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On primal and dual approaches for distributed stochastic convex
optimization over networks

Darina Dvinskikh, Eduard Gorbunov, Alexander Gasnikov, Pavel Dvurechensky, César A. Uribe

Abstract

We introduce a primal-dual stochastic gradient oracle method for distributed convex optimiza-
tion problems over networks. We show that the proposed method is optimal in terms of communi-
cation steps. Additionally, we propose a new analysis method for the rate of convergence in terms
of duality gap and probability of large deviations. This analysis is based on a new technique that
allows to bound the distance between the iteration sequence and the optimal point. By the proper
choice of batch size, we can guarantee that this distance equals (up to a constant) to the distance
between the starting point and the solution.

1 Introduction

Distributed algorithms have been prevalent in the control theory and machine learning communities
since early 70s and 80s [1–3]. The structural flexibilities introduced by a networked structure has been
particularly relevant for recent applications, such as robotics and resource allocation [4–8], where large
quantities of data are involved, and generation and processing of information is not centralized [9–13].

A distributed system is usually modeled as a network of computing agents connected in a definite
way. These agents can act as local processors or sensors, and have communication capabilities to
exchange information with each other. Precisely, the communication between agents is subject to
the constraints imposed by the network structure. The object of study of distributed optimization is
then to design algorithms that can be locally executed by the agents, and that exploit the network
communications to solve a network-wide global problem cooperatively [14,15].

Formally, we consider the optimization problem of minimizing the finite sum of m convex functions

min
x∈Rn

f(x) :=
m∑
i=1

fi(x), (1)

where each agent i = {1, 2, . . . ,m} in the network has access to the function fi only, and yet, we
seek that every agent cooperatively achieves a solution of (1).

In this paper, we consider the stochastic version of problem (1), when fi(x) = Ef̃i(x, ξ), and ξ is
a random variable. We provide an accelerated dual gradient method for this stochastic problem and
estimate the number of communication steps in the network and the number of stochastic oracle calls
in order to obtain a solution with high probability.

Optimal methods for distributed optimization over networks were recently proposed and analyzed [16,
17]. However, there were only studied for deterministic settings. In [18], the authors studied a primal-
dual method for stochastic problems. The setting of the latter paper is close to what we consider
as the primal approach, but our algorithm and analysis are different, and, unlike [18], we consider
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smooth primal problem. Other approaches for distributed stochastic optimization has been studied
in the literature [19, 20]. In contrast, we provide optimal communication complexities, as well as ex-
plicit dependency on the network topology. We want to mention that primal approaches were recently
studied in [21,22].

Notation: We define the maximum eigenvalue and minimal non-zero eigenvalue of a symmetric matrix
W as λmax(W ) and λ+

min(W ) respectively, and define the condition number of matrix W as χ(W ).
We denote by 1m the vector of ones in Rm. Denoting by ‖ · ‖2 the standard Euclidean norm, we
say that a function f is M -Lipschitz if ‖∇f(x)‖2 ≤ M , a function f is L-smooth if ‖∇f(x) −
∇f(y)‖2 ≤ L‖x − y‖2, a function f is µ-strongly convex (µ-s.c.) if, for all x, y ∈ Rn, f(y) ≥
f(x)+ 〈∇f(x), y−x〉+ µ

2
‖x−y‖2

2. Given β ∈ (0, 1), we denote ρβ = 1+ln(1/β)+
√

ln(1/β).

2 Dual distributed approaches

In this section, we follow [16, 17, 23, 24] and use primal-dual accelerated gradient methods [25–29],
and use a dual formulation of the distributed optimization problem to design a class of optimal algo-
rithms that can be executed over a network. Consider a network of m agents whose interactions are
represented by a connected and undirected graph G = (V,E) with the set V of m vertices and the
set of edges E = {(i, j) : i, j ∈ V }. Thus, agent i can communicate with agent j if and only if
(i, j) ∈ E. Assume that each agent i has its own vector vector y0

i ∈ Rn, and its goal is to find an
approximation to the vector y∗ = 1

m

∑m
i=1 y

0
i by performing communications with neighboring agents.

To do this, consider the Laplacian of the graph G, to be defined as a matrix W̄ with entries,

[W̄ ]ij =


−1, if (i, j) ∈ E,
deg(i), if i = j,

0, otherwise,

where deg(i) is the degree of vertex i (i.e., the number of neighboring nodes). Let us denote W =
W̄ ⊗ In, where ⊗ denotes Kronecker product and In is the unit matrix.

First, we present the dual formulation of the distributed optimization problem for the deterministic case,
and then we develop our novel analysis for the case of stochastic dual oracles.

We assume that for all i = 1, . . . ,m function fi can be represented as the Fenchel-Legendre trans-
form

fi(x) = max
y∈Rn
{〈y, x〉 − ϕi(y)}.

Thus, we rewrite the problem (1) as follows

max
x1,...,xm∈Rn,
x1=···=xm

−F (x) : = −
m∑
i=1

fi(xi)

= max
x1,...,xm∈Rn,√

Wx=0

−
m∑
i=1

fi(xi), (2)

where x = [x1, . . . , xm]T ∈ Rnm is the stacked column vector.

Then, we introduce the Lagrangian dual problem to problem (2) with dual variables
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y = [yT1 , · · · , yTm]T ∈ Rmn as

min
y∈Rmn

max
x∈Rnm

m∑
i=1

(
〈yi, [
√
Wx]i〉 − fi(xi)

)
= min

y∈Rmn
ψ(y) := ϕ(

√
Wy) :=

m∑
i=1

ϕi([
√
Wy]i), (3)

where we used the notations [
√
Wx]i and [

√
Wy]i for describing the i-th n-dimensional block

of vectors
√
Wx and

√
Wy respectively, and also we used the equality

∑m
i=1〈yi, [

√
Wx]i〉 =∑m

i=1〈[
√
Wy]i,xi〉.

Note that dealing with the dual problem does not oblige us to use dual oracle of∇ϕi. Indeed,

∇ϕ([
√
Wy]i) = [

√
Wx(

√
Wy)]i, (4)

where xi([Wy]i) = argmax
xi∈Rn

{
〈[
√
Wx]i, yi〉 − fi(xi)

}
. So we can use the primal oracle ∇fi to

solve this auxiliary subproblem and find an approximation to∇ϕi.
Making the change of variables ȳ :=

√
Wy and structure of Laplacian matrixW allows us to present

accelerated gradient method in a distributed manner for the dual problem.

Algorithm 1 Distributed Dual Algorithm

Input: Starting point λ̄0 = ȳ0 = ζ̄0 = x0 = 0, number of iterations N , C0 = α0 = 0.
1: Each agent i do
2: for k = 0, . . . , N − 1 do
3: αk+1 = k+2

4L
, Ak+1 =

∑k+1
i=1 αi

4: λ̄k+1
i = (αk+1ζ̄

k
i + Akȳ

k
i )/Ak+1.

5: ζ̄k+1
i = ζ̄ki − αk+1

∑m
j=1Wijxj(λ̄

t
j).

6: ȳk+1
i = (αk+1ζ̄

k+1
i + Akȳ

k
i )/Ak+1.

7: xNi = 1
AN

∑N
k=0 αkxi(λ̄

k
i ).

Output: xN , ȳN .

Theorem 1. Let ε > 0 be a desired accuracy and assume that ‖∇F (x∗)‖2 = MF and that the
primal objective in (2) is µ-strongly convex. Then the sequences xN and yN generated by Algorithm
1 after N = O

(√
(M2

F/µε)χ(W )
)

iterations and oracle calls of dual function ∇ϕi per node i =
1, . . .m satisfy the following condition F (xN) + ψ(ȳN) ≤ ε

Next, we focus on the case where we only have access to the stochastic dual oracle.

