3.3) from Definition 2.3 and Remark 2.5.

Conversely, suppose that X admits the local expansion in eq. (3.3) and that the path X satisfies
〈e∗w ;Xt〉 = Fw (Xt) for all words w with |w | ≤ N. First we show that X is controlled by W with
coefficients given by X. For this we have to Taylor expand the difference Fw (Xt)−Fw (Xs) and collect
terms as in the proof of Theorem 2.11. Then, by eq. (2.10) it is not difficult to see that in fact

〈e∗wi ;Xt〉 = Fwi(Xt) =

*
e∗wi ;

dX
j=1

Z t

0

Fj(X)u dW j
u

+

so that Definition 3.1 is satisfied.

3.1 Differentiability of the flow

It is a standard result in classical ODE theory that given a regular enough vector field V , the equation
Ẋ = V (X) induces a smooth flow on Rd . Indeed, if we let Xx

t denote the unique solution of this
equation such that Xx

0 = x , then the map (t; x) 7→ Xx
t is a flow, in the sense that (t; Xx

s ) 7→ Xx
t+s

and the mapping x 7→ Xx
t is a diffeomorphism for each fixed t . More precesily, if V is of class Ck , then

the application x 7→ Xx
t is also of class Ck .

Now we show that a similar statement is true in the case of RDEs. The statement is the following

Theorem 3.6. Let f1; : : : ; fd be a family of class CN‚+1+k
b vector fields in Rd for some integer k ≥ 0,

and W ∈ C‚ . Then

1 the RDE

dXt =
dX
i=1

fi(Xt) dW i
t ; Xs = x

has a unique solution Xs;x ∈ D
(N‚+1)‚
W ,

2 the induced flow x 7→ Xs;x
t is a class Ck+1 diffeomorphism for each fixed s < t , and
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3 the partial derivatives satisfy the system of RDEs

d@¸Xs;x
t =

dX
i=1

|¸|X
k=1

1

k!

X
¸∈Sh(˛1;:::;˛k)

Dk fi(X
s;x
t )(@˛1Xs;x

t ; : : : ; @˛kXs;x
t ) dW i

t (3.6)

with initial conditions Xs;x
s = x , @ iXs;x

s = ei and @¸Xs;x
s = 0 for all words with |¸| ≥ 2.

Proof. Point 1. and 2. are standard results in rough paths as found e.g. in Chapter 11 in [14]. For the
algebraic identity in 3., it suffices to show the results in the case W is smooth. Indeed, by standard
arguments W ∈ C‚ can be approximated uniformly with uniform ‚-Hölder rough path bound, and
hence in C‚−” for any ” > 0, while on the other hand the particular structure (cf. Chapter 11 in [14])
of the system of (rough) differential equations guarantees uniqueness and global existence so that the
limiting argument is justified.

It remains to show point 3. for W smooth. We note that the integral representation of the solution

Xs;x
t = x +

dX
i=1

Z t

s

fi(X
s;x
u )Ẇ i

u du

holds. By Lemma 2.9, for any ¸ = (¸1; : : : ; ¸m) and s < u < t , we have

@¸Xs;x
ut =

Z t

u

dX
i=1

mX
k=1

1

k!

X
˛1;:::;˛k

Dk fi(X
s;x
r )(@˛1Xs;x

r ; : : : ; @˛kXs;x
r )Ẇ i

r dr (3.7)

which is the smooth version of eq. (3.6).

We aim now to obtain a Davie-type expansion of the partial derivatives @¸Xs;x by making use of point
3. above. We observe that the above system of equations has the form

dXs;x
t =

dX
i=1

fi(X
s;x
t ) dW i

t

dDXs;x
t =

dX
i=1

Dfi(X
s;x
t )DXs;x

t dW i
t

dD2Xs;x
t =

dX
i=1

Dfi(X
s;x
t )D2Xs;x

t dW i
t + (· · · )

...

with initial conditions Xs;x
s = x , DXs;x

s = I, D2Xs;x
s = D3Xs;x

s = · · · = 0, where the inhomogeneity
(· · · ) is not important to spell out.

