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Alternating minimization methods for strongly convex
optimization

Nazarii Tupitsa, Pavel Dvurechensky, Alexander Gasnikov, Sergey Guminov

Abstract

We consider alternating minimization procedures for convex optimization problems with vari-
able divided in many block, each block being amenable for minimization with respect to its vari-
able with freezed other variables blocks. In the case of two blocks, we prove a linear conver-
gence rate for alternating minimization procedure under Polyak-tojasiewicz condition, which can
be seen as a relaxation of the strong convexity assumption. Under strong convexity assumption
in many-blocks setting we provide an accelerated alternating minimization procedure with linear
rate depending on the square root of the condition number as opposed to condition number for
the non-accelerated method.

1 Introduction

In this paper we consider unconstrained minimization problem

min f(x 1

min f(z), (1)
where f(z) is a smooth convex function with L-Lipschitz-continuous gradient. Further, our main as-
sumption is that the space R can be divided into n disjoint subspaces L; € R™, s.t. UL, = R™
and it is possible to minimize the objective f in each block if the variables in all other blocks are fixed.
Moreover, we are mostly interested in obtaining linear convergence rate and sufficient conditions for it.

To be exact, we suppose that f has a block structure, i.e. f(z) = f(z1,...,x,), and we know exact
expression for the minimizer
xf = argmin, cpn, f(T1,. .., Tim1, 2, Tig1y .-, Tp), DNy =M

A very old and natural idea under this assumption is to use alternating minimization procedure [13, 3],
where the objective is minimized sequentially in each subspace. First of all, we are interested in the
convergence rate analysis of this type of algorithms. For smooth strongly convex problems under some
additional technical assumptions, the linear rate was obtained in [9]. [1] analyze alternating minimiza-
tion procedure for the case of two blocks in the general convex setting. The underlying assumption
is presence of a smooth component in at least one block of variables. Also the non-smoothness is
possible via composite terms which do not ruin the block minimizability property. Since there is no
strong convexity assumption, the obtained convergence rate us sublinear, namely O(1/k), where k
is the iteration counter. Similar result, but for many-block setting wan obtained in 8], [15]. In the fully
smooth setting under strong convexity assumption [12] obtain linear rate of convergence also for the
many-block setting. This linear rate is proportional to x — efficient condition number of the problem.
[4] provide an accelerated alternating minimization method for a vary special problem with two block
having the form of a sum of a quadratic function with two proximally friendly composite terms. The ob-
tained convergence rate is O(1/k?) for convex setting and is linear with exponent / in the strongly
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convex case. [6] analyze a non-accelerated alternating minimization method and obtain O(1/k) con-
vergence rate in the convex setting and linear rate with exponent x for strongly convex case. They
also propose an accelerated method for general convex setting with rate O(l/k:z) and conjecture that
their analysis can be extended for the strongly convex case. We also mention the review [7].

In this paper we, firstly, focus on obtaining linear rate of convergence for non-accelerated method with
the exponent k in a more general setting of Polyak-tojasiewicz condition [14]. This assumption is
weaker than the strong convexity assumption since it follows from the strong convexity. Secondly, we
propose an accelerated alternating minimization method for general smooth objective functions in the
many-blocks setting. For this method we obtain accelerated convergence rate

2 Simple alternating minimization algorithm and notation

Consider for simplicity alternating minimization algorithm for the problem with only two block structure.
All the following results and myproofs can be easily extended for any number of blocks.

Algorithm 1 Alternating Minimization
Require: Starting point x.
Ensure: z*

1: Set 2°.

2: fork > 0 do

3: if kmod 2 = 0 then

k

Rl _ :
4 2y = argmin, pn, f(2,23)
5: else

k1 _ : k+1
6: x5 = argmin cpn, f(277, 2)
7. end if
8: end for

Optimality conditions for algorithm’s minimization problems reads as follows:

vlf(xllﬁ_la 'IIQC)
k

0
sz(x’fa$2> 0

Introduce the following notation:

k

1
ot = (af,23), 22 = (2", 2p)

ax2

T () = (Tyy(2), Ty () Gu(z) = (Gy(@), Gy ()

Ty, (z) = prox 1. (% — Mizvzf(x)> ; (4)

w, (@) = Mi(z; — Ty (x))
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Alternating minimization methods for strongly convex optimization

Forthecase: =1

. M 1
Tl (%) = argmin (—1||u (k- —vlf@’f))ns) _
u€eR™1 2 Ml

Lemma 1

for all k.

proof:
T2 () = axgmin,cq (4]
= 2%, since Vo f (2}, 25) = 0 by (3).

where the last equality follows from the definition of G2, ().

