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Optimal decentralized distributed algorithms for stochastic
convex optimization

Eduard Gorbunov, Darina Dvinskikh, Alexander Gasnikov

Abstract

We consider stochastic convex optimization problems with affine constraints and develop sev-
eral methods using either primal or dual approach to solve it. In the primal case we use special
penalization technique to make the initial problem more convenient for using optimization meth-
ods. We propose algorithms to solve it based on Similar Triangles Method [25, 59] with Inexact
Proximal Step for the convex smooth and strongly convex smooth objective functions and meth-
ods based on Gradient Sliding algorithm [47] to solve the same problems in the non-smooth case.
We prove the convergence guarantees in smooth convex case with deterministic first-order oracle.

We propose and analyze three novel methods to handle stochastic convex optimization prob-
lems with affine constraints: SPDSTM, R-RRMA-AC-SA2 and SSTM_sc. All methods use
stochastic dual oracle. SPDSTM is the stochastic primal-dual modification of STM and it is applied
for the dual problem when the primal functional is strongly convex and Lipschitz continuous on
some ball. We extend the result from [15] for this method to the case when only biased stochas-
tic oracle is available. R-RRMA-AC-SA2 is an accelerated stochastic method based on the
restarts of RRMA-AC-SA2 from [21] and SSTM_sc is just stochastic STM for strongly convex
problems. Both methods are applied to the dual problem when the primal functional is strongly
convex, smooth and Lipschitz continuous on some ball and use stochastic dual first-order ora-
cle. We develop convergence analysis for these methods for the unbiased and biased oracles
respectively.

Finally, we apply all aforementioned results and approaches to solve decentralized distributed
optimization problem and discuss optimality of the obtained results in terms of communication
rounds and number of oracle calls per node.

1 Introduction

In this paper we are interested in the convex optimization problem

f(x)→ min
x∈Q⊆Rn

, (1)

where f is a convex function and Q is closed and convex subset of Rn. More precisely, we study par-
ticular case of (1) when the objective function f could be represented as a mathematical expectation

f(x) = Eξ [f(x, ξ)] , (2)

where ξ is a random variable. Problems of this type play central role in a bunch of applications of ma-
chine learning [70, 72] and mathematical statistics [73]. Typically x represents feature vector defining
the model, only samples of ξ are available and the distribution of ξ is unknown. One possible way
to minimize generalization error (2) is to solve empirical risk minimization or finite-sum minimization
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problem instead, i.e. solve (1) with the objective

f(x) =
1

m

m∑
i=1

f(x, ξi), (3)

where m should be sufficiently large to approximate the initial problem (see Section 3 for the details).

Stochastic first-order methods such as Stochastic Gradient Descent (SGD) [30, 54, 60, 63, 79] or its
accelerated variants like AC-SA [47] or Similar Triangles Method (STM) [19, 25, 59] are very popular
choice to solve either (1)+(2) or (1)+(3). In contrast with their cheap iterations in terms of computational
cost, these methods converge only to the neighbourhood of the solution, i.e. to the ball centered at
the optimality and radius proportional to the standard deviation of the stochastic estimator. For the
particular case of finite-sum minimization problem one can solve this issue via variance-reduction trick
[11, 29, 35, 69] and its accelerated variants [2, 83, 84]. Unfortunately, this technique is not applicable
in general for the problems of type (1)+(2) and another possible way to reduce the variance is mini-
batching. When the objective function is L-smooth one can accelerate computations of batches using
parallelization [12, 18, 25, 27] and it is one of the examples where centralized distributed optimization
appears naturally [9].

In other words, in some situations, e.g. when the number of samples m is too big, it is preferable in
practice to split the data into q blocks, assign each block to the separate worker, e.g. processor, and
organize computation of the gradient or stochastic gradient in the parallel or distributed manner. Then,
we can rewrite the objective function in the following form

f(x) =
1

q

q∑
i=1

fi(x), fi(x) = Eξi [f(x, ξi)] or fi(x) =
1

si

si∑
j=1

f(x, ξij). (4)

Here fi corresponds to the loss on the i-th data block and could be also represented as an expectation
or a finite sum. So, the general idea for parallel optimization is to compute gradients or stochastic
gradients by each worker, then aggregate the results by the master node and broadcast new iterate or
needed information to obtain the new iterate back to the workers.

The visual simplicity of the parallel scheme hides synchronization drawback and high requirement to
master node [66]. The big line of works is aimed to solve this issue via periodical synchronization
[40, 41, 74, 82], error-compensation [39, 75], quantization [1, 32, 33, 53, 80] or combination of these
techniques [7, 52].

However, in this paper we mainly focus on another approach to deal with aforementioned drawbacks —
decentralized distributed optimization [9, 42]. It is based on two basic principles: every node commu-
nicates only with its neighbours and communications are performed simultaneously. Moreover, this
architecture is more robust, e.g. it can be applied to time-varying (wireless) communication networks
[65].

1.1 Contributions

One can consider this paper as a continuation of work [15] where authors mentioned the key ideas that
form a basis of this work. However, in this paper we provide formal proofs of some results announced
in [15] together with couple of new results that were not mentioned. Our contributions include:

� Accelerated primal-dual method with biased stochastic dual oracle for convex and smooth
dual problem. We extent the result from the recent work [16] to the case when we have an
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access to the biased stochastic gradients. We emphasize that our analysis works for the min-
imization on whole space and we do not assume that the sequence generated by the method
is bounded. It creates extra difficulties in the analyses, but we handle it via advanced technique
for estimating recurrences (see also [16, 28]).

� Two accelerated methods with biased stochastic dual oracle for strongly convex and
smooth dual problem. For the case when the dual function is strongly convex with Lips-
chitz continuous gradient we analyze two methods: one is R-RRMA-AC-SA2 and another is
SSTM_sc. The first one was described in [16], but in this paper we formally state the method
and prove high probability bounds for its convergence rate. The second method is also well-
known, but to the best of our knowledge there were no convergence results for it in such gen-
erality that we handle. That is, we consider SSTM_sc with biased stochastic oracle applied to
the unconstrained smooth and strongly convex minimization problem and prove high probability
bounds for its convergence rate together with the bound for the noise level. As for the convex
case, we also do not assume that the sequence generated by the method is bounded. Then
we show how it can be applied to solve stochastic optimization problem with affine constraints
using dual oracle.

� Analysis of STM applied to convex smooth minimization problem with smooth convex
composite term and inexact proximal step for unconstrained minimization. Surprisingly,
but before this paper there were no analysis for STM in this case. The closest work to ours in
this topic is [76], but in [76] authors considered optimization problems on bounded sets.

1.2 Outline of the Paper

After introducing main notation and definitions in Section 2 we provide a short overview of the state-
of-the-art results for the problem (1)+(2) that use deterministic and stochastic first-order oracles. After
that, we focus on the stochastic optimization problems with affine constraints and present the state-of-
the-art methods that solves specially penalized unconstrained problem instead of the original one in
Section 4 together with the novel approach which we call STP_IPS that aims to solve convex smooth
unconstrained minimization problems with smooth convex composite term and inexact proximal step.
Next, we consider the same type of problems but using dual approach and develop three different
accelerated methods for this case together with the convergence analysis for each of them. The first
one is Stochastic Primal-Dual STM (SPDSTM) and it uses biased stochastic dual oracle to solve primal
and dual problems simultaneously for the case when the primal problem is µ-strongly convex and
Lipschitz continuous on some ball centered at zero. Next two methods are R-RRMA-AC-SA2 and
SSTM_sc and they solve the same problem when the primal functional is additionallyL-smooth using
stochastic dual oracle. The difference between them is that R-RRMA-AC-SA2 uses tricky restarts
technique and works with unbiased stochastic oracle, while SSTM_sc is directly accelerated and
able to work with biased stochastic gradients. Then we show how to apply established in the previous
sections results to the decentralized distributed optimization problems and derive the bounds for the
proposed methods in Section 6. Finally, in Section 7 we compare bounds for the convergence rate
in parallel and decentralized optimization, discuss the optimality of the obtained results and present
possible directions for the future work. We leave long proofs, auxiliary and technical results and the
whole section about STP_IPS in the appendix.
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2 Notation and Definitions

To denote standard inner product between two vectors x, y ∈ Rn we use 〈x, y〉 def
=
∑n

i=1 xiyi, where
xi is i-th coordinate of vector x, i = 1, . . . , n. Standard Euclidean norm of vector x ∈ Rn is defined

as ‖x‖2
def
=
√
〈x, x〉. By λmax(A) and λ+

min(A) we mean maximal and minimal positive eigenvalues

of matrix A ∈ Rn×n respectively and we use χ(A)
def
= λmax(A)/λ+

min(A) to denote condition number
of A. Moreover, we use Õ(·), Ω̃(·) and Θ̃(·) that define exactly the same as O(·), Ω(·) and Θ(·)
but besides constants factors they can hide polylogarithmical factors of the parameters of the method
or the problem. Conditional mathematical expectation with respect to all randomness coming from
random variable ξ is denoted in our paper by Eξ[·]. We use Br(y) ⊆ Rn to denote Euclidean ball

centered at y ∈ Rn with radius r: Br(y)
def
= {x ∈ Rn | ‖x− y‖2 ≤ r}. The Kronecker product of

two matrices A ∈ Rm×m with elements Aij , i, j = 1, . . . ,m and B ∈ Rn×n is such mn × mn

matrix C
def
= A⊗B that

C =


A11B A12B A13B . . . A1mB
A21B A22B A23B . . . A2mB

...
...

...
. . .

...
Am1B Am2B Am3B . . . AmmB

 . (5)

By In we denote n × n identity matrix and omit the subscript when the size of the matrix is obvious
from the context.

Below we list some classical definitions for optimization (see, for example, [55] for the details).

Definition 1 (L-smoothness). Function f is called L-smooth in Q ⊆ Rn with L > 0 when it is
differentiable and its gradient is L-Lipschitz continuous in Q, i.e.

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Q. (6)

Definition 2 (µ-strong convexity). Differentiable function f is called µ-strongly convex in Q ⊆ Rn

with µ ≥ 0 if

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2

2, ∀x, y ∈ Q. (7)

If µ > 0 then there exists unique minimizer of f on Q which we denote by x∗, except the situations
when we explicitly specify x∗ in a different way. In the case when µ = 0, i.e. f is convex, we assume
that there exists at least one minimizer x∗ of f on Q and in the case when the set of minimizers of f
on the set Q is not a singleton we choose x∗ to be either arbitrary or closest to the starting point of
a method. When we consider some optimization method with a starting point x0 we use R or R0 to
denote the Euclidean distance between x0 and x∗.

3 Optimal Bounds for Stochastic Convex Optimization

In this section our goal is to present the overview of the optimal methods and their convergence
rates for the stochastic convex optimization problem (1)+(2) in the case when the gradient of the
objective function is available only through (possibly biased) stochastic estimators with “light tails” or,
equivalently, with σ2-subgaussian variance. That is, we are interested in the situation when for an
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Assumptions on f Method Citation # of oracle calls
µ-strongly convex,

L-smooth
R-STM [25, 59] O

(√
L
µ

ln
(
µR2

ε

))
L-smooth STM [25, 59] O

(√
LR2

ε

)
µ-strongly convex,
‖∇f(x)‖2 ≤M

MD [8, 36] O
(
M2

µε

)
‖∇f(x)‖2 ≤M MD [8, 36] O

(
M2R2

ε2

)
Table 1: Optimal number N of deterministic first-order oracle calls in order to get such a point xN that
f(xN)− f(x∗) ≤ ε. First column contains assumptions on f in addition to the convexity. MD states
for Mirror Descent.

arbitrary x ∈ Q one can get such stochastic gradient∇f(x, ξ) that

‖Eξ [∇f(x, ξ)]−∇f(x)‖2 ≤ δ, (8)

Eξ

[
exp

(
‖∇f(x, ξ)− Eξ [∇f(x, ξ)]‖2

2

σ2

)]
≤ exp(1), (9)

where δ ≥ 0 and σ ≥ 0. If σ = 0, let us suppose that ∇f(x, ξ) = Eξ [∇f(x, ξ)] almost surely
in ξ. When σ = δ = 0 we get that ∇f(x, ξ) = ∇f(x) almost surely in ξ which is equivalent to
the deterministic first-order oracle. For clarity, we start with this simplest case of stochastic oracle and
provide an overview of the state-of-the-art results for this particular case in Table 1. Note that for the
methods mentioned in the table number of oracle calls and number of iterations are identical. In the
case when the gradient of f is bounded it is often enough to assume this only in some ball centered
at the optimality point x∗ with radius proportional to R [23, 57, 59].

In this paper we are mainly focus on smooth optimization problems and use different modifications
of Similar Triangles Method (STM) since it gives optimal rates in this case and it is easy enough to
analyze at least in the deterministic case. For convenience, we state the method in this section as
Algorithm 1. Interestingly, if we run STM with µ > 0 to solve (1) with µ-strongly convex and L-smooth

Algorithm 1 Similar Triangles Methods (STM), the case when Q = Rn

Input: x̃0 = z0 = x0, number of iterations N , α0 = A0 = 0
1: for k = 0, . . . , N do
2: Set αk+1 = (1+Akµ)/2L +

√
(1+Akµ)/4L2 + Ak(1+Akµ)/L, Ak+1 = Ak + αk+1

3: x̃k+1 = (Akx
k+αk+1z

k)/Ak+1

4: zk+1 = zk −
(
∇f(x̃k+1)− µx̃k+1

)
αk+1/(1+µ)

5: xk+1 = (Akx
k+αk+1z

k+1)/Ak+1

6: end for
Output: xN

objective, it will return xN such that f(xN)− f(x∗) ≤ ε after N = O
(√

L/µ ln (LR2/ε)
)

iterations

which is not optimal, see Table 1. To match the optimal bound in this case one should use classical
restart of STM which is run with µ = 0 [25].

We notice that another highly widespread in machine learning applications type of problems is regu-
larized or composite optimization problem

f(x) + h(x)→ min
x∈Q

, (10)
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where h is a convex proximable function. For this case STM can be generalized via modifying the
update rule in the following way [25, 59]:

zk+1 = argmin
z∈Q

{
1

2
‖z − z0‖2

2 +
k+1∑
l=0

αl

(〈
∇f(x̃l), z − x̃l

〉
+ h(z) +

µ

2
‖z − x̃l‖2

2

)}
. (11)

We address such problems with Lh-smooth composite term in the Appendix, see Section C for the
details.

Next, we go back to the problem (1)+(2) and consider more general case when δ = 0 and σ2 > 0. In
this case one can construct unbiased estimator

∇f(x, {ξi}ri=1) =
1

r

r∑
i=1

∇f(x, ξi),

where ξ1, . . . , ξr are i.i.d. samples and∇f(x, {ξi}ri=1) has r times smaller variance than∇f(x, ξi):

Eξ1,...,ξr

[
exp

(
‖∇f(x, {ξi}ri=1)−∇f(x)‖2

2

σ2/r

)]
≤ exp(1).

Then in order to get such a point xN that f(xN) − f(x∗) ≤ ε with probability at least 1 − β where
β ∈ (0, 1) and f is µ-strongly convex (µ ≥ 0) and L-smooth one can run STM for

N = O

(
min

{√
LR2

ε
,

√
L

µ
ln

(
LR2

ε

)})
(12)

iterations with small modification: instead of using∇f(x̃k+1) the method uses mini-batched stochastic
approximation∇f(x̃k+1, {ξi}rk+1

i=1 ) where the batch size is

rk+1 = Θ

(
max

{
1,

σ2αk+1 ln N
β

(1 + Ak+1µ)ε

})
. (13)

The total number of oracle calls is

N∑
k=1

rk = O

(
N + min

{
σ2R2

ε2
ln

(√
LR2/ε

β

)
,
σ2

µε
ln

(
LR2

ε

)
ln

(√
L/µ

β

)})
(14)

which is optimal up to logarithmic factors. We call this modification Stochastic STM (SSTM). As for the
deterministic case we summarize the state-of-the-art results for this case in Table 2.

4 Stochastic Convex Optimization with Affine Constraints: Pri-
mal Approach

Now, we are going to make the next step towards decentralized distributed optimization and consider
convex optimization problem with affine constraints:

f(x)→ min
Ax=0,x∈Q

, (15)
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Assumptions on f Method Citation # of iterations # of oracle calls
µ-strongly convex,

L-smooth
R-SSTM [25, 46, 59] O

(√
L
µ

ln
(
µR2

ε

))
Õ
(

max
{√

L
µ

ln
(
µR2

ε

)
, σ

2

µε

})
L-smooth SSTM [25, 46, 59] O

(√
LR2

ε

)
Õ

(
max

{√
LR2

ε
, σ

2R2

ε2

})
µ-strongly convex,

Eξ [‖∇f(x, ξ)‖2
2] ≤M2 MD [8, 36] O

(
M2

µε

)
O
(
M2

µε

)
Eξ [‖∇f(x, ξ)‖2

2] ≤M2 MD [8, 36] O
(
M2R2

ε2

)
O
(
M2R2

ε2

)
Table 2: Optimal (up to logarithmic factors) number of iterations and stochastic unbiased first-order
oracle calls in order to get such a point xN that f(xN) − f(x∗) ≤ ε with probability at least 1 − β,
β ∈ (0, 1). First column contains assumptions on f in addition to the convexity.

where A � 0 and KerA 6= {0}. Up to a sign we can define the dual problem in the following way

ψ(y) → min
y
, where (16)

ϕ(y) = max
x∈Q
{〈y, x〉 − f(x)} , (17)

ψ(y) = ϕ(A>y) = max
x∈Q
{〈y, Ax〉 − f(x)} = 〈y, Ax(A>y)〉 − f(x(A>y)) (18)

= 〈A>y, x(A>y)〉 − f(x(A>y)),

where x(y)
def
= argmaxx∈Q {〈y, x〉 − f(x)}. Since KerA 6= {0} the solution of the dual problem

is not unique (16). We use y∗ to denote the solution of (16) with the smallest `2-norm. This norm

Ry
def
= ‖y∗‖2 can be bounded as follows [49]:

R2
y ≤
‖∇f(x∗)‖2

2

λ+
min(A>A)

. (19)

The following lemma provides one of the key relations that we use in our analysis.

Lemma 1. Consider the function f(x) defined on a closed convex set Q ⊆ Rn and linear operator
A such that KerA 6= {0} and its dual function ψ(y) defined as ψ(y) = maxx∈Q {〈y, Ax〉 − f(x)}.
Then

ψ(y∗) = −f(x∗) ≥ 〈y∗, Ax̂〉 − f(x̂) ∀x̂ ∈ Q. (20)

However, in this section we are interested only in primal approaches to solve (15) and, in particular,
the main goal of this section is to present first-order methods that are optimal both in terms of∇f(x)
and A>Ax calculations. Before we start our analysis let us notice that typically in decentralized op-
timization matrix A from (15) is chosen as a square root of Laplacian matrix W of communication
network [66] (see Section 6 for the details). In asynchronous case the square root

√
W is replaced by

incidence matrix M [31] (W = M>M ). Then in asynchronized case instead of accelerate methods
for (16) one should use accelerated block-coordinate descent method [19, 22, 31, 71].

To solve problem (15) we use the following trick [15, 23]: instead of (15) we consider penalized problem

F (x) = f(x) +
R2
y

ε
‖Ax‖2

2 → min
x∈Q

, (21)

where ε > 0 is the desired accuracy of the solution in terms of f(x) that we want to achieve. The
motivation behind this trick is revealed in the following theorem.
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Theorem 1 (See also Remark 4.3 from [23]). Assume that xN ∈ Q is such that

F (xN)−min
x∈Q

F (x) ≤ ε. (22)

Then

f(xN)− min
Ax=0,x∈Q

f(x) ≤ ε, ‖AxN ||2 ≤
2ε

Ry

. (23)

Next, we introduce h(x)
def
= R2

y‖Ax‖22/ε and notice that problem (21) is a special case of the problem
(10). First of all, we consider the case when f is convex and L-smooth, Q = Rn and full gradients of
f and h are available, i.e. we consider deterministic first-order oracle without noise. Note that h(x) is
convex and Lh-smooth in Rn with Lh = 2R2

yλmax(A>A)/ε since∇h(x) = 2R2
yA
>Ax/ε and

‖∇h(x)−∇h(y)‖2 =
2R2

y

ε
‖A>A(x−y)‖2 ≤

2R2
y

ε
‖A>A‖2·‖x−y‖2 ≤

2R2
yλmax(A>A)

ε
‖x−y‖2

for all x, y ∈ Rn. We can apply STM with inexact proximal step (STP_IPS) which is presented in
Section C as Algorithm 8 to solve problem (21). Corollary 6 (see Section C in the Appendix) states that

in order to get such xN that satisfy (22) we should run STP_IPS for N = O
(√

LR2/ε
)

iterations

with δ = O
(
ε
3/2/((Lh+L)

√
LR3)

)
, where R = ‖x0 − x∗‖2, x∗ is the closest to x0 minimizer of F and

δ is such that for all k = 0, . . . , N − 1 the auxiliary problem gk+1(z)→ minz∈Rn for finding zk+1 is
solved with accuracy gk+1(zk+1)− gk+1(ẑk+1) ≤ δ‖zk − ẑk+1‖2

2 where gk+1(z) is defined as (see
also (105))

gk+1(z) =
1

2
‖zk − z‖2

2 + αk+1

(
f(x̃k+1) + 〈∇f(x̃k+1), z − x̃k+1〉+ h(z)

)
, k = 0, 1, . . .

and ẑk+1 = argminz∈Rn gk+1(z). That is, if the auxiliary problem is solved accurate enough at each
iteration, then number of iterations, i.e. number of calculations ∇f(x), corresponds to the optimal
bound presented in Table 1.

However, in order to solve the auxiliary problem gk+1(z) → minz∈Rn one should run another opti-
mization method as a subroutine, e.g. STM. Note that ImA = ImA> = (KerA)⊥ and the iterates
of STM_IPS with STM as a subroutine lie in x0 + (KerA)⊥ (one can prove the last statement us-
ing simple induction, see Theorem 8 for the details of the proof of the similar result). Therefore, the
auxiliary problem can be considered as a minimization of (1 + 2αk+1R

2
yλ

+
min(A>A)/ε)-strongly convex

on x0 + (KerA)⊥ and (1 + 2αk+1R
2
yλmax(A>A)/ε)-smooth on Rn function. Then, one can estimate the

overall complexity of the auxiliary problem using the condition number of gk+1(z) on x0 + (KerA)⊥:

1 + 2αk+1R
2
yλmax(A>A)/ε

1 + 2αk+1R
2
yλ

+
min(A>A)/ε

≤ λmax(A>A)

λ+
min(A>A)

def
= χ(A>A). (24)

It means that to achieve gk+1(zk+1)−gk+1(ẑk+1) ≤ δ‖zk− ẑk+1‖2
2 with δ = O

(
ε
3/2/((Lh+L)

√
LR3)

)
one can run STM to solve the auxiliary problem gk+1(z)→ minz∈Rn for T iterations with the starting
point zk where

T = O

(√
χ(A>A) ln

(
LgN
√
L(λmax(A>A) + L)R3

ε3/2

))
,

LgN = 1 +
2αk+1R

2
yλmax(A>A)

ε

(116)+(196)
= O

(
R2
yRλmax(A>A)
√
Lε3/2

)
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or, equivalently,

T = O

(√
χ(A>A) ln

(
λmax(A>A)(λmax(A>A) + L)R2

yR
4

ε3

))
. (25)

That is, number of A>Ax calculations equals NT and it matches the optimal bound for deterministic
convex and L-smooth problems of type (1) multiplied by

√
χ(A>A) up to logarithmic factors (see

Table 1).

We believe that using the same recurrence technique that we use in Sections C and 5 one can general-
ize this result for the case when instead of∇f(x) only stochastic gradient∇f(x, ξ) (see inequalities
(8)-(9)) is available. To the best of our knowledge it is not done in the literature for the case when
Q = Rn. Moreover, it is also possible to extend our approach to handle strongly convex case via
variants of STM.

We conjecture that the same technique in the case when f is µ-strongly convex and L-smooth gives
the method that requires such number ofA>Ax calculations that matches the second rows of Tables 1
and 2 in the corresponding cases with additional factor

√
χ(A>A) and logarithmic factors. Recently

such bounds were shown in [20] for the distributed version of Multistage Accelerated Stochastic Gra-
dient method from [6]. However, this bounds were shown for the case when the stochastic gradient is
unbiased.

Next, we assume that Q is closed and convex and f is µ-strongly convex, but possibly non-smooth
function with bounded gradients: ‖∇f(x)‖2 ≤ M for all x ∈ Q. Let us start with the case µ = 0.
Then, to achieve (22) one can run Sliding method from [46, 48] considering f(x) as a composite
term. In this case Sliding requires

O

(√
λmax(A>A)R2

yR
2

ε2

)
calculations of A>Ax (26)

and

O

(
M2R2

ε2

)
calculations of∇f(x). (27)

In the case when Q is a compact set and ∇f(x) is not available and unbiased stochastic gradient
∇f(x, ξ) is used instead (see inequalities (8)-(9) with δ = 0) one can show [46, 48] that Stochastic
Sliding (S-Sliding) method can achieve (22) with probability at least 1− β, β ∈ (0, 1), and
it requires the same number of calculations of A>Ax as in (26) up to logarithmic factors and

Õ

(
(M2 + σ2)R2

ε2

)
calculations of∇f(x, ξ). (28)

When µ > 0 one can apply restarts technique on top of S-Sliding (RS-Sliding) [15, 78] and
get that to guarantee (22) with probability at least 1− β, β ∈ (0, 1) RS-Sliding requires

Õ

√λmax(A>A)R2
y

µε

 calculations of A>Ax (29)

and

Õ

(
M2 + σ2

µε

)
calculations of∇f(x, ξ). (30)
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We notice that bounds presented above for the non-smooth case are proved only for the case when
Q is bounded. For the case of unbounded Q the convergence results with such rates were proved
only in expectation. Moreover, it would be interesting to study S-Sliding and RS-Sliding in
the case when δ > 0, i.e. stochastic gradient is biased, but we leave these questions for future works.