The expansion is clear only for the first equation; it is just eq. (3.3). We would like to use Proposition 3.4
to obtain an expansion of the second equation but the problem is that the vector field driving the
equation depends on time, so the result does not directly apply. For the third and subsequent equations
the problem is not only that but also they are non-homogeneous.

To solve this problem we extend our state space Rn to (the still finite-dimensional space)

Sk := Rn ⊕ℒ(Rn;Rn)⊕ · · · ⊕ℒ
`
(Rn)⊗(k−1);Rn

´
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and define the vector fields (we give a more precise definition below in eq. (3.8)) fi : Sk → Sk by

fi(x) := (fi(x); Dfi(x)(y1); D2fi(x)(y1; y1) +Dfi(x)(y2); : : : )

where x = (x; y1; y2; : : : ; yk−1) ∈ Sk . The previous proposition shows that if

Xs;xt := (Xs;x
t ; DXs;x

t ; : : : ; Dk−1Xs;x
t )

then

dXs;xt =
dX
i=1

fi(X
s;x
t ) dW i

t ; Xs;xs := x = (x; I; 0; : : : ; 0):

This transformation turns the system of non-autonomous non-homogeneous RDEs into a single
autonomous homogeneous RDE in Sk .

Corollary 3.7. For any word ¸, the partial derivatives of the solution flow Xs;x have the following Davie
expansion: for any p = 1; : : : ; k − 1,

DpXs;x
t =

(N‚+1)‚

X
0≤|v |≤N‚

DpFw (x)〈Wst ; ew〉:

In particular, for a word ¸ ∈ {1; : : : ; n}p we have that

@¸Xs;x
t =

(N‚+1)‚

X
0≤|v |≤N‚

@¸Fw (x)〈Wst ; ew〉:

Proof. The hypotheses on the vector fields f1; : : : ; fd imply that f1; : : : ; fd are of class CN‚+1
b on Sk ,

so this equation has a unique solution. Applying Proposition 3.4 in this extended space we obtain, for
s < t , the expansion

Xs;xt =
(N+1)‚

X
0≤|w |<N

Fw (x)〈Wst ; ew〉:

In order to deduce the result, we need to show that Fw (x)p = DpFw (x) for all words w and p =
0; 1; : : : ; k − 1. We do this by induction on the length of w . If w = i is a single letter, the p-th
component, p = 0; 1; : : : ; k − 1, of the vector field fi is given by fi(x)0 = fi(x) and

fi(x)p =

pX
j=1

X
(r)j

p!

r1! · · · rj !(1!)r1 · · · (j!)rkD
p−j+1fi(x)(y r11 ; : : : ; y

rj
j ) (3.8)

where the inner sum is over the set of indices (r1; : : : ; rj) such that r1 + · · · + rj = p − j + 1 and
r1 + 2r2 + · · ·+ j rj = p. For our particular initial condition, yj = 0 for j = 2; 3; : : : ; k − 1 the formula
simplifies to

fi(x)p = Dpfi(x) ∈ ℒ
`
(Rn)⊗p;Rn

´
since the only term left in (3.8) is the one with j = 1, r1 = p.

We continue by induction on the length of the word. We compute the p-th derivative of x 7→ Fiw (x) =
DFw (x)fi(x) by recognizing that Fiw = ’1 ◦’2 with ’1(x; h) = DFw (x)h and ’2(x) = (x; fi(x)).
A quick check gives that the higher order derivatives of ’1 and ’2 are given by

Dm’1(x; h)((u1; v1); : : : ; (um; vm)) = Dm+1Fw (x)(u1; : : : ; um; h) +
mX
j=1

DmFw (x)(u1; : : : ; ûj ; : : : ; um)

Dm’2(x)(h1; : : : ; hm) = (h1‹m=1; D
mfi(x)(h1; : : : ; hm))
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where ûj = vj . Thus, using Lemma 2.9 we get that

DpFiw (x)(h1; : : : ; hp) =
X

ı∈P(p)

D#ı’1(’2(x))(D|B1|’2(x)hB1; : : : ; D
|Bq |’2(x)hBq):

Now we have three cases, depending on the number of blocks of the partition in the above summation:

1 q = p: there is a single partition with p blocks, and each block is a singleton. In this case the
term equals

Dp+1Fw (x)(h1; : : : ; hp; fi(x)) +

pX
j=1

DpFw (x)(h1; : : : ; Dfi(x)hj ; : : : ; hp):

2 q = 1: there is a single partition with one block, namely ı = {1; : : : ; p}. In this case the term
equals

DFw (x)[Dpfj(x)(h1; : : : ; hp)]:

3 1 < q < p: there is at least one block of size greater than one, which means that the first term
in the expression for Dm’1 vanishes since at least one of u1; : : : ; um vanishes. For the rest of
the terms, the exact result depends on whether there is a block with exactly one block or not: if
all blocks have more than one block then the whole expression vanishes; otherwise, we obtain
one term for each of the blocks having size exactly one, and it is of the form

D#ıFw (x)(hB; D
#p−|B|fi(x)hı\B):

In either case, using the induction hypothesis it is possible to show that each of the terms appearing
are of the form @rFw (x)pfi(x)r , which then means that DpFiw (x) = [DFw (x)fi(x)]p as desired. For
example, the term

Dp+1Fw (h1; : : : ; hp; fi(x))

corresponds to
[@0Fw (x)pfi(x)0](h1; : : : ; hp)

and so on.

In particular for the first derivative, the first few terms of the expansion read

DXs;x
t = I +

dX
i=1

Dfi(x)〈Wst ; ei〉+
dX

i ;j=1

“
Dfj(x)Dfi(x) +D2fj(x)(fi(x); id)

”
〈Wst ; ei j〉+ · · ·

3.2 Itô’s formula for RDE

The last ingredient to add in the study of the rough transport equation is to write down a change of
variable formula for a solution of eq. (2.5) for some sufficiently smooth vector field f = (f1; : : : ; fd).
By analogy with terminology of stochastic calculus we call it an “Itô formula”. For any i = 1; : : : ; n we
denote by Γi the differential operator fi(x) ·Dx and for any non-empty word w = i1 · · · im we use the
shorthand notation

Γw := Γi1 ◦ · · · ◦ Γim :

Moreover we adopt the convention Γ" = id.
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Lemma 3.8. Let f1; : : : ; fd ∈ CN‚+1(Rn;Rn) be vector fields on Rn. If ffi : Rn → R is a smooth
function and w is a nonempty word, then

Γwffi(x) =

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dkffi(x)(Fu1(x); : : : ; Fuk (x)): (3.9)

Proof. Before commencing we introduce some notation. If ffi : Rn → R and g1; : : : ; gk : Rn → Rn

are smooth functions, we define

Dkffi(x) : (g1; : : : ; gk) := Dkffi(x)(g1(x); : : : ; gk(x))

where the right-hand side was defined in eq. (2.11). The Leibniz rule then gives that for any h ∈ Rn we
have

h·Dx
`
Dkffi(x) : (g1; : : : ; gk)

´
= Dk+1ffi(x) : (h; g1; : : : ; gk)+

kX
i=1

Dkffi(x) : (g1; : : : ; (Dxgi)h; : : : ; gk):

We now prove the result by induction on the word’s length |w |. If w = i is a single letter then
Γiffi(x) = fi(x) · ∇ffi(x) = Dffi(x)fi(x) which is exactly eq. (3.9). Supposing the identity true for any
word w ′ such that |w ′| ≤ |w |, we prove it for jw where j ∈ {1; : : : ; d}. By induction one has

Γwffi(x) =

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dkffi(x)(Fu1(x); : : : ; Fuk (x)):

By the above form of Leibiz’s rule, with gi = Fui and h = fj(x), and noticing that by definition

DxFui (x)fj(x) = Fjui (x)

we obtain that

Γj
`
Dkffi(x) : (Fu1; : : : ; Fuk )

´
= Dk+1ffi(x) : (fj ; Fu1; : : : ; Fuk )

+
kX
i=1

Dkffi(x) : (Fu1; : : : ; Fjui ; : : : ; Fuk ) :

Summing this expression over words u1; : : : ; uk , we can rewrite it as
kX
r=1

X
u1;:::;uk

jw∈Sh(u1;:::;jur ;:::;uk)