3 Sufficient decrease-type result

The following result can be found in the 14-th chapter of [2] or in [10]

|G (e 518 < 2Ly (F(a*43) — fa*+)

IGha (I8 < 2L (F(5) = f(+4))

where again we suppose that constant 1.; and L5 can be different for different blocks:

f(u,v) g f(gvn) + <V1f(€,77),u - €> + <VQf(€,77),U - 77>
Ly Lo
2wl 2o =l

and the the constant in the regular definition of Lipshitz continuity of the gradient of f is described
L = max(Lq, Ly).

4 Polyak-Lojasiewicz condition

by

Our myproof of the convergence rate demands Polyak-tojasiewicz (PL) condition, that can be satisfied

for variety of problems. Next we show, that (PL) condition follows from the strong convexity of f
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Lemma 2 Strong convexity of f implies PL conditions:
* k 1 1 k\ (12
f@®) = f(a") - Q—MIIGMl(x )2 (7)
* 1 1 1
f(@) >f(x’“2)—2—m|\G%42(x’”2)!|3 (8)

proof: Since T}, (x) is a minimizer of 2L {|u — 2% |3 + (V1 f(2*), u
V1 (a") + My(T (a%) — 24) = 0

or equivalently

Vlf(xk) = G}wl (xk)

k), wrt. u € R™

We suppose, that strong convexity parameter can different for subspase R™! and subspace R"?

f(U,U) = f(gan) + <V1f(5,77),u - §> + <V2f(5,77),7) - 77>+

M1
2 — gl +

but the regular definition can be written with . = min(, i2).

Strong convexity of f implies the first inequality in the following:

flu,0) > f(af,25)+
+ <V1f(l‘]1€,l"2€),u - l'lf> + (ng(x’f,xlg),v - $12€>+

@ .
: mgn{ £y + <G;41<xk>,u — )+ G u = aflo | 2

1
= f(a*) - Q—MIIGM(QT’“)HQ,

where D since || - || > 0, (3) and (9). Plugging in (u, v) = (a7, z})

1 1

f@*) = f(a*) - 2—MIIGM1(96'“)II§

The same derivation for the point z¥72 = (25+!, 2%) gives the other condition

1

fla®) > flah*e) - Q—MHG?%(x“%)u%
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5 Convergence rate

Combining (5), (6) and (7), (8) and the definition of 1« from the lemma[2 we get

/N
=
8
I
+
rolm
I
=
8
*
~—
N——
VAN
—
I
|“s:
=
—~
=
8
N
I
=
8
*
=

The same we have for the second block
k+1 * 2 k+l %
(1) = f(a) < . 1 (LA (CY)
By combining these inequalities we get

k+1 % H2 k+dy %
(£ = fa)) < 0= ) (£ = f)

or for regular definition of PL condition

E+1 * H H k *
(P = 1) < (1= )1 = 1) (Fah) = )

notice that (1 —

6 Accelerated Alternating Minimization

In this section we describe accelerated method for alternating minimization, which is originates in
[11]. But before notice, that algorithm |1| does not use the constant of strong convexity and conse-
quently adapts to strong convexity of the problem. If the problem is not strongly convex or PL con-
dition is not satisfied the algorithm [1| will poses the following convergence rate f(z*) — for <

f(z0)—fopt 8min(L
maX{ 2(1%1)/021) )

k—
the knowing of the parameter 1 of strong convexity. But it is possible to use this method with 11 = 0.

1’1L2)R2} . The proof can be found in [2]. The following algorithm requires
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Algorithm 2 Accelerated Alternating Minimization (AAM)
Require: Starting point .
Ensure: z*
1: Set Ay = 0, 20 = Y.
2: for k > 0 do
3:  Set [, = argmin f (mk + B(vk — xk))
Bel0,1]
Set y¥ = 2 + B, (vF — 2*) {Extrapolation step}
Choose ij, = argmax ||V, f(y") |2
ie{1,...,n}
6: Setz*! = argmin f(x) {Block minimization}
.’L‘GSik (yk)

2
. . Ay 1 1
7:  If Lis known choose a1 s.t. Grfori) (mtroe) — In

If L is unknown, find largest a1 from the equation

2

ky At1 INIE
f(y ) Q(Ak +ak+1)(7—k’ +,uak+1)||v.f(y )||2+

MUTrOp41 k k2 k+1
vt =yt = flx
2( Ay + aps1) (T + pagi1) | o= 7t=)

8: Set Ak+1 = Ak + Qr+1
9:  Setv! = argmin, g~ Ys1(x) {Update momentum term}
10: end for

We will begin with one key Lemma. Let us introduce an auxiliary functional sequence defined as

1
olw) = 5lla — 2l

V(@) = Uule) + @ {F (") + (VI 0 = o)
+ Slle =y 3).