5 Stochastic Convex Optimization with Affine Constraints: Dual
Approach

In this section we assume that one can construct a dual problem for (15). If f is µ-strongly convex
in `2-norm, then ψ and ϕ have Lψ–Lipschitz continuous and Lϕ–Lipschitz continuous in `2-norm
gradients respectively [38, 64], where Lψ = λmax(A>A)/µ and Lϕ = 1/µ. In our proofs we often use
Demyanov–Danskin theorem [64] which states that

∇ψ(y) = Ax(A>y), ∇ϕ(y) = x(y). (31)

We notice that in this section we do not assume that A is symmetric or positive semidefinite.

Below we propose one primal-dual method for the case when f is additionally Lipschitz continuous on
some ball and two methods for the problems when the primal function is also L-smooth and Lipschitz
continuous on some ball. In all subsection below we assume that Q = Rn.

5.1 Convex Dual Function

In this section we assume that the dual function ϕ(y) could be rewritten as an expectation, i.e. ϕ(y) =
Eξ [ϕ(y, ξ)], where stochastic realisations ϕ(y, ξ) are differentiable in y functions almost surely in ξ.
Then, we can also represent ψ(y) as an expectation: ψ(y) = Eξ [ψ(y, ξ)]. Consider the stochastic
function f(x, ξ) which is defined implicitly as follows:

ϕ(y, ξ) = max
x∈Rn
{〈y, x〉 − f(x, ξ)} . (32)

Similarly to the deterministic case we introduce x(y, ξ)
def
= argmaxx∈Rn {〈y, x〉 − f(x, ξ)} which

satisfies ∇ϕ(y, ξ) = x(y, ξ) due to Demyanov-Danskin theorem, where the gradient is taken w.r.t.
y. As a simple corollary, we get ∇ψ(y, ξ) = Ax(A>y). Finally, introduced notations and obtained
relations imply that x(y) = Eξ[x(y, ξ)] and∇ψ(y) = Eξ[∇ψ(y, ξ)].

Consider the situation when x(y, ξ) is known only through the noisy observations x̃(y, ξ) = x(y, ξ)+
δ(y, ξ) and assume that the noise is bounded in expectation, i.e. there exists non-negative determin-
istic constant δy ≥ 0, such that

‖Eξ[δ(y, ξ)]‖2 ≤ δy, ∀y ∈ Rn. (33)

Assume additionally that x(y, ξ) satisfies so-called “light-tails” inequality:

Eξ

[
exp

(
‖x̃(y, ξ)− Eξ [x̃(y, ξ)]‖2

2

σ2
x

)]
≤ exp(1), ∀y ∈ Rn, (34)

DOI 10.20347/WIAS.PREPRINT.2691 Berlin 2020



Optimal decentralized distributed algorithms for stochastic convex optimization 11

where σx is some positive constant. It implies that we have an access to the biased gradient

∇̃ψ(y, ξ)
def
= Ax̃(y, ξ) which satisfies following relations:∥∥∥Eξ [∇̃ψ(y, ξ)

]
−∇ψ(y)

∥∥∥
2
≤ δ, ∀y ∈ Rn, (35)

Eξ

exp


∥∥∥∇̃ψ(y, ξ)− Eξ

[
∇̃ψ(y, ξ)

]∥∥∥2

2

σ2
ψ


 ≤ exp(1), ∀y ∈ Rd, (36)

where δ
def
=
√
λmax(A>A)δy and σψ

def
=
√
λmax(A>A)σx. We will use ∇̃Ψ(y, ξk) to denote batched

stochastic gradient:

∇̃Ψ(y, ξk) =
1

rk

rk∑
l=1

∇̃ψ(y, ξl), x̃(y, ξk) =
1

rk

rk∑
l=1

x̃(y, ξl) (37)

The size of the batch rk could always be restored from the context, so, we do not specify it here. Note
that the batch version satisfies ∥∥∥E [∇̃Ψ(x, ξk)

]
−∇ψ(x)

∥∥∥
2
≤ δ, ∀x ∈ Rn, (38)

E

exp


∥∥∥∇̃Ψ(x, ξk)− E

[
∇̃Ψ(x, ξk)

]∥∥∥2

2

O(σ2
ψ/r2

k)


 ≤ exp(1), ∀x ∈ Rn, (39)

where in the last inequality we used combination of Lemmas 7 and 9 (see two inequalities after (132)
for the details). We call this approach SPDSTM (Stochastic Primal-Dual Similar Triangles Method, see
Algorithm 2). Note that Algorithm 4 from [16] is a special case of SPDSTM when δ = 0, i.e. stochastic
gradient is unbiased, up to a factor 2 in the choice of L̃.

Algorithm 2 SPDSTM

Input: ỹ0 = z0 = y0 = 0, number of iterations N , α0 = A0 = 0
1: for k = 0, . . . , N do
2: Set L̃ = 2Lψ
3: Set Ak+1 = Ak + αk+1, where 2L̃α2

k+1 = Ak + αk+1

4: ỹk+1 = (Aky
k+αk+1z

k)/Ak+1

5: zk+1 = zk − αk+1∇̃Ψ(ỹk+1, ξk)
6: yk+1 = (Aky

k+αk+1z
k+1)/Ak+1

7: end for
Output: yN , x̃N = 1

AN

∑N
k=0 αkx̃(A>ỹk, ξk).

The following lemma is rather technical and provides useful inequalities that show how biasedness of
∇̃Ψ(y, ξk) interacts with convexity and Lψ-smoothness of ψ.

Lemma 2. Assume that function ψ(y) is convex and Lψ-smooth on Rn. Then for all x, y ∈ Rn

ψ(y) ≥ ψ(x) +
〈
E
[
∇̃Ψ(x, ξk)

]
, y − x

〉
− δ‖y − x‖2, (40)

ψ(y) ≤ ψ(x) +
〈
E
[
∇̃Ψ(x, ξk)

]
, y − x

〉
+ Lψ‖y − x‖2

2 +
δ2

2Lψ
. (41)
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Next, we will use the following notation: Ek[·] = Eξk+1 [·] which denotes conditional mathematical

expectation with respect to all randomness that comes from ξk+1.

Lemma 3 (see also Theorem 1 from [17]). For each iteration of Algorithm 2 we have

ANψ(yN) ≤ 1

2
‖z − z0‖2

2 −
1

2
‖z − zN‖2

2

+
N−1∑
k=0

αk+1

(
ψ(ỹk+1) + 〈∇̃Ψ(ỹk+1, ξk+1), z − ỹk+1〉

)
+

N−1∑
k=0

Ak

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
+

N−1∑
k=0

Ak+1

2L̃

∥∥∥Ek [∇̃Ψ(ỹk+1, ξk+1)
]
− ∇̃Ψ(ỹk+1, ξk+1)

∥∥∥2

2

+δ
N−1∑
k=0

Ak‖yk − ỹk+1‖2 + δ2

N−1∑
k=0

Ak+1

L̃
, (42)

for arbitrary z ∈ Rn.

The following lemma plays the central role in our analysis and it serves as the key to prove that the
iterates of SPDSTM lie in the ball of radius Ry up to some polylogarithmic factor of N .

Lemma 4 (see also Lemma 7 from [16]). Let the sequences of non-negative numbers {αk}k≥0,
random non-negative variables {Rk}k≥0 and random vectors {ηk}k≥0, {ak}k≥0 satisfy inequality

1

2
R2
l ≤ A+ hδ

l−1∑
k=0

αk+1R̃k + u
l−1∑
k=0

αk+1〈ηk, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk‖2

2, ∀l = 1, . . . , N, (43)

where h, δ, u and c are some non-negative constants. Assume that for each k ≥ 1 vector ak is a
function of η0, . . . , ηk−1, a0 is a deterministic vector, u ≥ 1, sequence of random vectors {ηk}k≥0

satisfy

E
[
ηk | η0, . . . , ηk−1

]
= 0, E

[
exp

(
‖ηk‖2

2

σ2
k

)
| η0, . . . , ηk−1

]
≤ exp(1), ∀k ≥ 0, (44)

αk+1 ≤ α̃k+1 = D(k + 2), σ2
k ≤ Cε

α̃k+1 ln(Nβ )
for some D,C > 0, ε > 0, β ∈ (0, 1) and sequence

of random variables {R̃k}k≥0 is such that ‖ak‖2 ≤ dR̃k with some positive deterministic constant

d ≥ 1 and R̃k = max{R̃k−1, Rk} for all k ≥ 1, R̃0 = R0, R̃k depends only on η0, . . . , η
k and

also assume that ln
(
N
β

)
≥ 3. If additionally ε ≤ HR2

0

N2 and δ ≤ GR0

(N+1)2 , then with probability at least

1− 2β the inequalities
R̃l ≤ JR0 (45)

and

u
l−1∑
k=0

αk+1〈ηk, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk‖2

2 ≤
(

24cCDH + hGDJ + udC1

√
CDHJg(N)

)
R2

0

(46)
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hold for all l = 1, . . . , N simultaneously, whereC1 is some positive constant, g(N) =
ln(Nβ )+ln ln(Bb )

ln(Nβ )
,

B = 2d2CDHR2
0

(
2A+ (1 + ud)R2

0 + 48CDHR2
0 (2c+ ud) + h2G2R2

0D
)

(2(1 + ud))N ,

b = σ2
0α̃

2
1d

2R̃2
0 and

J =

max

{
1, udC1

√
CDHg(N) + hGD +

√
(udC1

√
CDHg(N) + hGD)2 +

2A

R2
0

+ 48cCDH

}
Finally, we state the main result of this section.

Theorem 2 (see also Theorem 2 from [16]). Assume that f is µ-strongly convex and ‖∇f(x∗)‖2 =
Mf . Let ε > 0 be a desired accuracy. Next, assume that f is Lf -Lipschitz continuous on the

ball BRf (0) with Rf = Ω̃

(
max

{
Ry

AN
√
λmax(A>A)

,

√
λmax(A>A)Ry

µ
, Rx

})
, where Ry is such that

‖y∗‖2 ≤ Ry, y∗ is the solution of the dual problem (16), and Rx = ‖x(A>y∗)‖2. Assume that at

iteration k of Algorithm 2 batch size is chosen according to the formula rk ≥ max
{

1,
σ2
ψα̃k ln(N/β)

Ĉε

}
,

where α̃k = k+1
2L̃

, 0 < ε ≤ HL̃R2
0

N2 , 0 ≤ δ ≤ GL̃R0

(N+1)2 and N ≥ 1 for some numeric constant H > 0,

G > 0 and Ĉ > 0. Then with probability ≥ 1− 4β

ψ(yN) + f(x̃N) + 2Ry‖Ax̃N‖2 ≤
R2
y

AN

(
8
√
HC2 + 2 + 12CH +

G(6J + 4)

2

+
Lf
(√

96C2H +G
)

2Ry

√
λmax(A>A)

+
G2

2(N + 1)

+C1

√
CHJg(N)

2
+
√

96C2H +G

)
, (47)

where β ∈ (0, 1/4) is such that
1+
√

ln 1
β√

ln N
β

≤ 2, C2, C, C1 are some positive numeric constants,

g(N) =
ln(Nβ )+ln ln(Bb )

ln(Nβ )
, B = CHR2

0

(
2A+ 2R2

0 + 72CHR2
0 +

9G2L̃R2
0

2

)
4N , b = σ2

0α̃
2
1R

2
0 and

J = max

1, C1

√
CHg(N)

2
+

3G

2
+

√√√√(C1

√
CHg(N)

2
+

3G

2

)2

+
2A

R2
0

+ 24CH

 .

This means that after N = Õ
(√

Mf

µε
χ(A>A)

)
iterations where χ(A>A) = λmax(A>A)

λ+
min(A>A)

, the outputs

x̃N and yN of Algorithm 2 satisfy the following condition

f(x̃N)− f(x∗) ≤ f(x̃N) + ψ(yN) ≤ ε, ‖Ax̃N‖2 ≤
ε

Ry

(48)

with probability at least 1 − 4β. What is more, to guarantee (48) with probability at least 1 − 4β
Algorithm 2 requires

Õ

(
max

{
σ2
ψM

2
f

ε2λ+
min(A>A)

ln

(
1

β

√
Mf

µε
χ(A>A)

)
,

√
Mf

µε
χ(A>A)

})
(49)

calls of the biased stochastic oracle ∇̃ψ(y, ξ), i.e. x̃(y, ξ).
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5.2 Strongly Convex Dual Function and Restarts Technique

In this section we assume that primal functional f is additionally L-smooth. It implies that the dual
function ψ in (16) is additionally µψ-strongly convex in y0 + (KerA>)⊥ where µψ = λ+

min(A>A)/L
[38, 64] and λ+

min(A>A) is the minimal positive eigenvalue of A>A.

From weak duality−f(x∗) ≤ ψ(y∗) and (18) we get the key relation of this section (see also [3, 4, 58])

f(x(A>y))− f(x∗) ≤ 〈∇ψ(y), y〉 = 〈Ax(A>y), y〉 (50)

This inequality implies the following theorem.

Theorem 3. Consider function f and its dual function ψ defined in (18) such that problems (15) and
(16) have solutions. Assume that yN is such that ‖∇ψ(yN)‖2 ≤ ε/Ry and yN ≤ 2Ry, where ε > 0
is some positive number and Ry = ‖y∗‖2 where y∗ is any minimizer of ψ. Then for xN = x(A>yN)
following relations hold:

f(xN)− f(x∗) ≤ 2ε, ‖AxN‖2 ≤
ε

Ry

, (51)

where x∗ is any minimizer of f .

Proof. Applying Cauchy-Schwarz inequality to (50) we get

f(xN)− f(x∗)
(50)
≤ ‖∇ψ(yN)‖2 · ‖yN‖2 ≤

ε

Ry

· 2Ry = 2ε.

The second part (51) immediately follows from ‖∇ψ(yN)‖2 ≤ ε/Ry and Demyanov-Danskin theorem
which implies∇ψ(yN) = AxN .

That is why, in this section we mainly focus on the methods that provides optimal convergence rates
for the gradient norm. In particular, we consider Recursive Regularization Meta-Algorithm from (see
Algorithm 3) [21] with AC-SA2 (see Algorithm 5) as a subroutine (i.e. RRMA-AC-SA2) which is
based on AC-SA algorithm (see Algorithm 4) from [26]. We notice that RRMA-AC-SA2 is applied
for a regularized dual function

ψ̃(y) = ψ(y) +
λ

2
‖y − y0‖2

2, (52)

where λ > 0 is some positive number which will be defined further. Function ψ̃ is λ-strongly convex
and L̃ψ-smooth in Rn where L̃ψ = Lψ + λ. For now, we just assume w.l.o.g. that ψ̃ is (µψ + λ)-
strongly convex in Rn, but we will go back to this question further.

In this section we consider the same oracle as in Section 5, but we additionally assume that δ = 0,
i.e. stochastic first-order oracle is unbiased. To define batched version of the stochastic gradient we
will use the following notation:

∇Ψ(y, ξt, rt) =
1

rt

rt∑
l=1

∇ψ(y, ξl), x(y, ξt, rt) =
1

rt

rt∑
l=1

x(y, ξl). (53)

As before in the cases when the batch-size rt can be restored from the context, we will use simplified
notation ∇Ψ(y, ξt) and x(y, ξt). In the AC-SA algorithm we use batched stochastic gradients of
functions ψk which are defined as follows:

∇Ψk(y, ξ
t) =

1

rt

rt∑
l=1

∇ψk(y, ξl), ∇ψk(y, ξ) = ∇ψ(y, ξ)+λ(y−y0)+λ

k∑
l=1

2l(y− ŷl). (54)
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Algorithm 3 RRMA-AC-SA2 [21]

Input: y0 — starting point, m — total number of iterations

1: ψ0 ← ψ̃, ŷ0 ← y0, T ←
⌊
log2

L̃ψ
λ

⌋
2: for k = 1, . . . , T do
3: Run AC-SA2 for m/T iterations to optimize ψk−1 with ŷk−1 as a starting point and get the

output ŷk

4: ψk(y)← ψ̃(y) + λ
∑k

l=1 2l−1‖y − ŷl‖2
2

5: end for
Output: ŷT .

Algorithm 4 AC-SA [26]

Input: z0 — starting point, m — number of iterations, ψk — objective function
1: y0

ag ← z0, y0
md ← z0

2: for t = 1, . . . ,m do

3: αt ← 2
t+1

, γt ← 4L̃ψ
t(t+1)

4: ytmd ←
(1−αt)(λ+γt)

γt+(1−α2
t )λ

yt−1
ag + αt((1−αt)λ+γt)

γt+(1−α2
t )λ

zt−1

5: zt ← αtλ
λ+γt

ytmd + (1−αt)λ+γt
λ+γt

zt−1 − αt
λ+γt
∇Ψk(y

t
md, ξ

t)

6: ytag ← αtz
t + (1− αt)xt−1

ag

7: end for
Output: ymag.

The following theorem states the main result for RRMA-AC-SA2 that we need in the section.

Theorem 4 (Corollary 1 from [21]). Let ψ be Lψ-smooth and µψ-strongly convex function and λ =
Θ
(

(Lψ ln2 N)/N2
)

for some N > 1. If the Algorithm 3 performs N iterations in total1 with batch size r
for all iterations, then it will provide such a point ŷ that

E
[
‖∇ψ(ŷ)‖2

2 | y0, r
]
≤ C

(
L2
ψ‖y0 − y∗‖2

2 ln4N

N4
+
σ2
ψ ln6N

rN

)
, (55)

where C > 0 is some positive constant and y∗ is a solution of the dual problem (16).

Let us show that w.l.o.g. we can assume in this section that function ψ defined in (18) is µψ-strongly
convex everywhere with µψ = λ+

min(A>A)/L. In fact, from L-smoothness of f we have only that ψ is

µψ-strongly convex in y0 +
(
Ker(A>)

)⊥
(see [38, 64] for the details). However, the structure of the

considered here methods is such that all points generated by the RRMA-AC-SA2 and, in particular,

AC-SA lie in y0 +
(
Ker(A>)

)⊥
.

Theorem 5. Assume that Algorithm 4 is run for the objective ψk(y) = ψ̃(y) +λ
∑k

l=1 2l−1‖y− ŷl‖2
2

with z0 as a starting point, where z0, ŷ1, . . . , ŷk are some points from y0+
(
Ker(A>)

)⊥
and y0 ∈ Rn.

Then for all t ≥ 0 we have ytmd, z
t, ytag ∈ y0 +

(
Ker(A>)

)⊥
.

Proof. We prove the statement of the theorem by induction. For t = 0 the statement is trivial, since
y0
md = y0

ag = z0 ∈ y0 +
(
Ker(A>)

)⊥
. Assume that ytmd, z

t, ytag ∈ y0 +
(
Ker(A>)

)⊥
for some

1It means that the overall number of performed iterations preformed during the calls of AC-SA2 equals N .
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Algorithm 5 AC-SA2 [21]

Input: z0 — starting point, m — number of iterations, ψk — objective function
1: Run AC-SA for m/2 iterations to optimize ψk with z0 as a starting point and get the output y1

2: Run AC-SA for m/2 iterations to optimize ψk with y1 as a starting point and get the output y2

Output: y2.

t ≥ 0 and prove it for t+1. Since y0 +
(
Ker(A>)

)⊥
is a convex set and yt+1

md is a convex combination

of ytag and zt we have yt+1
md ∈ y0 +

(
Ker(A>)

)⊥
. Next, the point αtλ

λ+γt
yt+1
md + (1−αt)λ+γt

λ+γt
zt also lies

in y0 +
(
Ker(A>)

)⊥
since it is convex combination of the points lying in this set. Due to (52), (53)

and (54) we have that∇Ψk(y
t+1
md , ξ

t) = Ax(A>yt+1
md , ξ

t) + λ(yt+1
md − y0) + λ

∑k
l=1 2l(yt+1

md − ŷl).

The first term lies in
(
Ker(A>)

)⊥
since Im(A) =

(
Ker(A>)

)⊥
and the second and the third terms

also lie in
(
Ker(A>)

)⊥
since yt+1

md , y
0, ŷ1, . . . , ŷk ∈ y0 +

(
Ker(A>)

)⊥
. Putting all together we get

zt+1 ∈ y0 +
(
Ker(A>)

)⊥
. Finally, yt+1

ag lies in y0 +
(
Ker(A>)

)⊥
as a convex combination of points

from this set.

Corollary 1. Assume that Algorithm 3 is run for the objective ψk(y) = ψ̃(y)+λ
∑k

l=1 2l−1‖y− ŷl‖2
2

with y0 as a starting point. Then for all k ≥ 0 we have ŷk ∈ y0 +
(
Ker(A>)

)⊥
.

Proof. We prove this result by induction. For t = 0 the statement is trivial since ŷ0 = y0. Next,

assume that ŷ0, ŷ1, . . . , ŷk ∈ y0 +
(
Ker(A>)

)⊥
and prove that ŷk+1 ∈ y0 +

(
Ker(A>)

)⊥
. Our

assumption implies that the assumptions from Theorem 5 and applying the result of the theorem we

get that y1 and y2 from the method AC-SA2 applied to the ψk also lie in y0 +
(
Ker(A>)

)⊥
. That is,

the output of AC-SA2 applied for ψk lies in y0 +
(
Ker(A>)

)⊥
.

Now we are ready to present our approach which was sketched in [15] of constructing an accelerated
method for the strongly convex dual problem using restarts of RRMA-AC-SA2. To explain the main
idea we start with the simplest case: σ2

ψ = 0, r = 0. It means that there is no stochasticity in the
method and the bound (55) can be rewritten in the following form:

‖∇ψ(ŷ)‖2 ≤
√
CLψ‖y0 − y∗‖2 ln2N

N2
≤
√
CLψ‖∇ψ(y0)‖2 ln2N

µψN2
, (56)

where we used inequality ‖∇ψ(y0)‖ ≥ µψ‖y0 − y∗‖ which follows from the µψ-strong convex-
ity of ψ. It implies that after N̄ = Õ(

√
Lψ/µψ) iterations of RRMA-AC-SA2 the method returns

such ȳ1 = ŷ that ‖∇ψ(ȳ1)‖2 ≤ 1
2
‖∇ψ(y0)‖2. Next, applying RRMA-AC-SA2 with ȳ1 as a

starting point for the same number of iterations we will get new point ȳ2 such that ‖∇ψ(ȳ2)‖2 ≤
1
2
‖∇ψ(ȳ1)‖2 ≤ 1

4
‖∇ψ(y0)‖2. Then, after l = O(ln(Ry‖∇ψ(y0)‖2/ε)) of such restarts we can

get the point ȳl such that ‖∇ψ(ȳl)‖2 ≤ ε/Ry with total number of gradients computations N̄ l =

Õ
(√

Lψ/µψ ln(Ry‖∇ψ(y0)‖2/ε)
)

.

In the case when σ2
ψ 6= 0 we need to modify this approach. The first ingredient to handle the stochas-

ticity is large enough batch size for the l-th restart: rl should be Ω (σ2
ψ/(N̄‖∇ψ(ȳl−1)‖22)). However, in

the stochastic case we do not have an access to the ∇ψ(ȳl−1), so, such batch size is impractical.
One possible way to fix this issue is to independently sample large enough number r̂l ∼ R2

y/ε2 of
stochastic gradients additionally, which is the second ingredient of our approach, in order to get good
enough approximation ∇Ψ(ȳl−1, ξl−1, r̂l) of ∇ψ(ȳl−1) and use the norm of such an approximation
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which is close to the norm of the true gradient with big enough probability in order to estimate needed
batch size rl for the optimization procedure. Using this, we can get the bound of the following form:

E
[
‖∇ψ(ȳl)‖2

2 | ȳl−1, rl, r̂l
]
≤ Al

def
=
‖∇ψ(ȳl−1)‖2

2

8
+
‖∇Ψ(ȳl−1, ξl−1, r̂l)−∇ψ(ȳl−1)‖2

2

32
.

The third ingredient is the amplification trick: we run pl = Ω(ln(1/β)) independent trajectories of
RRMA-AC-SA2, get points ȳl,1, . . . , ȳl,pl and choose such ȳl,p(l) among of them that ‖∇ψ(ȳl,p(l))‖2

is close enough to minp=1,...,pl ‖∇ψ(ȳl,p)‖2 with high probability, i.e.

‖∇ψ(ȳl,p(l))‖2
2 ≤ 2 min

p=1,...,pl
‖∇ψ(ȳl,p)‖2

2 + ε2/8R2
y

with probability at least 1−β for fixed∇Ψ(ȳl−1, ξl−1, r̂l). We achieve it due to additional sampling of
r̄l ∼ R2

y/ε2 stochastic gradients at ȳl,p for each trajectory and choosing such p(l) corresponding to the
smallest norm of the obtained batched stochastic gradient. By Markov’s inequality for all p = 1, . . . , pl

P
{
‖∇ψ(ȳl,p)‖2

2 ≥ 2Al | ȳl−1, rl, r̄l
}
≤ 1

2
,

hence

P
{

min
p=1,...,pl

‖∇ψ(ȳl,p)‖2
2 ≥ 2Al | ȳl−1, rl, r̄l

}
≤ 1

2pl
.

