
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Generalized self-concordant Hessian-barrier algorithms

Pavel Dvurechensky1, Mathias Staudigl2, Cesar A. Uribe 3

submitted: February 19, 2020

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: pavel.dvurechensky@wias-berlin.de

2 Maastricht University
Department of Quantitative Economics
P.O. Box 616,
NL–6200 MD Maastricht, The Netherlands
E-Mail: m.staudigl@maastrichtuniversity.nl

3 Laboratory for Information and Decision Systems (LIDS)
Institute for Data, Systems, and Society (IDSS)
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
USA
E-Mail: cauribe@mit.edu

No. 2693

Berlin 2020

2010 Mathematics Subject Classification. 90C30, 68Q25, 65K05, 90C26.

Key words and phrases. Non-convex optimization, Bregman divergence, generalized self-concordance, linear constraints.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Generalized self-concordant Hessian-barrier algorithms
Pavel Dvurechensky, Mathias Staudigl, Cesar A. Uribe

Abstract

Many problems in statistical learning, imaging, and computer vision involve the optimization
of a non-convex objective function with singularities at the boundary of the feasible set. For such
challenging instances, we develop a new interior-point technique building on the Hessian-barrier
algorithm recently introduced in Bomze, Mertikopoulos, Schachinger and Staudigl, [SIAM J. Opt.
2019 29(3), pp. 2100-2127], where the Riemannian metric is induced by a generalized self-
concordant function. This class of functions is sufficiently general to include most of the commonly
used barrier functions in the literature of interior point methods. We prove global convergence to
an approximate stationary point of the method, and in cases where the feasible set admits an
easily computable self-concordant barrier, we verify worst-case optimal iteration complexity of the
method. Applications in non-convex statistical estimation and Lp-minimization are discussed to
given the efficiency of the method.

1 Introduction

In this paper, we consider the following constrained minimization problem, which has plenty of appli-
cations in diverse disciplines, including machine learning, signal processing, statistics, and operations
research

f ∗ = min{f(x) : x ∈ C̄, Ax = b} (P)

Here C̄ ⊂ Rn is a nonempty, closed and convex set, and f is a (possibly) non-smooth, non-convex
function from Rn → R∪{+∞}. A special case of (P) are regularized statistical estimation problems
where the aim is to find a parameter vector x ∈ Rn in order to minimize a composite objective of the
form

f(x) := f0(x) + f1(c(x)). (1)

In such applications the function f0 : Rn → R is a continuous data fidelity term, f1 : Rd →
(−∞,∞] is a regularizer and c : Rn → Rd is some link function mapping the parameters to a
usually lower dimensional subspace. Typical formulations of such problems can be given in the form
of

f(x) =
1

2
‖s−Wx‖2

2 +
m∑
i=1

ϕi(‖Dix‖p) (2)

in which f0(x) = 1
2
‖s−Wx‖2

2, f1(y) =
∑m

i=1 ϕi(yi) : Rq → [−∞,∞), ϕi : Rdi → R is contin-
uously differentiable, and c(x) = (‖D1x‖p, . . . , ‖Dmx‖p)> for some p ∈ (0, 1), Di ∈ Rdi×n, d =∑m

i=1 di. In fact, the formulation (2) includes many well-known problems in statistics: fused lasso [48],
grouping pursuit [45], etc. From an optimization perspectives, these regularized estimation problems
are challenging since they are non-convex and not globally Lipschitz continuous and thus belong to
the class of NP-hard problems. Even worse, they may even fail to be differentiable. As an exam-
ple, the Lp regularization problem with link function c(x) = (|x1|p, . . . , |xn|p) for 0 < p < 1 and
f1(y) =

∑n
i=1 yi fails to be even directionally differentiable when xi = 0 for some i = 1, 2, . . . , n.
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A common tenet of all recent applications of (P) is that the problem involves a huge number of vari-
ables. This makes the application of classical interior-point solvers infeasible. Instead, first-order meth-
ods (FOMs) with cheap per-iteration implementation costs are the method of choice [47]. The most
impactful success stories of FOMs have been achieved under the quite demanding assumption that
the objective function is convex and smooth, and the feasible set admits a proximal-friendly formula-
tion. Indeed, if proximal-based projection operators onto the feasible set X := {x ∈ C̄ : Ax = b}
are easy to evaluate, black-box based FOMs such as mirror descent, projected subgradient, and con-
ditional gradient methods can be tuned to successfully solve (P) up to ε-accuracy. How to handle
non-convex objective functions with first-order methods is still a challenging problem receiving a lot of
interest from various different perspectives, in particular in statistical and deep learning. Beside this
implicit assumption in all projection-based FOMs, another fundamental assumption in all these meth-
ods is the availability of a descent lemma [39, Lem.1.2.3]. Sufficient for such an a-priori estimate is
that the objective function’s gradient is a Lipschitz continuous function. Already the above mentioned
application to statistical estimation shows that this Lipschitz-smoothness assumption is to demanding
to cover such important applications. Only recently, the path-breaking paper [4] resolved this problem
by introducing the concept of relative smoothness as a surrogate for the demanding Lipschitz gradi-
ent assumption (see also [35] for elaborations and applications). Based on relative-smoothness, they
derive a new descent lemma where the usual quadratic approximation is replaced by a non-Euclidean
proximity measure, which captures the objective function and the geometry of the underlying domain
all at once. The corresponding proximal-based subgradient algorithm comes with global convergence
guarantees and complexity estimates for convex composite models. This beautiful, and practically
relevant, approach has been recently extended to a non-convex composite model in [8], where new
complexity estimates are derived as well.

1.1 Our Approach

This work is concerned with a different approach to tackle non-convex optimization problems avoiding
knowledge of a global Lipschitz constant. Our work is inspired by the recent Riemannian gradient
methods developed in [11], where a rather large class of Hessian barrier algorithms (HBA) has been
constructed as numerical schemes for solving Lipschitz-smooth, non-convex optimization problems
over the polyhedron {x ∈ Rn : x ≥ 0, Ax = b}. The construction of HBA is motivated by looking
at an explicit numerical discretization of a continuous-time dynamical systems introduced by [2, 9] as
a theoretical method for solving convex linearly constrained smooth optimization problems. However,
these schemes remained at a conceptual level, and the usefulness of these dynamical systems for
effectively solving constrained optimization of the form (P) remained completely unanswered. HBA
laid the foundations to an algorithmic analysis for these dynamical systems, and investigated their
efficiency when solving linearly constrained and smooth non-convex optimization problems. HBA first
identifies the feasible set as a Riemannian manifold with a metric induced by the Hessian matrix of a
C2 barrier-like function h (a barrier-generating kernel). Once the geometry has been defined, a step-
size strategy is designed ensuring feasibility and a sufficient decrease of the objective. The analysis
in [11] relied heavily on the classical Lipschitz-descent lemma [39], and involved an Armijo line-search
procedure. It has been shown that this approach generalizes many classical interior point techniques
like affine scaling [5], and also contains Lotka-volterra systems as a special case [51]. A complexity
analysis was achieved in the case where the objective function is quadratic, and it has been shown
that a proper choice of the Riemannian metric affects the complexity of the method [11, Thm 5.1]. In
this paper we significantly extend the results obtained in [11] by constructing a new first-order interior
point method for solving problem (P) under very mild assumptions on the data. In order to explain

DOI 10.20347/WIAS.PREPRINT.2693 Berlin 2020



Generalized self-concordant Hessian-barrier algorithms 3

the approach described in this paper, let us go back to the classical way of solving problem (P) when
f is convex. The most famous algorithm for solving such problems are interior point methods, which
solve conic optimization problems in polynomial time [43]. The key structure exploited in conventional
IPMs is the existence of a self-concordant barrier (SCB) for the set constraint C̄. In such cases one
considers the potential function

Fµ(x) = f(x) + µh(x),

where µ > 0 is a penalty parameter and h is a barrier function over the set C̄. By fixing a se-
quence of barrier parameters (µk)k≥0 with µk ↓ 0 and solving the sequence of minimization problems
minx Fµk(x) along this sequence generates the analytic central path {x∗µ : µ > 0} as it converges
to the solution of the actual problem of interest (P). For proving convergence of the analytic central
path, SCBs are the key tool to prove polynomial-solvability of the barrier problem by sequentially using
Newton’s method.1 The new Hessian-barrier method we propose in this paper follows similar ideas.
We first embed the original optimization problem (P) into a potential-reduction scheme involving the
potential function Fµ. However, instead of classical self-concordance theory our analysis works easily
on a much broader class of generalized self-concordant functions (GSC), which have recently been
introduced in [46]. As we show in this paper, GSC functions provide a very attractive class of barrier-
generating kernels as their Hessian matrix induce a Riemannian metric under which a full-fledged
complexity analysis can be performed.

1.2 Available complexity results

We now review results on complexity analysis of non-convex optimization problems. Since the Hessian-
barrier method uses only first-order information about f , we restrict our review to first-order methods
as well. In unconstrained non-convex optimization the usual criticality measure is the norm of the gra-
dient of the objective function. Hence, oracle complexity of a given algorithm refers to the number of
oracle queries until ‖∇f(xk)‖ ≤ ε for a targeted tolerance level ε > 0. An in-depth survey of known
complexity bounds can be found in [16, 17]. We can give no justice to the huge literature on complex-
ity results for first-order methods but provide below a partial survey of known complexity estimates in
order to put our results into perspective.

Smooth, non-convex For quadratic programming problems with linear constraints, the authors in
[55] proved that an ε-KKT point is computed in O(ε−1 log(ε−1)) iterations. A recent manifestation
of the effect of Riemannian geometry on the convergence to ε-KKT points can be found in [11]. For
general unconstrained nonconvex optimization, it was shown in [39] that a steepest descent with line
search method can find an ε-stationary point in O(ε−2) iterations. An accelerated method with the
same guarantee can be found in [27]. The same worst case complexity result holds for trust-region
methods [26]. The results for gradient method were generalized to the case of simple projection-
friendly constraints and Hölder derivatives in [25]. Accelerated methods with complexity Õ(ε−7/4)
under additional assumption of Lipschitz second derivative are proposed in [1, 14, 15, 29].

Lipschitz continuous, nonconvex Cartis, Gould and Toint [18] estimated the worst-case complex-
ity of a first-order trust-region or quadratic regularization method for solving unconstrained, non-convex
minimization problems of the form (1), where f1 : Rm → R is convex but may be nonsmooth and

1Recently, the path-following method was extended for self-concordant functions which are not self-concordant barriers
in [21].
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c : Rn → Rd is continuously differentiable. Their method takes at most O(ε−2) iterations to reduce
the size of a suitably defined first-order criticality measure below ε.

Non-Lipschitz, nonconvex The authors in [24] extended the complexity result of [55] to the Lp-
minimization problem over a polytop. They showed that finding and ε-scaled stationary point or global
minimizer requires at most O(ε−1 log(ε−1)) iterations. For general linear constrained non-convex
minimization problems [28] obtained an iteration complexity of O(ε−2) to reach an ε-KKT point for
optimization problems whose feasible set is defined by linear equality and non-negativity constraints.
In the case of Lp minimization for p ∈ (0, 1) over box constraints [6] develop a first-order interior point
method yielding O(ε−2) worst-case iteration complexity in order to return and ε-scaled stationary
point.

1.3 Our Contribution

In relation to the above summarized literature, we provide here an easy-to-implement first-order method
for non-convex non-smooth optimization problems, without requiring knowledge on the Lipschitz con-
stant of the objective function. Specifically, the main contributions of this paper are summarized as
follows:

1 We provide a new first-order interior point method based on the HBA method for non-convex
and non-smooth optimization problems (P) without Lipschitz smoothness conditions.

2 We are the first who provide a first-order interior point analysis based on GSC functions.

3 We show how some model parameters can be made adaptive, making the method even more
efficient in practice.

4 Our method comes with an explicit construction of optimal step-size policies and convergence
guarantees.

5 We demonstrate optimal iteration complexity estimates on the order ofO(ε−2) to reach a gener-
alized stationary point, and connect this to classical ε-KKT conditions in case where the barrier-
generating kernel is a SC-B. This answers an open question raised in Remark 4.1. in [9], since
HBA can be seen as a descendent of the A-driven descent methods defined in that paper. Also,
in view of the partial literature survey given above, this rate is optimal.

The rest of this paper is organized as follows: Section 2 introduces the standing assumptions used in
this paper, and introduces the class of generalized self-concordant functions. Section 3 defines con-
ceptually the HBA method and introduces the optimal step-size policy associated with it. An adaptive
variant of this base scheme is discussed in Section 4.2. Section 5 includes the main results in terms
of convergence and complexity of the method. Section 6 contains numerical examples.

Notation Given a k-times continuously differentiable function f : C → R and vectors v1, . . . , vk ∈
Rn. For x ∈ ri(C) and 1 ≤ j ≤ k, we define recursively

Djf(x)[v1, . . . , vj] := lim
ε→0

Dj−1f(x+ εvj)[v1, . . . , vj−1]−Dj−1f(x)[v1, . . . , vj−1]

ε
.
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As a conventionD0f(x) = f(x) and for k = 1 we recover the directional derivative f ′(x; v). Given a
positive semi-definite matrixH ∈ Rn×n, we define the norm ‖a‖H :=

√
〈Ha, a〉, and the dual norm

‖a‖∗H = sup{〈a, d〉 : ‖d‖H = 1}. IfH is invertible, the dual norm is given by ‖a‖∗H =
√
〈H−1a, a〉.

For a given n × n matrix A, let us define the operator norm |A| := sup{‖Ax‖ : ‖x‖ = 1}. Let
C ⊂ Rn be a convex set with closure C̄. Define the tangent cone TCC(x) := cl

[
R+(C̄ − x)

]
, and

the corresponding polar cone NCC̄(x) = {p ∈ Rn : 〈p, y − x〉 ≤ 0,∀y ∈ C̄}, which is called the
normal cone.

2 Setup and preliminaries

2.1 Elements of Riemannian geometry

A key notion in our considerations is that of a Riemannian metric, i.e. a position-dependent variant
of the ordinary (Euclidean) scalar product between vectors [30]. To define it, recall first that a scalar
product on Rn is a symmetric, positive-definite bilinear form 〈·, ·〉 : Rn × Rn → R. This scalar
product defines a norm in the usual way and it can be represented equivalently via its metric tensor,
that is, a symmetric, positive-definite matrix H ∈ Rn×n with components

Hij = 〈ei, ej〉 (3)

in the standard basis {ei}ni=1 of Rn. A Riemannian metric on a nonempty open set C ⊆ Rn is then
defined to be a smooth assignment of scalar products 〈·, ·〉x to each x ∈ C or, equivalently, a smooth
field H(x) of symmetric positive-definite matrices on C.