2.1 Dual Approach with Stochastic Dual Oracle

In this section we will assume that the dual function ϕ(y)
def
= maxx∈Rmn {〈y,x〉 − F (x)} could be

represented as an expectation of differentiable in y functions ϕ(y, ξ), i.e. ϕ(y) = Eξ [ϕ(y, ξ)]. It

implies that ϕ(
√
Wy)

def
= ψ(y) = Eξ[ψ(y, ξ)], where ψ(y, ξ)

def
= ϕ(

√
Wy, ξ). Next we introduce

F (x, ξ) in such a way that the following relation holds:

ψ(y, ξ) = max
x∈Rnm

{
〈y,
√
Wx〉 − F (x, ξ)

}
.
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Note that for x(
√
Wy, ξ)

def
= argmaxx∈Rnm

{
〈y,
√
Wx〉 − F (x, ξ)

}
Demyanov–Danskin’s theo-

rem [30] states that ∇ψ(y, ξ) =
√
Wx(

√
Wy, ξ) where the gradient is taken with respect the first

variable. Finally, our definitions give us new relations: x(
√
Wy) = Eξ[x(

√
Wy, ξ)] and ∇ψ(y) =

Eξ[∇ψ(y, ξ)], where x(y)
def
= argmaxx∈Rnm {〈y,x〉 − F (x)} = ∇ϕ(y) and the last equality is

again due to Demyanov-Danskin theorem.

We suppose that ψ(y) is known only through the stochastic first-order oracle ∇ψ(y, ξ), satisfying
the following assumption for all y ∈ Rnm1:

Eξ exp
(
‖x(y, ξ)− x(y)‖2

2/σ
2
x

)
≤ exp(1).

Note that this implies

Eξ exp
(
‖∇ψ(y, ξ)−∇ψ(y)‖2

2/σ
2
ψ

)
≤ exp(1).

for all y ∈ Rnm, where σ2
ψ = λmax(W )σ2

x.

We assume that the function ψ is Lψ-smooth. If, the primal objective is µ-strongly convex, then Lψ ≤
λmax(W )/µ. Moreover, we assume that we can construct an approximation for∇ψ(y) using batches
of size r in the following form:

∇rψ(y, {ξi}ri=1) =
1

r

r∑
i=1

∇ψ(y, ξi) (5)

and, similarly,

x(
√
Wy, {ξi}ri=1) =

1

r

r∑
i=1

x(
√
Wy, ξi).

Theorem 2. Assume that F is µ-strongly convex and ‖∇F (x∗)‖2 = MF . Let ε > 0 be a de-
sired accuracy. Assume that at each iteration of Algorithm 2 the approximation for ∇ψ(y) is chosen
according to (5) with batch size rk = Ω

(
max

{
1, σ2

ψαk ln(N/δ)/ε
})

. Assume additionally that
F is LF -Lipschitz continuous on the set BRF (0) = {x ∈ Rnm | ‖x‖2 ≤ RF} where RF =

Ω
(

max
{
Ry

AN

√
6C2H

λmax(W )
, λmax(

√
W )JRy

µ
, Rx

})
, Ry is such that ‖y∗‖2 ≤ Ry, y∗ being an optimal

solution of the dual problem and Rx = ‖x(
√
Wy∗)‖2. Then, after N = Õ

(√
(M2

F/µε)χ(W )
)

iterations, the outputs xN and yN of Algorithm 2 satisfy

F (xN)− F (x∗) ≤ ε, ‖
√
WxN‖2 ≤ ε/Ry (10)

with probability at least 1− 4δ, where δ ∈ (0, 1/4), ln(N/δ) ≥ 3.

Moreover, the number of stochastic oracle calls for the dual function∇ϕi per node i = 1, . . .m is

O

max

 σ2
ψM

2
F

ε2λ+
min(W )

ln

1

δ

√
M2
F

µε
χ(W )

 ,

√
M2
F

µε
χ(W )




To prove the theorem we first state a number of technical lemmas.

1We believe that the light-tail assumption can be relaxed to a more general setting [31].
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Algorithm 2 Dual Stochastic Algorithm

Input: Starting point λ0 = y0 = ζ0 = x0 = 0, number of iterations N , C0 = α0 = 0,
1: for k = 0, . . . , N − 1 do
2: Ak+1 = Ak + αk+1 = 2Lψα

2
k+1 (6)

3:

λk+1 = (αk+1ζ
k + Aky

k)/Ak+1. (7)

4: Calculate∇rk+1ψ(λk+1, {ξs}rk+1

s=1 ) according to (5) with batch size

rk+1 = O
(
max

{
1, σ2

ψαk+1 ln(N/δ)/ε
})

5:

ζk+1 = ζk − αk+1∇rk+1ψ(λk+1, {ξs}rk+1

s=1 ). (8)

6:

yk+1 = (αk+1ζ
k+1 + Aky

k)/Ak+1. (9)

7: Set xN = 1
AN

∑N
k=0 αkx(

√
Wλk, {ξi}rki=1).

Output: xN , yN .

Lemma 3. For the sequence αk+1 defined in (6) we have for all k ≥ 0

αk+1 ≤ α̃k+1
def
=
k + 2

2Lψ
. (11)

Lemma 4. Let A,B, and {ri}Ni=0 be non-negative numbers such that for all l = 1, . . . , N

1

2
r2
l ≤ Ar2

0 +B
r0

N

√√√√ l−1∑
k=0

(k + 2)r2
k. (12)

Then rl ≤ Cr0, where C is such positive number that C2 ≥ max{1, 2A+ 2BC}.

The proof of the Lemma is followed from induction.

Lemma 5. Let the sequences of non-negative numbers {αk}k≥0, random non-negative variables
{Rk}k≥0 and random vectors {ηk}k≥0 and {ak}k≥0 for all l = 1, . . . , N satisfy

1

2
R2
l ≤ A+ u

l−1∑
k=0

αk+1〈ηk+1, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk+1‖2

2 (13)

where A is deterministic non-negative number, ‖ak‖2 ≤ dR̃k, d ≥ 1 is some positive deterministic
constant and R̃k = max{R̃k−1, Rk} for all k ≥ 1, R̃0 = R0, R̃k depends only on η0, . . . , η

k.
Moreover, assume, vector ak is a function of η0, . . . , ηk−1 ∀k ≥ 1, a0 is a deterministic vector, and
∀k ≥ 0,

E
[
ηk | {ηj}k−1

j=0

]
= 0,

E
[
exp

(
‖ηk‖2

2σ
−2
k

)
| {ηj}k−1

j=0

]
≤ exp(1), (14)
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αk+1 ≤ α̃k+1 = D(k + 2), σ2
k ≤ (Cε)/(α̃k+1 ln(N/δ)) for some D,C > 0, ε > 0. If additionally

ε ≤ HR2
0/N

2, then with probability at least 1− 2δ the inequalities

R̃l ≤ JR0 and (15)

u
l−1∑
k=0

αk+1〈ηk+1, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk+1‖2

2

≤
(

24cCDH + udC1

√
CDHJg(N)

)
R2

0 (16)

hold ∀l = 1, . . . , N simultaneously. Here C1 is some positive constant, g(N) =
(

ln (N/δ) +
ln ln (B/b)

)
/ln (N/δ),

B = 2d2CDHR2
0

(
2A+ udR̃2

0

+12CDε (2c+ ud)N(N + 3)
)

(2ud)N ,

b = σ2
0α̃

2
1d

2R̃2
0 and

J = max
{

1, udC1

√
CDHg(N)

+
√
u2d2C2

1CDHg(N) + 2A
R2

0
+ 48cCDH

}
.

2.2 Example: Computation of Wasserstein Barycenters

It may seem that the problem with dual stochastic oracle is artificial. Next, we present the regularized
Wasserstein barycenter problem [32–35], which is a recent example of a function with stochastic dual
oracle,

min
p∈Sn(1)

m∑
i=1

Wµ,qi(p), (17)

whereWµ,qi(p) = min
π1=p,πT 1=q

π≥0

{〈C, π〉+ µ〈π lnπ〉} .