That is, for pl = log2(1/β) we have that with probability at least 1− 2β

‖∇ψ(ȳl,p(l))‖2
2 ≤
‖∇ψ(ȳl−1)‖2

2

2
+
‖∇Ψ(ȳl−1, ξl−1, r̂l)−∇ψ(ȳl−1)‖2

2

8
+

ε2

8R2
y

for fixed∇Ψ(ȳl−1, ξl−1, r̂l) which means that

‖∇ψ(ȳl,p(l))‖2
2 ≤
‖∇ψ(ȳl−1)‖2

2

2
+

ε2

4R2
y

with probability at least 1−3β. Therefore, after l = log2(2R2
y‖∇ψ(y0)‖22/ε2) of such restarts our method

provide the point ȳl,p(l) such that with probability at least 1− 3lβ

‖∇ψ(ȳl,p(l))‖2
2 ≤

‖∇ψ(y0)‖2
2

2l
+

ε2

4R2
y

l−1∑
k=0

2−k ≤ ε2

2R2
y

+
ε2

4R2
y

· 2 =
ε2

R2
y

.

The approach informally described above is stated as Algorithm 6.

Theorem 6. Assume that ψ is µψ-strongly convex and Lψ-smooth. If Algorithm 6 is run with

l = max

{
1, log2

2R2
y‖∇ψ(y0)‖2

2

ε2

}
, r̂k = max

1,
4σ2

ψ

(
1 +

√
3 ln l

β

)2

R2
y

ε2

 ,

rk = max

{
1,

64Cσ2
ψ ln6 N̄

N̄‖∇Ψ(ȳk−1,p(k−1), ξk−1,p(k−1), r̂k)‖2
2

}
,

pk = max

{
1, log2

l

β

}
, r̄k = max

1,
128σ2

ψ

(
1 +

√
3 ln lpk

β

)2

R2
y

ε2

 , k = 1, . . . , l, (57)
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Algorithm 6 Restarted-RRMA-AC-SA2

Input: y0 — starting point, l — number of restarts, {r̂k}lk=1, {r̄k}lk=1 — batch-sizes, {pk}lk=1 —
amplification parameters

1: Choose the smallest integer N̄ > 1 such that
CL2

ψ ln4 N̄

µ2
ψN̄

4 ≤ 1
32

2: ȳ0,p(0) ← y0

3: for k = 1, . . . , l do
4: Compute∇Ψ(ȳk−1,p(k−1), ξk−1,p(k−1), r̂k)

5: rk ← max
{

1,
64Cσ2

ψ ln6 N̄

N̄‖∇Ψ(ȳk−1,p(k−1),ξk−1,p(k−1),r̂k)‖22

}
6: Run pk independent trajectories of RRMA-AC-SA2 for N̄ iterations with batch-size rk with
ȳk−1,p(k−1) as a starting point and get outputs ȳk,1, . . . , ȳk,pk

7: Compute∇Ψ(ȳk,1, ξk,1, r̄k), . . . ,∇Ψ(ȳk,pk , ξk,pk , r̄k)
8: p(k)← argminp=1,...,pk

‖∇Ψ(ȳk,p, ξk,p, r̄k)‖2

9: end for
Output: ȳl,p(l).

where N̄ > 1 is such that
CL2

ψ ln4 N̄

µ2
ψN̄

4 ≤ 1
32

, β ∈ (0, 1/3) and ε > 0, then with probability at least

1− 3β

‖∇ψ(ȳl,p(l))‖2 ≤
ε

Ry

(58)

and the total number of the oracle calls equals

l∑
k=1

(r̂k + N̄pkrk + pkr̄k) = Õ

(
max

{√
Lψ
µψ
,
σ2
ψR

2
y

ε2

})
. (59)

Corollary 2. Under assumptions of Theorem 6 we get that with probability at least 1− 3β

‖ȳl,p(l) − y∗‖2 ≤
ε

µψRy

, (60)

where β ∈ (0, 1/3) the total number of the oracle calls is defined in (59).

Proof. Inequalities (58) and µψ‖y− y∗‖2 ≤ ‖∇ψ(y)‖2 which follows from µψ-strong convexity of ψ
imply that

‖ȳl,p(l) − y∗‖2 ≤
‖∇ψ(ȳl,p(l))‖2

µψ

(58)
≤ ε

µψRy

.

Corollary 3. Let the assumptions of Theorem 6 hold. Assume that f is Lf -Lipschitz continuous on

BRf (0) whereRf =

(
µψ

8
√
λmax(A>A)

+

√
λmax(A>A)

µ
+ Rx

Ry

)
Ry andRx = ‖x(A>y∗)‖2. Then, with

probability at least 1− 4β

f(xl)− f(x∗) ≤

(
2 +

Lf

8Ry

√
λmax(A>A)

)
ε, ‖Axl‖ ≤ 9ε

8Ry

, (61)

where β ∈ (0, 1/4), ε ∈ (0, µψR
2
y) x

l def
= x(A>ȳl,p(l), ξl,p(l), r̄l) and to achieve it we need the total

number of oracle calls as in (59).
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5.3 Direct Acceleration for Strongly Convex Dual Function

We consider first the following minimization problem:

ψ(y)→ min
y∈Rn

, (62)

where ψ(y) is µψ-strongly convex and Lψ-smooth. We use the same notation to define the objective
in (62) as for the dual function from (16) because later in the section we apply the algorithm introduced
below to the (16), but for now it is not important that ψ is a dual function for (15) and we prefer to
consider more general situation. As in Section 5.1, we do not assume that we have an access to
the exact gradient of ψ(y) and consider instead of it biased stochastic gradient ∇̃ψ(y, ξ) satisfying
inequalities (35) and (36) with δ ≥ 0 and σψ ≥ 0. In the main method of this section batched version
of the stochastic gradient is used:

∇̃Ψ(y, ξk) =
1

rk

rk∑
l=1

∇̃ψ(y, ξl), (63)

where rk is the batch-size that we leave unspecified for now. Note that ∇̃Ψ(y, ξk) satisfies inequalities
(38) and (39).

We use Stochastic Similar Triangles Method which is stated in this section as Algorithm 7 to solve
problem (62). To define the iterate zk+1 we use the following sequence of functions:

g̃0(z)
def
=

1

2
‖z − z0‖2

2 + α0

(
ψ(y0) + 〈∇̃Ψ(y0, ξ0), z − y0〉+

µψ
2
‖z − y0‖2

2

)
,

g̃k+1(z)
def
= g̃k(z) + αk+1(ψ(ỹk+1) + 〈∇̃Ψ(ỹk+1, ξk+1), z − ỹk+1〉+

µψ
2
‖z − ỹk+1‖2

2)(64)

=
1

2
‖z − z0‖2

2 +
k+1∑
l=0

αl

(
ψ(ỹl) + 〈∇̃Ψ(ỹl, ξl), z − ỹl〉+

µψ
2
‖z − ỹl‖2

2

)
We notice that g̃k(z) is (1 + Akµψ)-strongly convex.

Algorithm 7 Stochastic Similar Triangles Methods for strongly convex problems (SSTM_sc)

Input: ỹ0 = z0 = y0 — starting point, N — number of iterations
1: Set α0 = A0 = 1/Lψ
2: Get ∇̃Ψ(y0, ξ0) to define g̃0(z)
3: for k = 0, 1, . . . , N − 1 do
4: Choose αk+1 such that Ak+1 = Ak + αk+1, Ak+1(1 + Akµψ) = α2

k+1Lψ
5: ỹk+1 = (Aky

k+αk+1z
k)/Ak+1

6: zk+1 = argminz∈Rn g̃k+1(z), where g̃k+1(z) is defined in (64)
7: yk+1 = (Aky

k+αk+1z
k+1)/Ak+1

8: end for
Output: xN

Lemma 5. Assume that Algorithm 7 is run to solve problem (62) with ψ(y) being µψ-strongly convex
and Lψ-smooth. Then, for all k ≥ 0 we have

Akψ(yk) ≤ g̃k(z
k)−

k−1∑
l=0

Alµψ
2
‖yl − ỹl+1‖2

2 +
k∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2
. (65)
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Lemma 6. Let the sequences of non-negative numbers {αk}k≥0, random non-negative variables

{Rk}k≥−1, {R̃k}k≥−1 and random vectors {ηk}k≥0, {ak}k≥0, {ãk}k≥0 satisfy inequality

AlR
2
l +

l−1∑
k=0

AkR̃
2
k ≤ A+ hδ

l∑
k=0

αk(Rk−1 + R̃k) + u
l−1∑
k=0

αk+1〈ηk, ak + ãk〉+ c
l−1∑
k=0

αk+1‖ηk‖2
2,

(66)
for all l = 1, . . . , N , where h, δ, u and c are some non-negative constants and Ak+1 = Ak + αk+1,
αk+1 ≤ DAk for some D ≥ 1, A0 = α0 > 0. Assume that for each k ≥ 1 vector ak is a function of
η0, . . . , ηk−1, a0 is a deterministic vector, u ≥ 1, sequence of random vectors {ηk}k≥0 satisfy

E
[
ηk | η0, . . . , ηk−1

]
= 0, E

[
exp

(
‖ηk‖2

2

σ2
k

)
| η0, . . . , ηk−1

]
≤ exp(1), ∀k ≥ 0, (67)

σ2
k ≤ Cε

N2
(

1+
√

3 ln N
β

)2 for some C > 0, ε > 0, β ∈ (0, 1), sequences {ak}k≥0 and {ãk}k≥0 are

such that ‖ak‖2 ≤ Rk and ‖ãk‖2 ≤ R̃k, Rk and R̃k depend only on η0, . . . , η
k and R̃0 = 0. If

additionally δ ≤ GR0

N
√
AN

and ε ≤ HR2
0

AN
Then with probability at least 1− 2β the inequalities

Rl ≤
JR0√
Al
, R̃l−1 ≤

JR0√
Al−1

(68)

and

hδ
l−1∑
k=0

αk+1(Rk + R̃k) + u
l−1∑
k=0

αk+1〈ηk, ak + ãk〉+ c
l−1∑
k=0

αk+1‖ηk‖2
2

≤
(

2cHC + 2JD
(
hG+ uC1

√
2HCg(N)

))
R2

0 (69)

hold for all l = 1, . . . , N simultaneously, whereC1 is some positive constant, g(N) =
ln(Nβ )+ln ln(Bb )(

1+
√

3 ln(Nβ )
)2 ,

B = 8HCDR2
0

(
N

(
3

2

)N
+ 1

)(
A+ 2Dh2G2R2

0 + 2C
(
c+ 2Du2

)
HR2

0

)
,

b = 2σ2
0α

2
1R

2
0 and

J = max

√A0,
3B1D +

√
9B2

1D
2 + 4A

R2
0

+ 8cHC

2

 , B1 = hG+ uC1

√
2HCg(N).

Theorem 7. Assume that the function ψ is µψ-strongly convex and Lψ-smooth,

rk = Θ

(
max

{
1,

(
µψ
Lψ

)3/2 N2σ2
ψ ln N

β

ε

})
,

i.e. rk ≥ 1
C

max

{
1,
(
µψ
Lψ

)3/2 N2σ2
ψ

(
1+
√

3 ln N
β

)2

ε

}
with positive constantsC > 0, ε > 0 andN ≥ 1.

If additionally δ ≤ GR0

N
√
AN

and ε ≤ HR2
0

AN
where R0 = ‖y∗ − y0‖2 and Algorithm 7 is run for N

iterations, then with probability at least 1− 3β

‖yN − y∗‖2
2 ≤

Ĵ2R2
0

AN
, (70)
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where β ∈ (0, 1/3),

ĝ(N) =
ln
(
N
β

)
+ ln ln

(
B̂
b

)
(

1 +

√
3 ln

(
N
β

))2 , b =
2σ2

1α
2
1R

2
0

r1

, D
(200)
= 1 +

µψ
Lψ

+

√
1 +

µψ
Lψ

,

B̂ = 8HC

(
Lψ
µψ

)3/2

DR4
0

(
N

(
3

2

)N
+ 1

)(
Â+ 2Dh2G2 + 2C

(
Lψ
µψ

)3/2 (
c+ 2Du2

)
H

)
,

h = u =
2

µψ
, c =

2

µ2
ψ

,

Â =
1

µψ
+

2G

LψµψN
√
AN

+
2G2

µ2
ψN

2
+

(
Lψ
µψ

)3/4
2
√

2CH

LψµψN
√
AN

+

(
Lψ
µψ

)3/2
4CH

Lψµ2
ψN

2AN
,

Ĵ = max


√

1
Lψ
,

3B̂1D+

√
9B̂2

1D
2+4Â+8cHC

(
Lψ
µψ

)3/2

2

 ,

B̂1 = hG + uC1

√
2HC

(
Lψ
µψ

)3/2

ĝ(N) and C1 is some positive constant. In other words, to

achieve ‖yN − y∗‖2
2 ≤ ε with probability at least 1 − 3β Algorithm 7 needs N = Õ

(√
Lψ
µψ

)
iter-

ations and Õ
(

max
{√

Lψ
µψ
,
σ2
ψ

ε

})
oracle calls where Õ(·) hides polylogarithmic factors depending

on Lψ, µψ, R0, ε and β.

Next, we apply the SSTM_sc for the problem (16) when the objective of the primal problem (15) is L-
smooth, µ-strongly convex and Lf -Lipschitz continuous on some ball which will be specified next, i.e.
we consider the same setup as in Section 5 but we additionally assume that the primal functional f has
L-Lipschitz continuous gradient. As in Section 5 we also consider the case when the gradient of the
dual functional is known only through biased stochastic estimators, see (32)–(39) and the paragraphs
containing these formulas.

In Section 5 and 5.2 we mentioned that in the considered case dual function ψ is Lψ-smooth on Rn

and µψ-strongly convex on y0 + (KerA>)⊥ where Lψ = λmax(A>A)/µ and µψ = λ+
min(A>A)/L. Using

the same technique as in the proof of Theorem 5 we show next that w.l.o.g. one can assume that ψ is
µψ-strongly convex on Rn since ∇̃Ψ(y, ξk) lies in ImA = (KerA>)⊥ by definition of ∇̃Ψ(y, ξk). For
this purposes we need the explicit formula for zk+1 which follows from the equation∇g̃k+1(zk+1) = 0:

zk+1 =
z0

1 + Ak+1µψ
+

k+1∑
l=0

αlµψ
1 + Ak+1µψ

ỹl − 1

1 + Ak+1µψ

k+1∑
l=0

αl∇̃Ψ(ỹl, ξl). (71)

Theorem 8. For all k ≥ 0 we have that the iterates of Algorithm 7 ỹk, zk, yk lie in y0 +
(
Ker(A>)

)⊥
.

Proof. We prove the statement of the theorem by induction. For k = 0 the statement is trivial, since
ỹ0 = z0 = y0. Assume that for some k ≥ 0 we have ỹt, zt, yt ∈ y0 +

(
Ker(A>)

)⊥
for all 0 ≤ t ≤ k

and prove it for k + 1. Since y0 +
(
Ker(A>)

)⊥
is a convex set and ỹk+1 is a convex combination of

yk and zk we have ỹk+1 ∈ y0 +
(
Ker(A>)

)⊥
. Next, the point z0

1+Ak+1µψ
+

k+1∑
l=0

αlµψ
1+Ak+1µψ

ỹl also lies
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in y0 +
(
Ker(A>)

)⊥
since it is convex combination of the points lying in this set which follows from

Ak+1 =
∑k+1

l=0 αl. By definition ∇̃Ψ(ỹl, ξl) of we have that ∇̃Ψ(ỹl, ξl) lies in ImA = (KerA>)⊥

for all ỹl. Putting all together and using (71) we get zk+1 ∈ y0 +
(
Ker(A>)

)⊥
. Finally, yk+1 lies in

y0 +
(
Ker(A>)

)⊥
as a convex combination of points from this set.

This theorem makes it possible to apply the result from Theorem 7 for SSTM_sc which is run on the
problem (16).

Corollary 4. Under assumptions of Theorem 7 we get that after N = Õ
(√

Lψ
µψ

ln 1
ε

)
iterations of

Algorithm 7 which is run on the problem (16) with probability at least 1− 3β

‖∇ψ(yN)‖2 ≤
ε

Ry

, (72)

where β ∈ (0, 1/3) and the total number of oracles calls equals

Õ

(
max

{√
Lψ
µψ
,
σ2
ψR

2
y

ε2

})
. (73)

If additionally ε ≤ µψR
2
y, then with probability at least 1− 3β

‖yN − y∗‖2 ≤
ε

µψRy

, (74)

‖yN‖2 ≤ 2Ry (75)

Proof. Theorem 7 implies that with probability at least 1− 3β we have

‖yN − y∗‖2
2 ≤

Ĵ2R2
0

AN
.

Using this and Lψ-smoothness of ψ we get that with probability ≥ 1− 3β

‖∇ψ(yN)‖2
2 = ‖∇ψ(yN)−∇ψ(y∗)‖2

2 ≤ L2
ψ‖yN − y∗‖2

2 ≤
L2
ψĴ

2R2
0

AN
.

Since A
(199)
≥ 1

Lψ

(
1 + 1

2

√
µψ
Lψ

)2k

, it implies that after N = Õ
(√

Lψ
µψ

ln 1
ε

)
iterations of SSTM_sc

we will get (72) with probability at least 1− 3β and the number of oracle calls will be

N∑
k=0

rk = Õ

(
max

{√
Lψ
µψ
,
σ2
ψR

2
y

ε2

})
.

Next, from µψ-strong convexity of ψ(y) we have that with probability at least 1− 3β

‖yN − y∗‖2 ≤
‖∇ψ(yN)‖2

µψ
≤ ε

µψRy

and from this we obtain that with probability at least 1− 3β

‖yN‖2 ≤ ‖yN − y∗‖2 + ‖y∗‖2 ≤
ε

µψRy

+Ry ≤ 2Ry.
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Corollary 5. Let the assumptions of Theorem 7 hold. Assume that f is Lf -Lipschitz continuous on

BRf (0) where Rf =

(√
2C

λmax(A>A)
+G1 +

√
λmax(A>A)

µ

)
ε
Ry

+ Rx, Rx = ‖x(A>y∗)‖2, ε ≤

µψR
2
y and δy ≤ G1ε

NRy
for some positive constant G1. Assume additionally that the last batch-size rN

is slightly bigger than other batch-sizes, i.e.

rN ≥
1

C
max

1,

(
µψ
Lψ

)3/2 N2σ2
ψ

(
1 +

√
3 ln N

β

)2

R2
y

ε2
,
σ2
ψ

(
1 +

√
3 ln N

β

)2

R2
y

ε2

 . (76)

Then, with probability at least 1− 4β

f(x̃N)− f(x∗) ≤

(
2 +

(√
2C

λmax(A>A)
+G1

)
Lf
Ry

)
ε, (77)

‖Ax̃N‖2 ≤
(

1 +
√

2C +G1

√
λmax(A>A)

) ε

Ry

, (78)

where β ∈ (0, 1/4), x̃N
def
= x̃(A>yN , ξN , rN) and to achieve it we need the total number of oracle

calls including the cost of computing x̃N equals

Õ

(
max

{√
Lψ
µψ
,
σ2
ψR

2
y

ε2

})
. (79)

6 Applications to Decentralized Distributed Optimization

In this section we apply our results to the decentralized optimization problems. But let us consider
first the centralized or parallel architecture. As we mentioned in the introduction, when the objective
function is L-smooth one can compute batches in parallel [12, 18, 25, 27] in order to accelerate the
work of the method and (12)-(14) imply that

O

(
σ2R2/ε2√
LR2/ε

)
or O

(
σ2/µε√

L/µ ln (µR2/ε)

)
(80)

number of workers in such a parallel scheme gives the method with working time proportional to the
number of iterations defined in (12). However, number of workers defined in (80) could be too big in
order to use such an approach in practice. But still computing the batches in parallel even with much
smaller could reduce the working time of the method if the communication is fast enough and it follows
from (14).

Besides the computation of batches in parallel for the general type of problem (1)+(2), parallel opti-
mization is often applied to the finite-sum minimization problems (1)+(3) or (1)+(4) that we rewrite here
in the following form:

f(x) =
1

m

m∑
k=1

fk(x)→ min
x∈Q⊆Rn

. (81)

We notice that in this section m is a number of workers and fk(x) is known only for the k-th worker.
Consider the situation when workers are connected in a network and one can construct a spanning
tree for this network. Assume that the diameter of the obtained graph equals d, i.e. the height of the
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tree — maximal distance (in terms of connections) between the root and a leaf [66]. If we run STM on
such a spanning tree then we will get that the number of communication rounds will be d times larger
than number of iterations defined in (12).

Now let us consider decentralized case when workers can communicate only with their neighbours.
Next, we describe the method of how to reflect this restriction in the problem (81). Consider the Lapla-
cian matrix W ∈ Rm×m of the network with vertices V and edges E which is defined as follows:

W ij =


−1, if (i, j) ∈ E,
deg(i), if i = j,

0 otherwise,

(82)

where deg(i) is degree of i-th node, i.e. number of neighbours of the i-th worker. Since we consider

only connected networks the matrix W has unique eigenvector 1m
def
= (1, . . . , 1)> ∈ Rm corre-

sponding to the eigenvalue 0. It implies that for all vectors a = (a1, . . . , am)> ∈ Rm the following
equivalence holds:

a1 = . . . = am ⇐⇒ Wa = 0. (83)

Now let us think about ai as a number that i-th node stores. Then, using (83) we can use Laplacian
matrix to express in the short matrix form the fact that all nodes of the network store the same number.
In order to generalize it for the case when ai are vectors from Rn we should consider the matrix

W
def
= W ⊗ In where ⊗ represents the Kronecker product (see (5)). Indeed, if we consider vectors

x1, . . . , xm ∈ Rn and x =
(
x>1 , . . . , x

>
m

)
∈ Rnm, then (83) implies

x1 = . . . = xm ⇐⇒ Wx = 0. (84)

For simplicity, we also call W as a Laplacian matrix and it does not lead to misunderstanding since
everywhere below we use W instead of W . The key observation here that computation of Wx re-
quires one round of communications when the k-th worker sends xk to all its neighbours and receives
xj for all j such that (k, j) ∈ E, i.e. k-th worker gets vectors from all its neighbours. Note, that W
is symmetric and positive semidefinite [66] and, as a consequence,

√
W exists. Moreover, we can

replace W by
√
W in (84) and get the equivalent statement:

x1 = . . . = xm ⇐⇒
√
Wx = 0. (85)

Using this we can rewrite the problem (81) in the following way:

f(x) =
1

m

m∑
k=1

fk(xk)→ min√
Wx=0,

x1,...,xm∈Q⊆Rn

. (86)

We are interested in the general case when fk(xk) = Eξk [fk(xk, ξk)] where {ξk}mk=1 are indepen-
dent. This type of objective can be considered as a special case of (4). Then, as it was mentioned in
the introduction it is natural to use stochastic gradients∇fk(xk, ξk) that satisfy

‖Eξk [∇fk(xk, ξk)]−∇fk(xk)‖2 ≤ δ, (87)

Eξk

[
exp

(
‖∇fk(xk, ξk)− Eξk [∇fk(xk, ξk)]‖2

2

σ2

)]
≤ exp(1). (88)

Then, the stochastic gradient

∇f(x, ξ)
def
= ∇f(x, {ξk}mk=1)

def
=

1

m

m∑
k=1

∇fk(xk, ξk)
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satisfies (see also (39))

Eξ

[
exp

(
‖∇f(x, ξ)− Eξ [∇f(x, ξ)]‖2

2

σ2
f

)]
≤ exp(1)

with σ2
f = O (σ2/m).

As always, we start with the smooth case with Q = Rn and assume that each fk is L-smooth, µ-
strongly convex and satisfies ‖∇kfk(xk)‖2 ≤ M on some ball BRM (x∗) where we use ∇kf(xk)
to emphasize that fk depends only on the k-th n-dimensional block of x. Since the functional f(x)
in (86) has separable structure, it implies that f is L/m-smooth, µ/m-strongly convex and satisfies
‖∇f(x)‖2 ≤ M/√m on B√mRM (x∗). Indeed, for all x,y ∈ Rn

‖x− y‖2
2 =

m∑
k=1

‖xk − yk‖2
2,

‖∇f(x)−∇f(y)‖2 =

√√√√ 1

m2

m∑
k=1

‖∇kfk(xk)−∇kfk(yk)‖2
2 ≤

√√√√L2

m2

m∑
k=1

‖xk − yk‖2
2

=
L

m
‖x− y‖2,

f(x) =
1

m

m∑
k=1

fk(xk)

≥ 1

m

m∑
k=1

(
f(yk) + 〈∇kfk(yk), xk − yk〉+

µ

2
‖xk − yk‖2

2

)
= f(y) + 〈∇f(y),x− y〉+

µ

2m
‖x− y‖2

2,

‖∇f(x)‖2
2 =

1

m2

m∑
k=1

‖∇kfk(xk)‖2
2.

Therefore, one can consider the problem (86) as (15) with A =
√
W and Q = Rnm. Next, if the

starting point x0 is such that x0 = (x0, . . . , x0)> then

R2 def
= ‖x0 − x∗‖2

2 = m‖x0 − x∗‖2
2 = mR2, R2

y
def
= ‖y∗‖2

2 ≤
‖∇f(x∗)‖2

2

λ+
min(W )

≤ M2

mλ+
min(W )

.