Given a Riemannian metric on C, the Riemannian gradient of a smooth function φ : C → R at x ∈ C
is defined via the characterization

〈gradφ(x), z〉x = φ′(x; z) for all z ∈ Rn. (4)

More concretely, by expressing everything in components, it is easy to see that gradφ(x) is given by
the explicit expression

gradφ(x) = [H(x)]−1∇φ(x). (5)

Bringing the above closer to our setting, let A0 ⊆ Rn be a subspace of Rn and let A be an affine
translate of A0 such that X ◦ ≡ C ∩ A is nonempty. Then, viewing X ◦ as an open subset of A, the
gradient of φ restricted to X ◦ is defined as the unique vector gradX ◦ φ(x) ≡ gradφ|X ◦(x) ∈ A0

such that
gradX ◦ φ(x) = φ′(x, d) for all d ∈ A0. (6)

Hence, specializing all this to the problem at hand, let H(x) be a Riemannian metric on the open set
C ⊂ Rn and set

A0 := ker(A) := {d ∈ Rn : Ad = 0}, A := {x ∈ Rn : Ax = b}.

Then, a straightforward exercise in matrix algebra shows that the gradient of f restricted to X ◦ =
C ∩ A0 can be written in closed form as

gradX ◦ f(x) = Px[H(x)]−1∇f(x) (7)

with
Px := Id−[H(x)]−1A>(A[H(x)]−1A>)−1A. (8)
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2.2 Generalized self-concordant functions

The Hessian-barrier method’s main assumption is that the set constraint C̄ admits an easy-to-compute
generalized self-concordant function. In the next sections we describe the subclass of admissible func-
tions on which the subsequent constructions build on. We begin with the notion of kernel generating
distance, by following the very general setup introduced in [3].

Definition 2.1 (Kernel generating distance). Let C be a nonempty convex and open subset of Rn.
Associated with C, a function h : C → (−∞,∞] is called a kernel generating distance if

(a) h is proper, lower semi-continuous and convex, with domh ⊂ C̄ and dom ∂h = ri domh =
C.

(b) h ∈ C1(C).

Denote the class of kernel generating distances by G(C).

We now add the additional structure on the kernel generating distance h ∈ G(C) we use in our
algorithmic design.

Definition 2.2. [46] Let φ ∈ C3(domφ;R) be a closed convex function with domφ open. Given
ν > 0 and M > 0 some constants, we say that φ is (M, ν) is generalized self-concordant (GSC) if

|φ′′′(t)| ≤Mφ′′(t)
ν
2 ∀t ∈ domφ. (9)

This definition generalizes to multivariate functions by requiring GSC along every straight line. Specif-
ically, let h : Rn → R be a closed convex, lower semi-continuous function with open and convex
effective domain domh = C ⊂ Rn. For x ∈ C and u, v ∈ Rn, define the real-valued function
φ(t) := 〈∇2h(x+ tv)u, u〉. For t ∈ domφ, one sees that

φ′(t) = 〈D3h(x+ tv)[v]u, u〉,

so that we can define generalized self-concordance of a function by formulating conditions on the
behavior of φ′(0).

Definition 2.3. [46] A closed convex function h ∈ C3(domh), with domh open, is called (M, ν)
generalized self-concordant of the order ν > 0 and constant M ≥ 0 if for all x ∈ domh

|〈D3h(x)[v]u, u〉| ≤M‖u‖2
x‖v‖ν−2

x ‖v‖3−ν
2 ∀u, v ∈ Rn. (10)

We denote this class of functions asHM,ν(domh).

As in the theory of standard self-concordant functions, the precise value of the scale parameterM > 0
is not of big importance for theoretical considerations. In fact, it is easy to see that we can always
rescale the function so that the definition of a GSC function holds for M = 2.

Lemma 2.4. If φ ∈ C3(domφ;R) belongs to the classHM,ν(domh), then
(
M
2

) 2
ν−2 φ ∈ H2,ν(domh).

Proof. Let ψ(t) :=
(
M
2

) 2
ν−2 φ(t). Then, for all t ∈ domφ, we have

|ψ′′′(t)| =
(
M

2

) 2
ν−2

|φ′′′(t)| ≤M

(
M

2

) 2
ν−2

φ′′(t)ν/2 = 2ψ′′(t)ν/2.

�

DOI 10.20347/WIAS.PREPRINT.2693 Berlin 2020



Generalized self-concordant Hessian-barrier algorithms 7

The function h ∈ HM,ν(domh) defines a semi-norm

‖d‖x :=
√
〈∇2h(x)d, d〉, (11)

with dual norm
‖d‖∗x := sup

d∈Rn
{2〈d, a〉 − ‖d‖2

x}. (12)

Note that if H(x) ≡ ∇2h(x) � 0 then ‖·‖x is a real norm (necessarily equivalent to the euclidean
norm), and ‖d‖∗x =

√
〈[H(x)]−1d, d〉. The barrier-character of functions h ∈ HM,ν(domh) is made

clear in the next Lemma.

Lemma 2.5 ([39],Thm. 4.1.4). For every sequence (xk)k≥0 such that (xk)k≥0 ⊂ domh and xk →
x ∈ bd(domh), we have limk→∞ h(xk) =∞.

Proof. For all k ≥ 0, we have

h(xk) ≥ h(x0) + 〈∇h(x0), xk − x0〉.

If the sequence (h(xk))k≥0 is bounded from above, we can descent to a subsequence along which
h(xk) → h̄ (we omit the relabeling). Then, for all k ≥ 0, zk = (xk, h(xk)) ∈ epi(h), and zk →
z = (x, h̄) ∈ epi(h), since the function is closed. Hence, x ∈ domh. A contradiction. �

Given ν ∈ (2, 4] and h ∈ HM,ν(C), we define the distance function

dν(x, y) :=

{
M‖y − x‖2 if ν = 2,
ν−2

2
M‖y − x‖3−ν

2 · ‖y − x‖ν−2
x if ν > 2.

(13)

The Dikin Ellipsoid with respect to the distance function dν is defined as

W(x; r) := {y ∈ Rn : dν(x, y) < r} ∀(x, r) ∈ domh× R. (14)

Lemma 2.6 ([46], Prop. 7). Let h ∈ HM,ν(C) be a barrier-generating kernel of order ν ∈ (2, 4]. We
haveW(x; 1) ⊆ domh for all x ∈ domh.

Remark 2.1. The familiar inclusionW(x; 1) ⊂ domh is only true if ν > 2. This is intuitive, since for
ν = 2, the local norm effectively boils down to the euclidean norm, and thus is not adaptive to the local
geometry. As a consequence, our algorithmic scheme will take as inputs functions h ∈ HM,ν(C) with
ν > 2 only. This covers the important case of standard self-concordant functions, as well as many
entropy-based barrier functions familiar from the literature on Bregman proximal gradient methods.
However, our method also works well for generalized self-concordant function of order ν ∈ (3, 4].
This range cannot be analyzed by proximal based algorithms studied in recent work [46, 49] and [50].

We define the Bregman divergence associated to h ∈ HM,ν(C) as

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉 for x ∈ C, y ∈ C. (15)

Since this divergence function will be a crucial quantity of interest in measuring the per-iteration
progress of our method, it is instrumental to have universal bunds on the function values. For the class
of self-concordant functions, such bounds are classical to the field (see e.g. [43]). For the Bregman
divergence induced by the class of generalized self-concordant functions, a similar universal bound
can be reported.
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Lemma 2.7 ([46], Prop. 10). Let x ∈ domh for h ∈ HM,ν(C) and ν ∈ (2, 4]. Then

ων(−dν(x, y))‖y − x‖2
x ≤ Dh(y, x) ≤ ων(dν(x, y))‖y − x‖2

x, (16)

for all y ∈ W(x; 1), where

ων(t) :=


−t−ln(1−t)

t2
if ν = 3,

(1−t) ln(1−t)+t
t2

if ν = 4,(
ν−2
4−ν

)
1
t

[
ν−2

2(3−ν)t
((1− t)

2(3−ν)
2−ν − 1)− 1

]
otherwise.

(17)

Let h ∈ HM,ν(C) and xj → bd(C) = C̄ \ C. Then, by Lemma 2.5, h(xj)→∞. We claim that this
implies ‖∇h(xj)‖2 →∞. Indeed, by convexity, for all y ∈ C, we have

h(y) ≥ h(xj) + 〈∇h(xj), y − xj〉.
Therefore, by Cauchy-Schwarz

h(y) ≥ h(xj)− ‖y − xj‖ · ‖∇h(xj)‖2

If ‖∇h(xj)‖2 would be bounded, the right-hand side diverges to ∞, whereas the left hand side is
bounded for y ∈ dom(h). This gives a contradiction. We conclude that h is Legendre:

xj → x∗ ∈ bd(C)⇒ ‖∇h(xj)‖2 →∞. (18)

Lemma 2.8. If h ∈ HM,ν(domh) and domh ⊂ Rn contains no lines, then H(x) � 0 for all
x ∈ domh.

Proof. Define the recessive subspace Eh := {d ∈ Rn : ‖d‖x = 0 for some x ∈ domh}. From [46,
Prop. 8] we deduce that for all r ∈ (0, 1) and y ∈ Rn with r = dν(x, y), we have

(1− r)
2

ν−2∇2h(x) ≤ ∇2h(y) ≤ (1− r)
−2
ν−2∇2h(x). (19)

Let Zd := {x ∈ domh : ‖d‖x = 0}. (19) implies that x ∈ Zd ⇒ y ∈ Zd for all y ∈ W(x; r), and
therefore Zd is open. Since h ∈ C3(domh), it is closed as well. Therefore Zd is either empty or the
entire set Rn. This implies that Eh is either empty or Rn. From here the result follows from [39, Thm.
4.1.3]. �

In order to fully understand the behavior of Newton methods involving standard self-concordant func-
tion h ∈ H2,3(domh), the general theory laid out by [43] introduced the concept of a self-concordant
barrier (SC-B).

Definition 2.9. For some scalar θ ≥ 0, a function h ∈ H2,3(C) is a self-concordant barrier of order
θ > 0 (θ-SCB) if

‖∇h(x)‖∗x ≤
√
θ ∀x ∈ C. (20)

It is very remarkable that every convex body, i.e. every compact convex set with nonempty interior,
admits a θ-SCB with θ a dimension-dependent constant. This class of functions is the main driver
in standard interior-point solvers, and conceptually it reveals the two main problems IPMs face when
confronted with large-scale problems: (i) Even if a suitable self-concordant barrier can be computed,
the order parameter θ is dimension dependent, and thus iteration complexity cannot be dimension-
free. However, Bubeck and Eldan [13] have recently shown that the Nesterov-Nemirovski universal
barrier (see below) is a θ-SCB on C with θ = (1 + εn)n and εn ≤ 100

√
log(n)/n. (ii) The con-

struction of the universal barrier for a convex body C̄ ⊂ Rn due to Nesterov and Nemirovski [43]
is based on the log-Laplace transform h∗(w) = log

(∫
C̄ exp(〈x,w〉) dx

)
and its convex conjugate

h(x) = supw∈Rn{〈w, x〉 − h∗(w)}. Unless the set C is special, computing a universal barrier is
infeasible.
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2.3 Barrier generating kernels

The class of metric generating functions of interest in this paper is defined as a subset FM,ν(C)
contained in G(C)∩HM,ν(C), whose exact definition depends on the order parameter ν. If ν ∈ (2, 3],
we take FM,ν(C) = G(C) ∩HM,ν(C). If ν ∈ (3, 4], we additionally assume coercivity of the kernel-
generating distance h, i.e that h(x)→∞ whenever ‖x‖ → ∞.

Definition 2.10. The class of barrier-generating kernels is defined as

FM,ν(C) :=

{
GM,ν(C) ∩HM,ν(C) if ν ∈ (2, 3],
{h ∈ GM,ν(C) ∩HM,ν(C) : h is coercive} if ν ∈ (3, 4].

2.4 Examples

In order to illustrate the flexibility of the framework of sets endowed with barrier-generating kernels, we
collect below some representative examples taken from the literature. For many more examples, we
refer the reader to [43].

The first set of examples are tailored to product domains C = C1 × · · · × Cn, where each Ci is
an open convex subset of the real-line. For such domains, decomposable barrier-generating kernels
are an attractive choice since their Hessian matrix is diagonal. Specifically, we consider functions
h ∈ FM,ν(C) of the form

h(x1, . . . , xn) =
n∑
i=1

φi(xi),

where each function φi ∈ FMφi
,ν(Ci). By [46, Prop. 1], h is generalized self-concordant with domh =⋂n

i=1 domφi and constant M := max{Mφ1 , . . . ,Mφn}. For different structures of the sets Ci, we
can propose different barrier-generating kernels φi. Here are some illustrative examples.

1 Burg entropy: φ(t) = − log(t) for t > 0 is an element of F2,3(R++);

2 Entropy-Barrier: φ(t) = t log(t)− log(t) for t > 0 is an element of F2,3(R++);

3 Consider the function φ(t) = (1 − t/κ)−κ for κ > 0 and t ∈ (−∞, κ). Then domφ =

(−∞, κ) and one can check that φ ∈ FM,ν((−∞, κ)), where M = 2+κ
κ

(
κ

1+κ

) 1
2+κ and

ν = 2(3+κ)
2+κ

∈ (2, 3) for κ > 0.

4 The function φ(t) = 1√
1−t2 defines an element in FM,ν((−1, 1)) for M a constant smaller

than 3.25 and ν = 14/5.

Remark 2.2. Let C̄ =
∏n

i=1[ai, bi] be a high-dimensional box of dimension n � 1 where +∞ >
bi ≥ ai > −∞. According to [20], this geometry is computational challenging for standard proximal
methods.2 This geometry can be easily endowed with a barrier-generating kernel h ∈ FM,ν(C) given
by a sum of Burg entropies or Entropy barriers, for instance, leading to a simple Riemannian metric on
the interior of this box.