For
k

(@) = Y as{ (") + (V) z = o) +Slle '3}

i=0
we can write

Ui () = Po(x) + k()

It is easy to see that 1 () is 7 strongly convex function with 7, = 1 + Zf:o a; =1+ pAy.

Lemma 3 After k steps of Algorithm[d it holds that

Akf(xk) < min Yg(z) = @/Jk(vk) (10)
z€RN
k-1
Moreover, if the objective is L-smooth and pi-strongly convex A;, > max { %, L (1-/5) }

where n is the number of blocks.
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proof: First, we prove inequality by induction over k. For &k = 0, the inequality holds. Assume that

Arf(2") < min ¢ (z) = Yp(v¥).

z€RN

Then

Y () = min (o) + (£ + (V)@
— )+ Sl =13} > min {un ") + Tl - vF 3+
aen{F) + (V)2 — 9" + Sl — o 13} }
> min {Af (@) + o = o3+ an () + (V).

— ")+ Sl -y}

Here we used that v/, is a strongly convex function with minimum at v* and that f(y*) < f(a*).

By the optimality conditions for the problem

: k k k i
+ — , either
ﬂrg[%ﬁ] / (x "~z >)

1B =1(Vf(y"),a" —v¥) 2 0,¢" = o

2 B € (0,1)and (Vf(y*),zF — %) =0, y* = vF + Bi(a* — o*);

38 B = 0and (Vf(y*),z* — o) <0, y* = 2.
In all three cases, (V f(y*),v* — y*) > 0.
Thus

Gran (") > min LA f(5) + 2w — o¥3+
z€RN 2
aen {F ) + (VW) — o) + Sl — 13},

The explicit solution to the above quadratic optimization problem is

1
r = —— (10" + pagy* — a1 V(YY)
Tk+1

By plugging in the solution and using (V f (y*), v¥ — y*) > 0, we obtain

2
a
Uk (0" = A f(0°) = S IV Y 5+
k+1

HTkOk+1
2Tk 11

k

lv* = *13.

Our next goal is to show that

DOI 10.20347/WIAS.PREPRINT.2692 Berlin 2020
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az UTrAk41

Apr fF) = RV F@OIE + S0k — v¥113
27‘k+1 27—k:+1

> App f(2")

which proves the induction step.

To do this, by the L-smoothness of the objective, we have Vi

£ — 57 IV WIE > Fk),

where 2/ ! = argmin_ g f(). Since

ir, = argmax; |V, f(y*)||3, )
IV FF))5 = EHW(?J’“)H%

and f(y*) = s IVFWOIE = F6") = azlIVaf(yP)2 = f(2*7), Choosing ay such that
a 1 .
M}ﬂjﬁ Z 3in |mp||es

a HTrAk+1
A f(YF) — ﬁHVf(yk)Hg + Tgllvk — "3

2
a
> A f(yF) = 2 IVADIS
271
A
> A (") = SV > A f*H)

which proves the induction step.

Rewriting the rule for choosing a1 gives
“iﬂ 1 : _ k o
T o) = Tn- Let us estimate the rate of the growth for A;. 7, = 1+ WY i o =

(l2
]."’/ULA]CQAL) 1

k+1Th+1 2Ln

A A A2
az > KTk _ Ak + pAg
nL nL

I [ 1
> —— 2>,/ —A 11
ay Ny Ay + A3 5L (11)

N7V v = S B A
VAVAS D WA 2/in

Summingitupfori =1,...,k we get
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We also have

Appr = Ak + a1 2 A + 4 iAk—l—l
nlL
,u ~1
Apr 2 (1 — 4/ n_L) Ak

To use this bound we only need to estimate A1, which we can do as follows:

which leads to

_af a? a? 1
> > > —
Al (1 + ,LLAl)Al A1T1 nlL

By recursively applying the last bound we reach the desired result:

2 m —k+1
A > —, — (1 =/
g max{4Ln nL( nL)

Theorem 1 After k steps of Algorithm|[Z it holds that

k—1
f@@—ﬂuhymmmm{%%?_ ﬁ%) } i2)

proof: From the convexity of f(x) we have

gwa + (VI v =y + Sl = 1)
< Apyr f ().