Here C is a transportation cost matrix, p, q are elements of standard probability simplex, logarithm of
a matrix is taken componentwise. Problem (17) is not easily tractable in the distributed setting since
cost of approximating of the gradient ofWµ,qi(p) requires to solve a large-scale minimization problem.
On the other hand, as it is shown in [32],

Wµ,qi(p) = max
u∈Rn

{
〈u, p〉 −W∗q,µ(u)

}
W∗q,µ(u) = µ

n∑
j=1

qj ln

(
1

qj

n∑
i=1

exp

(
−Cij + ui

µ

))
.

So, the conjugate function has an explicit expression and its gradient can be calculated explicitly.
Moreover, as the conjugate function has the form of finite-sum, we can use randomization and take a
component i with probability qi. As a corollary of our general Theorem 2, we obtain
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Corollary 6. Taking the batch size rk = O
(
(σ2

ψαk ln(N/β)/εµ)
)
, where σ2

ψ = mλmax(W ) after

N = O
(√

(M2
F/µε)χ(W )

)
iterations the following holds for the output pN of Algorithm 2 with

probability at least 1− 4δ, where δ ∈ (0, 1/4) is such that (1 +
√

ln(1/δ))/
√

ln(N/δ) ≤ 2.

m∑
i=1

Wµ,qi(p
N
i )−

m∑
i=1

Wµ,qi(p
∗) ≤ ε, ‖

√
WpN‖2 ≤ ε/Ry.

Moreover, the total complexity per node is

O

nmax

mM2
F

ε2
χ ln

1

δ

√
M2
F

µε
χ

 ,

√
M2
F

µε
χ


 ,

where MF
2 = 2nm‖C‖2

∞ [33] and χ = χ(W ) .

3 Conclusion

We consider primal-dual distributed accelerated gradient method for stochastic finite-sum minimiza-
tion. One of the key features of our analysis are large deviations bounds for the error of the algorithms.
Moreover, we show that the proposed method has optimal communication complexity, up to logarith-
mic factors. For the proposed method we provide an explicit oracle and communication complexity
analysis. We illustrate the dual approach by the Wasserstein barycenter problem. As a future work
we consider extending these results for different classes of problems, i.e., non-smooth and/or also
strongly convex problems.

Acknowledgements: We are grateful to A. Nemirovski for fruitful discussions.
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4 Appendix

4.1 Auxiliary results

In this subsection, we present the results from other papers that we rely on in our proofs.

Lemma 7 (Lemma 2 from [36]). For random vector ξ ∈ Rn following statements are equivalent up to
absolute constant difference in σ.

1 Tails: P {‖ξ‖2 ≥ γ} ≤ 2 exp
(
− γ2

2σ2

)
∀γ ≥ 0.

2 Moments: (E [ξp])
1
p ≤ σ

√
p for any positive integer p.

3 Super-exponential moment: E
[
exp

(
‖ξ‖22
σ2

)]
≤ exp(1).

Lemma 8 (Corollary 8 from [36]). Let {ξk}Nk=1 be a sequence of random vectors with values in Rn

such that for k = 1, . . . , N and for all γ ≥ 0

E [ξk | ξ1, . . . , ξk−1] = 0, E [‖ξk‖2 ≥ γ | ξ1, . . . , ξk−1] ≤ exp

(
− γ2

2σ2
k

)
almost surely,

where σ2
k belongs to the filtration σ(ξ1, . . . , ξk−1) for all k = 1, . . . , N . Let SN =

N∑
k=1

ξk. Then there

exists an absolute constant C1 such that for any fixed δ > 0 and B > b > 0 with probability at least
1− δ:

either
N∑
k=1

σ2
k ≥ B or ‖SN‖2 ≤ C1

√√√√max

{
N∑
k=1

σ2
k, b

}(
ln

2n

δ
+ ln ln

B

b

)
.

Lemma 9 (corollary of Theorem 2.1, item (ii) from [37]). Let {ξk}Nk=1 be a sequence of random vectors
with values in Rn such that

E [ξk | ξ1, . . . , ξk−1] = 0 almost surely, k = 1, . . . , N

and let SN =
N∑
k=1

ξk. Assume that the sequence {ξk}Nk=1 satisfy “light-tail” assumption:

E
[
exp

(
‖ξk‖2

2

σ2
k

)
| ξ1, . . . , ξk−1

]
≤ exp(1) almost surely, k = 1, . . . , N,

where σ1, . . . , σN are some positive numbers. Then for all γ ≥ 0

P

‖SN‖ ≥ (√2 +
√

2γ
)√√√√ N∑

k=1

σ2
k

 ≤ exp

(
−γ

2

3

)
. (18)
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4.2 Proof of Theorem 1

For Algorithm 1 the following holds

F (xN) + ϕ(ȳN) ≤
LψR

2
ȳ

N2
,

whereRȳ is such that ‖ȳ∗‖ ≤ Rȳ is the radius of the solution. As it follows from [18],Rȳ can be taken
as R2

ȳ = ‖∇F (x∗)‖22/λ+min(W ). Since the Lipschitz constant for the dual function ψ is Lψ = λmax(W )/µ,
we get the statement of the theorem.

4.3 Proof of Theorem 2

The proof includes several steps. We start with the proofs of the technical lemmas. For convenience
we repeat statements of lemmas again.

Lemma 10. For the sequence αk+1 defined in (6) we have for all k ≥ 0

αk+1 ≤ α̃k+1
def
=
k + 2

2Lψ
. (19)

Proof. We prove (19) by induction. For k = 0 equation (6) gives us α1 = 2Lψα
2
1 ⇐⇒ α1 = 1

2Lψ
.

Next we assume that (19) holds for all k ≥ l − 1 and prove it for k = l:

2Lψα
2
l+1

(6)
=

l+1∑
i=1

αi
(11)
≤ αl+1 +

1

2Lψ

l∑
i=1

(i+ 1) = αl+1 +
l(l + 3)

4Lψ
.

This quadratic inequality implies that αk+1 ≤ 1+
√

4k2+12k+1
4Lψ

≤ 1+
√

(2k+3)2

4Lψ
≤ 2k+4

4Lψ
= k+2

2Lψ
.

Lemma 11. Let A,B, and {ri}Ni=0 be non-negative numbers such that for all l = 1, . . . , N

1

2
r2
l ≤ Ar2

0 +B
r0

N

√√√√ l−1∑
k=0

(k + 2)r2
k. (20)

Then
rl ≤ Cr0, (21)

where C is such positive number that C2 ≥ max{1, 2A + 2BC}, i.e. one can choose C =
max{1, B +

√
B2 + 2A}.

Proof. We prove (21) by induction. For l = 0 the inequality rl ≤ Cr0 trivially follows since C ≥ 1.
Next we assume that (21) holds for some l < N and prove it for l + 1:

rl+1

(20)
≤
√

2

√√√√√Ar2
0 +B

r0

N

√√√√ l∑
k=0

(k + 2)r2
k

(21)
≤ r0

√
2

√√√√√A+
BC

N

√√√√ l∑
k=0

(k + 2)

= r0

√
2

√
A+

BC

N

√
(l + 1)(l + 2)

2
≤ r0

√
2

√
A+

BC

N

√
N(N + 1)

2
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≤ r0

√
2A+ 2BC︸ ︷︷ ︸
≤C

≤ Cr0.