2To be clear, the challenge is not to find a good distance generating function, but rather the scalability of the mirror
descent algorithm. We refer the reader to in-depth discussion in [20] for details.
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The above examples provide a snapshot of common barrier-generating kernels used in practice. How-
ever, it is possible to combine these functions to obtain mixture functions that preserve the properties
imposed on an element h ∈ FM,ν(C). In particular, it is easy to find barrier generating kernels for
geometries which are given as intersections of open convex sets C1, . . . , CJ , each admitting a gen-
eralized self-concordant function hj ∈ FMj ,ν(Cj), 1 ≤ j ≤ J . This appears in second-order cone
programming problems, which have as a special case optimization problems with quadratic constraints
(see [33] for a survey). The typical sets appearing in such optimization problems are the following:

� C = Rn
++, h(x) = −

∑
i log(xi) is a n-SCB and an element of h ∈ F2,3(C);

� Consider the second-order cone C̄ ≡ Ln := cl ({x = (t, w) ∈ R× Rn−1 : t > ‖w‖2}). The
function

h(x) = − log(t2 − ‖w‖2
2) x := (t, w) ∈ C,

is a barrier-generating kernel belonging to F2,3(C). It is also an 2-SCB.

� Consider the cone of positive definite symmetric n×nmatrices with real entries Σn
++ := {x ∈

Rn×n : x � 0, x> = x}, and set C̄ := cl(Σn
++). The function h(x) = − log det(x) for

x ∈ C is a barrier-generating kernel of class F2,3(C). It is also an n-SCB.

� Let B be a p × n matrix with rows b>1 , . . . , b
>
p , and d a given vector in Rp. Consider the

polyhedral set C̄ := {x ∈ Rn : Bx ≤ d}. Assume that C = {x ∈ Rn : Bx < d} is
nonempty (Slater condition). Then, the function h(x) =

∑p
j=1− log(dj − b>j x) is a barrier

generating kernel belonging to the class F2,3(C).

� LetMm,n be the space of real m × n matrices with inner product 〈A,B〉 = tr(AB>). The
standard operator norm is defined as |Q| := max{‖Qw‖ : ‖w‖ = 1}. Consider the set
C̄ = cl ({x = (t, Q) ∈ R×Mm,n : t > |Q|}) . This set admits a barrier-generating kernel
h ∈ F2,3(C) given by h(x) = log det(t Id−1

t
QQ>)− log(t) for x = (t, Q) ∈ C.

2.5 The minimization problem

We are given a matrixA ∈ Rm×n of full row rankm and b ∈ im(A). Define the setsA = {x ∈ Rn :
Ax = b}, and A0 = ker(A), so that A⊥0 = im(A>). Let C be a nonempty open convex set in Rn

with closure C̄ that is not contained in any (n− 1)-dimensional affine subspace. Throughout the rest
of this paper the following assumption is taken as a standing hypothesis.

Assumption 1. The set C is nonempty, convex and contains no lines.

Combining this assumption with Lemma 2.8, we know that the Hessian matrix H(x) = ∇2h(x) is
positive definite on C. The matrix-valued function H : C → Σn

++ defines a Riemannian manifold
(C, ‖·‖x), with Riemannian metric given by (11). We are also given a lower semi-continuous f :
Rn → (−∞,+∞]. The problem we aim to solve is the minimization problem

f ∗ := inf{f(x) : x ∈ C̄, Ax = b} (P)

The feasible set of (P) is denoted asX = C̄ ∩A, and we shall denote byX ◦ the relative interior ofX ,
that is, X ◦ = {x ∈ Rn : x ∈ C, Ax = b}. As a standing hypothesis, we shall impose the following
Slater constraint qualification condition:
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Generalized self-concordant Hessian-barrier algorithms 11

Assumption 2. X ◦ 6= ∅.

Assumption 3. The level sets of the objective function are bounded: Given x0 ∈ X ◦ there exists
R > 0 such that sup{‖x‖∞ : f(x) ≤ f(x0)} ≤ R.

For ε > 0, an ε global minimizer is defined as a feasible solution xε such that

f(xε)− inf
x∈X

f(x) ≤ ε. (21)

It is well known that finding an ε-global minimizer is a strongly NP-hard problem (see e.g. [24]). Even
worse, it is also well known that in general, finding a descent direction for a non-convex non-smooth
function is NP-hard. As concrete illustration, even deciding whether the function

f(x) = (1− 1/γ) max
1≤i≤n

|xi| − min
1≤i≤n

|xi|+ |〈c, x〉|,

where x ∈ Rn, c ∈ Nn and γ =
∑n

i=1 ci, admits a descent direction is NP-hard [41, Lem. 1].
Therefore, in this paper we restrict ourselves to objective functions of very special structure. Namely,
we consider the problem of minimizing a real-valued function f : Rn → (−∞,∞] which is continu-
ously differentiable on an open convex set C ⊂ Rn, and possibly non-differentiable at the boundary
bd C = C̄ \ C.

Assumption 4. f : Rn → (−∞,∞] is a proper and lower semi-continuous function with f ∈
C1(C).

The smoothness condition formulated in Assumption 4 is silent about the behavior of the function at
the boundary bd(C). In case where the function f is twice continuously differentiable Cartis, Gould
and Toint defined in [19] the following criticality measure at x ∈ X

χCGT (x) := | min
x+d∈X ,‖d‖2≤1

〈∇f(x), d〉|. (22)

They subsequently proved O(ε−2) iteration complexity for reaching a point with χCGT (x) ≤ ε. We
propose a similar criticality measure here, but make use of the local norm. In particular, we consider
the primal-dual stationarity measure at (x, y) ∈ X ◦ × Rm given by

χ(x, y) := ‖∇f(x)− A>y‖∗x. (23)

Definition 2.11. Given ε > 0, a pair (x∗, y∗) ∈ X ◦ × Rm is calld ε-stationary if χ(x, y) ≤ ε.

In order to motivate this criticality measure, we first recall the classical Fenchel-Young inequality

|〈u, v〉| ≤ ‖u‖x · ‖v‖∗x ∀u, v ∈ Rn, x ∈ X ◦. (24)

Hence, for v = ∇f(x)− A>y and u ∈ A0 with ‖u‖x = 1, this inequality readily gives us

−χ(x, y) ≤ 〈∇f(x)− A>y, u〉 = 〈∇f(x), u〉 ≤ χ(x, y),

and in particular,
| min
u∈A0,‖u‖x=1

〈∇f(x), u〉| ≤ χ(x, y).

Thus, the primal-dual criticality measure is an upper bound of a version of the Cartis-Gould-Toint criti-
cality measureχCGT (x), and we note in passing that ifχ(x, y) ≤ ε, then automatically 〈∇f(x), u〉 ∈
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(−ε, ε) for all u ∈ A0 satisfying ‖u‖x = 1. One potentially troublesome part in the definition of our
proposed criticality measure is that it is formulated in terms of the local norm. Hence, we would need
to evaluate the inverse matrix [H(x)]−1 (provided it exists at x). However, for our algorithm this is
not a problem since we will have very good control about the location of the iterates. Indeed, as will
be seen in Section 5, the algorithm will take values on a compact set Sµ(x0) in X ◦ (this is similar to
proximal based self-concordant algorithms and exploited in [36] in the convergence analysis). On this
set, we have very good control on the eigenvalues of the Hessian matrix H(x) = ∇2h(x), and in
fact, under assumption spelled out explicitly in the sections to follow, we can provide upper and lower
bounds on the eigenvalues of H(x) over the set Sµ(x0), denoted as 0 < σh < τh <∞. Therefore,
during the working phase of the algorithm, we produce a primal-dual sequence (xk, yk) along which
the criticality measure is sandwiched as

τ
−1/2
h ‖∇f(xk)− A>yk‖2 ≤ ‖∇f(xk)− A>yk‖∗xk ≤ σ

−1/2
h ‖∇f(xk)− A>yk‖2. (25)

Therefore, if the euclidean norm of the vector ∇f(xk) − A>yk falls below a cut-off ε > 0, we have
reached an ε-stationary point in the sense of Definition 2.11.

Remark 2.3. This notion of stationarity is also motivated by the structure of the KKT conditions sat-
isfied by a solution candidate for problem (P) taking values in the relative interior X ◦ = C ∩ A. As
a concrete illustration, let us consider the set C̄ = Rn

+, so that we are in the setting of [11]. The
complementary slackness condition for the resulting optimization problem (P) reads as

X(∇f(x)− A>y) = 0 (26)

whereX = diag{x1, . . . , xn}. Hence, a reasonable definition of an ε-KKT point under a Riemannian-
Hessian structure induced by the Hessian of the function h(x) = −

∑n
i=1 lnxi would read as

‖X(∇f(x)− A>y)‖∞ ≤ ‖∇f(x)− A>y‖∗x ≤ ε.

This ε-KKT definition has also been used in [28].

3 The Hessian-barrier method

In this section we describe a conceptual version of the Hessian-barrier method. To this end, we are
given an open nonempty set C ⊂ Rn satisfying Assumption 1, admitting a computable barrier gener-
ating kernel h ∈ FM,ν(C).

3.1 Defining the search directions

For a pair (x, g) ∈ C × Rn, define the functions

ψ(x, g) := min
v

{
〈g, v〉+

1

2
‖v‖2

x : Av = 0

}
, and

V (x, g) := argmin
v

{
〈g, v〉+

1

2
‖v‖2

x : Av = 0

}
.

Computing the vector V (x, g) means finding a pair (V (x, g), y(x, g)) = (v, y) ∈ Rn × Rm solving
the Newton-type of system [

H(x) −A>
−A 0

]
·
[
v
y

]
=

[
−g
0

]
. (27)

DOI 10.20347/WIAS.PREPRINT.2693 Berlin 2020



Generalized self-concordant Hessian-barrier algorithms 13

In particular, the complexity of computing V (x, g) is of the same order as finding a Newton direction,
and the practical efficiency of the method depends heavily on the structure of the matrices H(x) and
A, respectively. In any case, given that H(x) ∈ Σn

++, we obtain a closed form expression for the
vector V (x, g) as

V (x, g) = −Px[H(x)]−1g ∀(x, g) ∈ C × Rn, and (28)

y(x, g) = (A[H(x)]−1A>)−1A[H(x)]−1g (29)

where the matrix valued function P : C → Rn×n defined in (8). We just remark that, given the matrix
A being of full rank, the function x 7→ A[H(x)]−1A> is invertible [11]. Computational efficiency
considerations will be made later. We close this section by establishing some general properties of the
mapping ψ and V .

Proposition 3.1. The following assertions are true:

(a) The mapping ψ(x, ·) : Rn → R is concave and continuously differentiable with

∇gψ(x, g) = V (x, g) ∀(x, u) ∈ C × Rn.

(b) If h is K-strongly convex under the `2 norm, then for every x ∈ C, the mappings V (x, ·) and
ψ(x, ·) are 1

K
-Lipschitz,

(c) If g = p+ z ∈ NCX (x) with p ∈ NCC̄(x), z ∈ A⊥0 , then

V (x, p+ z) = V (x, p)

Proof. Since ψ(x, g) is the pointwise minimum of a linear function, it must be concave. The integra-
bility condition on the vector field g 7→ V (x, g) is a straightforward computation. Parts (b) and (c) are
standard, and follow from the general analysis of such projection schemes as in [40]. It is however
instructive here to go over the computations. First, the K-strong convexity of the norm ensures that
u 7→ ψ(x, u) is well defined and convex. In particular, g 7→ V (x, g) is uniquely defined by eq. (28).
Therefore,

ψ(x, g) =
1

2
‖V (x, g)‖2

x ∀(x, g) ∈ C × Rn.

Let g1, g2 ∈ Rn be arbitrary and set v1 = V (x, g1), v2 = V (x, g2). The optimality conditions at a
given point x ∈ C imply

(g1 −H(x)v1)>(v2 − v1) = 0 and

(g2 −H(x)v2)>(v1 − v2) = 0.

Adding both, and using the K-strong convexity shows

(g1 − g2)>(v1 − v2) = (H(x)(v1 − v2))>(v1 − v2) ≥ K‖v1 − v2‖2
2.

Using the Cauchy-Schwarz inequality, we arrive at

‖V (x, g1)− V (x, g2)‖2 ≤
1

K
‖g1 − g2‖.

�

Corollary 3.2. For all x ∈ X ◦, we have

V (x, g) = 0 ∀g ∈ NCX (x) = NCC̄(x) +A⊥0 .

Proof. Just observe that for x ∈ X ◦ we have NCC̄(x) = {0} and thus g ∈ A⊥0 . Hence, the claim
follows from (c) of Proposition 3.1. �
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3.2 The Hessian-Barrier potential reduction algorithm

Based on the family of search directions V (x, g), we now tailor the gradient input g ∈ Rn to derive
a potential reduction algorithm solving problem (P). Throughout this paper we will work with a pair of
functions (f, h) such that:

(i) h ∈ FM,ν(C) with some parameters M > 0 and ν ∈ (2, 4];

(ii) cl (domh) = C̄;

(iii) f : Rn → (−∞,∞] obeys Assumption 4 and dom(h) ⊆ dom(f).

The next definition, due to [4, 35] and [8], is fundamental to our analysis.

Definition 3.3. The pair of functions (f, h) is L-smooth if there exists a constant L > 0 such that

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ LDh(y, x) ∀x, y ∈ C (L)

It easy to check that (f, h) being L-smooth is equivalent to Lh−f being convex. Define the potential
function

Fµ(x) = f(x) + µh(x) ∀x ∈ domh. (30)

If (f, h) is an L-smooth pair, then the function (L+ µ)h− Fµ must be convex. Therefore,

Fµ(x) ≤ Fµ(y) + 〈∇Fµ(y), x− y〉+ (L+ µ)Dh(x, y) ∀(x, y) ∈ domh× domh. (31)

This inequality is in fact a modified descent lemma, in the spirit of [4], for the non-convex, non-smooth
composite function Fµ.

Remark 3.1. If C = Rn and h(x) = 1
2
‖x‖2, the pair (f, h) is L-smooth if and only if the classical

descent inequality

f(x)− f(y)− 〈∇f(y), x− y〉 ≤ L

2
‖x− y‖2

holds for all x, y ∈ Rn, i.e. the parameter L is a surrogate for the Lipschitz constant of the Euclidean
gradient map x 7→ ∇f(x).

Define the search direction

dµ(x) := V (x,∇Fµ(x)) ∀x ∈ X ◦. (32)

From the first-order optimality condition of the search direction (27), we know that

〈∇Fµ(x), dµ(x)〉 = −‖dµ(x)‖2
x ∀x ∈ X ◦. (33)

The associated dual variable is obtained by the evaluation of (29) as yµ(x) := y(x,∇Fµ(x)).

Lemma 3.4. The dual function yµ : C → Rm is continuous.