From Lemma (3) we have

Apf (") < i(v®)

1
<) = 2l — a9
k1 ) ) . 14 )
+ D (Fy) + (V) 2 — o) + Slle = yI13)
=0

1
< Auf(e2) + Sz — 203

k—1
< nLR?min i 1— H .
k2’ nL

DOI 10.20347/WIAS.PREPRINT.2692 Berlin 2020
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7 Application to optimal transport

In this section we will be dealing with the discrete optimal transportation problem
fX)={C,X) +7(X,InX) —» min , (13)
XeU(r,c)
Ur,e) ={X e RPN : X1 =7 X"1 =},

where X is the transportation plan, C' € RfXN is a given cost matrix, r, ¢ € R are given elements
of the probability simplex, and (A, B) denotes the Frobenius product of matrices defined as (A, B) =

N
> AiBij.
i,j=1
To ensure the smoothness of the dual problem, we must dualize the linear constraints X1 = r, X711 =
¢ while minimizing the Lagrangian over a closed convex set () such that the primal function is strongly
convex on it. Here @ = {X € RY*N : 17X1 = 1}. Then the dual problem is constructed as
follows:
min  (C, X) +v(X,In X)
XeQnU(r,c)

= mi X X, InX X1 -
wig max (G, X) + (X, In X) + {y, X1 1)

+ <Z,XT1 — c>

= max —(y,r) — (z,¢)
y,z€R™

i X (Cv In X% L
+§?é8§1 (C7 +yIn XY + y' + 27)

First of all, we notice that for all 7, j and some small ¢
X (Cij +yIn XY + ¢ +zj) <0

for X% € (0, ¢) and approaches 0 as X/ approaches 0. Hence, X/ > () without loss of generality.
Using Lagrange multipliers for the constraint 17 X1 = 1, we obtain the problem
n
min [Xij (Cij—i—'ylnXij—i—yi—sz)] 2

Xi>0 “
,j=1

The solution to this problem is
exp <—% (y' + 27 + CV) — 1)

X = .
Srimrexp (=1 (g + 2+ C) — 1)

With a change of variables u = —y /v — %1, v=—z/y— %1 we arrive at the following expression
for the dual (minimization) problem:

o(u,v) = (In (1" B(u,v)1) — (u,r) — (v,¢)) = min

u,vERN

where [B(u,v)];; = exp (u’ + v’ — %) The variables in the dual problem naturally decompose
into two blocks u and v. Moreover, minimization over any one block may be performed analytically:

DOI 10.20347/WIAS.PREPRINT.2692 Berlin 2020
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Lemma 4 lterations

u T = argmin p(u, o), ¥ = argmin p(u

u€RN veERN

k’fU)’

may be written explicitly as
u" T =uF +Inr —In (B (u,v) 1),

"t =oF £ Inc—1In (B (u,v)" 1) :

proof:

1
Vu(p(u,vk) = WB(U’ Uk)l —T.

From optimality conditions, for u to be the optimal point it is sufficient to have

1
17 B(u,vk)1
Now we check that is, indeed, the case for u = u**! from the statement of this lemma. We manually
check that

r B(u,v*)1 = 0.

B(uM! oM = diag(e™ ) B(uF, v")1 =,
and the conclusion then follows from the fact that
17 B(u* v")1 = 1r = 1.

k+1

The optimality of v can be proved in the exact same way.

The AM algorithm for this problem with ¢ = 0 is the well-known Sinkhorn’s algorithm ([5]).

Algorithm 3 Sinkhorn’s Algorithm
k

Ensure: «
fork > 1do
if K mod 2 = 0 then
uF Tt =uF +Inr — In (B (uk,vk) 1)
k+1 k

v =0
else
S
V"l = +Inc—In (B (u”, v’“)T 1)
end if
end for

Sinkhorn’s algorithm can be accelerated using the algorithm |2 since it alternates between two sub-
spaces.

Sinkhorn’s algorithm in practice shows the best convergence rate in time (see figure 1] [3), but conver-
gence in iteration worse than AAM (see figure [2). In this paper we make an attempt to understand this
behaviour. Sinkhorn’s algorithm adapts to strong convexity of the problem, and demonstrate, in fact,
linear convergence, in contrast with accelerated methods, which requires parameter p: to be initialized
in order to poses linear convergence. So we experimentally found parameter p with line search, which
improved convergence rate of the accelerated algorithm. Such a search is computationally expensive
and not applicable in practice, but allows to suppose that faster Sinkhorn’s convergence is ensured by
strong convexity.
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