Now it should become clear why in Section 4 we paid most of our attention on number of A>Ax

calculations. In this particular scenario A>Ax =
√
W
>√

Wx = Wx which can be computed via
one round of communications of each node with its neighbours as it was mentioned earlier in this
section. That is, for the primal approach we can simply use the results discussed in Section 4. For
convenience, we summarize them in Tables 3 and 4 which are obtained via plugging the parameters
that we obtained above in the bounds from Section 4. Note that the results presented in this match
the lower bounds obtained in [5] in terms of the number of communication rounds up to logarithmic
factors and and there is a conjecture [15] that these bounds are also optimal in terms of number of
oracle calls per node for the class of methods that require optimal number of communication rounds.
Recently, the very similar result about the optimal balance between number of oracle calls per node
and number of communication round was proved for the case when the primal functional is convex
and L-smooth and deterministic first-order oracle is available [81].
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Assumptions on f Method Citation
# of communication

rounds
# of∇kfk(xk) oracle

calls per node
µ-strongly convex,

L-smooth
D-MASG,
Q = Rn [20] Õ

(√
L
µχ
)

Õ
(√

L
µ

)
L-smooth

STP_IPS with
STP as a subroutine,

Q = Rn
[This paper] Õ

(√
LR2

ε χ

)
Õ

(√
LR2

ε

)
µ-strongly convex,
‖∇kfk(xk)‖2 ≤M

R-Sliding [15, 46, 48, 49] Õ
(√

M2

µε χ
)

Õ
(
M2

µε

)
‖∇kfk(xk)‖2 ≤M Sliding [46, 48, 49] O

(√
M2R2

ε2
χ

)
O
(
M2R2

ε2

)
Table 3: Summary of the covered results in this paper for solving (86) using primal determinis-
tic approach from Section 4. First column contains assumptions on f in addition to the convexity,

χ
def
= χ(W ). All methods except D-MASG should be applied to solve (21).

Assumptions on f Method Citation
# of communication

rounds
# of∇kfk(xk, ξk) oracle

calls per node

µ-strongly convex,
L-smooth

D-MASG,
in expectation,
Q = Rn

[20] Õ
(√

L
µχ
)

Õ
(
max

{√
L
µ ,

σ2

µε

})

L-smooth
SSTP_IPS with

STP as a subroutine,
Q = Rn

conjecture,
[This paper]

[15]
Õ

(√
LR2

ε χ

)
Õ

(
max

{√
LR2

ε , σ
2R2

ε2

})
µ-strongly convex,
‖∇kfk(xk)‖2 ≤M

RS-Sliding
Q is bounded

[15, 46, 48, 49] Õ
(√

M2

µε χ
)

Õ
(
M2+σ2

µε

)
‖∇kfk(xk)‖2 ≤M

S-Sliding
Q is bounded

[46, 48, 49] Õ

(√
M2R2

ε2
χ

)
Õ
(

(M2+σ2)R2

ε2

)
Table 4: Summary of the covered results in this paper for solving (86) using primal stochastic approach
from Section 4 with the stochastic oracle satisfying (87)-(88) with δ = 0. First column contains as-

sumptions on f in addition to the convexity, χ
def
= χ(W ). All methods except D-MASG should be

applied to solve (21). We notice it was also shown in [51] that the bounds from the last two rows hold
even in the case when Q is unbounded, but in the expectation.

Finally, consider the situation when Q = Rn and each fk from (86) is dual-friendly, i.e. one can
construct dual problem for (86)

Ψ(y) → min
y∈Rnm

, where y = (y>1 , . . . , y
>
m)> ∈ Rnm, y1, . . . , ym ∈ Rn, (89)

ϕk(yk) = max
xk∈Rn

{〈yk, xk〉 − fk(xk)} , (90)

Φ(y) =
1

m

m∑
k=1

ϕk(myk), Ψ(y) = Φ(
√
Wy) =

1

m

m∑
k=1

ϕk(m[
√
Wx]k), (91)

DOI 10.20347/WIAS.PREPRINT.2691 Berlin 2020



Optimal decentralized distributed algorithms for stochastic convex optimization 27

where [
√
Wx]k is the k-th n-dimensional block of

√
Wx. Note that

max
x∈Rnm

{〈y,x〉 − f(x)} = max
x∈Rnm

{
m∑
k=1

〈yk, xk〉 −
1

m

m∑
k=1

fk(xk)

}

=
1

m

m∑
k=1

max
xk∈Rn

{〈myk, xk〉 − fk(xk)} =
1

m

m∑
k=1

ϕk(myk) = Φ(y),

so, Φ(y) is a dual function for f(x). As for the primal approach, we are interested in the general
case when ϕk(yk) = Eξk [ϕk(yk, ξk)] where {ξk}mk=1 are independent and stochastic gradients
∇ϕk(xk, ξk) satisfy

‖Eξk [∇ϕk(yk, ξk)]−∇ϕk(yk)‖2 ≤ δϕ, (92)

Eξk

[
exp

(
‖∇ϕk(yk, ξk)− Eξk [∇ϕk(yk, ξk)]‖2

2

σ2

)]
≤ exp(1). (93)

Consider the stochastic function fk(xk, ξk) which is defined implicitly as follows:

ϕk(yk, ξk) = max
xk∈Rn

{〈yk, xk〉 − f(xk, ξk)} . (94)

Since

∇Φ(y) =
m∑
k=1

∇ϕk(myk)
(31)
=

m∑
k=1

xk(myk)
def
= x(y), xk(yk)

def
= argmax

xk∈Rn
{〈yk, xk〉 − fk(xk)}

it is natural to define the stochastic gradient∇Φ(y, ξ) as follows:

∇Φ(y, ξ)
def
= ∇Φ(y, {ξk}mk=1)

def
=

m∑
k=1

∇ϕk(myk, ξk)
(31)
=

m∑
k=1

xk(myk, ξk)
def
= x(y, ξ),

xk(yk, ξk)
def
= argmax

xk∈Rn
{〈yk, xk〉 − fk(xk, ξk)} .

It satisfies (see also (39))

‖Eξ [∇Φ(y, ξ)]−∇Φ(y)‖2 ≤ δΦ,

Eξ

[
exp

(
‖∇Φ(y, ξ)− Eξ [∇Φ(y, ξ)]‖2

2

σ2
Φ

)]
≤ exp(1)

with δΦ = mδϕ and σ2
Φ = O (mσ2). Using this, we define the stochastic gradient of Ψ(y) as

∇Ψ(y, ξ)
def
=
√
W∇Φ(

√
Wy, ξ) =

√
Wx(

√
Wy, ξ) and, as a consequence, we get

‖Eξ [∇Ψ(y, ξ)]−∇Ψ(y)‖2 ≤ δΨ,

Eξ

[
exp

(
‖∇Ψ(y, ξ)− Eξ [∇Ψ(y, ξ)]‖2

2

σ2
Ψ

)]
≤ exp(1)

with δΨ =
√
λmax(W )δΦ and σΨ =

√
λmax(W )σΦ.
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Assumptions on f Method Citation
# of communication

rounds
# of∇ϕk(yk, ξk) oracle

calls per node
µ-strongly convex,

L-smooth,
‖∇fk(xk)‖2 ≤M

on BRM (x∗)

R-RRMA-AC-SA2

(Algorithm 6),
SSTM_sc

(Algorithm 7)

Corollaries 3,
[15],

Corollary 5
Õ
(√

L
µχ
)

Õ
(
max

{√
L
µχ,

σ2
ΦM

2

ε2
χ
})

µ-strongly convex,
‖∇fk(xk)‖2 ≤M

on BRM (x∗)

SPDSTM
(Algorithm 2)

Theorem 2,
[15, 16]

Õ
(√

M2

µε χ
)

Õ
(
max

{√
M2

µε χ,
σ2

ΦM
2

ε2
χ
})

Table 5: Summary of the covered results in this paper for solving (89) using dual stochastic approach
from Section 5 with the stochastic oracle satisfying (87)-(88) with δ = 0. First column contains as-

sumptions on f in addition to the convexity, χ
def
= χ(W ).

Taking all of this into account we conclude that problem (89) is a special case of (16) with A =
√
W .

To make the algorithms from Section 5 distributed we should change the variables in those methods
via multiplying them by

√
W from the left [15, 16, 78], e.g. for the iterates of SPDSTM we will get

ỹk+1 :=
√
Wỹk+1, zk+1 :=

√
Wzk+1, yk+1 :=

√
Wyk+1,

which means that it is needed to multiply lines 4-6 of Algorithm 2 by
√
W from the left. After such a

change of variables all methods from Section 5 become suitable to run them in the distributed fashion.
Besides that, it does not spoil the ability of recovering the primal variables since before the change of
variables all of the methods mentioned in Section 5 used x(

√
Wy) or x(

√
Wy, ξ) where points y

were some dual iterates of those methods, so, after the change of variables we should use x(y) or
x(y, ξ) respectively. Moreover, it is also possible to compute ‖

√
Wx‖2

2 = 〈x,Wx〉 in the distributed
fashion using consensus type algorithms: one communication step is needed to compute Wx, then
each worker computes 〈xk, [Wx]k〉 locally and after that it is needed to run consensus algorithm.
We summarize the results for this case in Tables 5 and 6. Note that the proposed bounds are optimal
in terms of the number of communication rounds up to polylogarithmic factors [5, 66, 67, 68]. Note
that the lower bounds from [66, 67, 68] are presented for the convolution of two criteria: number of
oracle calls per node and communication rounds. One can obtain lower bounds for the number of
communication rounds itself using additional assumption that time needed for one communication is
big enough and the term which corresponds to the number of oracle calls can be neglected. Regarding
the number of oracle calls there is a conjecture [15] that the bounds that we present in this paper are
also optimal up to polylogarithmic factors for the class of methods that require optimal number of
communication rounds.

7 Discussion

In this section we want to discuss some aspects of the proposed results that were not covered in
previous sections. First of all, we should say that in the smooth case for the primal approach our
bounds for the number of communication steps coincides with the optimal bounds for the number of
communication steps for parallel optimization if we substitute the diameter d of the spanning tree in
the bounds for parallel optimization by Õ(

√
χ(W )).

However, we want to discuss another interesting difference between parallel and decentralized opti-
mization in terms of the complexity results which was noticed in [15]. From the line of works [43, 44,
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Assumptions on f Method Citation
# of communication

rounds
# of∇ϕk(yk, ξk) oracle

calls per node
µ-strongly convex,

L-smooth,
‖∇fk(xk)‖2 ≤M

on BRM (x∗)

SSTM_sc
(Algorithm 7)

Corollary 5 Õ
(√

L
µχ
)

Õ
(
max

{√
L
µχ,

σ2
ΦM

2

ε2
χ
})

µ-strongly convex,
‖∇fk(xk)‖2 ≤M

on BRM (x∗)

SPDSTM
(Algorithm 2)

Theorem 2 Õ
(√

M2

µε χ
)

Õ
(
max

{√
M2

µε χ,
σ2

ΦM
2

ε2
χ
})

Table 6: Summary of the covered results in this paper for solving (89) using biased dual stochastic
approach from Section 5 with the stochastic oracle satisfying (87)-(88) with δϕ > 0. First column

contains assumptions on f in addition to the convexity, χ
def
= χ(W ). For both cases the noise level

should satisfy δϕ = Õ (ε/M√mχ).

45, 50] it is known that for the problem (1)+(4) (here we use m instead of q and iterator k instead of i
for consistency) with L-smooth and µ-strongly convex fk for all k = 1, . . . ,m the optimal number of
oracle calls, i.e. calculations of of the stochastic gradients of fk with σ2-subgaussian variance is

Õ

(
m+

√
m
L

µ
+
σ2

µε

)
. (95)

The bad news is that (95) does not work with full parallelization trick and the best possible way to
parallelize it is described in [50]. However, standard accelerated scheme using mini-batched versions
of the stochastic gradients without variance-reduction technique and incremental oracles which gives
the bound

Õ

(
m

√
L

µ
+
σ2

µε

)
(96)

for the number of oracle calls and it admits full parallelization. It means that in the parallel optimization
setup when we have computational network with m nodes and the spanning tree for it with diameter
d the number of oracle calls per node is

Õ

(√
L

µ
+

σ2

mµε

)
= Õ

(
max

{√
L

µ
,
σ2

mµε

})
(97)

and the number of communication steps is

Õ

(
d

√
L

µ

)
. (98)

However, for the decentralized setup the second row of Table 4 states that the number of communica-
tion rounds is the same as in (98) up to substitution of d by

√
χ(W ) and the number of oracle calls

per node is

Õ

(
max

{√
L

µ
,
σ2

µε

})
(99)

which has m times bigger statistical term under the maximum than in (97). What is more, recently it
was shown that there exists such a decentralized distributed method that requires

Õ

(
σ2

mµε

)
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stochastic gradient oracle calls per node [61, 62], but it is not optimal in terms of the number of commu-
nications. Moreover, there is a hypothesis [15] that in the smooth case the bounds from Tables 3 and 4
(rows 2 and 3) are optimal in terms of the number of oracle calls per node for the class of methods
that require optimal number of communication rounds up to polylogarithmic factors.

The same claim but for Table 5 was also presented in [15] as a hypothesis and in this paper we
propose the same hypothesis for the result stated Table 6 up to polylogarithmic and additionally we
hypothesise that the noise level that we obtained is also unimprovable up to polylogarithmic factors.

7.1 Possible Extensions

� As it was mentioned in Section 4, the recurrence technique that we use in Sections C and
5 can be very useful in the generalization of the results for STM from Section 4 for the case
when instead of∇f(x) only stochastic gradient∇f(x, ξ) (see inequalities (8)-(9)) is available,
f is L-smooth and proximal step is computed in an inexact manner. It would be nice also to
compare proposed methods for the case when δ with the results from [20]. For the convex
but non-strongly convex case one can also try to combine Nesterov’s smoothing technique
[13, 56, 78] with D-MASG from [20].

� We believe that the technique presented in the proofs of Lemmas 4 and 6 can also be extended
or modified in order to be applied for different optimization methods to obtain high probability
bounds in the case when Q = Rn.

� We emphasize that in our results we assume that each fi from (86) is L-smooth and µ-strongly
convex. When each fi is Li-smooth and µi-strongly convex, it means that in order to satisfy the
assumption we use in our paper we need to chooseL = max1≤i≤m Li and µ = min1≤i≤m µi.
This choice can lead to a very slow rate in some situations, e.g. the worst-case L can be m
times larger than L for f as for the case when m = d and f(x) = ‖x‖22/2m = 1/m

∑m
i=1 fi(x),

fi(x) = x2
i/2 where Li = 1 for all i but f is 1/d-smooth [77]. It was shown [66, 78] that instead

of worst-case µ and L one can use µ̄ = 1/m
∑m

i=1 µi and L̂ to be some weighted average of
Li, but such techniques can spoil number of communication rounds needed to achieve desired
accuracy.

� It would be also interesting to generalize the proposed results for the case of more general
stochastic gradients [6, 30, 60, 79].
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A Basic Facts

In this section we enumerate for convenience basic facts that we use many times in our proofs.

Fenchel-Young inequality. For all a, b ∈ Rn and λ > 0

|〈a, b〉| ≤ ‖a‖
2
2

2λ
+
λ‖b‖2

2

2
. (100)

Squared norm of the sum. For all a, b ∈ Rn

‖a+ b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2. (101)

B Auxiliary Results

In this section, we present the results from other papers that we rely on in our proofs.

Lemma 7 (Lemma 2 from [34]). For random vector ξ ∈ Rn following statements are equivalent up to
absolute constant difference in σ.

1 Tails: P {‖ξ‖2 ≥ γ} ≤ 2 exp
(
− γ2

2σ2

)
∀γ ≥ 0.

2 Moments: (E [ξp])
1
p ≤ σ

√
p for any positive integer p.

3 Super-exponential moment: E
[
exp

(
‖ξ‖22
σ2

)]
≤ exp(1).

Lemma 8 (Corollary 8 from [34]). Let {ξk}Nk=1 be a sequence of random vectors with values in Rn

such that for k = 1, . . . , N and for all γ ≥ 0

E [ξk | ξ1, . . . , ξk−1] = 0, E [‖ξk‖2 ≥ γ | ξ1, . . . , ξk−1] ≤ exp

(
− γ2

2σ2
k

)
almost surely,
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where σ2
k belongs to the filtration σ(ξ1, . . . , ξk−1) for all k = 1, . . . , N . Let SN =

N∑
k=1

ξk. Then there

exists an absolute constant C1 such that for any fixed β > 0 and B > b > 0 with probability at least
1− β:

either
N∑
k=1

σ2
k ≥ B or ‖SN‖2 ≤ C1

√√√√max

{
N∑
k=1

σ2
k, b

}(
ln

2n

β
+ ln ln

B

b

)
.

Lemma 9 (corollary of Theorem 2.1, item (ii) from [37]). Let {ξk}Nk=1 be a sequence of random vectors
with values in Rn such that

E [ξk | ξ1, . . . , ξk−1] = 0 almost surely, k = 1, . . . , N

and let SN =
N∑
k=1

ξk. Assume that the sequence {ξk}Nk=1 satisfy “light-tail” assumption:

E
[
exp

(
‖ξk‖2

2

σ2
k

)
| ξ1, . . . , ξk−1

]
≤ exp(1) almost surely, k = 1, . . . , N,

where σ1, . . . , σN are some positive numbers. Then for all γ ≥ 0

P

‖SN‖2 ≥
(√

2 +
√

2γ
)√√√√ N∑

k=1

σ2
k

 ≤ exp

(
−γ

2

3

)
. (102)

C Similar Triangles Method with Inexact Proximal Step

In this section we focus on the composite optimization problem. i.e. problems of the type

F (x) = f(x) + h(x)→ min
x∈Rn

, (103)

where f(x) is convex and L-smooth and h(x) is convex and Lh-smooth. Before we present our
method, let us introduce new notation.

Definition 3. Assume that function g(x) defined on Rn is such that there exists (possibly non-unique)
x∗ satisfying g(x∗) = minx∈Rn g(x). Then for arbitrary δ > 0 we say that x̂ is δ-solution of the
problem g(x)→ minx∈Rn and write x̂ = argminδx∈Rn g(x) if g(x̂)− g(x∗) ≤ δ.

Note that δ-solution could be non-unique, but for our purposes in such cases it is enough to use any
point from the set of δ-solutions. In the analysis we will need the following result.

Lemma 10 (See also Theorem 9 from [76]). Let g(x) be convex, L-smooth, x∗ is such that g(x∗) =
minx∈Rn g(x) and x̂ = argminδx∈Rn g(x) for some δ > 0. Then for all x ∈ Rn

〈∇g(x̂), x̂− x〉 ≤
√

2Lδ‖x̂− x‖2. (104)

Proof. Since x∗ is a minimizer of g(x) on Rn, we have∇g(x∗) = 0 and [55]

‖∇g(x̂)‖2 ≤ 2L(g(x̂)− g(x∗)).

Next, using this, Cauchy-Schwarz inequality and definition of x̂ we get

〈∇g(x̂), x̂− x〉 ≤ ‖∇g(x̂)‖2 · ‖x̂− x‖2 ≤
√

2L(g(x̂)− g(x∗))‖x̂− x‖2 ≤
√

2Lδ‖x̂− x‖2,

that concludes the proof.
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Algorithm 8 Similar Triangles Methods with Inexact Proximal Step (STM_IPS)

Input: x̃0 = z0 = x0 — starting point, N — number of iterations
1: Set α0 = A0 = 0
2: for k = 0, 1, . . . , N − 1 do
3: Choose αk+1 such that Ak + αk+1 = 2Lα2

k+1, Ak+1 = Ak + αk+1

4: x̃k+1 = (Akx
k+αk+1z

k)/Ak+1

5: zk+1 = argmin
δk+1

z∈Rn gk+1(z), where gk+1(z) is defined in (105) and δk+1 = δ‖zk − ẑk+1‖2
2

6: xk+1 = (Akx
k+αk+1z

k+1)/Ak+1

7: end for
Output: xN

The main method of this section is stated as Algorithm 8. In the STM_IPS we use functions gk+1(z)
which are defined as follows:

gk+1(z) =
1

2
‖zk − z‖2

2 + αk+1

(
f(x̃k+1) + 〈∇f(x̃k+1), z − x̃k+1〉+ h(z)

)
, k = 0, 1, . . . .

(105)
Each gk+1(z) is 1-strongly convex function with, as a consequence, unique minimizer

ẑk+1 def
= argmin

z∈Rn
gk+1(z).

Let us discuss a little bit the proposed method. First of all, if we slightly modify the method and choose
δk+1 = 0, then we will get STM which is well-studied in the literature. Secondly, it may seem that in
order to run the method we need to know ‖zk − ẑk+1‖2, but in fact we do not need it. If gk+1(z) is

Lk+1-smooth and µk+1-strongly convex, then one can run STP for T = O
(√

Lk+1/µk+1 ln Lk+1/δ
)

iterations with zk as a starting point to solve the problem gk+1(z) → minz∈Rn and get zk+1 =

argmin
δk+1

z∈Rn gk+1(z). Note that in this case we do not need to know ẑk+1. Moreover, we do not
assume that iterates of STM_IPS are bounded and instead of assuming it we prove such result
which makes the analysis a little bit more technical then ones for STP. Finally, we notice that one
can prove the results we present below even with such αk+1 that Ak+1 = Ak + αk+1 = Lα2

k+1. It
improves numerical constants in the upper bounds a little bit, but for simplicity we use the same choice
of αk+1 as for the stochastic case.

We start our analysis with the following lemma.

Lemma 11 (see also Theorem 1 from [17]). Assume that f(x) is convex and L-smooth, h(x) is
convex and Lh-smooth and δ < 1

2
. Then after N ≥ 1 iterations of Algorithm 8 we have

AN
(
F (xN)− F (x∗)

)
≤ 1

2
R2

0 −
1

2
R2
N + δ̂

N−1∑
k=0

√
k + 2R̃2

k+1, (106)

where x∗ is the solution of (103) closest to the starting point z0, Rk+1
def
= ‖x∗ − zk+1‖2, R̃0

def
= R0

def
=

‖x∗ − z0‖2, R̃k+1
def
= max{R̃k, Rk+1} for k = 0, 1, . . . , N − 1 and δ̂

def
=
√

(Lh+2L)δ

(1−
√

2δ)2L
.

Proof. First of all, we prove by induction that x̃k+1, xk, zk ∈ BR̃k
(x∗) for k = 0, 1, . . .. For k = 0 this

is true since x0 = z0, R̃0 = R0 = ‖z0 − x∗‖ and x̃1 = (A0x0+αk+1z
0)/A1 = z0, since A0 = α0 = 0

and A1 = α1. Next, assume that x̃k+1, xk, zk ∈ BR̃k
(x∗) for some k ≥ 0. By definition of Rk+1
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and R̃k+1 we have zk+1 ∈ BRk+1
(x∗) ⊆ BR̃k+1

(x∗). Due to the assumption that xk ∈ BRk(x
∗) ⊆

BRk+1
(x∗) ⊆ BR̃k+1

(x∗) and convexity of theBR̃k+1
(x∗) we get that xk+1 ∈ BR̃k+1

(x∗) since it is a

convex combination of xk and zk+1, i.e. xk+1 = (Akx
k+αk+1z

k+1)/Ak+1. Similarly, x̃k+2 lies in the ball
BR̃k+1

(x∗) since it is a convex combination of xk+1 and zk+1, i.e. xk+1 = (Akx
k+1+αk+1z

k+1)/Ak+1.

That is, we proved that x̃k+1, xk, zk ∈ BR̃k
(x∗) for all non-negative integers k.

Since zk+1 = argmin
δk+1

z∈Rn gk+1(z) and gk+1(z) is 1-strongly convex and (αk+1Lh + 1)-smooth we
can apply Lemma 10 and get

〈∇gk+1(zk+1), zk+1 − x∗〉 ≤
√

2(αk+1Lh + 1)δ‖zk − ẑk+1‖2
2 · ‖zk+1 − x∗‖2. (107)

From 1-strong convexity of gk+1(z) we have

‖zk+1 − ẑk+1‖2
2 ≤ 2(gk+1(zk+1)− gk+1(ẑk+1)) ≤ 2δ‖zk − ẑk+1‖2

2.

Together with triangle inequality it implies that

‖zk − ẑk+1‖2 ≤ ‖zk − x∗‖2 + ‖x∗ − zk+1‖2 + ‖zk+1 − ẑk+1‖2 ≤ 2R̃k+1 +
√

2δ‖zk − ẑk+1‖2,

and, after rearranging the terms,

‖zk − ẑk+1‖2 ≤
2

1−
√

2δ
R̃k+1. (108)

Applying inequality above and (196) for the r.h.s. of (107) we obtain

〈zk+1 − zk + αk+1∇f(x̃k+1) + αk+1∇h(zk+1), zk+1 − x∗〉 ≤ δ̂
√
k + 2R̃2

k+1, (109)

where we used

2

√
2(αk+1Lh + 1)δ

(1−
√

2δ)2

(196)
≤ 2

√
2 ((k + 2)Lh + 2(k + 2)L) δ

2(1−
√

2δ)2L
≤ 2

√
(Lh + 2L) δ

(1−
√

2δ)2L

√
k + 2

and δ̂
def
= 2
√

(Lh+2L)δ

(1−
√

2δ)2L
. Using this we get

αk+1〈∇f(x̃k+1), zk − x∗〉 = αk+1〈∇f(x̃k+1), zk − zk+1〉+ αk+1〈∇f(x̃k+1), zk+1 − x∗〉
(109)
≤ αk+1〈∇f(x̃k+1), zk − zk+1〉+ 〈zk+1 − zk, x∗ − zk+1〉

+αk+1〈∇h(zk+1), x∗ − zk+1〉+ δ̂
√
k + 2R̃2

k+1.