Dkffi(x) : (Fu1; : : : ; Fjur ; : : : ; Fuk )

+
1

k + 1

k+1X
r=1

X
u1;:::;uk

jw∈Sh(u1;:::;j;:::;uk)

Dk+1ffi(x) : (Fu1; · · · ;
r th placez}|{
fj ; : : : ; Fuk );

the factor 1=(k + 1) is introduced because of the symmetry of Dk+1ffi(x). Summing finally over k , we
can express the final expression as

Γjwffi(x) =

|w |X
k=1

1

k!

kX
r=1

X
u1;:::;uk

jw∈Sh(u1;:::;jur ;:::;uk)

Dkffi(x) : (Fu1; · · · ; Fjur ; : : : ; Fuk )

+

|w |X
k=1

1

(k + 1)!

k+1X
r=1

X
u1;··· ;uk

jw∈Sh(u1;:::;j;:::;uk)

Dk+1ffi(x) : (Fu1; · · · ;
r th placez}|{
fj ; : : : ; Fuk ):
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Since the letter j may appear as a single word or concatenated at the right with some word, we finally
identify the whole expression above with

|w |+1X
k=1

1

k!

X
u1;:::;uk

ja∈Sh(u1;:::;uk)

Dkffi(x) : (Fu1; : : : ; Fuk ):

Now we show a formula for the composition of the solution to the RDE (2.5) and a sufficiently smooth
function.

Theorem 3.9 (Itô formula for RDEs). Let fi ∈ CN‚+1 and let X ∈ D
(N‚+1)‚
W be the unique solution of

eq. (2.5) and Xt = 〈1∗;Xt〉. Then for any real valued function ffi ∈ CN‚+1
b (Rn) one has the identity

ffi(Xt) = ffi(Xs) +
dX
i=1

Z t

s

(Γiffi)(Xr ) dW i
r : (3.10)

More generally, one has the following estimates at the level of controlled rough paths

〈e∗w ;Φ(X)t〉 =
(N‚+1−|w |)‚

〈e∗w ;Φ(X)s〉+

*
e∗w ;

dX
i=1

Z t

s

(ΓiΦ)(X)r dW i
r

+
; (3.11)

where ΓiΦ(X) is the controlled lift of composition of X with the function Γiffi ∈ CN‚ and any non-empty
word such that |w | ≤ N‚ .

Proof of Theorem 3.9. The theorem is obtained by comparing the coefficients of the controlled rough
paths Φ(X)t and

R t
0

(ΓiΦ)(Xr ) dW i
r for every i = 1; : : : ; d . Using Lemma 3.8 and Proposition 3.4,

for every non-empty word a one has

〈e∗w ;Φ(X)t〉 =

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dkffi(Xt)(t; u1; : : : ; uk)

=

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dkffi(Xt) : (Fu1; : : : ; Fuk )

= Γwffi(Xt):

(3.12)

Using the same identities we also deduce for any word w ,*
e∗wj ;

dX
i=1

Z t

0

(ΓiΦ)(X)r dW i
r

+
= 〈e∗w ; (ΓjΦ)(X)t〉 = Γw (Γjffi)(Xt) = Γwjffi(Xt): (3.13)

Since
Pn

i=1

R t
0

(ΓiΦ)(X)r dW i
r and Φ(X)t belong both to D

(N‚+1)‚
W for any word w one has both

〈e∗w ;Φ(X)t〉 − 〈e∗w ;Φ(X)s〉 =
(N‚+1−|w |)‚

X
0<|v |≤N‚−|w |

〈e∗wv ;Φ(X)s〉〈Wst ; ev〉;

DOI 10.20347/WIAS.PREPRINT.2696 Berlin 2020



C. Bellingeri, A. Djurdjevac, P. Friz, N. Tapia 18

and*
e∗w ;

nX
i=1

Z t

s

(ΓiΦ)(X)r dW i
r

+
=

(N‚+1−|w |)‚

X
0<|v |≤N‚−|w |

*
e∗wv ;

nX
i=1

Z s

0

(ΓiΦ)(X)r dW i
r

+
〈Wst ; ev〉:

The identities (3.12) and (3.13) imply that the right-hand sides of the above estimates are the same
quantities. Thus we obtain eq. (3.11) by simply subtracting one side from the other. In case w = 1 one
has

ffi(Xt)− ffi(Xs)−
dX
i=1

Z t

s

(Γiffi)(Xr ) dW i
r =

(N‚+1)‚
0 :

Since (N‚ + 1)‚ > 1 and the right hand side is the increment of a path, one has the identity (3.10).