Lemma 12. Let the sequences of non-negative numbers {αk}k≥0, random non-negative variables
{Rk}k≥0 and random vectors {ηk}k≥0 and {ak}k≥0 for all l = 1, . . . , N satisfy

1

2
R2
l ≤ A+ u

l−1∑
k=0

αk+1〈ηk+1, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk+1‖2

2 (22)

where A is deterministic non-negative number, ‖ak‖2 ≤ dR̃k, d ≥ 1 is some positive deterministic
constant and R̃k = max{R̃k−1, Rk} for all k ≥ 1, R̃0 = R0, R̃k depends only on η0, . . . , η

k.
Moreover, assume, vector ak is a function of η0, . . . , ηk−1 ∀k ≥ 1, a0 is a deterministic vector, and
∀k ≥ 0,

E
[
ηk | {ηj}k−1

j=0

]
= 0, E

[
exp

(
‖ηk‖2

2σ
−2
k

)
| {ηj}k−1

j=0

]
≤ exp(1), (23)

αk+1 ≤ α̃k+1 = D(k+ 2), σ2
k ≤ Cε

α̃k+1 ln(N/δ)
for some D,C > 0, ε > 0. If additionally ε ≤ HR2

0/N2,
then with probability at least 1− 2δ the inequalities

R̃l ≤ JR0 and (24)

u
l−1∑
k=0

αk+1〈ηk+1, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk+1‖2

2 ≤
(

24cCDH + udC1

√
CDHJg(N)

)
R2

0 (25)

hold ∀l = 1, . . . , N simultaneously. Here C1 is some positive constant, g(N) = ln(N/δ)+ln ln(B/b)
ln(N/δ)

,

B = 2d2CDHR2
0

(
2A+ udR̃2

0 + 12CDε (2c+ ud)N(N + 3)
)

(2ud)N ,

b = σ2
0α̃

2
1d

2R̃2
0 and

J = max

{
1, udC1

√
CDHg(N) +

√
u2d2C2

1CDHg(N) +
2A

R2
0

+ 48cCDH

}
.

Proof. We start with applying Cauchy-Schwartz inequality to the second term in the right-hand side of
(13):

1

2
R2
l ≤ A+ ud

l−1∑
k=0

αk+1‖ηk‖2R̃k + c
l−1∑
k=0

α2
k+1‖ηk‖2

2,

≤ A+
ud

2

l−1∑
k=0

R̃2
k +

(
c+

ud

2

) l−1∑
k=0

α̃2
k+1‖ηk‖2

2. (26)

The idea of the proof is as following: estimate R2
N roughly, then apply Lemma 8 in order to estimate

second term in the last row of (22) and after that use the obtained recurrence to estimate right-hand
side of (22).
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Using Lemma 9 we get that with probability at least 1− δ
N

‖ηk‖2 ≤
√

2

(
1 +

√
3 ln

N

δ

)
σk ≤

√
2

(
1 +

√
3 ln

N

δ

) √
Cε√

α̃k+1 ln
(
N
δ

)
=

 1√
α̃k+1 ln

(
N
δ

) +

√
3

α̃k+1

√2Cε ≤ 2

√
3

α̃k+1

√
2Cε, (27)

where in the last inequality we use ln N
δ
≥ 3. Using union bound we get that with probability≥ 1− δ

the inequality

1

2
R2
l ≤ A+

ud

2

l−1∑
k=0

R̃2
k + 24Cε

(
c+

ud

2

) l−1∑
k=0

α̃k+1

≤ A+
ud

2

l−1∑
k=0

R̃2
k + 24CDε

(
c+

ud

2

) l−1∑
k=0

(k + 2)

≤ A+
ud

2

l−1∑
k=0

R̃2
k + 12CDε

(
c+

ud

2

)
l(l + 3)

holds for all l = 1, . . . , N simultaneously. Note that the last row in the previous inequality is non-
decreasing function of l. If we define l̂ as the largest integer such that l̂ ≤ l and R̃l̂ = Rl̂, we will get

that Rl̂ = R̃l̂ = R̃l̂+1 = . . . = R̃l and, as a consequence, with probability ≥ 1− δ

1

2
R̃2
l ≤ A+

ud

2

l̂−1∑
k=0

R̃2
k + 12CDε

(
c+

ud

2

)
l̂(l̂ + 3)

≤ A+
ud

2

l−1∑
k=0

R̃2
k + 12CDε

(
c+

ud

2

)
l(l + 3), ∀l = 1, . . . , N.

Therefore, we have that with probability ≥ 1− δ

R̃2
l ≤ 2A+ ud

l−1∑
k=0

R̃2
k + 12CDε (2c+ ud) l(l + 3)

≤ 2A (1 + ud)︸ ︷︷ ︸
≤2ud

+ (ud+ u2d2)︸ ︷︷ ︸
≤2u2d2

l−2∑
k=0

R̃2
k + 12CDε(2c+ ud) (l(l + 3) + ud(l − 1)(l + 2))︸ ︷︷ ︸

≤2udl(l+3)

≤ 2ud

(
2A+ ud

l−2∑
k=0

R̃2
k + 12CDε (2c+ ud) l(l + 3)

)
, ∀l = 1, . . . , N.

Unrolling the recurrence we get that with probability ≥ 1− δ

R̃2
l ≤

(
2A+ udR̃2

0 + 12CDε (2c+ ud) l(l + 3)
)

(2ud)l, ∀l = 1, . . . , N.

We emphasize that it is very rough estimate, but we show next that such a bound does not spoil the
final result too much. It implies that with probability ≥ 1− δ

l−1∑
k=0

R̃2
k ≤ l

(
2A+ udR̃2

0 + 12CDε (2c+ ud) l(l + 3)
)

(2ud)l, ∀l = 1, . . . , N. (28)
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Next we apply delicate result from [36] which is presented in Section 4.1 as Lemma 8. We consider
random variables ξk = α̃k+1〈ηk, ak〉. Note that

E
[
ξk | ξ0, . . . , ξk−1

]
= α̃k+1

〈
E
[
ηk | η0, . . . , ηk−1

]
, ak
〉

= 0

and

E

[
exp

(
(ξk)2

σ2
kα̃

2
k+1d

2R̃2
k

)
| ξ0, . . . , ξk−1

]
≤ E

[
exp

(
α̃2
k+1‖ηk‖2

2d
2R̃2

k

σ2
kα̃

2
k+1d

2R̃2
k

)
| η0, . . . , ηk−1

]

= E
[
exp

(
‖ηk‖2

2

σ2
k

)
| η0, . . . , ηk−1

]
≤ exp(1)

due to Cauchy-Schwartz inequality and assumptions of the lemma. If we denote σ̂2
k = σ2

kα̃
2
k+1d

2R̃2
k

and apply Lemma 8 withB = 2d2CDHR2
0

(
2A+ udR̃2

0 + 12CDε (2c+ ud)N(N + 3)
)

(2ud)N

and b = σ̂2
0 , we get that for all l = 1, . . . , N with probability ≥ 1− δ

N

either
l−1∑
k=0

σ̂2
k ≥ B or

∣∣∣∣∣
l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

δ

)
+ ln ln

(
B

b

))
with some constant C1 > 0 which does not depend on B or b. Using union bound we obtain that with
probability ≥ 1− δ

either
l−1∑
k=0

σ̂2
k ≥ B or

∣∣∣∣∣
l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

δ

)
+ ln ln

(
B

b

))
and it holds for all l = 1, . . . , N simultaneously. Note that with probability at least 1− δ

l−1∑
k=0

σ̂2
k = d2

l−1∑
k=0

σ2
kα̃

2
k+1R̃

2
k ≤ d2

l−1∑
k=0

Cε

ln N
δ

α̃k+1R̃
2
k

≤ d2CDHR2
0

N2 ln N
δ

l−1∑
k=0

(k + 2)R̃2
k ≤

d2CDHR2
0

3N
· N + 1

N

l−1∑
k=0

R̃2
k

(28)
≤ d2CDHR2

0

N
l
(

2A+ udR̃2
0 + 12CDε (2c+ ud) l(l + 3)

)
(2ud)l

≤ B

2

for all l = 1, . . . , N simultaneously. Using union bound again we get that with probability at least
1− 2δ the inequality ∣∣∣∣∣

l−1∑
k=0

ξk

∣∣∣∣∣ ≤ C1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

δ

)
+ ln ln

(
B

b

))
(29)

holds for all l = 1, . . . , N simultaneously.