One can check via direct calculations that

〈a, b〉 =
1

2
‖a+ b‖2

2 −
1

2
‖a‖2

2 −
1

2
‖b‖2

2, ∀ a, b ∈ Rn.

From the convexity of h

〈∇h(zk+1), x∗ − zk+1〉 ≤ h(x∗)− h(zk+1).

Combining previous three inequalities we obtain

αk+1〈∇f(x̃k+1), zk − x∗〉 ≤ αk+1〈∇f(x̃k+1), zk − zk+1〉 − 1

2
‖zk − zk+1‖2

2 +
1

2
‖zk − x∗‖2

2

−1

2
‖zk+1 − x∗‖2

2 + αk+1

(
h(x∗)− h(zk+1)

)
+ δ̂
√
k + 2R̃2

k+1.
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By definition of xk+1 and x̃k+1

xk+1 =
Akx

k + αk+1z
k+1

Ak+1

=
Akx

k + αk+1z
k

Ak+1

+
αk+1

Ak+1

(
zk+1 − zk

)
= x̃k+1+

αk+1

Ak+1

(
zk+1 − zk

)
.

Together with the previous inequality and Ak+1 = 2Lα2
k+1, it implies

αk+1〈∇f(x̃k+1), zk − x∗〉 ≤ Ak+1〈∇f(x̃k+1), x̃k+1 − xk+1〉

−
A2
k+1

2α2
k+1

‖x̃k+1 − xk+1‖2
2 +

1

2
‖zk − x∗‖2

2

−1

2
‖zk+1 − x∗‖2

2 + αk+1

(
h(x∗)− h(zk+1)

)
+ δ̂
√
k + 2R̃2

k+1

≤ Ak+1

(
〈∇f(x̃k+1), x̃k+1 − xk+1〉 − 2L

2
‖x̃k+1 − xk+1‖2

2

)
+

1

2
‖zk − x∗‖2

2

−1

2
‖zk+1 − x∗‖2

2 + αk+1

(
h(x∗)− h(zk+1)

)
+ δ̂
√
k + 2R̃2

k+1

≤ Ak+1(f(x̃k+1)− f(xk+1)) +
1

2
‖zk − x∗‖2

2 −
1

2
‖zk+1 − x∗‖2

2

+αk+1

(
h(x∗)− h(zk+1)

)
+ δ̂
√
k + 2R̃2

k+1 (110)

From the convexity of f we get

〈∇f(x̃k+1), xk − x̃k+1〉 ≤ f(xk)− f(x̃k+1). (111)

By definition of x̃k+1 we have

αk+1

(
x̃k+1 − zk

)
= Ak

(
xk − x̃k+1

)
. (112)

Putting all together, we get

αk+1〈∇f(x̃k+1), x̃k+1 − x∗〉 = αk+1〈∇f(x̃k+1), x̃k+1 − zk〉+ αk+1〈∇f(x̃k+1), zk − x∗〉
(112)
= Ak〈∇f(x̃k+1), xk − x̃k+1〉+ αk+1〈∇f(x̃k+1), zk − x∗〉

(110),(111)
≤ Ak

(
f(xk)− f(x̃k+1)

)
+ Ak+1

(
f(x̃k+1)− f(xk+1)

)
+

1

2
‖zk − x∗‖2

2 −
1

2
‖zk+1 − x∗‖2

2

+αk+1

(
h(x∗)− h(zk+1)

)
+ δ̂
√
k + 2R̃2

k+1.

Rearranging the terms and using Ak+1 = Ak + αk+1, we obtain

Ak+1f(xk+1)− Akf(xk) ≤ αk+1

(
f(x̃k+1) + 〈∇f(x̃k+1), x∗ − x̃k+1〉

)
+

1

2
‖zk − x∗‖2

2

−1

2
‖zk+1 − x∗‖2

2 + αk+1

(
h(x∗)− h(zk+1)

)
+ δ̂
√
k + 2R̃2

k+1,

and after summing these inequalities for k = 0, . . . , N −1 and applying convexity of f , i.e. inequality
〈∇f(x̃k+1), x∗ − x̃k+1〉 ≤ f(x∗)− f(x̃k+1), we get

ANf(xN) ≤ 1

2
R2

0 −
1

2
R2
N + ANf(x∗) + ANh(x∗)−

N−1∑
k=0

αk+1h(zk+1) + δ̂

N−1∑
k=0

√
k + 2R̃2

k+1,
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where we used thatA0 = 0. Finally, convexity of h and definition of xk+1, i.e. xk+1 = (Akx
k+αk+1z

k+1)/Ak+1,
implies

ANh(xN) ≤ AN−1h(xN−1) + αNh(zN).

Applying this inequality for AN−1h(xN−1), AN−2h(xN−2), . . . , A1h(x1) in a sequence we get

ANh(xN) ≤ A0h(x0) +
N−1∑
k=0

αk+1h(zk+1) =
N−1∑
k=0

αk+1h(zk+1),

which implies

AN
(
F (xN)− F (x∗)

)
≤ 1

2
R2

0 −
1

2
R2
N + δ̂

N−1∑
k=0

√
k + 2R̃2

k+1,

that finishes the proof.

Below we state our main result of this section.

Theorem 9. Let f(x) be convex and L-smooth, h(x) be convex and Lh-smooth and δ ≤ 1
4
. Assume

that for a given number of iterations N ≥ 1 the number δ̂
def
= 2

√
(Lh+2L)δ

(1−
√

2δ)2L
satisfies δ̂ ≤ C

(N+1)3/2

with some positive constant C ∈ (0, 1/4). Then after N iteration of Algorithm 8 we have

F (xN)− F (x∗) ≤ 3R2
0

2AN
. (113)

Proof. Lemma 11 implies that

Al
(
F (xl)− F (x∗)

)
≤ 1

2
R2

0 −
1

2
R2
l + δ̂

l−1∑
k=0

√
k + 2R̃2

k+1 (114)

for l = 1, 2, . . . , N . Since F (xl) ≥ F (x∗) for each l and δ̂ ≤ C

(N+1)3/2 we get the recurrence

R2
l ≤ R2

0 +
2C

(N + 1)3/2

l−1∑
k=0

(k + 2)
1/2R̃2

k+1, ∀l = 1, . . . , N.

Note that the r.h.s. of the previous inequality is non-decreasing function of l. Let us define l̂ as the
largest integer such that l̂ ≤ l and R̃l̂ = Rl̂. Then Rl̂ = R̃l̂ = R̃l̂+1 = . . . = R̃l and, as a
consequence,

R̃2
l ≤ R̃2

0 +
2C

(N + 1)3/2

l−1∑
k=0

(k + 2)
1/2R̃2

k+1, ∀l = 1, . . . , N. (115)

Using Lemma 15 we get that R̃l ≤ 2R2
0 for all l = 1, . . . , N . We plug this inequality together with

δ ≤ C

(N+1)3/2 ≤ 1

4(N+1)3/2 and R2
N ≥ 0 in (114) and get

AN(F (xN)− F (x∗)) ≤ 1

2
R2

0 +
4R2

0

4(N + 1)3/2

N−1∑
k=0

(k + 2)
1/2

≤ 3

2
R2

0,

which concludes the proof.
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Corollary 6. Under assumptions of Theorem 9 we get that for an arbitrary ε > 0 after

N = O

(√
LR2

0

ε

)
(116)

iterations of Algorithm 8 we have F (xN)− F (x∗) ≤ ε. Moreover, we get that δ should satisfy

δ = O

(
L

(Lh + L)N3

)
. (117)

Proof. The first part of the corollary follows from (113) and Lemma 12. Relation (117) follows from the

definition of δ̂ and δ̂ ≤ C

(N+1)3/2 . Indeed, since δ̂
def
= 2
√

(Lh+2L)δ

(1−
√

2δ)2L
and C ≤ 1

4
we get that

δ ≤ C2(1−
√

2δ)2L

4(Lh + 2L)(N + 1)3
≤ L

64(Lh + 2L)N3
≤ 1

64

L

(Lh + L)N3
.

That is, if the auxiliary problem gk+1(z) → minz∈Rn is solved with good enough accuracy, then
STM_IPS requires the same number of iterations as STM to achieve F (xN)−minx∈Rn F (x) ≤ ε.

D Missing Proofs from Section 4

D.1 Proof of Lemma 1

We have
ψ(y∗) =

〈
y∗, Ax(A>y∗)

〉
− f

(
x(A>y∗)

)
.

From Demyanov–Danskin theorem [64] we have that∇ψ(y) = Ax(A>y) which implies

0 = ∇ψ(y∗) = Ax(A>y∗).

Using this we get

−f
(
x(A>y∗)

)
= ψ(y∗) = max

Ax=0,x∈Q

{
〈y∗, Ax〉︸ ︷︷ ︸

=0

−f(x)
}

= −f(x∗).

Finally,

ψ(y∗) = −f(x∗) = max
Ax=0,x∈Q

{〈y∗, Ax〉 − f(x)} ≥ 〈y∗, Ax̂〉 − f(x̂).

D.2 Proof of Theorem 1

By definition of F

F (xN)−min
x∈Q

F (x) = f(xN) +
R2
y

ε
‖AxN‖2

2 −min
x∈Q

{
f(x) +

R2
y

ε
‖Ax‖2

2

}
≥ f(xN) +

R2
y

ε
‖AxN‖2

2 − min
Ax=0,x∈Q

{
f(x) +

R2
y

ε
‖Ax‖2

2

}
= f(xN)− min

Ax=0,x∈Q
f(x) +

R2
y

ε
‖AxN‖2

2,
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which implies

f(xN)− f(x∗) +
R2
y

ε
‖AxN‖2

2

(22)
≤ ε, (118)

where x∗ is an arbitrary solution of (15). Taking inequality ‖AxN‖2
2 ≥ 0 into account we get the first

part of (23). From Cauchy-Schwarz inequality we obtain

−Ry‖AxN‖2 ≤ ‖y∗‖2 · ‖AxN‖2 ≤ 〈y∗, AxN〉
(20)
≤ f(xN)− f(x∗).

Together with (118) it gives us quadratic inequality on Ry‖AxN‖2:

−Ry‖AxN‖2 +
R2
y

ε
‖AxN‖2

2 ≤ ε.

Therefore, Ry‖AxN‖2 should be less then the greatest root of the corresponding quadratic equation,

i.e. Ry‖AxN‖2 ≤ 1+
√

5
2
ε < 2ε.

E Missing Proofs from Section 5.1

E.1 Proof of Lemma 2

From the convexity of ψ we have

ψ(x)− ψ(y) ≤ 〈∇ψ(x), x− y〉 =
〈
E
[
∇̃Ψ(x, ξk)

]
, x− y

〉
+

〈
∇ψ(x)− E

[
∇̃Ψ(x, ξk)

]
, x− y

〉
≤

〈
E
[
∇̃Ψ(x, ξk)

]
, x− y

〉
+
∥∥∥∇ψ(x)− E

[
∇̃Ψ(x, ξk)

]∥∥∥
2
· ‖x− y‖2

(38)
≤

〈
E
[
∇̃Ψ(x, ξk)

]
, x− y

〉
+ δ‖x− y‖2,

which proves the inequality (40). Applying L-smoothness of ψ(x) we get

ψ(y) ≤ ψ(x) + 〈∇ψ(x), y − x〉+
L

2
‖y − x‖2

2

= ψ(x) +
〈
E
[
∇̃Ψ(x, ξk)

]
, y − x

〉
+
〈
∇ψ(x)− E

[
∇̃Ψ(x, ξk)

]
, y − x

〉
+

L

2
‖y − x‖2

2.

Due to Fenchel-Young inequality 〈a, b〉 ≤ 1
2λ
‖a‖2

2 + λ
2
‖b‖2

2, a, b ∈ Rn, λ > 0,〈
∇ψ(x)− E

[
∇̃Ψ(x, ξk)

]
, y − x

〉
≤ 1

2L

∥∥∥∇ψ(x)− E
[
∇̃Ψ(x, ξk)

]∥∥∥2

2
+ L

2
‖y − x‖2

2

(38)
≤ δ2

2L
+ L

2
‖y − x‖2

2.

Combining these two inequalities we get (41).
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E.2 Proof of Lemma 3

The proof of this lemma follows a similar way as in the proof of Theorem 1 from [17]. We can rewrite
the update rule for zk in the equivalent way:

zk+1 = argmin
z∈Rn

{
αk+1〈∇̃Ψ(ỹk+1, ξk+1), z − ỹk+1〉+

1

2
‖z − zk‖2

2

}
.

From the optimality condition we have that for all z ∈ Rn

〈zk+1 − zk + αk+1∇̃Ψ(ỹk+1, ξk+1), z − zk+1〉 ≥ 0. (119)

Using this we get

αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − z〉
= αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − zk+1〉+ αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk+1 − z〉

(119)
≤ αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − zk+1〉+ 〈zk+1 − zk, z − zk+1〉.

One can check via direct calculations that

〈a, b〉 ≤ 1

2
‖a+ b‖2

2 −
1

2
‖a‖2

2 −
1

2
‖b‖2

2, ∀ a, b ∈ Rn.

Combining previous two inequalities we obtain

αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − z〉 ≤ αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − zk+1〉 − 1

2
‖zk − zk+1‖2

2

+
1

2
‖zk − z‖2

2 −
1

2
‖zk+1 − z‖2

2.

By definition of yk+1 and ỹk+1

yk+1 =
Aky

k + αk+1z
k+1

Ak+1

=
Aky

k + αk+1z
k

Ak+1

+
αk+1

Ak+1

(
zk+1 − zk

)
= ỹk+1+

αk+1

Ak+1

(
zk+1 − zk

)
.

Together with previous inequality, it implies

αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − z〉 ≤ Ak+1〈∇̃Ψ(ỹk+1, ξk+1), ỹk+1 − yk+1〉

−
A2
k+1

2α2
k+1

‖ỹk+1 − yk+1‖2
2

+
1

2
‖zk − z‖2

2 −
1

2
‖zk+1 − z‖2

2

≤ Ak+1

(
〈∇̃Ψ(ỹk+1, ξk+1), ỹk+1 − yk+1〉 − 2L̃

2
‖ỹk+1 − yk+1‖2

2

)
+

1

2
‖zk − z‖2

2 −
1

2
‖zk+1 − z‖2

2

= Ak+1

(〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹk+1 − yk+1

〉
− 2L̃

2
‖ỹk+1 − yk+1‖2

2

)
+Ak+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹk+1 − yk+1

〉
+

1

2
‖zk − z‖2

2 −
1

2
‖zk+1 − z‖2

2.
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From Fenchel-Young inequality 〈a, b〉 ≤ 1
2λ
‖a‖2

2 + λ
2
‖b‖2

2, a, b ∈ Rn, λ > 0, we have〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹk+1 − yk+1

〉
≤ 1

2L̃

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2
+ L̃

2
‖ỹk+1 − yk+1‖2

2.

Using this, we get

αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − z〉

≤ Ak+1

(〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹk+1 − yk+1

〉
− L̃

2
‖ỹk+1 − yk+1‖2

2

)
+
Ak+1

2L̃

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2

+
1

2
‖zk − z‖2

2 −
1

2
‖zk+1 − z‖2

2

(41)
≤ Ak+1

(
ψ(ỹk+1)− ψ(yk+1) +

δ2

L̃

)
+

1

2
‖zk − z‖2

2 −
1

2
‖zk+1 − z‖2

2

+
Ak+1

2L̃

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2
. (120)

With Lemma 2 in hand, we have

〈∇̃Ψ(ỹk+1, ξk+1), yk − ỹk+1〉 =
〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
+
〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
(40)
≤ ψ(yk)− ψ(ỹk+1) + δ‖yk − ỹk+1‖2

+
〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
. (121)

By definition of ỹk+1 we have

αk+1

(
ỹk+1 − zk

)
= Ak

(
yk − ỹk+1

)
. (122)

Putting all together, we get

αk+1〈∇̃Ψ(ỹk+1, ξk+1), ỹk+1 − z〉
= αk+1〈∇̃Ψ(ỹk+1, ξk+1), ỹk+1 − zk〉+ αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − z〉

(122)
= Ak〈∇̃Ψ(ỹk+1, ξk+1), yk − ỹk+1〉+ αk+1〈∇̃Ψ(ỹk+1, ξk+1), zk − z〉

(120),(121)
≤ Ak

(
ψ(yk)− ψ(ỹk+1) + δ‖yk − ỹk+1‖2

)
+Ak

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
+Ak+1

(
ψ(ỹk+1)− ψ(yk+1) + δ2

L̃

)
+ 1

2
‖zk − z‖2

2 − 1
2
‖zk+1 − z‖2

2

+Ak+1

2L̃

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2
.
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Rearranging the terms and using Ak+1 = Ak + αk+1, we obtain

Ak+1ψ(yk+1)− Akψ(yk) ≤ αk+1

(
ψ(ỹk+1) + 〈∇̃Ψ(ỹk+1, ξk+1), z − ỹk+1〉

)
+

1

2
‖zk − z‖2

2

−1

2
‖zk+1 − z‖2

2 + Akδ‖yk − ỹk+1‖2 +
Ak+1δ

2

L̃

+
Ak+1

2L̃

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2

+Ak

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
,

and after summing these inequalities for k = 0, . . . , N − 1 we get

ANψ(yN) ≤ 1

2
‖z − z0‖2

2 −
1

2
‖z − zN‖2

2

+
N−1∑
k=0

αk+1

(
ψ(ỹk+1) + 〈∇̃Ψ(ỹk+1, ξk+1), z − ỹk+1〉

)
+

N−1∑
k=0

Ak

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
+

N−1∑
k=0

Ak+1

2L̃

∥∥∥Ek [∇̃Ψ(ỹk+1, ξk+1)
]
− ∇̃Ψ(ỹk+1, ξk+1)

∥∥∥2

2

+δ
N−1∑
k=0

Ak‖yk − ỹk+1‖2 + δ2

N−1∑
k=0

Ak+1

L̃
,

where we use that A0 = 0.

E.3 Proof of Lemma 4

We start with applying Cauchy-Schwarz inequality to the second and the third terms in the right-hand
side of (43):

1

2
R2
l ≤ A+ hδ

l−1∑
k=0

αk+1R̃k + ud

l−1∑
k=0

αk+1‖ηk‖2R̃k + c

l−1∑
k=0

α2
k+1‖ηk‖2

2,

≤ A+
h2δ2

2

l−1∑
k=0

α2
k+1 +

ud+ 1

2

l−1∑
k=0

R̃2
k +

(
c+

ud

2

) l−1∑
k=0

α̃2
k+1‖ηk‖2

2. (123)

The idea of the proof is as following: estimate R2
N roughly, then apply Lemma 8 in order to estimate

second term in the last row of (43) and after that use the obtained recurrence to estimate right-hand
side of (43).
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Using Lemma 9 we get that with probability at least 1− β
N

‖ηk‖2 ≤
√

2

(
1 +

√
3 ln

N

β

)
σk ≤

√
2

(
1 +

√
3 ln

N

β

) √
Cε√

α̃k+1 ln
(
N
β

)

=

 1√
α̃k+1 ln

(
N
β

) +

√
3

α̃k+1

√2Cε ≤ 2

√
3

α̃k+1

√
2Cε, (124)

where in the last inequality we use ln N
β
≥ 3. Using union bound and αk+1 ≤ α̃k+1 = D(k + 2) we

get that with probability ≥ 1− β the inequality

1

2
R2
l ≤ A+

h2δ2D2

2

l−1∑
k=0

(k + 2)2 +
ud+ 1

2

l−1∑
k=0

R̃2
k + 24Cε

(
c+

ud

2

) l−1∑
k=0

α̃k+1

≤ A+
h2δ2D2

2
l(l + 1)2 +

ud+ 1

2

l−1∑
k=0

R̃2
k + 24CDε

(
c+

ud

2

) l−1∑
k=0

(k + 2)

≤ A+
h2δ2D2

2
l(l + 1)2 +

ud+ 1

2

l−1∑
k=0

R̃2
k + 12CDε

(
c+

ud

2

)
l(l + 3)

holds for all l = 1, . . . , N simultaneously. Note that the last row in the previous inequality is non-
decreasing function of l. If we define l̂ as the largest integer such that l̂ ≤ l and R̃l̂ = Rl̂, we will get

that Rl̂ = R̃l̂ = R̃l̂+1 = . . . = R̃l and, as a consequence, with probability ≥ 1− β

1

2
R̃2
l ≤ A+

h2δ2D2

2
l̂(l̂ + 1)2 +

ud+ 1

2

l̂−1∑
k=0

R̃2
k + 12CDε

(
c+

ud

2

)
l̂(l̂ + 3)

≤ A+
h2δ2D2

2
l(l + 1)2 +

ud+ 1

2

l−1∑
k=0

R̃2
k + 12CDε

(
c+

ud

2

)
l(l + 3), ∀l = 1, . . . , N.

Therefore, we have that with probability ≥ 1− β

R̃2
l ≤ 2A+ (ud+ 1)

l−1∑
k=0

R̃2
k + 12CDε (2c+ ud) l(l + 3) + h2δ2D2l(l + 1)2

≤ 2A (2 + ud)︸ ︷︷ ︸
≤2(1+ud)

+ (1 + ud+ (1 + ud)2)︸ ︷︷ ︸
≤2(1+ud)2

·
l−2∑
k=0

R̃2
k + 12CDε(2c+ ud) (l(l + 3) + (1 + ud)(l − 1)(l + 2))︸ ︷︷ ︸

≤2(1+ud)l(l+3)

+h2δ2D2 (l(l + 1)2 + (1 + ud)(l − 1)l2)︸ ︷︷ ︸
≤2(1+ud)l(l+1)2

≤ 2(1 + ud)

(
2A+ (1 + ud)

l−2∑
k=0

R̃2
k + 12CDε (2c+ ud) l(l + 3) + h2δ2D2l(l + 1)2

)
,
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for all l = 1, . . . , N . Unrolling the recurrence we get that with probability ≥ 1− β

R̃2
l ≤

(
2A+ (1 + ud)R̃2

0 + 12CDε (2c+ ud) l(l + 3) + h2δ2D2l(l + 1)2
)

(2(1 + ud))l,

for all l = 1, . . . , N . We emphasize that it is very rough estimate, but we show next that such a bound
does not spoil the final result too much. It implies that with probability ≥ 1− β
l−1∑
k=0

R̃2
k ≤ l

(
2A+ (1 + ud)R̃2

0 + 12CDε (2c+ ud) l(l + 3) + h2δ2D2l(l + 1)2
)

(2(1 + ud))l,

(125)
for all l = 1, . . . , N . Next we apply delicate result from [34] which is presented in Section B as
Lemma 8. We consider random variables ξk = α̃k+1〈ηk, ak〉. Note that E

[
ξk | ξ0, . . . , ξk−1

]
=

α̃k+1

〈
E
[
ηk | η0, . . . , ηk−1

]
, ak
〉

= 0 and

E

[
exp

(
(ξk)2

σ2
kα̃

2
k+1d

2R̃2
k

)
| ξ0, . . . , ξk−1

]
≤ E

[
exp

(
α̃2
k+1‖ηk‖2

2d
2R̃2

k

σ2
kα̃

2
k+1d

2R̃2
k

)
| η0, . . . , ηk−1

]

= E
[
exp

(
‖ηk‖2

2

σ2
k

)
| η0, . . . , ηk−1

]
≤ exp(1)

due to Cauchy-Schwarz inequality and assumptions of the lemma. If we denote σ̂2
k = σ2

kα̃
2
k+1d

2R̃2
k

and apply Lemma 8 with

B = 2d2CDHR2
0

(
2A+ (1 + ud)R2

0 + 48CDHR2
0 (2c+ ud) + h2G2R2

0D
2
)

(2(1 + ud))N

and b = σ̂2
0 , we get that for all l = 1, . . . , N with probability ≥ 1− β

N

either
l−1∑
k=0

σ̂2
k ≥ B or

∣∣∣∣∣
l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))
with some constant C1 > 0 which does not depend on B or b. Using union bound we obtain that with
probability ≥ 1− β

either
l−1∑
k=0

σ̂2
k ≥ B or

∣∣∣∣∣
l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))
and it holds for all l = 1, . . . , N simultaneously. Note that with probability at least 1− β
l−1∑
k=0

σ̂2
k = d2

l−1∑
k=0

σ2
kα̃

2
k+1R̃

2
k ≤ d2

l−1∑
k=0

Cε

ln N
β

α̃k+1R̃
2
k

≤ d2CDHR2
0

N2 ln N
β

l−1∑
k=0

(k + 2)R̃2
k ≤

d2CDHR2
0

3N
· N + 1

N

l−1∑
k=0

R̃2
k

(125)
≤ d2CDHR2

0

N
l
(

2A+ (1 + ud)R̃2
0 + 12CDε (2c+ ud) l(l + 3) + h2δ2D2l(l + 1)2

)
· (2(1 + ud))l

≤ d2CDHR2
0

(
2A+ (1 + ud)R2

0 + 48CDHR2
0 (2c+ ud) + h2G2R2

0D
2
)

(2(1 + ud))N

=
B

2
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for all l = 1, . . . , N simultaneously. Using union bound again we get that with probability ≥ 1 − 2β
the inequality ∣∣∣∣∣

l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))
(126)

holds for all l = 1, . . . , N simultaneously.