Using the identities (3.12) we can rewrite the Itô formula using only the operators Γw .

Corollary 3.10 (Itô-Davie formula for RDEs). Let X : [0; T ]→ Rn be the unique solution of eq. (2.5).

Then for any real valued function ffi ∈ CN‚+1
b (Rn) and any word w one has the estimate

Γwffi(Xt) =
(N‚+1−|w |)‚

X
0≤|v |≤N‚−|w |

Γwvffi(Xs)〈Wst ; ev〉: (3.14)

4 Rough transport and continuity

4.1 Rough transport equation

We now consider the rough transport equation(
−dus =

Pd
i=1 Γius dW i

s ;

u(T; ·) = g(·)
(4.1)

where we recall the differential operator Γi := fi ·Dx for some vector fields f1; : : : ; fd on Rn.

We now prepare the definition of a regular solution to the rough transport equation. Since we are in the
fortunate position to have an explicit solution candidate we derive a graded set of rough path estimates
that provide a natural generalisation of the classical transport differential equation.

Definition 4.1. Let ‚ ∈ (0; 1), W ∈ C‚ a weakly-geometric rough path of roughness ‚ and
g ∈ CN‚+1. A C‚;N‚+1-function u : [0; T ]×Rn → R such that u(T; ·) = g(·) is said to be a regular
solution to the rough transport equation (4.1) if one has the estimates

Γwus(x) =
(N‚+1−|w |)‚

X
0≤|v |≤N‚−|w |

Γwvut(x)〈Wst ; ev〉 ; (4.2)

for every s < t ∈ [0; T ], uniformly on compact sets in x and any word w .

Remark 4.2. Since each application of the vector fields Γi1···in amounts to take n derivatives, these
estimates have the interpretation that time regularity of Γi1···inu, can be traded against space regularity
in a controlled sense.

Theorem 4.3. Let f ∈ C2N‚+1
b , g ∈ CN‚+1 and consider the rough solution Xs;x to eq. (2.5). Then

u(s; x) := g(Xs;x
T ) is a solution to the rough transport equation in the sense of Definition 4.1.
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Proof. We first note that by Theorem 3.6 the map (s; x) 7→ Xs;x
T belongs to C‚;N‚+1. Since g ∈

CN‚+1 then u(s; x) = g(Xs;x
T ) ∈ C‚;N‚+1. Let us show that u is a solution by proving the estimates

given in Definition 4.1 for some fixed times s < t < T and x in compact set. By uniqueness of the
RDE flow one has Xs;x

T = Xt;y
T where y = Xs;x

t . Thus we deduce from the definition of u the identity

us(x) = ut(X
s;x
t ): (4.3)

Let X denote the controlled rough path such that Xs;x
t = 〈1∗;Xt〉. Since g ∈ CN‚+1

b , we can apply
the rough Itô formula in eq. (3.14) to the function x → ut(x) obtaining

ut(X
s;x
t ) =

(N‚+1)‚

X
|w |≤N

Γwut(x)〈Wst ; w〉

obtaining (4.2) for the case of w = ". To show the estimates on Γi1···ilus , we apply Lemma 3.8 to the
function x → us(x)

Γwus(x) =

|w |X
k=1

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

Dkus(x)(Fu1(x); : : : ; Fuk (x)): (4.4)

Using again the identity (4.3), for any word ¸ we apply eq. (2.13) obtaining

@¸(us(x)) =
kX
l=1

1

l !