Proof. By (29), the function yµ(x) has the explicit expression yµ(x) = (A[H(x)]−1A>)−1A[H(x)]−1∇Fµ(x).
Since h ∈ C3(C), the matrix-valued mapping H(x) = ∇2h(x) is continuous, and x 7→ ∇Fµ(x) is
continuous as well on C. The claim follows. �
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Define
λµ(x) := ‖dµ(x)‖x, and βµ(x) := ‖dµ(x)‖2, (34)

and the transfer function

Tµ(x, α) := x+ αdµ(x) x ∈ C, α > 0, µ > 0. (35)

This mapping Tµ : C × [0,∞)→ Rn will serve as the generator of the numerical algorithm. Thanks
to generalized self-concordance, we can easily determine the step length values α > 0 guaranteeing
that Tµ(x, α) ∈ X ◦ for x ∈ X ◦. Indeed, by Lemma 2.6, a sufficient condition ensuring that we stay in
the interior of the feasible set is to set α > 0 such that dν(x, Tµ(x, α)) < 1. This leads to the bound
αM ν−2

2
λµ(x)ν−2βµ(x)3−ν < 1. Let us define

δµ(x) := M
ν − 2

2
λµ(x)ν−2βµ(x)3−ν , (36)

so that dν(x, Tµ(x, α)) = αδµ(x) for all x ∈ X ◦, α ≥ 0. Furthermore, if δµ(x) > 0, we define
ᾱµ(x) := 1/δµ(x). Therefore, any choice of step size α ∈ (0, ᾱµ(x)), delivers a feasible step.
Furthermore, for all α ∈ (0, ᾱµ(x)), we can apply the general descent inequality (31) to theL-smooth
pair (f, h), so that (31), (33) and (36) give us the per-iteration estimate

Fµ(Tµ(x, α)) ≤ Fµ(x) + α〈∇Fµ(x), dµ(x)〉+ (L+ µ)Dh(Tµ(x, α), x)

= Fµ(x)− αλµ(x)2 + (L+ µ)Dh(Tµ(x, α), x).

Combining this with Lemma 2.7, we see that for all x ∈ C and α ∈ (0, ᾱµ(x))

Fµ(Tµ(x, α)) ≤ Fµ(x)− αλµ(x)2 + (L+ µ)ων(αδµ(x))α2λµ(x)2

= Fµ(x)− ηµ(x, α), (37)

where we have set

ηµ(x, t) := tλµ(x)2 − (L+ µ)ων(tδµ(x))t2λµ(x)2. (38)

Note that the barrier-generating kernel h ∈ FM,ν(C) only appears in this per-iteration bound via the
local norm of the search direction λµ(x). As such, the above bound can be seen as worst-case bound
on the potential function decrease. This worst-case point of view is however very useful in determining
an explicit step-size policy, akin to the recently proposed prox-based algorithms for convex composite
self-concordant minimization [46, 49].

Proposition 3.5. For all x ∈ X ◦, µ, L > 0 and α ∈ (0, ᾱµ(x)), we have Tµ(x, α) ∈ X ◦. The
optimal step-size rule, in the analytical worst-case sense, is given by

αµ(x, L) :=


1

δµ(x)

[
1−

(
1 + δµ(x)

L+µ
4−ν
ν−2

)− ν−2
4−ν
]

if ν ∈ (2, 3) ∪ (3, 4),

1
δµ(x)+L+µ

if ν = 3,

1
δµ(x)

[
1− exp

(
− δµ(x)

L+µ

)]
if ν = 4.

(39)

The proof of this Proposition is a rather technical computation, and therefore delegated to Appendix A.
It is however interesting to note that the self-concordance parameter ν plays a somewhat symmetric
role around its values ν ∈ (2, 3) ∪ (3, 4). Moreover, it is remarkable that the theoretical upper bound
on the step size ensuring feasibility, ᾱµ(x), is independent of the constant L. It appears only when we
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Figure 1: Step size α = sν,L(t) for L+ µ = 10 and ν ∈ {2.6, 3, 3.5, 4}.

compute the optimal step size αµ(x, L), which, in turn, is available in a closed-form expression. This
functional form of the step size policy allows for a direct comparison in dependence of the generalized
self-concordance parameter ν ∈ (2, 4]. In Figure 1 we provide a numerical illustration on the ordering
of the step sizes, realizing for fixed parameter pair (µ, L), we can think of the function αµ(x, L) as
the output of a function of the composition sµ,L,ν ◦ δµ, where sµ,L,ν : (0,∞)→ (0,∞) is given by

sµ,L,ν(t) :=


1
t

[
1−

(
1 + t

L+µ
4−ν
ν−2

)− ν−2
4−ν
]

if ν ∈ (2, 3) ∪ (3, 4),

1
t+L+µ

if ν = 3,
1
t

[
1− exp

(
− t
L+µ

)]
if ν = 4.

We see that larger parameters ν lead to higher step sizes and thus to more aggressive schemes. This
clearly indicates that the choice of the metric-inducing kernel matters in the design of the algorithm.
Observe that the function sµ,L,ν is well defined at t = 0 and attains the same value 1/(L+ µ) for all
ν ∈ (2, 4].

Both parameters µ and L are seen to have the same effect on the step size policy: Larger values imply
smaller step sizes. Hence, for optimization purposes it is of utmost interest to pick these parameters in
a way that prevents HBA(µ, L) making to small steps. However, the two parameters also play differ-
ent roles in the design of the method. While µ is a barrier parameter guaranteeing that the algorithm
is an interior-point method, the parameter L is dictated by the pair (f, h) in order to guarantee the
descent property (L). Intuitively, we would like to run the algorithm with a numerically small value of
µ. The descent property (L) tells us that for any L̃ ≥ L, we can guarantee a sufficient decrease in
the potential function, so the design question becomes how small the the parameter L can be chosen
with a guarantee to obtain a sufficient decrease. In order to answer these questions, we will develop
an adaptive version of the base algorithm HBA(µ, L). Since the analysis of this adaptive version will
rely on general results obtained for the base scheme HBA(µ, L), we start our mathematical analysis
with the assumption that both parameters are fixed, and later make their choice dynamic.

4 The Hessian-barrier algorithm

Let c > 0 be a positive constant. For the construction of our algorithmic scheme it will be important to
have access to a c-analytic center, i.e. a point x0 ∈ X ◦ such that

h(x) ≥ h(x0)− c ∀x ∈ X . (40)
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Data: kernel generating distance h ∈ FM,ν(C) such that (f, h) is L-smooth;
Barrier parameter µ > 0.
Result: Stationary point of Fµ.
Initial point: c-analytic center x0 ∈ X ◦;
while k = 0, 1, . . . , kmax do

obtain xk and∇Fµ(xk);
if Stopping condition not satisfied then

Solve the linear system (27) for x = xk and g = ∇Fµ(xk);
Denote by (vkµ, y

k
µ)> the solution;

Compute step size αk = αµ(xk, L);
Update xk+1 = xk + αkv

k
µ.

else
Stop and report xk as the solution

end
end

Algorithm 1: HBA(µ, L)

To obtain such a point x0, we need to be able to approximately solve the minimization problem

min
x∈X

h(x).

This assumption is very common in potential reduction schemes [28, 54, 55]. In case where X is
bounded, existence of an exact analytic center is guaranteed and we can use any efficient solver for
computing it. In the case where X is unbounded, existence of an exact analytic center is guaranteed
if the classical existence condition given by the Weierstrass’ theorem are satisfied. If h ∈ FM,ν(C)
for ν ∈ (3, 4] then by Definition 2.10 the function h is coercive, and therefore the program (40) always
has a solution. In the remaining cases, where ν ∈ (2, 3] we either have to assume that the feasible
set is bounded or that there exists a point x ∈ X under which the dual norm ‖∇h(x)‖∗x is ßmall".
A precise meaning of this statement can be given by adapting the relevant arguments in [46] to the
current geometry with linear equality constraints and leave this, somewhat off-topic, exercise to the
reader.

4.1 HBA iterations for fixed µ

Given the general template described in Section 3, the first algorithmic scheme of interest in this paper
is easy to describe. Assuming the standing hypothesis Assumptions 1-4 in place, we are given a pair
of functions (f, h) such that h ∈ FM,ν(C), and L-smoothness holds for some L ≥ 0. Given a c-
approximate analytic center x0 ∈ X ◦ as initial condition, we generate a sequence (xk)k≥0 recursively
by

xk+1 = Tµ(xk, αk) = xk + αkv
k
µ ∀k ≥ 0,

where Tµ(x, α) is the transfer function defined in (35), with step-size αk = αµ(xk, L) and search di-
rection vkµ = dµ(xk). The pseudo-code corresponding to the conceptual implementation of HBA(µ, L)
reads as Algorithm 1.

Let us make some remarks on the computational efficiency of HBA(µ, L). Since C contains no lines
and the sequence (xk)k≥0 stays in the relative interior for the optimization problem’s feasible set,
we guarantee that H(xk) � 0 for every iteration of the algorithm. Hence, the main computational
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Data: kernel generating distance h ∈ FM,ν(C) such that (f, h) is L-smooth;
Barrier parameter µ > 0.
Result: Stationary point of Fµ.
Initial point: c-analytic center x0 ∈ X ◦;
while k = 0, 1, . . . , kmax do

obtain xk;
if Stopping condition not satisfied then

Solve the linear system (27) for x = xk and g = ∇Fµ(xk).;
Denote by (vkµ, y

k
µ)> the solution;

Find the smallest ik ≥ 0 such that zk = xk + αµ(xk, 2ik−1Lk)v
k
µ satisfies

f(zk) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ 2ik−1LkDh(z
k, xk). (41)

Set Lk+1 = 2ik−1Lk;
Update xk+1 = zk.

else
Stop and report xk as the solution.

end
end

Algorithm 2: AHBA(µ)

step in HBA(µ, L) (27) is always well-posed while executing the algorithm, and delivers a unique
solution. The complexity of (27) is the same as for a Newton method; It requires O(n3) operations
via either a Cholesky decomposition, or a well implemented conjugate gradient (CG) method. Hence,
in terms of per-iteration complexity HBA(µ, L) is comparable with Newton methods. In many ap-
plications, however, the matrix H(xk) has a special structure which makes the application of heavy
analytic machinery unnecessary. Indeed, most barrier functions h used in the literature are additively
separable and the resulting Hessian matrix H is therefore diagonal. In this case, the computational
complexity is essentially determined by the density of the matrix A, and in many applications (e.g.
resource allocations problems where A embodies network flow constraints) we will be able to imple-
ment a closed-form expression for the search direction vkµ. Hence, in such favorable instances, the
per-iteration computational overhead of implementing HBA(µ, L) is rather small.

4.2 Adaptive HBA

The basic algorithmic scheme HBA(µ, L) utilizes knowledge of the barrier parameter µ and the L-
smoothness parameter L > 0 in order to determine the step size αµ(x, L). Knowing a-priori the
parameter µ is not a very demanding, since it is chosen by the user at the beginning of the implemen-
tation. However, running the basic Hessian-barrier algorithm scheme with a stiff parameter Lmight be
inefficient since it forces us to rescale the step size with the same constant factor µ+L globally. This
might lead to unnecessary small steps, resulting in long run times of the method. To overcome this
drawback we present in this section a new adaptive method of Hessian-barrier algorithm, where all
necessary information about L can be accumulated by an appropriate "line-searchßtrategy. The thus
resulting Adaptive-Hessian-barrier algorithm method closely resembles ideas spelled out in üniversal
gradient methods"defined by Nesterov in [42].
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5 Complexity analysis of HBA

We organize our discussion on the long-run properties of HBA(µ, L) and AHBA(µ) in two parts.
The first part is concerned with the asymptotic convergence properties of the two methods. In the
second part we will discuss the non-asymptotic complexity properties of the method. Throughout this
section we assume that Assumptions 1-4 are satisfied.

5.1 Asymptotic convergence

Let (xk)k≥0 be a sequence generated by HBA(µ, L), with search direction vkµ = dµ(xk) and step-
size policy αk = αµ(xk, L). Let us introduce the associated sequences (λk)k≥0, (βk)k≥0, (δk)k≥0 ⊂
[0,∞) by

λk := ‖vµ(xk)‖xk , βk := ‖vµ(xk)‖2, δk := M

(
ν − 2

2

)
λν−2
k β3−ν

k . (42)

Let us define the per-iteration progress along the thus produced sequence, quantified in (37), as

∆k := ηµ(xk, αk) ∀k ≥ 0. (43)

From Proposition 3.5, we immediately deduce an online version of the step-sizes together with a
descent inequality for the potential function, summarized in the next Proposition.

Proposition 5.1. Let (xk)k≥0 be the sequence generated by HBA(µ, L) with the step size policy

αk :=


1
δk

[1−
(

1 + δk
L+µ

4−ν
ν−2

)− ν−2
4−ν

] if ν ∈ (2, 3) ∪ (3, 4),
1

δk+L+µ
if ν = 3,

1
δk

[
1− exp

(
− δk
L+µ

)]
if ν = 4.

(44)

Then, for all k ≥ 0 we have
Fµ(xk+1) ≤ Fµ(xk)−∆k, (45)

where ∆k is defined in (43). Moreover, this step size rule is optimal in the worst-case analytic sense.

We next provide some general properties of HBA(µ, L).

Proposition 5.2. Let (xk)k≥0 be generated by HBA(µ, L), and set f ∗ := infx∈X f(x). Then, the
following assertions hold:

(a)
(
Fµ(xk)

)
k≥0

is non-increasing;

(b)
∑

k≥0 ∆k <∞, and hence the sequence (∆k)k≥0 converges to 0;

(c) min0≤k<K ∆k ≤ 1
K

[f(x0)− f ∗ + µc].

Proof. Unraveling the expressions in eq. (31), we get for all k ≥ 0,

f(xk+1)− f(xk) ≤ −∆k + µ[h(xk)− h(xk+1)].
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Telescoping this expression shows that for all K ≥ 1,

f(xK)− f(x0) ≤ −
K−1∑
k=0

∆k + µ[h(x0)− h(xK)].

Since x0 is a c-analytic center, the left-hand side in the above display can be majorized to obtain the
bound

f(xK)− f(x0) ≤ −
K−1∑
k=0

∆k + µc.