Note that we also proved that (124) is in the same event together with (126) and holds with probability
≥ 1− 2β. Putting all together in (43), we get that with probability at least 1− 2β the inequality

1

2
R̃2
l

(43)
≤ A+ hδ

l−1∑
k=0

αk+1R̃k + u

l−1∑
k=0

αk+1〈ηk, ak〉+ c

l−1∑
k=0

α2
k+1‖ηk‖2

2

(126)
≤ A+ hδ

l−1∑
k=0

αk+1R̃k + uC1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))
+ 24cCε

l−1∑
k=0

α̃k+1

holds for all l = 1, . . . , N simultaneously. For brevity, we introduce new notation(neglecting constant
factor):

g(N) =
ln
(
N
β

)
+ ln ln

(
B
b

)
ln
(
N
β

) ≈ 1.

Using our assumption σ2
k ≤ Cε

α̃k+1 ln(Nβ )
and definition σ̂2

k = σ2
kα̃

2
k+1d

2R̃2
k we obtain that with proba-

bility at least 1− 2β the inequality

1

2
R̃2
l ≤ A+ hδ

l−1∑
k=0

αk+1R̃k + u
l−1∑
k=0

αk+1〈ηk, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk‖2

2

≤ A+
hGDR0

(N + 1)2

l−1∑
k=0

(k + 2)R̃k + udC1

√
Cεg(N)

√√√√ l−1∑
k=0

α̃k+1R̃2
k + 24cCε

l−1∑
k=0

α̃k+1

≤ A+
hGDR0

(N + 1)2

l−1∑
k=0

(k + 2)R̃k + udC1

√
CDεg(N)

√√√√ l−1∑
k=0

(k + 2)R̃2
k

+ 24cCDε
l−1∑
k=0

(k + 2)

≤ A+ 24cCD
HR2

0

N2

l(l + 1)

2

+
hGDR0

(N + 1)2

l−1∑
k=0

(k + 2)R̃k + udC1

√
CD

HR2
0

N2
g(N)

√√√√ l−1∑
k=0

(k + 2)R̃2
k

≤
(
A

R2
0

+ 24cCDH

)
R2

0 +
hGDR0

(N + 1)2

l−1∑
k=0

(k + 2)R̃k

+
udC1R0

N

√
CDHg(N)

√√√√ l−1∑
k=0

(k + 2)R̃2
k (127)
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holds for all l = 1, . . . , N simultaneously. Next we apply Lemma 14 with A = A
R2

0
+ 24cCDH ,

B = udC1

√
CDHg(N), D = hGD, rk = R̃k and get that with probability at least 1 − 2β

inequality

R̃l ≤ JR0

holds for all l = 1, . . . , N simultaneously with

J = max

{
1, udC1

√
CDHg(N) + hGD +

√(
udC1

√
CDHg(N) + hGD

)2

+
2A

R2
0

+ 48cCDH

}
.

It implies that with probability at least 1− 2β the inequality

A+ hδ

l−1∑
k=0

αk+1R̃k + u
l−1∑
k=0

αk+1〈ηk, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk‖2

2

≤
(
A
R2

0
+ 24cCDH

)
R2

0 +
hGDJR2

0

(N+1)2

l−1∑
k=0

(k + 2) +
udC1R2

0

N

√
CDHg(N)

√
l−1∑
k=0

(k + 2)J

≤ A+

(
24cCDH + hGDJ + udC1

√
CDHJg(N) 1

N

√
l(l+1)

2

)
R2

0

≤ A+
(

24cCDH + hGDJ + udC1

√
CDHJg(N)

)
R2

0

holds for all l = 1, . . . , N simultaneously.

E.4 Proof of Theorem 2

Lemma 3 states that

ANψ(yN) ≤ 1

2
‖ỹ − z0‖2

2 −
1

2
‖ỹ − zN‖2

2 +
N−1∑
k=0

αk+1

(
ψ(ỹk+1) + 〈∇̃Ψ(ỹk+1, ξk+1), ỹ − ỹk+1〉

)
+

N−1∑
k=0

Ak

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
+

N−1∑
k=0

Ak+1

2L̃

∥∥∥Ek [∇̃Ψ(ỹk+1, ξk+1)
]
− ∇̃Ψ(ỹk+1, ξk+1)

∥∥∥2

2

+δ
N−1∑
k=0

Ak‖yk − ỹk+1‖2 + δ2

N−1∑
k=0

Ak+1

L̃
, (128)

for arbitrary ỹ. By definition of ỹk+1 we have

αk+1

(
ỹk+1 − zk

)
= Ak

(
yk − ỹk+1

)
. (129)
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Using this, we add and subtract
∑N−1

k=0 αk+1

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ∗ − ỹk+1

〉
in (128), and ob-

tain the following inequality by choosing ỹ = ỹ∗ — the minimizer of ψ(y):

ANψ(yN) ≤ 1

2
‖ỹ∗ − z0‖2

2 −
1

2
‖ỹ∗ − zN‖2

2

+
N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ∗ − ỹk+1

〉)
+

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ak
〉

+
N−1∑
k=0

α2
k+1

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2

+δ
N−1∑
k=0

αk+1‖ỹk+1 − zk‖2 + δ2

N−1∑
k=0

Ak+1

L̃
, (130)

where ak = ỹ∗ − zk. From (40) we have

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ∗ − ỹk+1

〉)
(40)
≤

N−1∑
k=0

αk+1

(
ψ(ỹk+1) + ψ(ỹ∗)− ψ(ỹk+1) + δ‖ỹk+1 − ỹ∗‖2

)
=

N−1∑
k=0

αk+1

(
ψ(ỹ∗) + δ‖ỹk+1 − ỹ∗‖2

)
= ANψ(ỹ∗) + δ

N−1∑
k=0

αk+1‖ỹk+1 − ỹ∗‖2

≤ ANψ(yN) + δ
N−1∑
k=0

αk+1‖ỹk+1 − ỹ∗‖2

From this and (130) we get

1

2
‖ỹ∗ − zN‖2

2

(130)
≤ 1

2
‖ỹ∗ − z0‖2

2 + δ2

N−1∑
k=0

Ak+1

L̃
+ δ

N−1∑
k=0

αk+1

(
‖ỹk+1 − zk‖2 + ‖ỹk+1 − ỹ∗‖2

)
+

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ak
〉

+
N−1∑
k=0

α2
k+1

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2
. (131)

Next, we introduce the sequences {Rk}k≥0 and {R̃k}k≥0 as

Rk = ‖zk − ỹ∗‖2 and R̃k = max
{
R̃k−1, Rk

}
, R̃0 = R0

Since in Algorithm 2 we choose z0 = 0, then R0 = Ry. One can obtain by induction that ∀k ≥ 0

we have ỹk+1, yk, zk ∈ BR̃k
(ỹ∗), where BR̃k

(ỹ∗) is Euclidean ball with radius R̃k at centre ỹ∗.
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Indeed, since from lines 2 and 5 of Algorithm 2 yk+1 is a convex combination of zk+1 ∈ BRk+1
(ỹ∗) ⊆

BR̃k+1
(ỹ∗) and yk ∈ BR̃k

(ỹ∗) ⊆ BR̃k+1
(ỹ∗), where we use the fact that a ball is a convex set, we get

yk+1 ∈ BR̃k+1
(ỹ∗). Analogously, since from lines 2 and 3 of Algorithm 2 ỹk+1 is a convex combination

of yk and zk we have ỹk+1 ∈ BR̃k
(ỹ∗). It implies that

‖ỹk+1 − zk‖2 + ‖ỹk+1 − ỹ∗‖2 ≤ 2R̃k + R̃k = 3R̃k.

Using new notation we can rewrite (131) as

1

2
R2
N ≤ 1

2
R2

0 + δ2

N−1∑
k=0

Ak+1

L̃
+ 3δ

N−1∑
k=0

αk+1R̃k

+
N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ak
〉

+
N−1∑
k=0

α2
k+1

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2
, (132)

where ‖ak‖2 = ‖ỹ∗ − zk‖2 ≤ R̃k. Note that (132) holds for all N ≥ 1.

Let us denote ηk = ∇̃Ψ(ỹk+1, ξk+1)−Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
. Theorem 2.1 from [37] (see Lemma 9

in the Section B) says that

P

‖ηk‖2 ≥
(√

2 +
√

2γ
)√ σ2

ψ

rk+1

| η0, . . . , ηk−1

 ≤ exp

(
−γ

2

3

)
.

Using this and Lemma 2 from [34] (see Lemma 7 in the Section B) we get that

E
[
exp

(
‖ηk‖2

2

σ2
k

)
| η0, . . . , ηk−1

]
≤ exp(1),

where σ2
k ≤

C̃σ2
ψ

rk+1
≤ Cε

α̃k+1 ln(N
δ

)
, C̃ and C = C̃ · Ĉ are some positive constants. From (196) we have

that αk+1 ≤ α̃k+1 = k+2
2L̃

. Moreover, ak depends only on η0, . . . , ηk−1. Putting all together in (132)
and changing the indices we get that for all l = 1, . . . , N

1

2
R2
l ≤

1

2
R2

0 + δ2

N−1∑
k=0

Ak+1

L̃
+ 3δ

l−1∑
k=0

αk+1R̃k +
l−1∑
k=0

αk+1〈ηk, ak〉+
l−1∑
k=0

α2
k+1‖ηk‖2

2.

Next we apply Lemma 4 with the constants A = 1
2
R2

0 + δ2
N−1∑
k=0

Ak+1

L̃
, h = 3, u = 1, c = 1, D =

1
2L̃
, d = 1, ε ≤ HL̃R2

0

N2 and δ ≤ GL̃R0

(N+1)3 , and get that with probability at least 1− 2β the inequalities

R̃l ≤ JR0 (133)

and

l−1∑
k=0

αk+1〈ηk, ak〉+
l−1∑
k=0

α2
k+1‖ηk‖2

2 ≤

(
12CH +

3GJ

2
+ C1

√
CHJg(N)

2

)
R2

0 (134)
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hold for all l = 1, . . . , N simultaneously, whereC1 is some positive constant, g(N) =
ln(Nβ )+ln ln(Bb )

ln(Nβ )
,

B = CHR2
0

(
2A+ 2R2

0 + 72CHR2
0 +

9G2L̃R2
0

2

)
4N , b = σ2

0α̃
2
1R

2
0 and

J = max

1, C1

√
CHg(N)

2
+

3G

2
+

√√√√(C1

√
CHg(N)

2
+

3G

2

)2

+
2A

R2
0

+ 24CH

 .

To estimate the duality gap we need again refer to (128). Since ỹ is chosen arbitrary we can take the
minimum in ỹ over the set B2Ry(0) = {ỹ : ‖ỹ‖2 ≤ 2Ry}:

ANψ(yN) ≤ min
ỹ∈B2Ry (0)

{
1

2
‖ỹ − z0‖2

2 +
N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
∇̃Ψ(ỹk+1, ξk+1), ỹ − ỹk+1

〉)}

+
N−1∑
k=0

Ak

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
+

N−1∑
k=0

Ak+1

2L̃

∥∥∥Ek [∇̃Ψ(ỹk+1, ξk+1)
]
− ∇̃Ψ(ỹk+1, ξk+1)

∥∥∥2

2

+δ
N−1∑
k=0

Ak‖yk − ỹk+1‖2 + δ2

N−1∑
k=0

Ak+1

L̃

≤ 2R2
y + min

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
∇̃Ψ(ỹk+1, ξk+1), ỹ − ỹk+1

〉)
+

N−1∑
k=0

Ak

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, yk − ỹk+1

〉
+

N−1∑
k=0

Ak+1

2L̃

∥∥∥Ek [∇̃Ψ(ỹk+1, ξk+1)
]
− ∇̃Ψ(ỹk+1, ξk+1)

∥∥∥2

2

+δ
N−1∑
k=0

Ak‖yk − ỹk+1‖2 + δ2

N−1∑
k=0

Ak+1

L̃
, (135)

where we also used 1
2
‖ỹ − zN‖2

2 ≥ 0 and z0 = 0. By adding and subtracting∑N−1
k=0 αk+1

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ − ỹk+1

〉
under the minimum in (135) we obtain

min
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
∇̃Ψ(ỹk+1, ξk+1), ỹ − ỹk+1

〉)
≤ min

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ − ỹk+1

〉)
+ max

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ
〉

+
N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
,−ỹk+1

〉
.
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Since −ỹ∗ ∈ B2Ry(0) we can bound the last term in the previous inequality as follows

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
,−ỹk+1

〉
=

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ∗ − ỹk+1

〉
+

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
,−ỹ∗

〉
≤

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ∗ − ỹk+1

〉
+ max

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ
〉
.

Putting all together in (135) and using (129) and line 2 from Algorithm 2 we get

ANψ(yN) ≤ 2R2
y + min

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ − ỹk+1

〉)
+2 max

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ
〉

+
N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ak
〉

+
N−1∑
k=0

α2
k+1

∥∥∥∇̃Ψ(ỹk+1, ξk+1)− Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]∥∥∥2

2

+δ
N−1∑
k=0

αk+1‖ỹk+1 − zk‖2 + δ2

N−1∑
k=0

Ak+1

L̃
, (136)

where ak = ỹ∗− zk. From (133) and (134) we have that with probability at least 1− 2β the following
inequality holds:

ANψ(yN) ≤ min
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ − ỹk+1

〉)
+2 max

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ
〉

+2R2
y +

(
12CH +

5GJ

2
+

G2

2(N + 1)
+ C1

√
CHJg(N)

2

)
R2

0, (137)

where we used that Ak+1 ≤ (k+2)2

2L̃
due to αk+1 ≤ k+2

2L̃
and

δ
N−1∑
k=0

αk+1‖ỹk+1 − zk‖2 ≤ 2δJR0

N−1∑
k=0

αk+1 ≤
2GL̃R2

0J

(N + 1)2

1

2L̃

N−1∑
k=0

(k + 2) ≤ GJR2
0,

δ2

N−1∑
k=0

Ak+1

L̃
≤ G2L̃2R2

0

(N + 1)4

N−1∑
k=0

(k + 2)2

2L̃2
≤ G2R2

0

2(N + 1)
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By the definition of the norm we get

max
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ
〉

≤ 2Ry

∥∥∥∥N−1∑
k=0

αk+1

(
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

)]∥∥∥∥
2

. (138)

Next we apply Lemma 9 to the right-hand side of the previous inequality and get

P

{∥∥∥∥∥
N−1∑
k=0

αk+1

(
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

])∥∥∥∥∥
2

≥
(√

2 +
√

2γ
)√√√√N−1∑

k=0

α2
k+1

σ2
ψ

rk+1

 ≤ exp

(
−γ

2

3

)
.

Since N2 ≤ HL̃R2
0

ε
and rk = Ω

(
max

{
1,

σ2
ψαk ln(N/β)

ε

})
one can choose such C2 > 0 that

σ2
ψ

rk
≤

C2ε

αk ln(Nβ )
≤ HL̃C2R2

0

αkN2 ln(Nβ )
. Moreover, let us choose γ such that exp

(
−γ2

3

)
= β =⇒ γ =

√
3 ln 1

β
.

From this we get that with probability at least 1− β∥∥∥∥∥
N−1∑
k=0

αk+1

(
∇̃Ψ(ỹk+1, ξk+1)− Ek

[
∇̃Ψ(ỹk+1, ξk+1)

])∥∥∥∥∥
2

≤
√

2

(
1 +

√
ln

1

β

)
Ry

√√√√ HL̃C2

ln
(
N
β

)
√√√√N−1∑

k=0

αk+1

N2

(196)
≤ 2
√

2Ry

√
HL̃C2

√√√√N−1∑
k=0

k + 2

2L̃N2
= 2Ry

√
HC2

√
N(N + 3)

N2
≤ 4Ry

√
HC2. (139)

In the above inequality we used the fact that Ry = R0. Putting all together and using union bound we
get that with probability at least 1− 3β

ANψ(yN)
(137)+(138)+(139)

≤ min
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
, ỹ − ỹk+1

〉)
+

(
8
√
HC2 + 2 + 12CH +

5GJ

2
+

G2

2(N + 1)3
+ C1

√
CHJg(N)

2

)
R2
y

≤ min
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(ỹk+1) +

〈
∇ψ(ỹk+1), ỹ − ỹk+1

〉)
+ max

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
−∇ψ(ỹk+1), ỹ − ỹk+1

〉
+

(
8
√
HC2 + 2 + 12CH +

5GJ

2
+

G2

2(N + 1)
+ C1

√
CHJg(N)

2

)
R2
y (140)
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First of all, we notice that in the same probabilistic event we have ‖ỹk+1 − ỹ∗‖2 ≤ R̃k

(133)
≤ JR0.

Therefore, in the same probabilistic event we get that ‖ỹk+1 − ỹ‖2 ≤ ‖ỹk+1 − ỹ∗‖2 + ‖ỹ∗ − ỹ‖2 ≤
(J + 4)Ry for all ỹ ∈ B2Ry(0), where we used R0 = Ry. It implies that in the same probabilistic
event we have

max
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
Ek
[
∇̃Ψ(ỹk+1, ξk+1)

]
−∇ψ(ỹk+1), ỹ − ỹk+1

〉
≤ max

ỹ∈B2Ry (0)

N−1∑
k=0

αk+1

∥∥∥Ek [∇̃Ψ(ỹk+1, ξk+1)
]
−∇ψ(ỹk+1)

∥∥∥
2
·
∥∥ỹ − ỹk+1

∥∥
2

(35)
≤

N−1∑
k=0

αk+1δ(J + 4)Ry ≤
N−1∑
k=0

k+2
2L̃

GL̃R0

(N+1)2 (J + 4)Ry ≤
G(J+4)R2

y

2
.

Secondly, using the same trick as in the proof of Theorem 1 from [10] we get that for arbitrary point y

ψ(y)− 〈∇ψ(y), y〉 (18)+(31)
= 〈y, Ax(A>y)〉 − f

(
x(A>y)

)
− 〈Ax(A>y), y〉 = −f(x(A>y)).

Using these relations in (140) we obtain that with probability at least 1− 3β

ANψ(yN) ≤ −
N−1∑
k=0

αk+1f(x(A>ỹk+1)) + min
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1〈∇ψ(ỹk+1), ỹ〉

+

(
8
√
HC2 + 2 + 12CH +

G(6J + 4)

2
+

G2

2(N + 1)
+

+C1

√
CHJg(N)

2

)
R2
y. (141)

To bound the first term in (141) we apply convexity of f and introduce the virtual primal iterate x̂N =

1
AN

N−1∑
k=0

αk+1x(A>ỹk+1):

−
N−1∑
k=0

αk+1f(x(A>ỹk+1)) = −AN
N−1∑
k=0

αk+1

AN
f(x(A>ỹk+1)) ≤ −ANf(x̂N).

In order to bound the second term in the right-hand side of the previous inequality we use the definition
of the norm we have

min
ỹ∈B2Ry (0)

N−1∑
k=0

αk+1〈∇ψ(ỹk+1), ỹ〉 = min
ỹ∈B2Ry (0)

〈
N−1∑
k=0

αk+1∇ψ(ỹk+1), ỹ

〉

= −2Ry

∥∥∥∥∥
N−1∑
k=0

αk+1∇ψ(ỹk+1)

∥∥∥∥∥
2

= −2RyAN‖Ax̂N‖2,

where we used equality (31). Putting all together we obtain that with probability at least 1− 3β

ψ(yN) + f(x̂N) + 2Ry‖Ax̂N‖2 ≤
R2
y

AN

(
8
√
HC2 + 2 + 12CH +

G(6J + 4)

2

+
G2

2(N + 1)
+ C1

√
CHJg(N)

2

)
. (142)
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Lemma 9 implies that for all γ > 0

P
{∥∥∥∑N−1

k=0 αk+1

(
x̃(A>ỹk+1, ξk+1)− E

[
x̃(A>ỹk+1, ξk+1) | ỹk+1

])∥∥∥
2

≥ (
√

2 +
√

2γ)

√
N−1∑
k=0

α2
k+1σ

2
x

rk+1

}
≤ exp

(
−γ2

3

)
.

Using this inequality with γ =
√

3 ln 1
β

and rk ≥
σ2
ψαk ln N

β

C2ε
we get that with probability at least 1− β

‖x̃N − x̂N‖2 =
1

AN

∥∥∥∥∥
N−1∑
k=0

αk+1

(
x̃(A>ỹk+1, ξk+1)− x(A>ỹk+1)

)∥∥∥∥∥
2

≤ 1

AN

∥∥∥∥∥
N−1∑
k=0

αk+1

(
x̃(A>ỹk+1, ξk+1)− E

[
x̃(A>ỹk+1, ξk+1) | ỹk+1

])∥∥∥∥∥
2

+
1

AN

∥∥∥∥∥
N−1∑
k=0

αk+1

(
E
[
x̃(A>ỹk+1, ξk+1) | ỹk+1

]
− x(A>ỹk+1)

)∥∥∥∥∥
2

≤
√

2

AN

(
1 +

√
3 ln

1

β

)√√√√N−1∑
k=0

α2
k+1σ

2
x

r2
k+1

+
1

AN

N−1∑
k=0

αk+1

∥∥E [x̃(A>ỹk+1, ξk+1) | ỹk+1
]
− x(A>ỹk+1)

∥∥
2

(33)
≤ 2

AN

√
6 ln

1

β

1√
ln N

β

√√√√N−1∑
k=0

C2αk+1ε

λmax(A>A)
+

1

AN

N−1∑
k=0

αk+1δy

≤ 2

AN

√
6C2

λmax(A>A)

√√√√N−1∑
k=0

(k + 2)HL̃R2
y

2L̃N2

+
1

AN

N−1∑
k=0

k + 2

2L̃
· GL̃Ry

(N + 1)2
√
λmax(A>A)

≤ 2Ry

AN

(√
6C2H

λmax(A>A)
+

G

4
√
λmax(A>A)

)
. (143)

It implies that with probability at least 1− β

‖Ax̃N − Ax̂N‖2 ≤ ‖A‖2 · ‖x̃N − x̂N‖2

(143)
≤

√
λmax(A>A)

2Ry

AN

(√
6C2H

λmax(A>A)
+

G

4
√
λmax(A>A)

)
=

Ry

2AN

(√
96C2H +G

)
(144)

and due to triangle inequality with probability ≥ 1− β

2Ry‖Ax̂N‖2 ≥ 2Ry‖Ax̃N‖2 − 2RyAN‖Ax̂N − Ax̃N‖2

(144)
≥ 2Ry‖Ax̃N‖2 −

R2
y

(√
96C2H +G

)
AN

. (145)
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The next step is in applying Lipschitz continuity of f on BRf (0). Recall that

x(y)
def
= argmax

x∈Rn
{〈y, x〉 − f(x)}

and due to Demyanov-Danskin theorem x(y) = ∇ϕ(y). Together with Lϕ-smoothness of ϕ it implies
that

‖x(A>ỹk+1)‖2 = ‖∇ϕ(A>ỹk+1)‖2 ≤ ‖∇ϕ(A>ỹk+1)−∇ϕ(A>y∗)‖2 + ‖∇ϕ(A>y∗)‖2

≤ Lϕ‖A>ỹk+1 − A>y∗‖2 + ‖x(A>y∗)‖2 ≤
√
λmax(A>A)

µ
‖ỹk+1 − y∗‖2 +Rx.

From this and (133) we get that with probability at least 1− 2β the inequality

‖x(A>ỹk+1)‖2

(133)
≤

(√
λmax(A>A)J

µ
+
Rx

Ry

)
Ry (146)

holds for all k = 0, 1, 2, . . . , N − 1 simultaneously since ỹk+1 ∈ BRk(y
∗) ⊆ BR̃k+1

(y∗). Using the
convexity of the norm we get that with probability at least 1− 2β

‖x̂N‖2 ≤
1

AN

N−1∑
k=0

αk+1‖x(A>ỹk+1)‖2

(146)
≤

(√
λmax(A>A)J

µ
+
Rx

Ry

)
Ry. (147)

We notice that the last inequality lies in the same probability event when (133) holds.

Consider the probability event E = {inequalities (142) − (147) hold simultaneously}. Using union
bound we get that P{E} ≥ 1− 4β. Combining (143) and (147) we get that inequality

‖x̃N‖2 ≤ ‖x̃N − x̂N‖2 + ‖x̂N‖2 ≤

( (√
96C2H +G

)
2AN

√
λmax(A>A)

+

√
λmax(A>A)J

µ
+
Rx

Ry

)
Ry (148)

lies in the event E. From this we can obtain a lower bound for Rf :

Rf ≥

( (√
96C2H +G

)
2AN

√
λmax(A>A)

+

√
λmax(A>A)J

µ
+
Rx

Ry

)
Ry.