X
˛1;:::;˛l

¸∈Sh(˛1;:::;˛l )

Dlut(X
s;x
t )(@˛1Xs;x

t ; · · · ; @˛lXs;x
t ):

Since the vector field f ∈ C2N‚+1
b and every ˛i such that ¸ ∈ Sh(˛1; : : : ; ˛l) satisfies |˛i | ≤ |a| we

can apply Corollary 3.7 to get

@˛iXs;x
t =

(N‚+1−|w |)‚

X
0≤|v |≤N‚−|w |

@˛iFv (x)〈Wst ; ev〉

Plugging these estimates in Dlut(X
s;x
t ) and one has

Dlut(X
s;x
t )(@˛1Xs;x

t ; : : : ; @˛lXs;x
t ) =

(N‚+1−|w |)‚X
0≤|v1|···|vl |≤N‚−|a|

Dlut(X
s;x
t )
`
@˛1Fv1(x); : : : ; @˛lFvl (x)

´
〈Wst ; ev1 � · · ·� evl 〉:

(4.5)

Plugging this expression into (4.4) and we obtain

Γwus(x) =
(N‚+1−|w |)‚

|w |X
k=1

X
u1;:::;uk

w∈Sh(u1;:::;uk)

nX
¸1 ;··· ;¸k=1

kX
l=1

1

l !

1

k!
F¸1
u1

(x) · · ·F¸kuk (x)

X
0≤|d1|···|dl |≤N‚−|a|

X
˛1;:::;˛l

¸∈Sh(˛1;:::;˛l )

Dlut(X
s;x
t )(@˛1Fv1(x); : : : ; @˛lFvl (x))〈Wst ; ev1 � · · ·� evl 〉:

(4.6)
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Rearranging the sums and applying the definition of the functions Fw we obtain the identity

|w |X
k=l

1

k!

X
u1;:::;uk

w∈Sh(u1;:::;uk)

X
¸∈Sh(˛1;:::;˛l )
|¸|=k

Dlut(X
s;x
t )(@˛1Fv1(x); : : : ; @˛lFvl (x))F¸1

u1
(x) · · ·F¸kuk (x)

=
X
u′1;:::;u

′
l

w∈Sh(u′1;:::;u
′
l )

Dlut(X
s;x
t )(Fu′1v1(x); · · · ; Fu′lvl (x)):

Therefore the right-hand side of (4.6) becomes

|w |X
l=1

X
0≤|v1|···|vl |≤N‚−|w |

X
u′1;:::;u

′
l

w∈Sh(u′1;:::;u
′
l )

1

l !
Dlut(X

s;x
t )(Fu′1v1(x); · · · ; Fu′lvl (x))〈Wst ; ev1 � · · ·� evl 〉:

(4.7)
We perform now a Taylor expansion of Dlut(X

s;x
t ) up to order N − |w | between Xs;x

t and x , yielding
for any words u′1; · · · ; u′k

Dlut(X
s;x
t )

„
Fu′1v1(x); · · · ; Fu′lvl (x)

«
=

(N‚+1−|w |)‚

N−|w |X
m=0

1

m!
Dl+mut(x)

`
(Xs;x

t − x)⊗m; Fu′1v1(x); · · · ; Fu′lvl (x)
´
:

(4.8)

Plugging now the Davie expansion (3.3) truncated at order N‚ − |w | into (4.7) we have the following
estimate

Γw (us(x)) =
(N‚+1−|w |)‚

|w |X
l=1

N‚−|w |X
m=0

1

l !

1

m!

X
u′1;:::;u

′
l

w∈Sh(u′1;:::;u
′
l )

X
0≤|v1|···|vl |≤N−|w |
0<|z1|···|zm|≤N−|w |

Dl+mut(x) : (Fu′1v1; : : : ; Fz1; : : : )〈Wst ; ev1 � · · ·� ez1 � · · · 〉 :

(4.9)

Using the symmetry of Dl+mut(x), we deduce

l !m!

(l +m)!

X
IltJm={1;··· ;m+l}

Dm+lffi(x) : (Fu′i1vi1
; · · · ; Fzj1 ; · · · ; Fu′il vil ; · · · ):

Replacing this expression in the right-hand side of (4.9), we can easily verify that the resulting expression
is equal to the sum

X
0≤|v |≤N−|w |

|w |+|v |X
n=1

X
u1;:::;un

wv∈Sh(u1;:::;un)

1

n!
Dnut(x) : (Fu1; · · · ; Fun)〈Wst ; ev〉:

Thereby proving the result.