Since ∆k > 0 , the sequence
(
Fµ(xk)

)
k≥0

is monotonically decreasing. Since h(x)−h(x0) ≥ −c,
and f is bounded from below, the potential function Fµ is bounded from below as well. Therefore
lim infk→∞ Fµ(xk) = limk→∞ Fµ(xk) exists and equals a number F ∗µ ∈ (−∞,∞). It follows that
(xk)k≥0 ⊂ domh = C, and therefore limk→∞ f(xk) exists as well. Calling f ∗ := inf{f(x) : x ∈
X} > −∞, we conclude that for all K ≥ 1,

K−1∑
k=0

∆k ≤ f(x0)− f(xK) + µc ≤ f(x0)− f ∗ + µc, (46)

and

min
1≤k≤K

∆k ≤
1

K
[f(x0)− f ∗ + µc]. (47)

Hence, limk→∞∆k = 0. �

We turn now to the convergence properties of HBA(µ, L). Our aim is to show that accumulation
points of the sequence (xk)k≥0 generated by the algorithm are stationary points of the potential func-
tion Fµ. We start by proving some auxiliary results.

Lemma 5.3. Let (xk)k≥0 be generated by HBA(µ, L). Then, (xk)k≥0 is bounded.

Proof. Since
(
Fµ(xk)

)
k≥0

is monotonically decreasing, we have

f(xk+1)− f(xk) ≤ −∆k − µ[h(xk+1)− h(xk)].

Hence, for all K ≥ 1, using the c-analytic center property of the initial condition x0, we get

f(xK) ≤ f(x0) + µc.

Hence, xk ∈ levf (f(x0)+µc). Since f has bounded level sets (Assumption 3), the entire sequence
(xk)k≥0 is bounded. �

Define the limit set
ω(x0) := {p ∈ X : ∃(kq)q∈N ↑ ∞, lim

kq→∞
xkq = p}. (48)

Thanks to Lemma 5.3, standard results imply that ω(x0) is nonempty, connected and compact (see
e.g. [10, Lem.5]). Furthermore, limk→∞ dist(xk, ω(x0)) = 0. For x ∈ X ◦, define

Sµ(x) := {y ∈ X : Fµ(y) ≤ Fµ(x)} = levFµ(Fµ(x)) ∩ A. (49)

Since HBA(µ, L) is a descent method for the potential function Fµ, we immediately conclude that
(xk)k≥0 ⊆ Sµ(x0).
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Lemma 5.4. Let x0 be a c-analytic center. Then Sµ(x0) is a compact subset in X ◦ = C ∩ A.

Proof. Note that

Sµ(x0) = {x ∈ X : f(x) ≤ f(x0) + µ[h(x0)− h(x)]}
⊆ {x ∈ X : f(x) ≤ f(x0) + µc}
= levf (f(x0) + µc) ∩ A.

Since f has bounded level sets (Assumption 3), the set Sµ(x0) is bounded as well. It remains to prove
that the set Sµ(x0) is closed. To that end, let (xj)j≥1 be a converging sequence with limj→∞ xj = x̄
and xj ∈ Sµ(x0) for all j ≥ 1. Then, f(xj) + µh(xj) ≤ r ≡ f(x0) + µh(x0) for all j ≥ 1. If
x̄ ∈ bd(C), then h(xj)→∞ and we immediately obtain a contradiction. Hence, x ∈ C∩A, and the
restriction of the composite function f + µh on this domain is continuous. We conclude x̄ ∈ Sµ(x0).
�

Corollary 5.5. ω(x0) ⊂ X ◦.

Let σmin(x) denote the smallest and σmax(x) the largest eigenvalue of the HessianH(x) = ∇2h(x).
Since H(x) � 0 for all x ∈ X ◦, we conclude that σmin(x) > 0. Moreover, the compactness of the
set Sµ(x0) allows us to define the positive constant

σh := min
x∈Sµ(x0)

σmin(x) (50)

Hence, along the iterates of HBA(µ, L), we have

λk ≥
√
σhβk ∀k ≥ 0. (51)

Since
αkδk = dν(x

k, xk+1) = M(
ν

2
− 1)λν−2

k β3−ν
k ,

the following lower and upper bounds can be established for ν ∈ (2, 3]:

M
(ν

2
− 1
)
σ
ν−2
2

h αkβk ≤ αkδk ≤M
(ν

2
− 1
)
σ
− 3−ν

2
h αkλk. (52)

This inequality will be key to prove convergence of the method to a stationary point of the potential
function when ν ∈ (2, 3]. For ν ∈ (3, 4], we will need to upper bound the local norm of the search
direction, λk, as well. Let σmax(x) ∈ (0,∞] be the largest eigenvalue of the Hessian matrix H(x).
Since Sµ(x0) is a compact set in X ◦, the quantity

τh := max
x∈Sµ(x0)

σmax(x) (53)

is well-defined and finite. Given these bounds, we see that for all x ∈ Sµ(x0) we have

σh Id � H(x) � τh Id (54)

so that the function h is σh-smooth and τh-strongly convex on the compact set Sµ(x0). The quantity
κh = τh

σh
≥ 1 is the condition number of h. Hence, along the sequence (xk)k≥0 generated by

HBA(µ, L), we can upper bound the local norm of the search direction by

λk ≤
√
τhβk ∀k ≥ 0. (55)

All these estimates together will be needed to prove the main result of this section, represented by the
following Theorem.

DOI 10.20347/WIAS.PREPRINT.2693 Berlin 2020



P. Dvurechensky, M. Staudigl, C.A. Uribe 22

Theorem 5.6. Let (xk)k≥0 be the sequence generated by HBA(µ, L) with step-size policy (αk)k≥0

described in (44). Then, ω(x0) ⊆ {x ∈ X : (∃y ∈ Rm) : ∇Fµ(x)− A>y = 0}.

Proof. See Appendix B. �

As a consequence of this Theorem, it follows that the trajectory (xk)k≥0 exhibits a decaying energy in
the metric-like function dν :

Corollary 5.7. limk→∞ dν(x
k, xk+1) = 0.

Proof. By definition, dν(xk, xk+1) = αkδk for all k ≥ 0 and ν ∈ (2, 4]. In Appendix B we have
shown that lim infk→∞ αk > 0 and lim supk→∞ δk = 0. The claim follows. �

5.2 Non-asymptotic bounds

In this section we provide complexity estimates for the non-adaptive base algorithm HBA(µ, L). To
do so, we report first a useful technical corollary of the proof of Theorem 5.6.

Lemma 5.8. Let (xk)k≥0 be generated by HBA(µ, L), with corresponding potential reduction se-
quence (∆k)k≥0 defined in (43). For each generalized self-concordance parameter ν ∈ (2, 4], there
exists a strictly increasing function ω̃ν : (0,∞)→ (0,∞) satisfying

∆k ≥ ω̃ν(λk) ∀k ≥ 0. (56)

In particular, this function is given by

ω̃ν(t) : =



γ̃νtmin

{
2σ

3−ν
2

h

M(ν−2)
, t
−b(L+µ)

}
if ν ∈ (2, 3),

γ̃νtmin
{

2
M(ν−2)

τ
− 3−ν

2
h , t

−b(L+µ)

}
if ν ∈ (3, 4),

2(1−ln(2))t
M(L+µ)

min
{

(L+ µ), M
2
t
}

if ν = 3,

t exp(−1) min
{

1√
τhM

, t
L+µ

}
if ν = 4,

where

b :=
2− ν
4− ν

for ν ∈ (2, 4), and

γ̃ν := 1 +
4− ν

2(3− ν)

(
1− 2

2(3−ν)
4−ν

)
for ν ∈ (2, 3) ∪ (3, 4).

Proof. The proof follows from eqs. (76), (81), (84), and (86) in Appendix B. �

A remarkable observation we can make from this Corollary is that the eigenvalue bounds number τh
and σh only appear for the generalized self-concordance parameters ν ∈ (2, 4] \ {3}.
Lemma 5.8 is key to prove the first iteration complexity bounds to estimate the number of steps needed
to ensure that the local norm of the search direction is smaller than a user-defined tolerance. In the
context of proximal algorithms for solving composite self-concordant minimization problems with con-
vex data, a similar result has been established by [49]. We instead derive such a basic complexity
estimate in the setting of Hessian-barrier methods for non-convex optimization problems without Lips-
chitz gradient assumptions and generalized self-concordant penalties.
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Lemma 5.9. Suppose Assumptions 1-4 hold. Let (xk)k≥0 be the sequence generated by HBA(µ, L).
Define the stopping time

N(ε, x0, ν, L) := min {k ≥ 0 : λk < ε} . (57)

Then,

N(ε, x0, ν, L) ≤
⌈
f(x0)− f ∗ + µc

ω̃ν(ε)

⌉
. (58)

Proof. By definition, for all 0 ≤ k ≤ N(ε, x0, ν, L) − 1,we have λk ≥ ε and, due to the strong
monotonicity of the function ω̃ν , that ω̃ν(λk) ≥ ω̃ν(ε). Therefore, using the per-iteration descent of
the potential function given by

Fµ(xk+1)− Fµ(xk) ≤ −∆k ≤ −ω̃ν(λk) ≤ −ω̃ν(ε),

we readily conclude for N > N(ε, x0, ν, L),

f ∗ ≤ f(xN) ≤ f(x0)−Nω̃ν(ε) + µc < f ∗.

Solving for N gives the claimed bound. �

Our second iteration complexity result gives a more precise estimate on the number of steps needed
to make the local norm of the search direction as small as desired. In particular, the next estimate
provides us with an easy-to-implement stopping criterion for HBA(µ, L), building on the insights
gained from Lemma 5.9. Let ε > 0 be a target precision level, specified before the algorithm is started,
and set µ = 4ε. We elect to terminate HBA(4ε, L) whenever F4ε(x

K+1) − F4ε(x
K) ≥ − γ̂νε2

L+4ε

at iteration K , and report the iterate xK . When this happens for the first time, we will show that
λK ≤ ε. If this stopping criterion is not satisfied, we continue with the execution of the protocol
HBA(4ε, L) until an upper bound on the number of iterationsK = O(ε−2) is reached. Implementing
this stopping criterion, we therefore are guaranteed to reach a point xK either satisfying f(xK) −
infx∈X f(x) = f(xK) − f ∗ ≤ ε, or else λK ≤ ε. Together with this stopping criterion we see that
HBA(4ε, L) solves a constrained problem with potential non-differentiability at the boundary, with an
iteration complexity of O(ε−2). For this type of problem, such a rate is the best known in the literature
[39]. It is also worth emphasizing that the transfer map Tµ admits a closed form expression and the
complexity of computing this map is on the same order as standard Newton methods.

We are now ready to present the main complexity result for HBA(4ε, L). Define the constant

γ̂ν :=


γ̃v

4−ν
ν−2

if ν ∈ (2, 3) ∪ (3, 4)

1 if ν = 3,
exp(−1) if ν = 4.

(59)

Consider the stopping time

K1(ε, x0, ν, L) := min

{
k ≥ 0 : ω̃ν(λk) <

γ̂νε
2

L+ 4ε

}
. (60)

Furthermore, let us define

K2(ε, x0, ν, L) :=

⌈
(4ε(c− 1/4) + f(x0)− f ∗)(L+ 4ε)

γ̂νε2

⌉
(61)

and Kmax(ε, x0, ν, L) = min{K1(ε, x0, ν, L),K2(ε, x0, ν, L)}.
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Theorem 5.10. Let (xk)k≥0 be generated by HBA(4ε, L). Either the algorithm stops at kmax =
K2(ε, x0, ν, L), and reaches a point xkmax ∈ X ◦ satisfying

f(xkmax)− f ∗ ≤ ε,

or else, it stops after kmax = K1(ε, x0, ν, L) iterations, and we reach a point where λkmax ≤ ε.

Proof. If kmax = K2(ε, x0, ν, L) ≤ K1(ε, x0, ν, L), then for all 0 ≤ k ≤ kmax − 1 we have by
definition ω̃ν(λk) ≥ γ̂ν

ε2

L+4ε
. Hence,

f ∗ ≤ f(xkmax) ≤ f(x0)− kmaxγ̂ν
ε2

L+ 4ε
+ 4εc ≤ f ∗ + ε.

For the second claim, suppose that kmax = K1(ε, x0, ν, L) < K2(ε, x0, ν, L), i.e. the algorithm
stops before the objective function value is within ε of the global minimal value. Since λk → 0, for all
σ > 0 there exists a k such that λk < σ. Hence, let us fix a sufficiently small tolerance level ε ∈ (0, 1)
so that the function ω̃ν is determined by terms including λ2

k. Specifically, the following computations
can be made for each generalized self-concordant parameter ν: When ν ∈ (2, 3) ∪ (3, 4) we see
ω̃ν(λk) = γ̃ν

−b(L+4ε)
λ2
k for k large enough, which smaller than γ̃ν

−b
ε2

L+4ε
exactly if λk < ε. For ν ∈

{3, 4} the same reasoning applies, proving the claim. �

Remark 5.1. Evaluating the stopping criterion K1 appears to be expensive, since we have to keep
track of the local norm of the search direction λk. However, since ω̃ν is monotone, we can replace
λk with the more conservative figure

√
τhβk. Hence, if a bound on τh is available, we only have to

monitor the evolution of the Euclidean length of the search direction.

While the above result is formulated in terms of convergence to stationary points of the potential
function, our aim is actually to approximately solve the optimization problem (P). In order to connect
these two conditions, we rely on our characterization of ε-KKT points. Using the relation (51), we see

‖∇f(xk)− A>yk‖∗xk = ‖
√
H(xk)−1(∇f(xk)− A>yk)‖2 ≥

1
√
τh
‖∇f(xk)− A>yk‖2.

Therefore,

‖∇f(xk)− A>yk‖2 ≤
√
τh‖∇f(xk)− A>yk‖∗xk

≤
√
τh
(
‖∇Fµ(xk)− A>yk‖∗xk + µ‖∇h(x)‖∗xk

)
Recall that ‖∇Fµ(xk)−A>yk‖∗

xk
= λk. Furthermore, we know that (xk)k≥0 ⊆ Sµ(x0), a compact

set inX ◦. Since h ∈ C3(C) and C contains no lines, the mapping, the norm x 7→ ‖·‖∗x is a continuous
function on compact subsets of C. Hence, the quantity

Mµ(x0) := max
x∈Sµ(x0)

‖∇h(x)‖∗x,

is well-defined and finite. In terms of this quantity we see that

‖∇f(xk)− A>yk‖2 ≤
√
τh
(
λk + µMµ(x0)

)
, (62)

so that for k ≥ N(ε/
√
τh, x

0, ν, L), and µ = ε/
√
τh we get

‖∇f(xk)− A>yk‖2 = O(ε).
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Combined with the inequalities (25) we therefore conclude that χ(xk, yk) = O(ε). i.e. we get and
ε-stationary point in the sense of Definition 2.11. Note that Mµ(x0) is an algorithm independent con-
stant, which can be computed before the method is started. Still it requires the solution of an opti-
mization problem which can be fairly complicated in concrete instances, so it is definitely worthwhile
searching for settings where this bound can be improved. Additionally, the complexity of the algorithm
now explicitly depends on the eigenvalue bound τh of the barrier-generating kernel h, which means
that if this number is big, the run time could become quite large.3. Motivated by these observations, we
next provide a refinement of this complexity result under the additional assumption that h ∈ F2,3(C)
is a θ-self-concordant barrier in the sense of (20).