Note that we also proved that (27) is in the same event together with (29) and holds with probability
≥ 1− 2δ. Putting all together in (22), we get that with probability at least 1− 2δ the inequality

1

2
R̃2
l

(13)
≤ A+ u

l−1∑
k=0

αk+1〈ηk, ak〉+ c

l−1∑
k=0

α2
k+1‖ηk‖2

2
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(29)
≤ A+ uC1

√√√√ l−1∑
k=0

σ̂2
k

(
ln

(
N

δ

)
+ ln ln

(
B

b

))
+ 24cCε

l−1∑
k=0

α̃k+1

holds for all l = 1, . . . , N simultaneously. For brevity, we introduce new notation (neglecting constant
factor)

g(N) =
ln
(
N
δ

)
+ ln ln

(
B
b

)
ln
(
N
δ

) ≈ 1.

Using our assumption σ2
k ≤ Cε

α̃k+1 ln(Nδ )
and definition σ̂2

k = σ2
kα̃

2
k+1d

2R̃2
k we obtain that with proba-

bility at least 1− 2δ the inequality

1

2
R̃2
l ≤ A+ u

l−1∑
k=0

αk+1〈ηk, ak〉+ c

l−1∑
k=0

α2
k+1‖ηk‖2

2

≤ A+ 24cCε
l−1∑
k=0

α̃k+1 + udC1

√
Cεg(N)

√√√√ l−1∑
k=0

α̃k+1R̃2
k

≤ A+ 24cCDε
l−1∑
k=0

(k + 2) + udC1

√
CDεg(N)

√√√√ l−1∑
k=0

(k + 2)R̃2
k

≤ A+ 24cCD
HR2

0

N2

l(l + 1)

2
+ udC1

√
CD

HR2
0

N2
g(N)

√√√√ l−1∑
k=0

(k + 2)R̃2
k

≤
(
A

R2
0

+ 24cCDH

)
R2

0 +
udC1R0

N

√
CDHg(N)

√√√√ l−1∑
k=0

(k + 2)R̃2
k (30)

holds for all l = 1, . . . , N simultaneously. Next we apply Lemma 4 with A = A
R2

0
+ 24cCDH ,

B = udC1

√
CDHg(N), rk = R̃k and get that with probability at least 1− 2δ inequality

R̃l ≤ JR0

holds for all l = 1, . . . , N simultaneously with

J = max

{
1, udC1

√
CDHg(N) +

√
u2d2C2

1CDHg(N) +
2A

R2
0

+ 48cCDH

}
.

It implies that with probability at least 1− 2δ the inequality

A+ u
l−1∑
k=0

αk+1〈ηk, ak〉+ c
l−1∑
k=0

α2
k+1‖ηk‖2

2

≤
(
A
R2

0
+ 24cCDH

)
R2

0 +
udC1R2

0

N

√
CDHg(N)

√
l−1∑
k=0

(k + 2)J

≤ A+

(
24cCDH + udC1

√
CDHJg(N) 1

N

√
l(l+1)

2

)
R2

0

≤ A+
(

24cCDH + udC1

√
CDHJg(N)

)
R2

0

holds for all l = 1, . . . , N simultaneously.
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Lemma 13 (see also Theorem 1 from [38]). For each iteration of Algorithm 2 we have

ANψ(yN) ≤ 1

2
‖λ− ζ0‖2

2 −
1

2
‖λ− ζN‖2

2 (31)

+
N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1),λ− λk+1〉

)
+

N−1∑
k=0

Ak〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),yk − λk+1〉

+
N−1∑
k=0

Ak+1

2Lψ
‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2, (32)

where we use the following notation for the stochastic approximation of∇ψ(λ) according to (5)

∇Ψ(λk, ξk) := ∇rkψ(λk, {ξki }
rk
i=1), (33)

where ξk = (ξk1 , . . . , ξ
k
rk

).

Proof. The proof of this lemma follows a similar way as in the proof of Theorem 1 from [38]. We can
rewrite the update rule for ζk in the equivalent way:

ζk = argmin
λ∈Rn

{
αk+1〈∇Ψ(λk+1, ξk+1),λ− λk+1〉+

1

2
‖λ− ζk‖2

2

}
.

From the optimality condition we have that for all z ∈ Rn

〈ζk+1 − ζk + αk+1∇Ψ(λk+1, ξk+1),λ− ζk+1〉 ≥ 0. (34)

Using this we get

αk+1〈∇Ψ(λk+1, ξk+1), ζk − λ〉
= αk+1〈∇Ψ(λk+1, ξk+1), ζk − ζk+1〉+ αk+1〈∇Ψ(λk+1, ξk+1), ζk+1 − λ〉

(34)
≤ αk+1〈∇Ψ(λk+1, ξk+1), ζk − ζk+1〉+ 〈ζk+1 − ζk,λ− ζk+1〉.

One can check via direct calculations that

〈a, b〉 ≤ 1

2
‖a+ b‖2

2 −
1

2
‖a‖2

2 −
1

2
‖b‖2

2, ∀ a, b ∈ Rn.

Combining previous two inequalities we obtain

αk+1〈∇Ψ(λk+1, ξk+1), ζk − λ〉 ≤ αk+1〈∇Ψ(λk+1, ξk+1), ζk − ζk+1〉 − 1

2
‖ζk − ζk+1‖2

2

+
1

2
‖ζk − λ‖2

2 −
1

2
‖ζk+1 − λ‖2

2.

By definition of yk+1 and λk+1

yk+1 =
Aky

k + αk+1ζ
k+1

Ak+1

=
Aky

k + αk+1ζ
k

Ak+1

+
αk+1

Ak+1

(
ζk+1 − ζk

)
= λk+1+

αk+1

Ak+1

(
ζk+1 − ζk

)
.
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Together with previous inequality, it implies

αk+1〈∇Ψ(λk+1, ξk+1), ζk − λ〉 ≤ Ak+1〈∇Ψ(λk+1, ξk+1),λk+1 − yk+1〉

−
A2
k+1

2α2
k+1

‖λk+1 − yk+1‖2
2

+
1

2
‖ζk − λ‖2

2 −
1

2
‖ζk+1 − λ‖2

2

≤ Ak+1

(
〈∇Ψ(λk+1, ξk+1),λk+1 − yk+1〉 − 2Lψ

2
‖λk+1 − yk+1‖2

2

)
+

1

2
‖ζk − λ‖2

2 −
1

2
‖ζk+1 − λ‖2

2

= Ak+1

(
〈∇ψ(λk+1),λk+1 − yk+1〉 − 2Lψ

2
‖λk+1 − yk+1‖2

2

)
+Ak+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λk+1 − yk+1〉

+
1

2
‖ζk − λ‖2

2 −
1

2
‖ζk+1 − λ‖2

2.

From Fenchel-Young inequality 〈a, b〉 ≤ 1
2η
‖a‖2

2 + η
2
‖b‖2

2, a, b ∈ Rn, η > 0, we have

〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λk+1 − yk+1〉
≤ 1

2Lψ

∥∥∇Ψ(λk+1, ξk+1)−∇ψ(λk+1)
∥∥2

2
+

Lψ
2
‖λk+1 − yk+1‖2

2.