We can now show that solutions in the sense of Definition 4.1 are unique.

Theorem 4.4. Let fi ∈ C2N‚+1
b with associated differential operators Γi , and W ∈ C‚ . Given regular

terminal data g ∈ CN‚+1, there exists a unique regular solution to the rough transport equation (4.1).
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Proof. Existence is clear, since Proposition 4.3 exactly says that (t; x) 7→ g(Xt;x
T ) gives a regular

solution. Let now u be any solution to the rough transport equation. We show that, whenever X = X s̄ ;ȳ

for every s̄ ; ȳ one has the estimate

u(t; Xt)− u(s; Xs) =
(N‚+1)‚

0: (4.10)

Since (N‚ + 1)‚ > 1 this entails that t 7→ u(t; Xt) is constant, and so we recover the uniqueness
from the identities

u(s; x) = u(s; Xs;x
s ) = u(T;Xs;x

T ) = g(Xs;x
T ) :

To prove (4.10) we show that for every k = 0; · · · ; N‚ and any choice of indexes i1; · · · ; ik (if k = 0
we do not consider indexes) one has the estimates

Γi1···ikut(Xt) =
(N‚+1−k)‚

Γi1···ikus(Xs):

Let us prove this estimate by reverse induction on the indices length. The case when the indices
i1 · · · iN‚ have length N‚ comes easily from the algebraic manipulation

Γi1···iN‚ ut(Xt)− Γi1···iN‚ us(Xs) =

„
Γi1···iN‚ ut(Xt)− Γi1···iN‚ us(Xt)

«
+

„
Γi1···iN‚ us(Xt)− Γi1···iN‚ us(Xs)

«
:

Using the defining property of a solution in the estimates (4.2), the first difference on the right-hand side
is of order ‚. Moreover by hypothesis on u one has Γi1···iN‚ us(·) ∈ C

1, always uniformly in s ∈ [0; T ],
therefore the second difference is also of order ‚, as required. Supposing the estimate true for every
indices of length k we will prove it on every indices i1 · · · ik−1 of length k − 1 . By repeating the same
procedure as before we obtain

Γi1···ik−1
ut(Xt)− Γi1···ik−1

us(Xs) =

„
Γi1···ik−1

ut(Xt)− Γi1···ik−1
us(Xt)

«
| {z }

I

+

„
Γi1···ik−1

us(Xt)− Γi1···ik−1
us(Xs)

«
| {z }

II

:

Using the definition of a solution, the first difference on the right-hand side satisfies

I =
(N‚+1−k)‚

−
N‚+1−kX
k=1

X
|w |=k

Γi1···ik−1wut(Xt)〈Wst ; w〉:

On the other hand, using Lemma 3.8 two times we write Γi1···ik−1
us(Xt) = 〈e∗i1···ik−1

;Us(X)t〉 so that
the second difference can be replaced by the usual remainder

II =
(N‚+1−k)‚

N‚+1−kX
k=1

X
|w |=k

〈e∗i1···ik−1w
;Us(X)s〉〈Wst ; w〉

=
(N‚+1−k)‚

N‚+1−kX
k=1

X
|w |=k

Γi1···ik−1wus(Xs)〈Wst ; w〉:
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Combining the two estimates we obtain

I + II = −
N‚+1−kX
k=1

X
|w |=k

„
Γi1···ik−1wut(Xt)− Γi1···ik−1wus(Xs)

«
〈Wst ; w〉 :

Since the terms in the sum involve the increment Γffut(Xt)− Γffus(Xs) where ff has length bigger or
equal than k we apply the recursive hypothesis obtaining that each term satisfies

Γi1···ik−1wut(Xt)− Γi1···ik−1wus(Xs) =
(N‚+1−k−|w |)‚

0

and the multiplication with 〈Wst ; w〉 gives the desired estimate.