Corollary 5.11. Let ε > 0 be a given tolerance level. If h ∈ F2,3(C) is a θ-SCB, then running
HBA(ε/

√
θ, L) yields either an 2

√
τhε-stationary point, or an ε global minimum.

Proof. For a θ-SCB h ∈ F2,3(C), the complexity estimate in Theorem 5.10 yields the following esti-
mates: If

kmax = K1(ε, x0, 3, L) = min

{
k ≥ 0 : min{λk,

λ2
k

L+ ε/
√
θ
} ≤ ε2

L+ ε/
√
θ

}
,

then we know that the local norm of the gradient of the potential function is small, λkmax ≤ ε. Then
(62) gives us

‖∇f(xkmax)− A>ykmax‖2 ≤
√
τh

(
λkmax + µ

√
θ
)
.

Choosing µ = ε/
√
θ, and using again the relation (25), the point xkmax is seen to be a 2

√
τhε

stationary point, in the sense of Definition 2.11. If instead kmax = K2(ε, x0, 3, L), we know we are
ε-close to the global minimum. �

5.3 Analysis of AHBA(µ)

The analysis of the adaptive version of our method follows similar lines as for the mother scheme
HBA(µ, L). The key innovation of the adaptive method is that it produces four recursive sequences
(xk)k≥0, (y

k)k≥0, (αk)k≥0, and (Lk)k≥0, where αk = αµ(xk, Lk). We first show finite termination
of the line search subroutine at each iteration, and establish a bound on the total number of function
evaluations needed for its execution. The result is a generalization of the arguments in [7, 44] for the
case of relative smoothness in the non-convex case.

Lemma 5.12. Suppose that we run AHBA(µ) for N ≥ 1 rounds. Then, the total number of function
evaluations EN , needed to satisfy (41) in each of these k = 1, 2, . . . , N rounds, is at most

EN ≤ 2N + log2

(
2L

L0

)
. (63)

Proof. Let k = 1, 2, . . . , N be an arbitrary iteration count. It is quite easy to see that the search cycle
for ik is finite. Indeed since, by Definition 3.3, there exists such L that for any x, y ∈ C

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ LDh(y, x),

3However, both these remarks hold also for mirror descent type of methods, where the prox-function should be appro-
priately chosen since its properties affect the complexity bound

DOI 10.20347/WIAS.PREPRINT.2693 Berlin 2020



P. Dvurechensky, M. Staudigl, C.A. Uribe 26

the search cycle for ik terminates no later than Lk+1 = 2ik−1Lk ≥ L. At the same time, since ik ≥ 0
is the smallest integer for which (41) holds, we have for Lk+1/2 = 2ik−2Lk the inequality

f(zk) > f(xk) + 〈∇f(xk), zk − xk〉+ 2ik−2LkDh(z
k, xk).

Hence, 2ik−2Lk < L, or Lk+1 = 2ik−1Lk ≤ 2L. Let us estimate the total number of function
evaluations needed to ensure (41). On each iteration k, the number of function calls is ik + 1 = 2 +
log2

Lk+1

Lk
. Thus, the total number of function evaluations for N rounds of execution of AHBA(µ, L)

is thus

EN =
N∑
k=1

(ik + 1) =
N∑
k=1

(
2 + log2

Lk+1

Lk

)
≤ 2N + log2

2L

L0

,

where we used the bound Lk ≤ 2L. �

This shows that EN = O(N), meaning that on average only a single function call is needed to satisfy
the line search criterion (41). Thus, the performance of AHBA(µ) is well described by the estimates
for the overall iteration complexity of the method.

From the analysis of the base scheme HBA(µ, L), we immediately deduce that the sequence (xk)k≥0

generated by AHBA(µ) satisfy the per-iteration descent

Fµ(xk+1) ≤ Fµ(xk)− ηk(xk, αk) ≡ Fµ(xk)−∆k,

with the only difference that now the step size αk is adaptively adjusted by evaluating the expression
αµ(xk, 2ik−1Lk). From Lemma 5.8, we see that ω̃ν is a decreasing function of L. At the same time,
2ik−1Lk ≤ 2L as it was shown above. This means that the adaptive versions of Lemma 5.9, Theorem
5.10, and Corollary 5.11 are obtained by the change L→ 2L. We see that the number of oracle calls
increases for the adaptive version in comparison to non-adaptive. Nevertheless, the adaptive algorithm
can use smaller values of L and, hence, make longer steps, leading to faster convergence in practice.

6 Numerical Results

6.1 Statistical learning with non-convex regularization

We consider the non-convex statistical learning problem

min
β∈Rd

1

2
‖y −Wβ‖2

2 +
d∑
i=1

pζ(|βi|) (64)

where `(β) := 1
2
‖y−Wβ‖2

2 is the quadratic data fitting term and pζ : R+ → R+ is a folded concave
penalty [31, 32, 34, 53], meaning that for given a > 2, ζ > 0:

(i) t 7→ pζ(t) is non-decreasing and concave with pζ(0) = 0 and pζ(t) > 0 for t > 0;

(ii) t 7→ pζ(t) is differentiable on [0,∞);

(iii) p′ζ(t) = 0 for all t ≥ aζ and 0 ≤ p′ζ(t) for any t ≥ 0.
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A specifc example would be smoothly clipped absolute deviation (SCAD) penalty [22] given by

pζ(t) =


ζt if 0 ≤ t ≤ ζ,

1
a−1

(− ζ2

2
+ aζt− t2

2
) if ζ ≤ t ≤ aζ,

a+1
2
ζ2 if t > aζ.

Note that the composite function t 7→ (pζ ◦|·|)(t) is continuous, but not differentiable at t = 0. Hence,
the objective function (64) is not smooth and non-convex. Doing some simple variable transformations,
the regularized least-squares problem (64) can be put into an optimization problem fitting the structure
of this paper. Let us introduce new variables β+

i := max{βi, 0} and β−i := max{−βi, 0}, so that
β+
i +β−i = |βi|. We additionally allow the inclusion of a-priori upper bounds on the parameter vector.

This gives rise to a box-constrained reformulation of (64) of the form

min
β+∈Rd,β−∈Rd

`(β+ − β−) +
d∑
i=1

pζ(β
+
i + β−i ),

s.t. 0 ≤ β−i ≤ ui, 0 ≤ β+
i ≤ ui 1 ≤ i ≤ d.

To bring this problem into a formulation fitting this paper, we first relabel the pair (β−, β+) ∈ Rd×Rd

into one long vector x := (x1, . . . , xd, xd+1, . . . , x2d), where the first d variables correspond to
the positive part and the remaining d variables represent the negative part. Call n := 2d we define
the data fitting term to be f0(x) := `(Bx), where B : Rn → Rd is the linear operator (Bx)i :=
xd+i−xi for all i ∈ {1, 2, . . . , d}. The regularizer can be written as f1(Dx) :=

∑d
i=1 pζ(xi+xd+i),

corresponding the the composition of the function Rd 3 y 7→ f1(y) =
∑d

i=1 pζ(yi) with the linear
operator D : Rn → Rd given by (Dx)i = xi + xd+i for all i ∈ {1, 2, . . . , d}. Define X = C̄ :=∏n

i=1[0, ui], so that our non-convex minimization problem reads as

min
x∈X
{f(x) := f0(x) + f1(Dx)}, (65)

where f0(x) := 1
2
x>Qx + x>q is a convex quadratic function with Hessian Q := B>W>WB and

q> := −B>W>y. Note that C̄ admits a simple self-concordant function (e.g. the Burg entropy as
described in Example 2.4), but is not prox-friendly (see Remark 2.2).

The quadratic loss function f0(x) is convex and has a Lipschitz continuous gradient with Lipschitz
constant ρ := |Q|. Rescaling the data appropriately, we can assume without loss of generality that
ρ ≥ 1. Hence, for the data fidelity part, a standard Lipschitz-descent lemma [39] applies and gives

f0(y) ≤ f0(x) + 〈∇f0(x), y − x〉+
ρ

2
‖y − x‖2

2. (66)

For θ ∈ Rd
+, the regularizing term reads as f1(θ) =

∑d
i=1 pζ(θi), and each summand in this

expression is a concave and differentiable function on (0,∞). Hence, for all s, t > 0, we have

pζ(s) ≤ pζ(t) + p′ζ(t)(s− t).

For any two vectors θ(1), θ(2) ∈ Rd
++ this implies that

f1(θ(2)) ≤ f1(θ(1)) + 〈∇f1(θ(1)), θ(2) − θ(1)〉.

Evaluating this expression at the vectors θ(1) = Dx and θ(2) = Dy, we obtain

f1(Dy) ≤ f1(Dx) + 〈D>∇f1(Dx), y − x〉. (67)
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Adding (66) with (67), we see that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
ρ

2
‖y − x‖2

2 ∀y, x ∈ X ◦. (68)

For the rest of the analysis we assume that ui = ∞, so that no external upper bounds on the
parameter vectors are imposed. Thus, X = C̄ = Rn

+, and the natural barrier-generating kernel
for this set is the Burg entropy h(x) = −

∑n
i=1 ln(xi), inducing the Riemannian metric H(x) =

diag{x−2
1 , . . . , x−2

n }, and Bregman divergence

Dh(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉 =
n∑
i=1

ln

(
yi
xi

)
+

n∑
i=1

yi
xi
− n.

In terms of the potential function Fµ(x) = f(x)+µh(x), the combined descent inequality (68) reads
as

Fµ(y) ≤ Fµ(x) + 〈∇Fµ(x), y − x〉+
ρ

2
‖y − x‖2

2 + µDh(y, x).

Defining the regularized Burg entropy h̃µ,ρ := −
∑n

i=1 ln(xi) + ρ
2µ
‖x‖2

2, we can write the descent
inequality for the potential function in more concise terms as

Fµ(y) ≤ Fµ(x) + 〈∇Fµ(x), y − x〉+ µDh̃µ,ρ
(y, x).

Note that h̃µ,ρ ∈ F2,3(Rn
++). This shows that the regularized statistical learning problem can be

solved with HBA(µ, 0). We apply the model to the Prostate Cancer data set available at https://
web.stanford.edu/~hastie/ElemStatLearn/data.html. This data set consists
of a total of 97 samples with 8 dimensions each, from which 67 are used to train the model and 30
are used for validation. Thus, in this case we have a matrix W ∈ R67×8 and y ∈ R67. Moreover,
we have used the following set of parameter values ζ = 0.01, a = 10, and µ = 1 · 10−3. Once a
model β̂ is found, such value is used to predict a output Atestβ̂ for the test database Atest. Figure 2(a)
shows the true output of the test database for each of the 30 data points colored in black, and the
predicted output for the same points generated by the output of the Adaptive HBA algorithm. Moreover,
Figure 2(b) shows the gradient norm value versus the number of iterations of the algorithm, and the
test error in color red. AHBA(µ) reaches a test error of 0.363. This value improves upon the 0.4194
test error reported in [6], and the 0.479 test error reported in [23, Table 3.3].

6.2 Lp-minimization

Consider the optimization problem

min f(x) =
∑n

i=1 x
p
i

subject to x ∈ X = Rn
+ ∩ A

(69)

where the problem inputs consist of A ∈ Rm×n, b ∈ Rm and p ∈ (0, 1]. Sparse signal or solu-
tion reconstruction by solving problem (69), especially for the case where p ∈ (0, 1), has recently
received considerable attention; see e.g. [12]. In signal reconstruction, one typically has linear mea-
surements b = Ax, where x is a sparse signal, i.e. the sparsest or smallest support cardinality
solution of the linear system. This sparse signal is recovered by solving the inverse problem (69)
with the non-smooth, non-convex objective function ‖x‖0 = |{i ∈ {1, 2, . . . , n}|xi > 0}|. The
L0-norm optimization problem is shown to be NP-hard. When p = 1, the problem is reduced to a
linear program, and hence it can be solved in polynomial time. If p > 1, the problem (69) becomes
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Figure 2: Fitted values and Test error of HBA(µ, 0) for the Prostate Cancer data with SCAD regularization.
As parameters for the SCAD regularizer we have used ζ = 0.01, a = 10. For the barrier parameter the value
µ = 10−3 has been chosen.

a convex optimization optimization problem, and thus is also efficiently solvable with fast interior point
methods. Only recently, the challenging case where p ∈ (0, 1) has been thoroughly investigated in
[6, 24]. We aim to solve this NP-hard problem with AHBA(µ). Given the geometry, it is natural to look
at the barrier-generating kernel h(x) = −

∑n
j=1 ln(xj), so that the potential function Fµ becomes

Fµ(x) = ‖x‖pp − µ
∑n

i=1 ln(xi). Note that the objective function f(x) = ‖x‖pp is twice continuously
differentiable on X ◦ and concave. Hence, L-smoothness holds for any L > 0.

To test the performance of our method, we have set up numerical experiments and recorded the re-
covery rate of the true underlying signal for each level of sparsity. Specifically, we generate a binary
signal of length 120, denoted as x̂, and various sparsity patterns. The excellent recovery properties
of AHBA(µ) with 5 non-zero entries is displayed in Figure 3(a) and with 10 non-zero entries in Fig-
ure3(b), in which the original signal is marked as black circles ◦ and the recovered one is mark as
red crosses ×. In each case, we generated an observation matrix as an orthogonal positive sensing
matrix A, and a set of 30 observations. Moreover we have used as parameter values p = 0.5 and
µ = 1. Figure 3(c) reveals the general pattern of the recovery rates of the true signal.

7 Conclusion

In this paper we introduced and studied a new class of interior point methods based on the Hessian-
barrier technique originally developed in [11]. Using the theory of generalized self-concordant functions
we can significantly extend the applicability of this method to cover general non-convex optimization
problems on polyhedral domains with a set constraint admitting a generalized self-concordance set-
up. Theoretical convergence and complexity results are proven, showing that the method achieves
the optimal iteration complexity O(ε−2). We have tested the method empirically and verified that the
method performs also well in practice. There are many important directions for future investigations
to be made. First, it is very important to relax the present algorithmic scheme to allow for inexact
computations and to derive a path-following approach allowing the barrier parameter µ to vary over
the run time of the algorithm. Allowing for numerical and random noise is of relevance when HBA
methods are to be designed in distributed optimization settings [52, 56], something we plan to do in
the future, and the path-following approach might allow us to strengthen the convergence properties
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Figure 3: Recovery pattern and recovery rates for the Lp minimization problem solved by AHBA(µ). As
parameter values we have chosen p = 0.5 and µ = 1.

of the algorithm.