Using this, we get

αk+1〈∇Ψ(λk+1, ξk+1), ζk − λ〉

≤ Ak+1

(
〈∇ψ(λk+1),λk+1 − yk+1〉 − Lψ

2
‖λk+1 − yk+1‖2

2

)
+Ak+1

2Lψ

∥∥∇Ψ(λk+1, ξk+1)−∇ψ(λk+1)
∥∥2

2

+1
2
‖ζk − λ‖2

2 − 1
2
‖ζk+1 − λ‖2

2

≤ Ak+1

(
ψ(λk+1)− ψ(yk+1)

)
+ 1

2
‖ζk − λ‖2

2 − 1
2
‖ζk+1 − λ‖2

2

+Ak+1

2Lψ

∥∥∇Ψ(λk+1, ξk+1)−∇ψ(λk+1)
∥∥2

2
, (35)

where the last inequality follows from the Lψ-smoothness of ψ(y). From the convexity of ψ(y), we
have

〈∇Ψ(λk+1, ξk+1),yk − λk+1〉
= 〈∇ψ(λk+1),yk − λk+1〉+ 〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),yk − λk+1〉
≤ ψ(yk)− ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),yk − λk+1〉. (36)

By definition of λk+1 we have

αk+1

(
λk+1 − ζk

)
= Ak

(
yk − λk+1

)
. (37)

Putting all together, we get

αk+1〈∇Ψ(λk+1, ξk+1),λk+1 − λ〉
= αk+1〈∇Ψ(λk+1, ξk+1),λk+1 − ζk〉+ αk+1〈∇Ψ(λk+1, ξk+1), ζk − λ〉
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(37)
= Ak〈∇Ψ(λk+1, ξk+1),yk − λk+1〉+ αk+1〈∇Ψ(λk+1, ξk+1), ζk − λ〉

(35),(36)
≤ Ak

(
ψ(yk)− ψ(λk+1)

)
+ Ak〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),yk − λk+1〉

+Ak+1

(
ψ(λk+1)− ψ(yk+1)

)
+ 1

2
‖ζk − λ‖2

2 − 1
2
‖ζk+1 − λ‖2

2

+Ak+1

2Lψ

∥∥∇Ψ(λk+1, ξk+1)−∇ψ(λk+1)
∥∥2

2
.

Rearranging the terms and using Ak+1 = Ak + αk+1, we obtain

Ak+1ψ(yk+1)− Akψ(yk) ≤ αk+1

(
ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1),λ− λk+1〉

)
+ 1

2
‖ζk − λ‖2

2

−1
2
‖ζk+1 − λ‖2

2 + Ak+1

2Lψ

∥∥∇Ψ(λk+1, ξk+1)−∇ψ(λk+1)
∥∥2

2

+Ak〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),yk − λk+1〉,

and after summing these inequalities for k = 0, . . . , N − 1 we get

ANψ(yN) ≤ 1

2
‖λ− ζ0‖2

2 −
1

2
‖λ− ζN‖2

2

+
N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1),λ− λk+1〉

)
+

N−1∑
k=0

Ak〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),yk − λk+1〉

+
N−1∑
k=0

Ak+1

2Lψ
‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2,

where we use that A0 = 0.

Now, we are ready to prove our main result in Theorem 2 on the communication and oracle complexity
of Algorithm 2. For convenience we provide the statement of the theorem once again.

Theorem 14. Assume that F is µ-strongly convex and ‖∇F (x∗)‖2 = MF . Let ε > 0 be a de-
sired accuracy. Assume that at each iteration of Algorithm 2 the approximation for ∇ψ(y) is cho-
sen according to (5) with batch size rk = Ω

(
max

{
1, σ2

ψαk ln(N/δ)/ε
})

. Assume additionally that
F is LF -Lipschitz continuous on the set BRF (0) = {x ∈ Rnm | ‖x‖2 ≤ RF} where RF =

Ω
(

max
{
Ry

AN

√
6C2H

λmax(W )
, λmax(

√
W )JRy

µ
, Rx

})
, Ry is such that ‖y∗‖2 ≤ Ry, y∗ being an optimal

solution of the dual problem and Rx = ‖x(
√
Wy∗)‖2. Then, after N = Õ

(√
(M2

F/µε)χ(W )
)

iterations, the outputs xN and yN of Algorithm 2 satisfy

F (xN)− F (x∗) ≤ ε, ‖
√
WxN‖2 ≤

ε

Ry

(38)

with probability at least 1− 4δ, where δ ∈ (0, 1/4), ln(N/δ) ≥ 3. Moreover, the number of stochastic
oracle calls for the dual function∇ϕi per node i = 1, . . .m is

O

max

 σ2
ψM

2
F

ε2λ+
min(W )

ln

1

δ

√
M2

F

µε
χ(W )

 ,

√
M2

F

µε
χ(W )



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Proof. From Lemma 13 we have

ANψ(yN) ≤ 1

2
‖λ− ζ0‖2

2 −
1

2
‖λ− ζN‖2

2 (39)

+
N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1),λ− λk+1〉

)
+

N−1∑
k=0

Ak〈∇Ψ(λk+1 −∇ψ(λk+1, ξk+1),yk − λk+1〉

+
N−1∑
k=0

Ak+1

2Lψ
‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2. (40)

From definition of λk+1 (see (7)) we have

αk+1

(
λk+1 − ζk

)
= Ak

(
yk − λk+1

)
. (41)

Using this, we add and subtract
∑N−1

k=0 αk+1〈∇ψ(λk+1),λ∗−λk+1〉 in (40), and obtain by choosing
λ = λ∗

ANψ(yN) ≤ 1

2
‖λ∗ − ζ0‖2

2 −
1

2
‖λ∗ − ζN‖2

2 (42)

+
N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇ψ(λk+1),λ∗ − λk+1〉

)
+

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1), ak〉

+
N−1∑
k=0

α2
k+1‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2, (43)

where ak = λ∗ − ζk. From convexity of ψ we have∑N−1
k=0 αk+1

(
ψ(λk+1) + 〈∇ψ(λk+1),λ∗ − λk+1〉

)
≤
∑N−1

k=0 αk+1

(
ψ(λk+1) + ψ(λ∗)− ψ(λk+1)

)
= ψ(λ∗)

∑N−1
k=0 αk+1 = ANψ(λ∗) ≤ ANψ(yN)

From this and (43) we get

1

2
‖λ∗ − ζN‖2

2

(43)
≤ 1

2
‖λ∗ − ζ0‖2

2

+
N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1), ak〉

+
N−1∑
k=0

α2
k+1‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2. (44)

Next step we introduce sequences {Rk}k≥0 and {R̃k}k≥0 as follows

Rk = ‖ζk − λ∗‖2 and R̃k = max
{
R̃k−1, Rk

}
, R̃0 = R0.
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Since ζ0 = 0 in Algorithm 2, then R0 = Ry, where Ry is such that ‖λ∗‖2 ≤ Ry. One can obtain
by induction that ∀k ≥ 0 λk+1,yk, ζk ∈ BR̃k

(λ∗), where BR̃k
(λ∗) is Euclidean ball with radius

R̃k and center λ∗. Indeed, since from (9) yk+1 is a convex combination of ζk+1 ∈ BRk+1
(λ∗) ⊆

BR̃k+1
(λ∗) and yk ∈ BR̃k

(λ∗) ⊆ BR̃k+1
(λ∗), where we use the fact that a ball is a convex set, we

get yk+1 ∈ BR̃k+1
(λ∗). Analogously, since from (7) λk+1 is a convex combination of yk and ζk we

have λk+1 ∈ BR̃k
(λ∗). Using new notation we can rewrite (44) as

1

2
R2
N ≤ 1

2
R2

y +
N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1), ak〉

+
N−1∑
k=0

α2
k+1‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2, (45)

where ‖ak‖2 = ‖λ∗ − ζk‖2 ≤ R̃k.