4.2 Continuity equation and analytically weak formulation

Given a finite measure  ∈ ℳ(Rn) and a continuous bounded function ffi ∈ Cb(Rn), we write
(ffi) =

R
ffi(x)(dx) for the natural pairing. We are interested in measure-valued (forward) solutions

to the continuity equation8><>:dtt =
dX
i=1

divx(fi(x)t) dW i
t in (0; T )×Rn;

0 = — on {0} ×Rn

when W is again a weakly geometric rough path. As before we use the notation Γi = fi(x) · Dx ,
whose formal adjoint is Γ?i = − divx(fi ·).

Definition 4.5. Let ‚ ∈ (0; 1), W ∈ C‚
g and — ∈ ℳ(Rn). Any function  : [0; T ] → ℳ(Rn) such

that 0 = — is called a weak or measure-valued solution to the rough continuity equation

dt =
dX
i=1

divx(fi(x)t) dW i
t (4.11)

if for every ffi bounded in CN‚+1
b and any word w with |w | ≤ N‚ one has the estimates

t(Γwffi) =
(N‚+1−|w |)‚

X
0≤|v |<N‚+1−|w |

s(Γwvffi)〈Wst ; ev〉 (4.12)

for every s < t ∈ [0; T ] and uniformly in ffi.

Theorem 4.6. Let f ∈ C2N‚+1
b and W ∈ C‚

g . Given initial data — ∈ ℳ(Rn), there exists a unique

solution to the measure-valued rough continuity equation, explicitly given for ffi ∈ CN‚+1
b by

t(ffi) =

Z
ffi(X0;x

t )—(dx) ;

where X0;x is the unique solution of the RDE dXt =
Pd

i=1 fi(Xt) dW i
t such that X0;x

0 = x .
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Proof. (Existence) Using the composition of the controlled rough path X0;x with ffi ∈ CN‚+1
b and the

shorthand notation X0;x
t = Xt we can write

ffi(Xt) =
(N‚+1)‚

ffi(Xs) +

N‚X
k=1

X
|w |=k

Γwffi(Xs)〈Wst ; w〉 ;

Γi1···inffi(Xt) =
(N‚+1−n)‚

Γi1···inffi(Xs) +

N‚−nX
k=1

X
|w |=k

Γi1···inwffi(Xs)〈Wst ; w〉 :

This showing the existence when — = ‹x thanks to Proposition 4.3. Since we are dealing with bounded
vector fields, all these estimates are uniform in X0 = x . Thus we can integrate both sides with respect
to the measure —, obtaining the existence.

(Uniqueness) To prove the uniqueness, we will show that for any 0 < t ≤ T , any function g ∈ CN‚+1
b

and any solution u : [0; t]×Rn → R of the RPDE

dur =
dX
i=1

Γiu(r; x) dW i
r ; ut = g;

the function r ∈ [0; t] 7→ ¸(r) := r (ur ) is constant. This property implies that for any function

g ∈ CN‚+1
b and t > 0 one has the identity

t(g) = t(ut) = 0(u0) = —(u0)

which uniquely determines the measure t for any 0 < t ≤ T . Since the parameter T was also
arbitrary it is not restrictive to prove the result when t = T . Then ¸ is constant if and only if one has
the estimate

¸(r) =
(N‚+1)‚

¸(s) : (4.13)

Writing us;r = ur − us and similarly for  one has

r (ur )− s(us) = s;r (ur ) + s(us;r ) :

By construction of regular solution with ffi = ur ∈ CN‚+1
b the first summand expands as

s;r (ur ) =
(N‚+1)‚

N‚X
k=1

X
|w |=k

s(Γwur )〈Wsr ; w〉 : (4.14)

On the other hand, we expand the second summand on the right-hand using the very definition of
regular backward RPDE obtaining

us;r (x) =
(N‚+1)‚

−
N‚X
k=1

X
|w |=k

Γwur (x)〈Wsr ; w〉 ;

where the remainder is uniform on x . By integrating this estimate on s , we obtain

s(us;r ) =
(N‚+1)‚

−
N‚X
k=1

X
|w |=k

s(Γwur )〈Wsr ; w〉 : (4.15)

Combining the two estimates (4.15) and (4.14) we obtain (4.13) and the theorem is proven.
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