The most costly step of HBA(µ, L), and its adaptive version AHBA(µ), is the solution of the linear
system (27). If the function f appears as a finite sum, a very important direction for future research
is to either use preconditioning techniques or randomization and sketching ideas, to speed up the
computation. Second, the method should be also a competitive first-order scheme for stochastic op-
timization. In fact, self-concordant functions have been already successfully used in online learning
[38] and random sampling [37], and the class of generalized self-concordant functions may provide
interesting extensions of these seminal contributions. Finally, it will be important to identify accelera-
tion strategies for the basic HBA template to make it even more attractive for large-scale application in
engineering and machine learning. This is another challenging line of research we plan to pursue in
the near future.
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A Proof of Proposition 3.5

For each parameter ν ∈ (2, 4] we derive the corresponding optimal step-size policy via a simple
optimization argument. This will prove the claimed optimality of the policy.
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A.1 The case ν ∈ (2, 3)

Using the definition

ων(t) =

(
ν − 2

4− ν

)
1

t

[
ν − 2

2t(3− ν)

(
(1− t)

2(3−ν)
2−ν − 1

)
− 1

]
,

we obtain

ηµ(x, t) =tλ2
µ(x)− t2λ2

µ(x)(L+ µ)
(ν − 2)2

2t2δµ(x)2(3− ν)(4− ν)

(
(1− tδµ(x))

2(3−ν)
2−ν − 1

)
+ t

λ2
µ(x)

δµ(x)
(L+ µ)

ν − 2

4− ν

= t

(
λ2
µ(x) + λ2

µ(x)
L+ µ

δµ(x)

ν − 2

4− ν

)
−
(
λµ(x)

δµ(x)

)2

(L+ µ)
(ν − 2)2

2(3− ν)(4− ν)

(
(1− tδµ(x))

2(3−ν)
2−ν − 1

)
.

For tδµ(x) ∈ (0, 1), this gives

∂

∂t
ηµ(x, t) = λ2

µ(x)

(
1 +

L+ µ

δµ(x)

ν − 2

4− ν

)
−
λ2
µ(x)

δµ(x)

(L+ µ)(ν − 2)

4− ν
(1− tδµ(x))−

4−ν
ν−2 ,

∂2

∂t∂t
ηµ(x, t) = −λ2

µ(x)(L+ µ)(1− tδµ(x))
2

2−ν < 0.

Solving the stationarity condition ∂
∂t
|t=αµ(x,L)ηµ(x, t) = 0, gives

αµ(x, L)δµ(x) = 1−
(

1 +
δµ(x)

L+ µ

4− ν
ν − 2

)− ν−2
4−ν

. (70)

Since ν−2
4−ν ∈ (0, 1) for ν ∈ (2, 3), the Bernoulli inequality gives

(
1 +

δµ(x)

L+ µ

4− ν
ν − 2

) ν−2
4−ν

≤ 1 +
δµ(x)

L+ µ
,

so that, for L ≥ 0,

1−
(

1 +
δµ(x)

L+ µ

4− ν
ν − 2

)− ν−2
4−ν

≤ δµ(x)

δµ(x) + (L+ µ)
< 1.

Hence, setting

αµ(x, L) =
1

δµ(x)

[
1−

(
1 +

δµ(x)

L+ µ

4− ν
ν − 2

)− ν−2
4−ν
]

(71)

gives ηµ(x, αµ(x, L)) > ηµ(x, 0) = 0 and dν(x, Tµ(x, αµ(x, L)) < 1.
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A.2 The case ν = 3.

We have ω3(t) = −1
t2

(t+ ln(1− t)) for t ∈ (−∞, 1), and d3(x, y) = M
2
‖y − x‖x. Hence,

δµ(x) = M
2
λµ(x), and

ηµ(x, t) = tλ2
µ(x) +

(
λµ(x)

δµ(x)

)2

(L+ µ) [tδµ(x) + ln(1− tδµ(x))] .

Therefore,

∂

∂t
ηµ(x, t) = λµ(x)2 +

(
λµ(x)

δµ(x)

)2

(L+ µ)

[
δµ(x)− δµ(x)

1− tδµ(x)

]
∂2

∂t∂t
ηµ(x, t) = −λµ(x)2

δµ(x)
(L+ µ)(1− tδµ(x))−2 < 0

Solving for the stationary condition ∂
∂t
|t=αµ(x)ηµ(x, t) = 0, we get

1− αµ(x)δµ(x) = t(L+ µ).

Hence, setting

αµ(x) =
1

δµ(x) + L+ µ
, (72)

we observe that ηµ (x, αµ(x, L)) > ηµ(x, 0) = 0, andαµ(x, L)δµ(x) < 1. Therefore, d3 (x, Tµ(x, αµ(x, L))) <
1.

A.3 The case ν = 4.

We have ω4(t) = (1−t) ln(1−t)+t
t2

, and d4(x, y) = M‖y − x‖−1
2 ‖y − x‖2

x. Hence, δµ(x) = M
λ2µ(x)

βµ(x)
,

and

ηµ(x, t) = tλµ(x)2 −
(
λµ(x)

δµ(x)

)2

(L+ µ)[tδµ(x) + (1− tδµ(x)) ln(1− tδµ(x))].

Therefore,

∂

∂t
ηµ(x, t) = λµ(x)2 −

(
λµ(x)

δµ(x)

)2

(L+ µ) ln(1− tδµ(x)),

∂2

∂t∂t
ηµ(x, t) = −

λ2
µ(x)(L+ µ)

1− tδµ(x)
< 0.

Solving for stationarity ∂
∂t
|t=αµ(x,L)ηµ(x, t) = 0, gives

−δµ(x)

L+ µ
= ln (1− αµ(x, L)δµ(x, L)) ,

so that

αµ(x, L) =
1

δµ(x, L)

[
1− exp

(
− δµ(x)

L+ µ

)]
. (73)

It follows d4(x, Tµ(x, αµ(x, L))) = 1− exp(−δµ(x)/(L+ µ)) ∈ (0, 1).
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A.4 The case ν ∈ (3, 4).

The basic computations for this range can be copied from the case ν ∈ (2, 3). Doing so, we immedi-
ately arrive at the step size policy

αµ(x, L)δµ(x) = 1−
(

1 +
δµ(x)

L+ µ

4− ν
ν − 2

)− ν−2
4−ν

. (74)

From here, we can continue all the computations as for the case ν ∈ (2, 3) to conclude that the step

size αµ(x, L) is given by (71). Note that 2−ν
4−ν < 0, so that (1 + δµ(x)

L+µ
4−ν
ν−2

)
2−ν
4−ν ∈ (0, 1), and therefore

αν(x)δµ(x) ∈ (0, 1). All other conclusions derived for ν ∈ (2, 3) apply to the present setting as well.

B Proof of Theorem 5.6

We denote by ∆k ≡ ηµ(xk, αk), where xk is the iterate of HBA(µ, L), and αk ≡ αµ(xk, L) is the
associated step size. Similarly, we define the sequence λk, βk and δk as in (42).

B.1 The case ν ∈ (2, 3)

An explicit calculation shows that

∆k =
λ2
k

δk

[
1− 4− ν

2(3− ν)

(
1 +

δk
L+ µ

4− ν
ν − 2

)(2−ν)/(4−ν)
]

+

(
λk
δk

)2
(ν − 2)(L+ µ)

2(3− ν)

[
1−

(
1 +

δk
L+ µ

4− ν
ν − 2

)(2−ν)/(4−ν)
]
.

To make the analysis of this expression more convenient, we introduce the quantities

tk := 1− 1

b

δk
L+ µ

∈ (1,+∞), and

a :=
4− ν

2(3− ν)
∈ (1,+∞), b :=

2− ν
4− ν

∈ (−1, 0).

Then (ν−2)(L+µ)
δk

= (4−ν)
tk−1

and

∆k =
λ2
k

δk

(
1− atbk +

a

tk − 1
(1− tbk)

)
=
λ2
k

δk

(
1 +

a

tk − 1
− atbk

(
1 +

1

tk − 1

))
=
λ2
k

δk

(
1 +

a

tk − 1
− atb+1

k

tk − 1

)
.

Let us define a function γ(t) such that ∆k =
λ2k
δk
γ(tk). Our next goal is to show that, for t ∈ [2,+∞),

γ(t) is below bounded by some positive constant and, for t ∈ (1, 2], γ(t) is below bounded by some
positive constant multiplied by t− 1.
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1. t ∈ [2,+∞). We will show that γ′(t) ≥ 0, whence γ(t) ≥ γ(2). Thus, we need to show that

0 ≤γ′(t) = − a

(t− 1)2

(
1− (b + 1)tb + btb+1

)︸ ︷︷ ︸
=:ψ(t)

.

Since a > 1, to show that γ′(t) ≥ 0 it is enough to show that ψ(t) ≤ 0. Since b ∈ (−1, 0) and
t ≥ 2,

ψ′(t) = b(b + 1)tb − b(b + 1)tb−1 = b(b + 1)tb−1(t− 1) ≤ 0.

Whence, ψ(t) ≤ ψ(2) for all t ∈ [2,+∞). It remains to show that ψ(2) ≤ 0. Let us consider
ψ(2) = ϕ(b) := 1 − (b + 1)2b + b2b+1 = 1 + b2b − 2b as a function of b ∈ (−1, 0). Clearly,
ϕ(−1) = ϕ(0) = 0, and it is easy to check via the intermediate value theorem that ϕ(b) < 0 for all

b ∈ (−1, 0). We conclude that for t ≥ 2 we get ∆k ≥
λ2k
δk
γ(2).

2. t ∈ (1, 2]. We will show that d
dt

(γ(t)/(t− 1)) ≤ 0, whence γ(t) ≥ (t− 1)γ(2). Thus, we need
to show that

0 ≥ d

dt

(
1

t− 1
+

a

(t− 1)2
− atb+1

(t− 1)2

)
=

1

(t− 1)3

(
−t+ 1− 2a + a(b + 1)tb − a(b− 1)tb+1

)
≡ 1

(t− 1)3
ψ(t).

Therefore, our next step is to show that ψ(t) ≤ 0. We have

ψ′(t) = −1 + a(b + 1)btb−1 − a(b− 1)(b + 1)tb,

ψ′′(t) = ab(b + 1)(b− 1)tb−2 − a(b− 1)b(b + 1)tb−1

= ab(b + 1)(b− 1)tb−2(1− t).

By definition, a(b+ 1) = 1. Hence, since t > 1 and b ∈ (−1, 0), we observe that ψ′′(t) ≤ 0. Thus,
ψ′(t) ≤ ψ′(1) = 0, and consequently, ψ(t) ≤ ψ(1) = 0, for all t ∈ (1, 2]. This proves the claim
γ(t)/(t− 1) ≥ γ(2) for t ∈ (1, 2].

Combining both cases, we obtain that γ(t) ≥ min{γ(2), (t−1)γ(2)}, where γ(2) = 1−a+a21/a,
using the fact that b + 1 = 1/a. Unraveling this expression by using the definition of the constant a,
we see that γ(2) depends only on the self-concordance parameter ν ∈ (2, 3). In light of this, let us
introduce the constant

γ̃ν := 1 +
4− ν

2(3− ν)

(
1− 22(3−ν)/(4−ν)

)
. (75)

Observe that γ̃2 = 0 and, by a simple application of l’Hôpital’s rule, limν↑3 γ̂ν = 1− log(2) ∈ (0, 1).
Hence γ(2) ≡ γ̃ν ∈ (0, 1) for all ν ∈ (2, 3). We conclude,

∆k ≥
γ̃νλ

2
k

δk
min

{
1,
−1

b

δk
L+ µ

}
= γ̃ν min

{
λ2
k

δk
,
λ2
k

L+ µ

−1

b

}
.

Since λk ≥
√
σhβk, δk = M(ν

2
− 1)λν−2

k β3−ν
k , the following lower and upper bounds can be

established for ν ∈ (2, 3):

M
(ν

2
− 1
)
σ
ν−2
2

h αkβk ≤ αkδk ≤M
(ν

2
− 1
)
σ
− 3−ν

2
h αkλk.

This estimate implies first that δk ≤M(ν/2− 1)σ
−(3−ν)/2
h λk, and second

λ2
k

δk
≥ 2λk
M(ν − 2)

σ
3−ν
2

h .
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This yields the bound

∆k ≥ γ̃νλk min

{
2σ

(3−ν)/2
h

M(ν − 2)
,

4− ν
(ν − 2)(L+ µ)

λk

}
∀k ≥ 0. (76)

Recall from Proposition 5.2 that limk→∞∆k = 0 always holds. Consequently, combining (76) with
(51), we immediately see limk→∞ λk = limk→∞ βk = 0. Now observe that

αk =
1

δk

[
1−

(
1 +

δk
L+ µ

4− ν
ν − 2

) 2−ν
4−ν
]

=:
Q(δk)

δk
,

and δk = M(ν/2− 1)λν−2
k β3−ν

k . Thus,

lim
k→∞

δk = 0, (77)

and limk→∞Q(δk) = 0. By l’Hôpital rule

lim
k→∞

αk = lim
k→∞

Q(δk)

δk
= lim

k→∞
Q′(δk) =

1

L+ µ
> 0. (78)

Finally, by definition of the search direction, there exists a sequence of dual variables (yk)k≥0 ⊂ Rm,
explicitly defined by (29), for which

‖∇Fµ(xk)− A>yk‖∗xk = λk ∀k ≥ 0.

We therefore observe first that limk→∞‖∇Fµ(xk)− A>yk‖∗
xk

= 0, and second

‖∇Fµ(xk)− A>yk‖2 ≤ |H(xk)1/2|λk.

Since (xk)k≥0 ⊂ Sµ(x0), H(xk) � 0, and h ∈ C3(domh), using (53), we conclude that

lim
k→∞
‖∇Fµ(xk)− A>yk‖2 ≤

√
τh lim

k→∞
λk = 0.