Then we get that the fact that points x̃N and x̂N lie in BRf (0) is a consequence of E. Therefore, we
can apply Lipschitz-continuity of f for the points x̃N and x̂N and get that inequalities

|f(x̂N)− f(x̃N)| ≤ Lf‖x̂N − x̃N‖2

(143)
≤

LfRy

(√
96C2H +G

)
2AN

√
λmax(A>A)

(149)

and

f(x̂N) = f(x̃N) +
(
f(x̂N)− f(x̃N)

) (149)
≥ f(x̃N)−

LfRy

(√
96C2H +G

)
2AN

√
λmax(A>A)

(150)

also lie in the event E. It remains to use inequalities (145) and (150) to bound first and second terms
in the right hand side of inequality (142) and obtain that with probability at least 1− 4β

ψ(yN) + f(x̃N) + 2Ry‖Ax̃N‖2 ≤
R2
y

AN

(
8
√
HC2 + 2 + 12CH +

G(6J + 4)

2

+
Lf
(√

96C2H +G
)

2Ry

√
λmax(A>A)

+
G2

2(N + 1)

+C1

√
CHJg(N)

2
+
√

96C2H +G

)
. (151)
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Using that AN grows as Ω
(
N2

L̃

)
[55], L̃ ≤ 2λmax(A>A)

µ
and Ry ≤ ‖∇f(x∗)‖22

λ+
min(A>A)

(see Section V-D from

[16] for the details), we obtain that the choice of N in the theorem statement guarantees that the
r.h.s. of the last inequality is no greater than ε. By weak duality −f(x∗) ≤ ψ(y∗) and we have with
probability at least 1− 4β

f(x̃N)− f(x∗) ≤ f(x̃N) + ψ(y∗) ≤ f(x̃N) + ψ(yN) ≤ ε. (152)

Since y∗ is the solution of the dual problem, we have, for any x, f(x∗) ≤ f(x)−〈y∗, Ax〉. Then using
assumption ‖y∗‖2 ≤ Ry, Cauchy-Schawrz inequality 〈y, Ax〉 ≥ −‖y∗‖2 · ‖Ax‖2 ≥ −Ry‖Ax‖2

and choosing x = x̃N , we get

f(x̃N) ≥ f(x∗)−Ry‖Ax̃N‖2 (153)

Using this and weak duality −f(x∗) ≤ ψ(y∗), we obtain

ψ(yN) + f(x̃N) ≥ ψ(y∗) + f(x̃N) ≥ −f(x∗) + f(x̃N) ≥ −Ry‖Ax̃N‖2,

which implies that inequality

‖AxN‖2

(151)+(152)
≤ ε

Ry

(154)

holds together with (152) with probability at least 1 − 4β. The total number of stochastic gradient
oracle calls is

∑N
k=1 rk, which gives the bound in the problem statement since

∑N
k=1 αk+1 = AN .

F Missing Proofs from Section 5.2

F.1 Proof of Theorem 6

For simplicity we analyse only the first restart since the analysis of the later restarts is the same. We
apply Theorem 4 with N = N̄ such that

CL2
ψ ln4 N̄

µ2
ψN̄

4
≤ 1

32

and batch-size

r1 = max

{
1,

64Cσ2
ψ ln6 N̄

N̄‖∇Ψ(y0, ξ0, r̂1)‖2
2

}
together with simple inequality ‖∇ψ(y0)‖2 ≥ µψ‖y0 − y∗‖2 and get for all p = 1, . . . , p1

E
[
‖∇ψ(ȳ1,p)‖2

2 | y0, r1, r̂1

]
≤ ‖∇ψ(y0)‖2

2

32
+
‖∇Ψ(y0, ξ0, r̂1)‖2

2

64
(101)
≤ ‖∇ψ(y0)‖2

2

16
+
‖∇Ψ(y0, ξ0, r̂1)−∇ψ(y0)‖2

2

32
. (155)

By Markov’s inequality we have for each p = 1, . . . , p1 that for fixed ∇Ψ(y0, ξ0, r̂1) with probability
at most 1/2

‖∇ψ(ȳ1,p)‖2
2 ≥
‖∇ψ(y0)‖2

2

8
+
‖∇Ψ(y0, ξ0, r̂1)−∇ψ(y0)‖2

2

16
.
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Then, with probability at least 1− 1/2p1 ≥ 1− β/l

‖∇ψ(ȳ1,p̂1)‖2
2 ≤
‖∇ψ(y0)‖2

2

8
+
‖∇Ψ(y0, ξ0, r̂1)−∇ψ(y0)‖2

2

16
, (156)

where p̂1 is such that ‖∇ψ(ȳ1,p̂1)‖2
2 = minp=1,...,p1 ‖∇ψ(ȳ1,p)‖2

2. From Lemma 9 we have for all
p = 1, . . . , p1

P

∥∥∇Ψ(ȳ1,p, ξ1,p, r̄1)−∇ψ(ȳ1,p)
∥∥

2
≥
(√

2 +
√

2γ
)√σ2

ψ

r̄1

| ȳ1,p

 ≤ exp

(
−γ

2

3

)
.

Since r̄1 = max

1,
128σ2

ψ

(
1+
√

3 ln
lp1
β

)2

R2
y

ε2

 we can take γ =
√

3 ln lp1

β
in the previous inequality

and get that for all p = 1, . . . , p1 and fixed points ȳ1,p with probability at least 1− β/(lp1)∥∥∇Ψ(ȳ1,p, ξ1,p, r̄1)−∇ψ(ȳ1,p)
∥∥2

2
≤ ε2

64R2
y

.

Using union bound we get that with probability at least 1− β/l inequality∥∥∇Ψ(ȳ1,p, ξ1,p, r̄1)−∇ψ(ȳ1,p)
∥∥2

2
≤ ε2

64R2
y

. (157)

holds for all p = 1, . . . , p1 simultaneously with fixed points ȳ1,p. Using union bound again we get that
with probability at least 1− 2β/l for fixed∇Ψ(y0, ξ0, r̂1)

‖∇ψ(ȳ1,p(1))‖2
2

(101)
≤ 2

∥∥∥∇Ψ(ȳ1,p(1), ξ1,p(1), r̄1)
∥∥∥2

2
+ 2

∥∥∥∇Ψ(ȳ1,p(1), ξ1,p(1), r̄1)−∇ψ(ȳ1,p(1))
∥∥∥2

2

(157)
≤ 2

∥∥∇Ψ(ȳ1,p̂1 , ξ1,p̂1 , r̄1)
∥∥2

2
+

ε2

32R2
y

(101)
≤ 4‖∇ψ(ȳ1,p̂1)‖2

2 + 4
∥∥∇Ψ(ȳ1,p̂1 , ξ1,p̂1 , r̄1)−∇ψ(ȳ1,p̂1)

∥∥2

2
+

ε2

32R2
y

(156)+(157)
≤ ‖∇ψ(y0)‖2

2

2
+
‖∇Ψ(y0, ξ0, r̂1)−∇ψ(y0)‖2

2

4
+

ε2

8R2
y

. (158)

Using Lemma 9 with γ =
√

3 ln l
β

and r̂1 = max

{
1,

4σ2
ψ

(
1+
√

3 ln l
β

)2
R2
y

ε2

}
we get that with proba-

bility at least 1− β/l

‖∇Ψ(y0, ξ0, r̂1)−∇ψ(y0)‖2
2 ≤

ε2

2R2
y

. (159)

Applying union bound again we get that with probability at least 1− 3β/l the following inequality holds:

‖∇ψ(ȳ1,p(1))‖2
2

(158)+(159)
≤ ‖∇ψ(y0)‖2

2

2
+

ε2

4R2
y

.

Similarly, for all k = 1, . . . , l with probability at least 1− 3β/l

‖∇ψ(ȳk,p(k))‖2
2 ≤
‖∇ψ(ȳk−1,p(k−1))‖2

2

2
+

ε2

4R2
y

.

DOI 10.20347/WIAS.PREPRINT.2691 Berlin 2020



Optimal decentralized distributed algorithms for stochastic convex optimization 61

Using union bound we get that with probability at least 1− 3β the inequality

‖∇ψ(ȳk,p(k))‖2
2 ≤
‖∇ψ(ȳk−1,p(k−1))‖2

2

2
+

ε2

4R2
y

(160)

holds for all k = 1, . . . , l simultaneously. Finally, unrolling the recurrence an using our choice of
l = max {1, log2 (2R2

y‖∇ψ(y0)‖22/ε2)} we obtain that with probability at least 1− 3β

‖∇ψ(ȳl,p(l))‖2
2

(160)
≤ ‖∇ψ(y0)‖2

2

2l
+

ε2

4R2
y

l−1∑
k=0

2−k

≤ ε2

2R2
y

+
ε2

4R2
y

∞∑
k=0

2−k

=
ε2

2R2
y

+
ε2

4R2
y

· 2 =
ε2

R2
y

,

which concludes the proof. To get (59) we need to estimate
l∑

k=1

(r̂k + N̄pkrk +pkr̄k) using our choice

of parameters stated in (57).

F.2 Proof of Corollary 3

Theorem 6, Corollary 2 and inequality ε ≤ µψR
2
y imply that with probability at least 1− 3β

‖∇ψ(ȳl,p(l))‖2 ≤
ε

Ry

, ‖ȳl,p(l)‖2 ≤ ‖ȳl,p(l) − y∗‖2 + ‖y∗‖2

(60)
≤ 2Ry. (161)

Applying Theorem 3 we get that with probability 1− 3β we also have

f(x̂l)− f(x∗) ≤ 2ε, ‖Ax̂l‖2 ≤
ε

Ry

, (162)

where x̂l
def
= x(A>ȳl,p(l)). Next, we show that points x̂l,p = x(A>ȳl,p) and xl,p

def
= x(A>ȳl,p, ξl,, r̄l)

are close to each other with high probability for all p = 1, . . . , pl and both lie in BRf (0) with high
probability. Lemma 9 states that

P

{∥∥x̂l,p − xl,p∥∥
2
≥ (
√

2 +
√

2γ)

√
σ2
x

r̄l
| ȳl,p(l)

}
≤ exp

(
−γ

2

3

)
.

Taking γ =
√

3 ln pl
β

and using r̄l = max

{
1,

128σ2
ψ

(
1+
√

3 ln
lpl
β

)
R2
y

ε2

}
we get that for all p =

1, . . . , pl with probability at least 1− β/pl

‖x̂l,p − xl,p‖2 ≤
ε

8Ry

·
√
σ2
x

σ2
ψ

=
ε

8Ry

√
λmax(A>A)

,

where we use σψ =
√
λmax(A>A)σx. Using union bound we get that with probability at least 1− β

the inequality

‖x̂l,p − xl,p‖2 ≤
ε

8Ry

√
λmax(A>A)

,
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holds for all p = 1, . . . , p(l) simultaneously and, in particular, we get that with probability at least
1− β

‖x̂l − xl‖2 ≤
ε

8Ry

√
λmax(A>A)

. (163)

It implies that with probability at least 1− β

‖Ax̂l − Axl‖2 ≤ ‖A‖2 · ‖x̂l − xl‖2

(163)
≤

√
λmax(A>A)

ε

8Ry

√
λmax(A>A)

=
ε

8Ry

, (164)

and due to triangle inequality with probability ≥ 1− β

‖Ax̂l‖2 ≥ ‖Axl‖2 − ‖Ax̂l − Axl‖2

(164)
≥ ‖Axl‖2 −

ε

8Ry

. (165)

Applying Demyanov-Danskin’s theorem, Lϕ-smoothness of ϕ with Lϕ = 1/µ and ε ≤ µψR
2
y we

obtain that with probability at least 1− β

‖x̂l‖2 = ‖∇ϕ(A>ȳl,p(l))‖2 ≤ ‖∇ϕ(A>ȳl,p(l))−∇ϕ(A>y∗)‖2 + ‖∇ϕ(A>y∗)‖2

≤ Lϕ‖A>ȳl,p(l) − A>y∗‖2 + ‖x(A>y∗)‖2 ≤
√
λmax(A>A)

µ
‖ȳl,p(l) − y∗‖2 +Rx

(60)
≤

√
λmax(A>A)ε

µµψRy

+Rx ≤

(√
λmax(A>A)

µ
+
Rx

Ry

)
Ry (166)

and also

‖xl‖2 ≤ ‖xl − x̂l‖2 + ‖x̂l‖2

(163)+(166)
≤

(
µψ

8
√
λmax(A>A)

+

√
λmax(A>A)

µ
+
Rx

Ry

)
Ry.(167)

That is, we proved that with probability at least 1 − β points x̂l and xl lie in the ball BRf (0). In this
ball function f is Lf -Lipschitz continuous, therefore, with probability at least 1− β

f(x̂l) = f(xl) + f(x̂l)− f(xl) ≥ f(xl)− |f(x̂l)− f(xl)|

≥ f(xl)− Lf‖x̂l − xl‖2

(163)
≥ f(xl)− εLf

8Ry

√
λmax(A>A)

. (168)

Combining inequalities (162), (165) and (168) and using union bound we get that with probability at
least 1− 4β

f(xl)− f(x∗) ≤

(
2 +

Lf

8Ry

√
λmax(A>A)

)
ε, ‖Axl‖ ≤ 9ε

8Ry

.

G Missing Proofs from Section 5.3

G.1 Proof of Lemma 5

We prove (65) by induction. For k = 0 this inequality is trivial since Ak = 1
L

, ỹ1 = y0 and z0 = ỹ0.
Next, assume that (65) holds for some k ≥ 0 and prove it for k + 1. By definition of gk+1(z) we have

g̃k+1(zk+1) = g̃k(z
k+1) (169)

+αk+1

(
ψ(ỹk+1) + 〈∇̃Ψ(ỹk+1, ξk+1), zk+1 − ỹk+1〉+

µψ
2
‖zk+1 − ỹk+1‖2

2

)
.
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Since g̃k(z) is (1 +Akµψ)-strongly convex we can estimate the first term in the r.h.s. of the previous
inequality as follows:

g̃k(z
k+1) ≥ g̃k(z) +

1 + Akµψ
2

‖zk+1 − zk‖2
2

(65)
≥ Akψ(yk) +

1 + Akµψ
2

‖zk+1 − zk‖2
2

+
k−1∑
l=0

Alµψ
2
‖yl − ỹl+1‖2

2 −
k∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2

Applying µψ-strong convexity of ψ and the relation

yk+1 =
Aky

k + αk+1z
k+1

Ak+1

=
Aky

k + αk+1z
k

Ak+1

+
αk+1

Ak+1

(
zk+1 − zk

)
= ỹk+1 +

αk+1

Ak+1

(
zk+1 − zk

)
to the previous inequality we get

g̃k(z
k+1) ≥ Akψ(ỹk+1) + 〈∇ψ(ỹk+1), Ak(y

k − ỹk+1)〉+
Akµψ

2
‖yk − ỹk+1‖2

2

+
A2
k+1(1 + Akµψ)

2α2
k+1

‖yk+1 − ỹk+1‖2
2 +

k−1∑
l=0

Alµψ
2
‖yl − ỹl+1‖2

2

−
k∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2
. (170)

Next, we use (170) in (169) together with relationsAk+1 = Ak +αk+1,Ak+1(1 +Akµψ) = α2
k+1Lψ

and Ak(yk − ỹk+1) + αk+1(zk+1 − ỹk+1) = Ak+1(yk+1 − ỹk+1):

g̃k+1(zk+1) ≥ Ak+1ψ(ỹk+1) + 〈∇ψ(ỹk+1), Ak(y
k − ỹk+1) + αk+1(zk+1 − ỹk+1)〉

+
A2
k+1(1 + Akµψ)

2α2
k+1

‖yk+1 − ỹk+1‖2
2 +

k∑
l=0

Alµψ
2
‖yl − ỹl+1‖2

2

−
k∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2

+αk+1

〈
∇̃Ψ(ỹl+1, ξl+1)−∇ψ(ỹl+1), zk+1 − ỹk+1

〉
+
αk+1µψ

2
‖zk+1 − ỹk+1‖2

2

= Ak+1

(
ψ(ỹk+1) + 〈∇ψ(ỹk+1), yk+1 − ỹk+1〉+

Lψ
2
‖yk+1 − ỹk+1‖2

2

)
+

k∑
l=0

Alµψ
2
‖yl − ỹl+1‖2

2 −
k∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2

+αk+1

〈
∇̃Ψ(ỹl+1, ξl+1)−∇ψ(ỹl+1), zk+1 − ỹk+1

〉
+
αk+1µψ

2
‖zk+1 − ỹk+1‖2

2.

From Lψ-smoothness of ψ we have

ψ(ỹk+1) + 〈∇ψ(ỹk+1), yk+1 − ỹk+1〉+
Lψ
2
‖yk+1 − ỹk+1‖2

2 ≥ ψ(yk+1).

Next, Fenchel-Young inequality (see inequality (100)) implies that〈
∇̃Ψ(ỹl+1, ξl+1)−∇ψ(ỹl+1), zk+1 − ỹk+1

〉
≥ − 1

2µψ

∥∥∥∇̃Ψ(ỹl+1, ξl+1)−∇ψ(ỹl+1)
∥∥∥2

2

−µψ
2
‖zk+1 − ỹk+1‖2

2.
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Putting all together and rearranging the terms we get

g̃k+1(zk+1) ≥ Ak+1ψ(yk+1) +
k∑
l=0

Alµψ
2
‖yl − ỹl+1‖2

2 −
k+1∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2
.

G.2 Proof of Lemma 6

The idea behind the proof of this lemma is exactly the same as for Lemma 4. We start with applying
Cauchy-Schwarz inequality to the second and the third terms, i.e.

hδ(Rk + R̃k) ≤ Dh2δ2 +
R2
k

4D
+Dh2δ2 +

R̃2
k

4D
= 2Dh2δ2 +

R2
k + R̃2

k

4D
,

u〈ηk, ak + ãk〉 ≤ u‖ηk‖2 · ‖ak‖2 + u‖ηk‖2 · ‖ãk‖2 ≤ u‖ηk‖2Rk + u‖ηk‖2R̃k

≤ u2D‖ηk‖2
2 +

R2
k

4D
+ u2D‖ηk‖2

2 +
R̃2
k

4D
≤ 2u2D‖ηk‖2

2 +
R2
k + R̃2

k

4D
,

in the right-hand side of (66):

AlR
2
l +

l−1∑
k=0

AkR̃
2
k ≤ A+ 2Dh2δ2

l−1∑
k=0

αk+1︸ ︷︷ ︸
Al

+
1

2D

l−1∑
k=0

αk+1(R2
k + R̃2

k)

+
(
c+ 2Du2

) l−1∑
k=0

αk+1‖ηk‖2
2. (171)

Using Lemma 9 we get that with probability at least 1− β
N

‖ηk‖2 ≤
√

2

(
1 +

√
3 ln

N

β

)
σk ≤

√
2

(
1 +

√
3 ln

N

β

) √
Cε

N
(

1 +
√

3 ln N
β

)
=
√

2Cε. (172)

Using union bound and αk+1 ≤ DAk we get that with probability ≥ 1− β inequalities

AlR
2
l +

l−1∑
k=0

AkR̃
2
k ≤ A+ 2Dh2δ2Al +

1

2

l−1∑
k=0

Ak(R
2
k + R̃2

k) + 2C
(
c+ 2Du2

)
Alε,

AlR
2
l +

1

2

l−1∑
k=0

AkR̃
2
k ≤ A+ 2Dh2δ2Al +

1

2

l−1∑
k=0

AkR
2
k + 2C

(
c+ 2Du2

)
Alε (173)

hold for all l = 1, . . . , N simultaneously. Therefore, with probability ≥ 1− β the inequality

AlR
2
l ≤ A+ 2Dh2δ2Al + 2C

(
c+ 2Du2

)
Alε+

1

2

l−1∑
k=0

AkR
2
k

≤ 3

2
A+ 2Dh2δ2

(
Al +

1

2
Al−1

)
︸ ︷︷ ︸

≤ 3
2
Al

+2C
(
c+ 2Du2

)
ε

(
Al +

1

2
Al−1

)
︸ ︷︷ ︸

≤ 3
2
Al

+
3

2
· 1

2

l−2∑
k=0

AkR
2
k

≤ 3

2

(
A+ 2Dh2δ2Al + 2C

(
c+ 2Du2

)
Alε+

1

2

l−2∑
k=0

AkR
2
k

)
,
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holds for all l = 1, . . . , N simultaneously. Unrolling the recurrence we get that with probability≥ 1−β

AlR
2
l ≤

(
3

2

)l (
A+ 2Dh2δ2Al + 2C

(
c+ 2Du2

)
Alε
)
,

for all l = 1, . . . , N . We emphasize that it is very rough estimate, but as for the convex case we show
next that such a bound does not spoil the final result too much. It implies that with probability≥ 1− β

l−1∑
k=0

AkR
2
k ≤ l

(
3

2

)l (
A+ 2Dh2δ2Al + 2C

(
c+ 2Du2

)
Alε
)
, (174)

for all l = 1, . . . , N simultaneously. Moreover, since (173) holds we have in the same probability
event that inequalities

l−1∑
k=0

AkR̃
2
k ≤

(
l

(
3

2

)l
+ 2

)(
A+ 2Dh2δ2Al + 2C

(
c+ 2Du2

)
Alε
)

(175)

hold with probability ≥ 1 − β for all l = 1, . . . , N simultaneously with (174). Next we apply delicate
result from [34] which is presented in Section B as Lemma 8. We consider random variables ξk =
αk+1〈ηk, ak + ãk〉. Note that E

[
ξk | ξ0, . . . , ξk−1

]
= αk+1

〈
E
[
ηk | η0, . . . , ηk−1

]
, ak
〉

= 0 and

E

[
exp

(
(ξk)2

2σ2
kα

2
k+1(R2

k + R̃2
k)

)
| ξ0, . . . , ξk−1

]

≤ E

[
exp

(
α2
k+1‖ηk‖2

2‖ak + ãk‖2
2

2σ2
kα

2
k+1(R2

k + R̃2
k)

)
| η0, . . . , ηk−1

]

= E
[
exp

(
‖ηk‖2

2

σ2
k

)
| η0, . . . , ηk−1

]
≤ exp(1)

due to Cauchy-Schwarz inequality and assumptions of the lemma. If we denote σ̂2
k = 2σ2

kα
2
k+1(R2

k +

R̃2
k) and apply Lemma 8 with

B = 8HCDR2
0

(
N

(
3

2

)N
+ 1

)(
A+ 2Dh2G2R2

0 + 2C
(
c+ 2Du2

)
HR2

0

)
and b = σ̂2

0 , we get that for all l = 1, . . . , N with probability ≥ 1− β
N

either
l−1∑
k=0

σ̂2
k ≥ B or

∣∣∣∣∣
l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))

with some constant C1 > 0 which does not depend on B or b. Using union bound we obtain that with
probability ≥ 1− β

either
l−1∑
k=0

σ̂2
k ≥ B or

∣∣∣∣∣
l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))
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and it holds for all l = 1, . . . , N simultaneously. Note that αk+1 ≤ Ak+1, ε ≤ HR2
0

AN
, δ ≤ GR0

N
√
AN

and
with probability at least 1− β

l−1∑
k=0

σ̂2
k = 2

l−1∑
k=0

σ2
kα

2
k+1(R2

k + R̃2
k) ≤

2Cε

N2
(

1 +
√

3 ln N
β

)2

l−1∑
k=0

Ak+1 ·DAk(R2
k + R̃2

k)

≤ 2εCDAN

l−1∑
k=0

Ak(R
2
k + R̃2

k)

(174)+(175)
≤ 4εCDAN

(
l

(
3

2

)l
+ 1

)(
A+ 2Dh2δ2Al + 2C

(
c+ 2Du2

)
Alε
)

≤ 4HCDR2
0

(
N

(
3

2

)N
+ 1

)(
A+ 2Dh2G2R2

0 + 2C
(
c+ 2Du2

)
HR2

0

)
=

B

2

for all l = 1, . . . , N simultaneously. Using union bound again we get that with probability ≥ 1 − 2β
the inequality ∣∣∣∣∣

l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))
(176)

holds for all l = 1, . . . , N simultaneously.

Note that we also proved that (172) is in the same event together with (176) and holds with probability
≥ 1− 2β. Putting all together in (66), we get that with probability at least 1− 2β the inequality

AlR
2
l +

l−1∑
k=0

AkR̃
2
k

(66)
≤ A+ hδ

l−1∑
k=0

αk+1(Rk + R̃k) + u
l−1∑
k=0

αk+1〈ηk, ak + ãk〉

+c
l−1∑
k=0

αk+1‖ηk‖2
2

(172)+(176)
≤ A+ hδ

l−1∑
k=0

αk+1(Rk + R̃k)

+uC1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

β

)
+ ln ln

(
B

b

))
+ 2cCεAl

holds for all l = 1, . . . , N simultaneously. For brevity, we introduce new notation(neglecting constant
factor):

g(N) =
ln
(
N
β

)
+ ln ln

(
B
b

)
(

1 +

√
3 ln

(
N
β

))2 ≈ 1.

Using our assumptions σ2
k ≤ Cε

N2
(

1+
√

3 ln(Nβ )
)2 , ε ≤ HR2

0

AN
, δ ≤ GR0

N
√
AN

and definition σ̂2
k =
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2σ2
kα

2
k+1(R2

k + R̃2
k) we obtain that with probability at least 1− 2β the inequality

AlR
2
l +

l−1∑
k=0

AkR̃
2
k ≤ A+ hδ

l−1∑
k=0

αk+1(Rk + R̃k) + u

l−1∑
k=0

αk+1〈ηk, ak + ãk〉+ c

l−1∑
k=0

αk+1‖ηk‖2
2

≤ A+
hGR0

N
√
AN

l−1∑
k=0

αk+1(Rk + R̃k) +
uC1R0

√
2HCg(N)

N
√
AN

√√√√ l−1∑
k=0

α2
k+1(R2

k + R̃2
k)

+2cHCR2
0

≤
(
A

R2
0

+ 2cHC

)
R2

0 +

(
hG+ uC1

√
2HCg(N)

)
R0

N
√
AN

l−1∑
k=0

αk+1(Rk + R̃k) (177)

holds for all l = 1, . . . , N simultaneously, where in the last row we applied well-known inequality:√∑m
i=1 a

2
i ≤

∑m
i=1 ai for ai ≥ 0, i = 1, . . . ,m. Next we use Lemma 16 with A = A

R2
0

+ 2cHC ,

B = hG + uC1

√
2HCg(N), rk = Rk, r̃k = R̃k and get that with probability at least 1 − 2β

inequalities

Rl ≤
JR0√
Al
, R̃l−1 ≤

JR0√
Al−1

hold for all l = 1, . . . , N simultaneously with

J = max

√A0,
3B1D +

√
9B2

1D
2 + 4A

R2
0

+ 8cHC

2

 , B1 = hG+ uC1

√
2HCg(N).