Let us denote ηk+1 = ∇Ψ(λk+1, ξk+1) −∇ψ(λk+1). Theorem 2.1 from [37] (see Lemma 9 in the
Section 4.1) says that

P

‖ηk‖2 ≥
(√

2 +
√

2γ
)√ σ2

ψ

rk+1

| {ηj}k−1
j=0

 ≤ exp

(
−γ

2

3

)
.

Using this and Lemma 2 from [36] (see Lemma 7 in the Section 4.1) we get that

E
[
exp

(
‖ηk‖2

2

σ2
k

)
|{ηj}k−1

j=0

]
≤ exp(1),

where σ2
k ≤

C̃σ2
ψ

rk+1
≤ Cε

α̃k+1 ln(N
δ

)
, where α̃k+1 is defined in (19), C̃ and C are some positive constants.

Moreover, ak depends only on η0, . . . , ηk−1. Putting all together in (45) and changing the indices we
get, for all l = 1, ..., N ,

1

2
R2
l ≤

1

2
R2

y +
l−1∑
k=0

αk+1〈ηk+1, ak〉+
l−1∑
k=0

αk+1‖ηk+1‖2
2.

Next we apply the Lemma 5 with the constants A = 1
2
R2

0, u = 1, c = 1, D = 1
2L
, d = 1 and

using ε ≤ HLR2
0

N2 which holds for some positive constant H due to our choice of N , and get that with
probability at least 1− 2δ the inequalities

R̃l ≤ JRy and (46)
l−1∑
k=0

αk+1〈ηk, ak〉+
l−1∑
k=0

α2
k+1‖ηk‖2

2 ≤

(
12CH + C1

√
CHJg(N)

2

)
R2

y, (47)

hold for all l = 1, . . . , N simultaneously, whereC1 is some positive constant, g(N) =
ln(Nδ )+ln ln(Bb )

ln(Nδ )
,

B = CHR2
0

(
2R2

0 + 18C
L
εN(N + 3)

)
2N , b = σ2

0α̃
2
1R

2
0 and

J = max

{
1, C1

√
CHg(N)

2
+

√
C2

1CHg(N)

2
+ 1 + 24CH

}
.
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To estimate the duality gap we need again refer to (40). Since λ is chosen arbitrary we can take the
minimum in λ by the set B2Ry(0) = {λ : ‖λ‖2 ≤ 2Ry}

ANψ(yN)

≤ min
λ∈B2Ry (0)

{
1

2
‖λ− ζ0‖2

2 +
N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1),λ− λk+1〉

)}

+
N−1∑
k=0

Ak〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),yk − λk+1〉

+
N−1∑
k=0

Ak
2Lψ
‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2

(41)
≤ 2R2

y + min
λ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1),λ− λk+1〉

)
+

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λk+1 − ζk〉

+
N−1∑
k=0

Ak+1

2Lψ
‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2, (48)

where we also used 1
2
‖λ− ζN‖2

2 ≥ 0 and ζ0 = 0. By adding and subtracting∑N−1
k=0 αk+1〈∇ψ(λk+1),λ∗ − λk+1〉 under minimum in (48) we obtain

min
λ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇Ψ(λk+1, ξk+1),λ− λk+1〉

)
≤ min

λ∈B2Ry (0)

∑N−1
k=0 αk+1

(
ψ(λk+1) + 〈∇ψ(λk+1),λ− λk+1〉

)
+ max

λ∈B2Ry (0)

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λ〉

+
N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),−λk+1〉.

Since −λ∗ ∈ B2Ry(0) we have that

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),−λk+1〉 (49)

=
N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λ∗ − λk+1〉

+
N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),−λ∗〉

≤
N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λ∗ − λk+1〉

+ max
λ∈B2Ry (0)

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λ〉.
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Putting all together in (48) and using (6) we get

ANψ(yN) ≤ 2R2
y + min

λ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇ψ(λk+1),λ− λk+1〉

)
+2 max

λ∈B2Ry (0)

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λ〉

+
N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1), ak〉

+
N−1∑
k=0

α2
k+1‖∇ψ(λk+1)−∇Ψ(λk+1, ξk+1)‖2

2, (50)

where ak = λ∗ − ζk. From (47) we have that with probability at least 1− 2δ the following inequality
holds:

ANψ(yN) ≤ min
λ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇ψ(λk+1),λ− λk+1〉

)
+2 max

λ∈B2Ry (0)

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λ〉

+2R2
y+

(
12CH + C1

√
CHJg(N)

2

)
R2

y. (51)

By the definition of the norm we get

max
λ∈B2Ry (0)

N−1∑
k=0

αk+1〈∇Ψ(λk+1, ξk+1)−∇ψ(λk+1),λ〉

≤ 2Ry

∥∥∥∥N−1∑
k=0

αk+1(∇Ψ(λk+1, ξk+1)−∇ψ(λk+1)

∥∥∥∥
2

. (52)

Next we apply Lemma 9 to the r.h.s of previous inequality and get

P

{∥∥∥∑N−1
k=0 αk+1(∇Ψ(λk+1, ξk+1)−∇ψ(λk+1)

∥∥∥
2
≥
(√

2 +
√

2γ
)√N−1∑

k=0

α2
k+1

σ2
ψ

rk+1

}
≤ exp

(
−γ2

3

)
.

Since N2 ≤ HLψR
2
0

ε
and rk = Ω

(
max

{
1,

σ2
ψαk ln(N/δ)

ε

})
one can choose such C2 > 0 that

σ2
ψ

rk
≤ C2ε

αk ln(Nδ )
≤ HLψC2R2

0

αkN2 ln(Nδ )
. Let us choose γ such that exp

(
−γ2

3

)
= δ : γ =

√
3 ln(1/δ). From

this we get that with probability at least 1− δ∥∥∥∑N−1
k=0 αk+1(∇Ψ(λk+1, ξk+1)−∇ψ(λk+1))

∥∥∥
2
≤
√

2
(

1 +
√

ln 1
δ

)
Ry

√
HLψC2

ln(Nδ )

√
N−1∑
k=0

αk+1

N2

(11)
≤ 2
√

2Ry

√
HLψC2

√
N−1∑
k=0

k+2
2LψN2 = 2Ry

√
HC2

√
N(N+3)
N2
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≤ 4Ry

√
C2. (53)

Putting all together and using union bound we get that with probability at least 1− 3δ

ANψ(yN)
(51)+(52)+(53)
≤ min

λ∈B2Ry (0)

N−1∑
k=0

αk+1

(
ψ(λk+1) + 〈∇ψ(λk+1),λ− λk+1〉

)
+

(
8
√
HC2 + 2 + 12CH + C1

√
CHJg(N)

2

)
R2
y. (54)

This brings us to the final part of the proof. Firstly, by definition of ψ(λk) and Demyanov–Danskin’s
theorem we have

ψ(λk)− 〈∇ψ(λk),λk〉 = 〈λk,
√
Wx(

√
Wλk)〉 − F (x(

√
Wλk))− 〈∇ψ(λk),λk〉

= −F (x(
√
Wλk)).