B.2 The case ν = 3

A direct substitution for ∆k gives us

∆k =
λ2
k

M
2
λk + L+ µ

+
4

M2
(L+ µ)

[
M
2
λk

M
2
λk + L+ µ

+ ln

(
L+ µ

M
2
λk + L+ µ

)]
. (79)

Denote tk := (L+ µ)/(M
2
λk), δk = M

2
λk. Then

αk =
2

Mλk

1

1 + tk
=

1

δk + L+ µ
,

so that
αkMλk

2
=

1

1 + tk
, and L+ µ =

M

2
λktk.

This implies that

∆k =
2λk
M

1

1 + tk
+

2λk
M

tk

[
1

1 + tk
+ ln

(
tk

1 + tk

)]
,
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=
2λk
M

(
1 + tk ln

(
tk

1 + tk

))
. (80)

Consider the function γ : (0,∞)→ (0,∞), given by γ(t) := 1+ t ln
(

t
1+t

)
. When t ∈ (0, 1), since

γ′(t) = ln

(
t

1 + t

)
+ t

1 + t

t

(
1

1 + t
− t

(1 + t)2

)
= ln

(
1− 1

1 + t

)
+

1

1 + t
< 0,

we conclude that γ(t) is decreasing for t ∈ (0, 1). Hence, γ(t) ≥ γ(1) = 1− ln 2, for all t ∈ (0, 1).
On the other hand, if t ≥ 1,

d

dt

(
γ(t)

1/t

)
=

d

dt
(tγ(t)) = 1 + 2t ln

(
t

1 + t

)
+

t

1 + t
≥ 0.

Hence, t 7→ γ(t)
1/t

is an increasing function for t ≥ 1, and thus γ(t) ≥ 1−ln 2
t

, for all t ≥ 1. Summa-

rizing these two cases we see ∆k ≥ 2λk
M

min{1, 1/tk}(1 − ln(2)), which after rearranging, can be
stated as

∆k ≥
2(1− ln(2))λk
M(L+ µ)

min

{
L+ µ,

M

2
λk

}
∀k ≥ 0. (81)

From Proposition 5.2 we know that limk→∞∆k = 0, and consequently,

lim
k→∞

δk = lim
k→∞

λk = 0, as well as lim
k→∞

αk =
1

L+ µ
. (82)

Eq. (51) shows that limk→∞ βk = 0. As in the case ν ∈ (2, 3), we arrive at the conclusion
limk→∞‖∇Fµ(xk)− A>yk‖2 = 0.

B.3 The case ν ∈ (3, 4)

Similarly to the case ν ∈ (2, 3), denote tk = 1 + δk
L+µ

4−ν
ν−2
∈ (1,+∞), a = 4−ν

2(3−ν)
∈ (−∞, 0),

b = 2−ν
4−ν ∈ (−∞,−1). Then the expression for the ∆k is the same as for ν ∈ (2, 3):

∆k =
λ2
k

δk

(
1 +

a

tk − 1
− atb+1

k

tk − 1

)
.

Let us define a function γ(t) such that ∆k =
λ2k
δk
γ(tk). Our next goal is to show that, for t ∈ [2,+∞),

γ(t) is below bounded by some positive constant and, for t ∈ (1, 2], γ(t) is below bounded by some
positive constant multiplied by t− 1.

1. t ∈ [2,+∞). We will show that γ′(t) ≥ 0, whence γ(t) ≥ γ(2). Thus, we need to show that

0 ≤ d

dt

(
1 +

a

t− 1
− atb+1

t− 1

)
= − a

(t− 1)2

(
1− (b + 1)tb + btb+1

)︸ ︷︷ ︸
=:ψ(t)

.

Since a ≤ 0, to show that γ′(t) ≥ 0 it is enough to show that ψ(t) ≥ 0. Since b < −1,

ψ′(t) = b(b + 1)tb − b(b + 1)tb−1 = b(b + 1)tb−1(t− 1) ≥ 0,
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whence, ψ(t) ≥ ψ(2), t ∈ [2,+∞). It remains to show that ψ(2) ≥ 0. Let us consider ψ(2) =
1 − (b + 1)2b + b2b+1 = 1 + b2b − 2b as a function of b. For all possible values b ∈ (−∞,−1)
one can check numerically that ψ(2) ∈ (0, 1). Hence, ψ(t) ≥ 0 for all t ≥ 2.

2. t ∈ (1, 2]. We will show that d
dt

(γ(t)/(t− 1)) ≤ 0, whence γ(t) ≥ (t− 1)γ(2). Thus, we need
to show that

0 ≥ d

dt

(
1

t− 1
+

a

(t− 1)2
− atb+1

(t− 1)2

)
= − 1

(t− 1)2
− 2a

(t− 1)3
− a(b + 1)tb

(t− 1)2
+

2atb+1

(t− 1)3

=
1

(t− 1)3

(
−t+ 1− 2a− a(b + 1)tb+1 + a(b + 1)tb + 2atb+1

)
=

1

(t− 1)3

(
−t+ 1− 2a + a(b + 1)tb − a(b− 1)tb+1

)︸ ︷︷ ︸
=:ψ(t)

.

Our next step is to show that ψ(t) ≤ 0. We have

ψ′(t) = −1 + a(b + 1)bta−1 − a(b− 1)(b + 1)tb

ψ′′(t) = ab(b + 1)(b− 1)tb−2 − a(b− 1)b(b + 1)tb−1

= ab(b + 1)(b− 1)tb−2(1− t).

Using the definition of a, b, and the fact that ν ∈ (3, 4), we obtain that a(b + 1) = 1. Hence,
since t > 1, we obtain that ψ′′(t) ≤ 0. Thus, ψ′(t) ≤ ψ′(1) = 0, ψ(t) ≤ ψ(1) = 0, and
γ(t)/(t− 1) ≥ γ(2).

Combining both cases, we obtain that γ(t) ≥ min{γ(2), (t− 1)γ(2)}. Note that

γ(2) ≡ γ̃ν := 1 +
4− ν

2(3− ν)
− 4− ν

2(3− ν)
2(2−ν)/(4−ν)+1

= 1 +
1− exp

(
2(3−ν)

4−ν ln(2)
)

2(3−ν)
4−ν

Via L’Hôspital’s rule, once can check that limν↓3 γ̂(ν) = 1 − ln(2) ∈ (0, 1), and limν↑4 γ̂(ν) = 1,

since limν↑4
2(3−ν)

4−ν = −∞. Consequently,

∆k ≥ γ̃ν min

{
λ2
k

δk
,

1

−b
λ2
k

L+ µ

}
, γ̃ν ∈ (1− ln(2), 1).

By Proposition 5.2, we know that limk→∞∆k = 0. Therefore, either λk → 0, or
λ2k
δk
→ 0. Suppose

there exists ε > 0 such that λk ≥ ε for all k ≥ 0. Then,

λ2
k

δk
=

2

M(ν − 2)
λ4−ν
k βν−3

k ≥ 2

M(ν − 2)
ε4−νβν−3

k .

Hence, βk → 0 must hold. But then eq. (55) implies λk → 0. A contradiction. It follows that λk → 0,
and therefore, by (51), βk → 0. Using that

δk = M(ν/2− 1)λν−2
k β3−ν

k

(55)
≤ M(ν/2− 1)τ

ν−2
2

h βk,
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we arrive at the string of inequalities

λ2
k

δk
=

2

M(ν − 2)
λ4−ν
k βν−3

k

(55)
≥ 2

M(ν − 2)
τ
− ν−3

2
h λk

Hence,

lim
k→∞

δk = 0, and lim
k→∞

αk =
1

L+ µ
. (83)

We conclude limk→∞‖∇Fµ(xk)− A>yk‖2 = 0. Moreover, we obtain the explicit bound

∆k ≥ λkγ̃ν min

{
2

M(ν − 2)
τ
− ν−3

2
h ,

1

−b
λk

L+ µ

}
. (84)

B.4 The case ν = 4

We can compute the per-iteration potential reduction as

∆k =
λ2
k

δk

[
1− exp

(
− δk
L+ µ

)]
−
(
λk
δk

)2

(L+ µ)

([
1− exp

(
− δk
L+ µ

)]
− δk
L+ µ

exp

(
− δk
L+ µ

))
.

To analyze this expression, denote by t−1
k := δk

L+µ
. Then

∆k =
λ2
k

δk

(
1− tk + tk exp

(
− 1

tk

))
≥ 0.

Let us define a function γ(t) such that ∆k =
λ2k
δk
γ(tk). Our next goal is to show that, for t ∈ (0, 1],

γ(t) is below bounded by some positive constant and, for t ≥ 1, γ(t) is below bounded by some
positive constant divided by t.

1. t ∈ (0, 1]. We will show that γ′(t) ≤ 0, whence γ(t) ≥ γ(1). Indeed, for t ∈ (0, 1],

γ′(t) = −1 + exp(−1/t)(1 + 1/t)

< −1 + 2 exp(1/t)

≤ −1 + 2 exp(−1) < 0.

Thus, we have γ(t) ≥ γ(1) = exp(−1).

2. t ∈ [1,+∞). We will show that d
dt

(
γ(t)
1/t

)
≥ 0, whence γ(t) ≥ γ(1)

t
.

d

dt

(
t

(
1− t+ t exp

(
−1

t

)))
= exp

(
−1

t

)
(2t+ 1) + 1− 2t. (85)

Using the Taylor expansion for ln(1 + x) and ln(1− x) for x ∈ (0, 0.5], we have

ln(1 + x)− ln(1− x) = x− x2

2
+
x3

3
+
∞∑
k=4

(−1)kxk

k
−

(
−x− x2

2
+
x3

3
−
∞∑
k=4

xk

k

)

= 2x+
2x3

3
+
∞∑
k=2

2x2k+1

2k + 1
≥ 2x.
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Setting x = 1
2t

for t ≥ 1, we obtain

ln(1 + 1/(2t))− ln(1− 1/(2t)) ≥ 1/t

⇔ ln(2t(1 + 1/(2t)))− ln(2t(1− 1/(2t))) ≥ 1/t

⇔ ln(2t+ 1)− ln(2t− 1) ≥ 1/t

⇔− 1/t+ ln(2t+ 1) ≥ ln(2t− 1)

⇔ exp

(
−1

t

)
(2t+ 1) + 1− 2t ≥ 0.

which, combined with (85) proves that d
dt

(
γ(t)
1/t

)
≥ 0 for t ≥ 1. Thus, we have that, for t ≥ 1,

γ(t) ≥ γ(1)
t

= exp(−1)
t

.

Combining two cases tk ∈ (0, 1] and tk ∈ [1,+∞), we obtain that γ(t) ≥ min{γ(1), γ(1)/t} and,
since t−1

k := δk
L+µ

∆k =
λ2
k

δk
γ(tk) ≥

λ2
k

δk
min{γ(1), γ(1)/tk} = exp(−1) min

{
λ2
k

δk
,
λ2
k

L+ µ

}
.

By Proposition 5.2, we know that limk→∞∆k = 0. Thus, either λk → 0, or
λ2k
δk
→ 0. Suppose there

exists ε > 0 such that λk ≥ ε > 0 for all k ≥ 0. Then it must be true
λ2k
δk
→ 0. Then,

λ2k
δk

= βk
M
,

and therefore βk → 0 must be true. But then (55) yields the contradiction λk → 0. We are therefore
forced to conclude that limk→∞ λk = 0, and from (51) it then follows limk→∞ βk = 0. Furthermore,
using (55),

δk = M
λ2
k

βk
≤Mτhβk,

so that limk→∞ δk = 0 and
λ2k
δk
≥ λk√

τhM
. This gives the final estimate

∆k ≥ exp(−1)λk min

{
1

√
τhM

,
λk

L+ µ

}
. (86)

A simple application of l’Hôpital’s rule gives limk→∞ αk = 1
L+µ

, and limk→∞‖∇Fµ(xk)−A>yk‖2 =
0.

Proof of Theorem 5.6. Combining all the results just derived for each generalized self-concordant pa-
rameter ν ∈ (2, 4], we conclude that always limk→∞‖∇Fµ(xk) − A>yk‖2 = 0. Corollary 5.5
shows that (xk)k≥0 ⊆ Sµ(x0), which is a compact set by Lemma 5.4 contained in X ◦. Since
∇Fµ(x) = ∇f(x) + µ∇h(x) is a continuous function on X ◦, we conclude that along every conver-
gent subsequence (xkq)q∈N with limit x̄ ∈ X ◦, we have

lim
q→∞

A>ykq = lim
q→∞
∇Fµ(xkq) = ∇Fµ(x̄).

Recall that ykq = yµ(xkq) and the map x 7→ yµ(x) is continuous by Lemma 3.4. Denote by ȳ ∈ Rm

the corresponding limit of the convergent subsequence (ykq)q∈N, we conclude that∇Fµ(x̄) = A>ȳ.
Since the convergent subsequence (xkq)q∈N has been chosen arbitrarily, the claim ω(x0) ⊆ {x ∈
X |(∃y ∈ Rm) : ∇Fµ(x)− A>y = 0} follows. �
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distributed optimization over networks. arXiv preprint arXiv:1809.00710, 2018.

[53] Zhaoran Wang, Han Liu, and Tong Zhang. Optimal computational and statistical rates of convergence for sparse
nonconvex learning problems. Ann. Statist., 42(6):2164–2201, 2014.

[54] Yinyu Ye. On affine scaling algorithms for nonconvex quadratic programming. Mathematical Programming, 56(1):285–
300, 1992.

[55] Yinyu Ye. On the complexity of approximating a KKT point of quadratic programming. Mathematical Programming,
80(2):195–211, 1998.

[56] Yuchen Zhang and Xiao Lin. Disco: Distributed optimization for self-concordant empirical loss. In Proceedings of the
32nd International Conference on Machine Learning, pages 362–370. PMLR, 06 2015.

DOI 10.20347/WIAS.PREPRINT.2693 Berlin 2020


	Introduction
	Our Approach
	Available complexity results
	Our Contribution

	Setup and preliminaries
	Elements of Riemannian geometry
	Generalized self-concordant functions
	Barrier generating kernels
	Examples
	The minimization problem

	The Hessian-barrier method
	Defining the search directions
	The Hessian-Barrier potential reduction algorithm

	The Hessian-barrier algorithm
	HBA iterations for fixed 
	Adaptive HBA

	Complexity analysis of HBA
	Asymptotic convergence
	Non-asymptotic bounds
	Analysis of `39`42`"613A``45`47`"603AAHBA()

	Numerical Results
	Statistical learning with non-convex regularization
	Lp-minimization

	Conclusion
	Proof of Proposition 3.5
	The case (2,3)
	The case =3.
	The case =4.
	The case (3,4).

	Proof of Theorem 5.6
	The case (2,3)
	The case =3
	The case (3,4)
	The case =4