It implies that with probability at least 1− 2β the inequality

A+ hδ
l−1∑
k=0

αk+1(Rk + R̃k) + u
l−1∑
k=0

αk+1〈ηk, ak + ãk〉+ c
l−1∑
k=0

αk+1‖ηk‖2
2

≤
(
A
R2

0
+ 2cHC

)
R2

0 +
2J
(
hG+uC1

√
2HCg(N)

)
R2

0

N
√
AN

l−1∑
k=0

αk+1√
Ak

≤ A+

(
2cHC +

2JD
(
hG+uC1

√
2HCg(N)

)
N
√
AN

l−1∑
k=0

√
Ak

)
R2

0

≤ A+

(
2cHC +

2JD
(
hG+uC1

√
2HCg(N)

)
N
√
AN

l
√
Al−1

)
R2

0

≤ A+
(

2cHC + 2JD
(
hG+ uC1

√
2HCg(N)

))
R2

0

holds for all l = 1, . . . , N simultaneously.

G.3 Proof of Theorem 7

From Lemma 5 we have

Akψ(yk) ≤ g̃k(z
k)−

k−1∑
l=0

Alµψ
2
‖yl − ỹl+1‖2

2 +
k∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2
(178)
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for all k ≥ 0. By definition of zk we get that

g̃k(z
k) = min

z∈Rn

{
1

2
‖z − z0‖2

2 +
k∑
l=0

αl

(
ψ(ỹl) + 〈∇̃Ψ(ỹl, ξl), z − ỹl〉+

µψ
2
‖z − ỹl‖2

2

)}

≤ 1

2
‖y∗ − z0‖2

2 +
k∑
l=0

αl

(
ψ(ỹl) + 〈∇̃Ψ(ỹl, ξl), y∗ − ỹl〉+

µψ
2
‖y∗ − ỹl‖2

2

)
=

1

2
‖y∗ − z0‖2

2 +
k∑
l=0

αl

(
ψ(ỹl) + 〈∇ψ(ỹl), y∗ − ỹl〉+

µψ
2
‖y∗ − ỹl‖2

2

)
+

k∑
l=0

αl〈∇̃Ψ(ỹl, ξl)−∇ψ(ỹl), y∗ − ỹl〉

≤ 1

2
‖y∗ − y0‖2

2 + Akψ(y∗) +
k∑
l=0

αl〈∇̃Ψ(ỹl, ξl)−∇ψ(ỹl), y∗ − ỹl〉, (179)

where the last inequality follows from µψ-strong convexity of ψ and Ak =
∑k

l=0 αl. For brevity, we

introduce new notation: Rk
def
= ‖yk − y∗‖2 and R̃k

def
= ‖yk − ỹk+1‖2 for all k ≥ 0. Using this and

another consequence of strong convexity, i.e. ψ(y)− ψ(y∗) ≥ µψ
2
‖y − y∗‖2

2, we obtain

Akµψ
2

R2
k +

k−1∑
l=0

Alµψ
2

R̃2
l ≤ Ak

(
ψ(yk)− ψ(y∗)

)
+

k−1∑
l=0

Alµψ
2

R̃2
l

(178)+(179)
≤ 1

2
R2

0 +
k∑
l=0

αl〈∇̃Ψ(ỹl, ξl)−∇ψ(ỹl), y∗ − ỹl〉

+
k∑
l=0

αl
2µψ

∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)
∥∥∥2

2
. (180)

From Cauchy-Schwarz inequality and the well-known fact that ‖a+ b‖2
2 ≤ 2a2 + 2b2 for all a, b ∈ Rn

we have

〈∇̃Ψ(ỹl, ξl)−∇ψ(ỹl), y∗ − ỹl〉 =
〈
E
[
∇̃Ψ(ỹl, ξl)

]
−∇ψ(ỹl), y∗ − ỹl

〉
+
〈
∇̃Ψ(ỹl, ξl)− E

[
∇̃Ψ(ỹl, ξl)

]
, y∗ − ỹl

〉
(38)
≤ δ‖y∗ − ỹl‖2 +

〈
∇̃Ψ(ỹl, ξl)− E

[
∇̃Ψ(ỹl, ξl)

]
, y∗ − ỹl

〉
,∥∥∥∇̃Ψ(ỹl, ξl)−∇ψ(ỹl)

∥∥∥2

2
≤ 2

∥∥∥E [∇̃Ψ(ỹl, ξl)
]
−∇ψ(ỹl)

∥∥∥2

2

+2
∥∥∥∇̃Ψ(ỹl, ξl)− E

[
∇̃Ψ(ỹl, ξl)

]∥∥∥2

2

(38)
≤ 2δ2 + 2

∥∥∥∇̃Ψ(ỹl, ξl)− E
[
∇̃Ψ(ỹl, ξl)

]∥∥∥2

2

for all l ≥ 0. Next, we introduce new notation

Ã
def
=

1

2
R2

0 + δα0R0 +
ANδ

2

µψ
+ α0

〈
∇̃Ψ(ỹ0, ξ0)− E

[
∇̃Ψ(ỹ0, ξ0)

]
, y∗ − ỹ0

〉
+
α0

µψ

∥∥∥∇̃Ψ(ỹ0, ξ0)− E
[
∇̃Ψ(ỹ0, ξ0)

]∥∥∥2

2
. (181)
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Putting all together in (180) we get

Akµψ
2

R2
k +

k−1∑
l=0

Alµψ
2

R̃2
l

≤ 1

2
R2

0 + δ
k∑
l=0

αl‖y∗ − ỹl‖2 +
k∑
l=0

αl

〈
∇̃Ψ(ỹl, ξl)− E

[
∇̃Ψ(ỹl, ξl)

]
, y∗ − ỹl

〉
+
δ2

µψ

k∑
l=0

αl +
1

µψ

k∑
l=0

αl

∥∥∥∇̃Ψ(ỹl, ξl)− E
[
∇̃Ψ(ỹl, ξl)

]∥∥∥2

2

≤ Ã+ δ

k−1∑
l=0

αl+1‖y∗ − ỹl+1‖2

+
k−1∑
l=0

αl+1

〈
∇̃Ψ(ỹl+1, ξl+1)− E

[
∇̃Ψ(ỹl+1, ξl+1)

]
, y∗ − ỹl+1

〉
+

1

µψ

k−1∑
l=0

αl+1

∥∥∥∇̃Ψ(ỹl+1, ξl+1)− E
[
∇̃Ψ(ỹl+1, ξl+1)

]∥∥∥2

2
. (182)

To simplify previous inequality we define new vectors al
def
= y∗−yl, ãl def

= yl−ỹl+1, ηl
def
= ∇̃Ψ(ỹl+1, ξl+1)−

E
[
∇̃Ψ(ỹl+1, ξl+1)

]
for all l ≥ 0. Note that ‖al‖2 = Rl, ‖ãl‖2 = R̃l and ã0 = y0 − ỹ1 = 0. Using

this we can rewrite (182) in the following form:

AkR
2
k +

k−1∑
l=0

AlR̃
2
l ≤ A+

2δ

µψ

k−1∑
l=0

αl+1(Rl + R̃l) +
2

µψ

k−1∑
l=0

αl+1〈ηl, al + ãl〉

+
2

µ2
ψ

k−1∑
l=0

αl+1‖ηl‖2
2, (183)

where we used A
def
= 2Ã

µψ
and triangle inequality, i.e. ‖y∗ − ỹl+1‖2 ≤ ‖y∗ − yl‖2 + ‖yl − ỹl+1‖2 =

Rl + R̃l. Next, we apply Lemma 6 with h = u = 2
µψ

, c = 2
µ2
ψ

and get that with probability at least

1− 2β

R2
N ≤

J2R2
0

AN
(184)

where

g(N) =
ln
(
N
β

)
+ ln ln

(
B
b

)
(

1 +

√
3 ln

(
N
β

))2 , b =
2σ2

1α
2
1R

2
0

r1

, D
(200)
= 1 +

µψ
Lψ

+

√
1 +

µψ
Lψ

,

B = 8HC

(
Lψ
µψ

)3/2

DR2
0

(
N

(
3

2

)N
+ 1

)(
A+ 2Dh2G2R2

0 + 2C

(
Lψ
µψ

)3/2 (
c+ 2Du2

)
HR2

0

)
,

J = max


√
A0,

3B1D +

√
9B2

1D
2 + 4A

R2
0

+ 8cHC
(
Lψ
µψ

)3/2

2

 ,
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B1 = hG+ uC1

√
2HC

(
Lψ
µψ

)3/2

g(N)

and C1 is some positive constant. However, J depends on A which is stochastic. That is, to finish the
proof we need first to get an upper bound for A. Recall that A = 2Ã

µψ
and

A
(181)
=

R2
0

µψ
+

2δα0R0

µψ
+

2ANδ
2

µ2
ψ

+
2α0

µψ

〈
∇̃Ψ(ỹ0, ξ0)− E

[
∇̃Ψ(ỹ0, ξ0)

]
, y∗ − ỹ0

〉
+

2α0

µ2
ψ

∥∥∥∇̃Ψ(ỹ0, ξ0)− E
[
∇̃Ψ(ỹ0, ξ0)

]∥∥∥2

2
. (185)

Lemma 9 implies that

P

∥∥∥∇̃Ψ(ỹ0, ξ0)− E
[
∇̃Ψ(ỹ0, ξ0)

]∥∥∥
2
≥
√

2(1 +
√
γ)

√
σ2
ψ

r0

 ≤ exp

(
−γ

2

3

)
.

Taking γ =
√

3 ln 1
β

and using r0 ≥
(
µψ
Lψ

)3/2 N2σ2
ψ

(
1+
√

3 ln N
β

)2

Cε
, ε ≤ HR2

0

AN
we get that with probabil-

ity at least 1− β〈
∇̃Ψ(ỹ0, ξ0)− E

[
∇̃Ψ(ỹ0, ξ0)

]
, y∗ − ỹ0

〉
≤

∥∥∥∇̃Ψ(ỹ0, ξ0)− E
[
∇̃Ψ(ỹ0, ξ0)

]∥∥∥
2
· ‖y∗ − y0‖2

≤
(
Lψ
µψ

)3/4
√

2CεR0

N
≤
(
Lψ
µψ

)3/4
√

2CHR2
0

N
√
AN

, (186)∥∥∥∇̃Ψ(ỹ0, ξ0)− E
[
∇̃Ψ(ỹ0, ξ0)

]∥∥∥2

2
≤

(
Lψ
µψ

)3/2
2Cε

N2
≤
(
Lψ
µψ

)3/2
2CHR2

0

N2AN
. (187)

From this and δ ≤ GR0

N
√
AN

we obtain that with probability ≥ 1− β

A
(185)+(186)+(187)

≤ ÂR2
0,

Â
def
=

1

µψ
+

2G

LψµψN
√
AN

+
2G2

µ2
ψN

2
+

(
Lψ
µψ

)3/4
2
√

2CH

LψµψN
√
AN

+

(
Lψ
µψ

)3/2
4CH

Lψµ2
ψN

2AN
.

Using union bound we get that with probability at least 1− 3β

R2
N ≤

Ĵ2R2
0

AN
,

where

ĝ(N) =
ln
(
N
β

)
+ ln ln

(
B̂
b

)
(

1 +

√
3 ln

(
N
β

))2 ,

B̂ = 8HC

(
Lψ
µψ

)3/2

DR4
0

(
N

(
3

2

)N
+ 1

)(
Â+ 2Dh2G2 + 2C

(
Lψ
µψ

)3/2 (
c+ 2Du2

)
H

)
,
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Ĵ = max


√
A0,

3B̂1D +

√
9B̂2

1D
2 + 4Â+ 8cHC

(
Lψ
µψ

)3/2

2

 ,

B̂1 = hG+ uC1

√
2HC

(
Lψ
µψ

)3/2

ĝ(N).

Note that

Ak
(199)
≥ 1

Lψ

(
1 +

1

2

√
µψ
Lψ

)2k

.

It means that in order to achieve R2
N ≤ ε with probability at least 1 − 3β the method requires

N = Õ
(√

Lψ
µψ

ln 1
ε

)
iterations and

N∑
k=0

rk = Õ

(
max

{√
Lψ
µψ
,
σ2
ψ

ε
ln

1

β

}
ln

1

ε

)

oracle calls where Õ(·) hides polylogarithmic factors depending on Lψ, µψ, R0, ε and β.

G.4 Proof of Corollary 5

Corollary 4 implies that with probability at least 1− 3β

‖yN‖2 ≤ 2Ry, ‖∇ψ(yN)‖2 ≤
ε

Ry

and the total number of oracle calls to get this is of order (79). Together with Theorem 3 it gives us that
with probability at least 1− 3β

f(x̂N)− f(x∗) ≤ 2ε̂, ‖Ax̂N‖2 ≤
ε̂

Ry

, (188)

where x̂N
def
= x(A>yN). It remains to show that x̃N and x̂N are close to each other with high proba-

bility. Lemma 9 states that

P

{∥∥x̃N − E
[
x̃N | yN

]∥∥
2
≥ (
√

2 +
√

2γ)

√
σ2
x

rN
| yN

}
≤ exp

(
−γ

2

3

)
.

Taking γ =
√

3 ln 1
β

and using rN ≥ 1
C

σ2
ψR

2
y

(
1+
√

3 ln 1
β

)2

ε2
we get that with probability at least 1− β

∥∥x̃N − E
[
x̃N | yN

]∥∥
2
≤

√
2C

σ2
xε

2

σ2
ψR

2
y

=

√
2Cε

Ry

√
λmax(A>A)

,∥∥x̃N − x̂N∥∥
2
≤

∥∥x̃N − E
[
x̃N | yN

]∥∥
2

+
∥∥E [x̃N | yN]− x̂N∥∥

2

(33)
≤

√
2Cε

Ry

√
λmax(A>A)

+
G1ε

NRy

≤

(√
2C

λmax(A>A)
+G1

)
ε

Ry

. (189)
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It implies that with probability at least 1− β

‖Ax̃N − Ax̂N‖2 ≤ ‖A‖2 · ‖x̃N − x̂N‖2

(189)
≤

√
λmax(A>A)

(√
2C

λmax(A>A)
+G1

)
ε

Ry

=
(√

2C +G1

√
λmax(A>A)

) ε

Ry

, (190)

and due to triangle inequality with probability ≥ 1− β

‖Ax̂N‖2 ≥ ‖Ax̃N‖2 − ‖Ax̂N − Ax̃N‖2

(190)
≥ ‖Ax̃N‖2 −

(√
2C +G1

√
λmax(A>A)

) ε

Ry

. (191)

Applying Demyanov-Danskin theorem and Lϕ-smoothness of ϕ with Lϕ = 1/µ we obtain that with
probability at least 1− β

‖x̂N‖2 = ‖∇ϕ(A>yN)‖2 ≤ ‖∇ϕ(A>yN)−∇ϕ(A>y∗)‖2 + ‖∇ϕ(A>y∗)‖2

≤ Lϕ‖A>yN − A>y∗‖2 + ‖x(A>y∗)‖2 ≤
√
λmax(A>A)

µ
‖yN − y∗‖2 +Rx

(74)
≤

√
λmax(A>A)ε

µRy

+Rx (192)

and also

‖x̃N‖2 ≤ ‖x̃N − x̂N‖2 + ‖x̂N‖2

(189)+(192)
≤

(√
2C

λmax(A>A)
+G1 +

√
λmax(A>A)

µ

)
ε

Ry

+Rx. (193)

That is, we proved that with probability at least 1 − β points x̂l and x̃l lie in the ball BRf (0). In this
ball function f is Lf -Lipschitz continuous, therefore, with probability at least 1− β

f(x̂N) = f(x̃N) + f(x̂N)− f(x̃N) ≥ f(x̃N)− |f(x̂N)− f(x̃N)|
≥ f(x̃N)− Lf‖x̂N − x̃N‖2

(189)
≥ f(x̃N)−

(√
2C

λmax(A>A)
+G1

)
Lfε

Ry

. (194)

Combining inequalities (188), (191) and (194) and using union bound we get that with probability at
least 1− 4β

f(x̃N)− f(x∗) ≤

(
2 +

(√
2C

λmax(A>A)
+G1

)
Lf
Ry

)
ε,

‖Ax̃N‖2 ≤
(

1 +
√

2C +G1

√
λmax(A>A)

) ε

Ry

.
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H Technical Results

Lemma 12. For the sequence αk+1 ≥ 0 such that

Ak+1 = Ak + αk+1, Ak+1 = 2Lα2
k+1 (195)

we have for all k ≥ 0

αk+1 ≤ α̃k+1
def
=
k + 2

2L
. (196)

Moreover, Ak = Ω
(
N2

L

)
.

Proof. We prove (196) by induction. For k = 0 equation (195) gives us α1 = 2Lα2
1 ⇐⇒ α1 = 1

2L
.

Next we assume that (196) holds for all k ≤ l − 1 and prove it for k = l:

2Lα2
l+1

(195)
=

l+1∑
i=1

αi
(196)
≤ αl+1 +

1

2L

l∑
i=1

(i+ 1) = αl+1 +
l(l + 3)

4L
.

This quadratic inequality implies that αk+1 ≤ 1+
√

4k2+12k+1
4L

≤ 1+
√

(2k+3)2

4L
≤ 2k+4

4L
= k+2

2L
.

Finally, the relation Ak = Ω
(
N2

L

)
is proved in Lemma 1 from [25] (see also [55]).

Lemma 13 (See Lemma 3 from [24] and Lemma 4 from [14]). For the sequence αk+1 ≥ 0 such that

Ak+1 = Ak + αk+1, Ak+1(1 + Akµ) = Lα2
k+1, α0 = A0 =

1

L
(197)

we have for all k ≥ 0

αk+1 =
1 + Akµ

2L
+

√
(1 + Akµ)2

4L2
+
Ak(1 + Akµ)

L
, (198)

Ak ≥
1

L

(
1 +

1

2

√
µ

L

)2k

, (199)

αk+1 ≤
(

1 +
µ

L
+

√
1 +

µ

L

)
Ak. (200)

Proof. If we solve quadratic equation Ak+1(1 + Akµ) = Lα2
k+1, Ak+1 = Ak + αk+1 with respect

to αk+1, we will get (198). Inequality (199) was established in Lemma 3 from [24] and Lemma 4 from
[14]. It remains to prove (200). Since

√
a2 + b2 ≤ a+ b for all a, b ≥ 0 and Ak ≥ A0 = 1

L
we have

αk+1
(198)
=

1 + Akµ

2L
+

√
(1 + Akµ)2

4L2
+
Ak(1 + Akµ)

L

≤ 1

2L
+

µ

2L
Ak +

1 + Akµ

2L
+

√
Ak
L

+
µ

L
A2
k

≤ 1

L
+
µ

L
Ak + Ak

√
1 +

µ

L
=

(
1 +

µ

L
+

√
1 +

µ

L

)
Ak.

DOI 10.20347/WIAS.PREPRINT.2691 Berlin 2020



E. Gorbunov, D. Dvinskikh, A. Gasnikov 74

Lemma 14. Let A,B,D, r0, r1, . . . , rN , where N ≥ 1, be non-negative numbers such that

1

2
r2
l ≤ Ar2

0 +
Dr0

(N + 1)2

l−1∑
k=0

(k + 2)rk +B
r0

N

√√√√ l−1∑
k=0

(k + 2)r2
k, ∀l = 1, . . . , N. (201)

Then for all l = 0, . . . , N we have
rl ≤ Cr0, (202)

where C is such positive number that C2 ≥ max{2A + 2(B + D)C, 1}, i.e. one can choose
C = max{B +D +

√
(B +D)2 + 2A, 1}.

Proof. We prove (202) by induction. For l = 0 the inequality rl ≤ Cr0 trivially follows since C ≥ 1.
Next we assume that (202) holds for some l < N and prove it for l + 1:

rl+1

(201)
≤
√

2

√√√√√Ar2
0 +

Dr0

(N + 1)2

l∑
k=0

(k + 2)rk +B
r0

N

√√√√ l∑
k=0

(k + 2)r2
k

(202)
≤ r0

√
2

√√√√√A+
DC

(N + 1)2

l∑
k=0

(k + 2) +
BC

N

√√√√ l∑
k=0

(k + 2)

≤ r0

√
2

√
A+

DC

(N + 1)2

(l + 1)(l + 2)

2
+
BC

N

√
(l + 1)(l + 2)

2

≤ r0

√
2

√
A+DC +

BC

N

√
N(N + 1)

2
≤ r0

√
2A+ 2(B +D)C︸ ︷︷ ︸

≤C

≤ Cr0.

Lemma 15. Let C, r0, r1, . . . , rN , where N ≥ 1, be non-negative numbers such that

r2
l ≤ r2

0 +
2C

(N + 1)3/2

l−1∑
k=0

(k + 2)
1/2r2

k+1, ∀l = 1, . . . , N, (203)

and C ∈ (0, 1/4). Then for all l = 0, . . . , N we have

rl ≤ 2r0, (204)

Proof. We prove (204) by induction. For l = 0 the inequality rl ≤ 2r0 trivially follows. Next we
assume that (204) holds for some l ≤ N − 1 and prove it for l+ 1. From (203), C < 1/4, N ≥ 1 and
l ≤ N − 1 we have

3

4
r2
l+1 ≤

(
1− 2C(l + 2)1/2

(N + 1)3/2

)
r2
l+1

(203)
≤ r2

0 +
2C

(N + 1)3/2

l−1∑
k=0

(k + 2)
1/2r2

k+1

(204)
≤ r2

0 +
1

2(N + 1)3/2
l · (l + 1)

1/2 · 4r2
0 ≤ 3r2

0,

which implies rl+1 ≤ 2r0.
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Lemma 16. Let A,B,D, r0, r1, . . . , rN , r̃0, r̃1, . . . , r̃N , α0, α1, . . . , αN , where N ≥ 1, be non-
negative numbers such that

Alr
2
l +

l−1∑
k=0

Akr̃
2
k ≤ Ar2

0 +
Br0

N
√
AN

l−1∑
k=0

αk+1(rk + r̃k), ∀l = 1, . . . , N, (205)

where r̃0 = 0, A0 = α0 > 0, Al = Al−1 +αl and αl ≤ DAl−1 for l = 1, . . . , N and D ≥ 1. Then
for all l = 1, . . . , N we have

rl ≤
Cr0√
Al
, r̃l−1 ≤

Cr0√
Al−1

(206)

and r0 ≤ Cr0√
A0

where C is such positive number that

C ≥ max

{√
A0,

BD

2
+

√
B2D2

4
+ A+ 2BCD

}
,

i.e. one can choose C = max
{√

A0,
3BD+

√
9B2D2+4A
2

}
.

Proof. We prove (206) by induction. For l = 1 the inequality r̃0 ≤ Cr0√
A0

trivially follows since r̃0 = 0.
What is more, (205) implies that

A1r
2
1 ≤ Ar2

0 +
Bα1r

2
0

N
√
AN

=⇒ r1 ≤ r0

√
A

A1

+
BDA0

A1N
√
AN
≤ r0

√
A+BD

√
A0

A1

≤ Cr0√
A1

,

since C ≥
√
A0 and C ≥

√
A+BCD ≥

√
A+BD

√
A0. Note that we also have r0 ≤ Cr0√

A0
.

Next we assume that (206) holds for some l ≤ N − 1 and prove it for l + 1:

Alr̃
2
l

(205)
≤ Ar2

0 +
Br0

N
√
AN

l∑
k=0

αk+1(rk + r̃k)

(206)
≤ Ar2

0 +
BCr2

0

N
√
AN

l∑
k=0

αk+1√
Ak

+
BCr2

0

N
√
AN

l−1∑
k=0

αk+1√
Ak

+
Br0αl+1r̃l

N
√
AN

≤ Ar2
0 +

BCDr2
0

N
√
AN

l∑
k=0

√
Ak +

BCDr2
0

N
√
AN

l−1∑
k=0

√
Ak +

BDr0Alr̃l√
AN

≤ Ar2
0 +

BCDr2
0

N
√
AN

(l + 1)
√
Al +

BCDr2
0

N
√
AN

l
√
Al−1 +

BDr0Alr̃l√
AN

≤ (A+ 2BCD)r2
0 +

BDr0Alr̃l√
AN

0 ≥ r̃2
l −

BDr0r̃l√
AN

− (A+ 2BCD)r2
0

Al
.

From this we have that r̃l is not greater than the biggest root of the quadratic equation corresponding
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to the last inequality, i.e.

r̃l ≤
BDr0

2
√
AN

+

√
B2D2r2

0

4AN
+

(A+ 2BCD)r2
0

Al

≤

(
BD

2
+

√
B2D2

4
+ A+ 2BCD

)
︸ ︷︷ ︸

≤C

r0√
Al

≤ Cr0√
Al
.

It implies that

Al+1r
2
l+1

(205)
≤ Ar2

0 +
Br0

N
√
AN

l∑
k=0

αk+1(rk + r̃k)

(206)
≤ Ar2

0 +
2BCr2

0

N
√
AN

l∑
k=0

αk+1√
Ak

≤ Ar2
0 +

2BCDr2
0

N
√
AN

(l + 1)
√
Al ≤ Ar2

0 + 2BCDr2
0,

rl+1 ≤ r0

√
A+ 2BCD

Al+1

≤ Cr0√
Al+1

.

That is, we proved the statement of the lemma forC ≥ max

{√
A0,

BD
2

+
√

B2D2

4
+ A+ 2BCD

}
.

In particular, via solving the equation

C =
BD

2
+

√
B2D2

4
+ A+ 2BCD

w.r.t. C one can show that the choice C = max
{√

A0,
3BD+

√
9B2D2+4A
2

}
satisfies the assumption

of the lemma on C .
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