Summing up this equality for k = 1, . . . , N with weights αk and using convexity of F we get

N−1∑
k=0

αk+1(ψ(λk+1)− 〈∇ψ(λk+1),λk+1〉) = −AN
N−1∑
k=0

αk+1

AN
F (x(

√
Wλk+1))

≤ −ANF

(
N−1∑
k=0

αk+1

AN
x(
√
Wλk+1)

)
= −ANF (x̂N), (55)

where x̂N
def
= 1

AN

∑N−1
k=0 αk+1x(

√
Wλk+1). Secondly, by definition of the norm

min
λ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
∇ψ(λk+1),λ

〉
= min

λ∈B2Ry (0)

〈
N−1∑
k=0

αk+1∇ψ(λk+1),λ

〉

= −2RyAN

∥∥∥∥∥ 1

AN

N−1∑
k=0

αk+1∇ψ(λk+1)

∥∥∥∥∥
2

= −2RyAN

∥∥∥∥∥ 1

AN

N−1∑
k=0

αk+1

√
Wx(

√
Wλk+1)

∥∥∥∥∥
2

= −2RyAN‖
√
W x̂N‖2. (56)

Combining inequalities (54), (55) and (56) we obtain that with probability at least 1− 3δ

ANψ(yN)
(54)
≤

N−1∑
k=0

αk+1(ψ(λk+1)− 〈∇ψ(λk+1),λk+1〉) + min
λ∈B2Ry (0)

N−1∑
k=0

αk+1

〈
∇ψ(λk+1),λ

〉
+

(
8
√
HC2 + 2 + 12CH + C1

√
CHJg(N)

2

)
R2
y

(55)+(56)
≤ −ANF (x̂N)− 2RyAN‖

√
W x̂N‖2

+

(
8
√
HC2 + 2 + 12CH + C1

√
CHJg(N)

2

)
R2
y. (57)
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Lemma 9 states that for all γ > 0

P

{∥∥∥∑N−1
k=0 αk+1

(
x(
√
Wλk+1, ξk+1)− x(

√
Wλk+1)

)∥∥∥
2
≥ (
√

2 +
√

2γ)

√
N−1∑
k=0

α2
k+1σ

2
x

rk+1

}
≤ exp

(
−γ2

3

)
.

Taking γ =
√

3 ln 1
δ

and using rk ≥
σ2
ψαk ln N

δ

C2ε
we get that with probability at least 1− δ

‖xN − x̂N‖2 =
1

AN

∥∥∥∥∥
N−1∑
k=0

αk+1

(
x(
√
Wλk+1, ξk+1)− x(

√
Wλk+1)

)∥∥∥∥∥
2

≤
√

2

AN

(
1 +

√
3 ln

1

δ

)√√√√N−1∑
k=0

α2
k+1σ

2
x

r2
k+1

≤ 2

AN

√
6 ln

1

δ

1√
ln N

δ

√√√√N−1∑
k=0

C2αk+1ε

λmax(W )

≤ 2

AN

√
6C2

λmax(W )

√√√√N−1∑
k=0

(k + 2)HLψR2
y

2LψN2
≤ 2Ry

AN

√
6C2H

λmax(W )
. (58)

It implies that with probability at least 1− δ

‖
√
WxN −

√
W x̂N‖2 ≤ ‖

√
W‖2 · ‖xN − x̂N‖2

(58)
≤

√
λmax(W )

2Ry

AN

√
6C2H

λmax(W )
=

2Ry

AN

√
6C2H (59)

and due to triangle inequality with probability ≥ 1− δ

2RyAN‖
√
W x̂N‖2 ≥ 2RyAN‖

√
WxN‖2 − 2RyAN‖

√
W x̂N −

√
WxN‖2

(59)
≥ 2RyAN‖

√
WxN‖2 − 4R2

y

√
6C2H. (60)

Now we want to apply Lipschitz-continuity of F on the ball BRF (0) and specify our choice of RF . Re-

call that x(λ)
def
= argmaxx∈Rnm {〈λ,x〉 − F (x)} and due to Demyanov-Danskin theorem x(λ) =

∇ϕ(λ). Together with Lϕ-smoothness of ϕ it implies that

‖x(
√
Wλk+1)‖2 = ‖∇ϕ(

√
Wλk+1)‖2

≤ ‖∇ϕ(
√
Wλk+1)−∇ϕ(

√
Wy∗)‖2 + ‖∇ϕ(

√
Wy∗)‖2

≤ Lϕ‖
√
Wλk+1 −

√
Wy∗‖2 + ‖x(

√
Wy∗)‖2

≤ λmax(
√
W )

µ
‖λk+1 − y∗‖2 +Rx
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From this and (46) we get that with probability at least 1− 2δ the inequality

‖x(
√
Wλk+1)‖2

(46)
≤

(
λmax(

√
W )J

µ
+
Rx

Ry

)
Ry (61)

holds for all k = 0, 1, 2, . . . , N − 1 simultaneously since λk+1 ∈ BRk(y
∗) ⊆ BR̃k+1

(y∗). Using the
convexity of the norm we get that with probability at least 1− 2δ

‖x̂N‖2 ≤
1

AN

N−1∑
k=0

αk+1‖x(
√
Wλk+1)‖2

(61)
≤

(
λmax(

√
W )J

µ
+
Rx

Ry

)
Ry. (62)

We notice that the last inequality lies in the same probability event when (46) holds.

Consider the probability eventE = {inequalities (57)−(62) hold simultaneously}. Using union bound
we get that P{E} ≥ 1− 4δ. Combining (58) and (62) we get that inequality

‖xN‖2 ≤ ‖xN − x̂N‖2 + ‖x̂N‖2 ≤

(
2

AN

√
6C2H

λmax(W )
+
λmax(

√
W )J

µ
+
Rx

Ry

)
Ry (63)

lies in the event E. Here we can specify our choice of RF : RF should be at least(
2

AN

√
6C2H

λmax(W )
+
λmax(

√
W )J

µ
+
Rx

Ry

)
Ry.

Then we get that the fact that points xN and x̂N lie in BRF (0) is a consequence of E. Therefore, we
can apply Lipschitz-continuity of F for the points xN and x̂N and get that inequalities

|F (x̂N)− F (xN)| ≤ LF‖x̂N − xN‖2

(58)
≤ 2LFRy

AN

√
6C2H

λmax(W )
(64)

and

ANF (x̂N) = ANF (xN) + AN
(
F (x̂N)− F (xN)

) (64)
≥ ANF (xN)− 2LFRy

√
6C2H

λmax(W )
(65)

also lie in the event E. It remains to use inequalities (60) and (65) to bound first and second terms in
the right hand side of inequality (57) and obtain that with probability at least 1− 4δ

ANψ(yN) + ANF (xN) + 2RyAN‖
√
WxN‖2

≤

(
4
√

6C2H +
2LF
Ry

√
6C2H

λmax(W )
+ 8
√
HC2

+2 + 12CH + C1

√
CHJg(N)

2

)
R2
y. (66)

Using thatAN grows as Ω(N2/Lψ) [39], Lψ ≤ λmax(W )
µ

and, as in the Section 4.2,Ry ≤ ‖∇F (x∗)‖22
λ+min(W )

,

we obtain that the choice ofN in the theorem statement guarantees that the r.h.s. of the last inequality
is no greater than εAN . By weak duality −F (x∗) ≤ ψ(y∗), we have with probability at least 1− 4δ

F (xN)− F (x∗) ≤ F (xN) + ψ(y∗) ≤ F (xN) + ψ(yN) ≤ ε. (67)
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Since y∗ is an optimal solution of the dual problem, we have, for any x,F (x∗) ≤ F (x)−〈y∗,
√
Wx〉.

Then using assumption ‖y∗‖2 ≤ Ry, Cauchy-Schawrz inequality 〈y,
√
Wx〉 ≥ −‖y∗‖2·‖

√
Wx‖2 =

−Ry‖
√
Wx‖2 and choosing x = xN , we get

F (xN) ≥ F (x∗)−Ry‖
√
WxN‖2 (68)

Using this and weak duality −F (x∗) ≤ ψ(y∗), we obtain

ψ(yN) + F (xN) ≥ ψ(y∗) + F (xN) ≥ −F (x∗) + F (xN) ≥ −Ry‖
√
WxN‖2,

which implies that inequality

‖
√
WxN‖2

(66)+(67)
≤ ε

Ry

(69)

holds together with (67) with probability at least 1 − 4δ. Number of communication rounds is equal
to the number of iterations similarly as for Algorithm 1. The total number of stochastic gradient oracle
calls is

∑N
k=1 rk, which gives the bound in the problem statement since

∑N
k=1 αk+1 = AN .
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