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ABSTRACT 

A three dimensional Winterbottom type construction in the regime of partial wetting is derived in 
a scaling limit of a gas of microscopic Gaussian SOS droplets under the fixed volume constraint. 
The proof is based on a coarse graining of the random microscopic region "wetted" by the crystal, 
random walk representation of various quantities related to free massless fields and a stability 
analysis of the torsional rigidity problem. 

1. INTRODUCTION 

1.1. Macroscopic Winterbottom construction. The shape of a small crystal in the equilibrium 
with its vapour is assumed, disregarding gravitation, to minimize the anisotropic surface energy. 
The corresponding construction 'Was obtained at the turn of the century by Wulff [36], and much 
work since then was devoted to a rigorous mathematical treatment and further generalizations 
of the underlying variational problem ([8], [15], [19], [33] to mention a few) on one hand, and to 
extensions of the construction to other physical situations of interest, e.g. to the case of a particle 
on a solid substrate [35], see [19] for its mathematical counterpart. 

From the purely statistical mechanical point of view, though, the problem of a rigorous derivation 
of these optimal macroscopic shapes directly from the structure of local microscopic interactions 
and an analysis of the corresponding Gibbs measures in an appropriate scaling limit remained 
open and long pending until the late eighties, when, almost simultaneously, it was solved for 
several two dimensional models. The simplest one was the gas of generalized SOS droplets in 
1 +'1 dimensions [9], which gave rise to a W~nterbottom like shape in the scaling limit. A two 
dimensional Wulff construction was derived in the context of the supercritical phase of Bernoulli 
bond percolation in [1]. Finally, the 2D Ising model at very low temperatures was solved in the 
ground breaking monograph [12], which accomplished the program initiated in early works on phase 
separation [23], [24]. The approach of [12] was simplified in [27], using in a mastery way duality 
methods, the latter article being of a fundamental interest ,in its own right. Most of the results 
in [12] and [27] were formulated on the level· of very precise local limit theorems. Their weaker. 
·integral versions were pushed all the way up to the critical temperature in [17], [18]. 

Further remarkable results on complete analyticity and phase separation were obtained in [29] 
'and [3or 

All the above results, however, are two dimensional, the higher dimensional problems being so far 
considered at least as much formidable as interesting. In this work we obtain a three dimensional 
droplet shape in the scaling limit of a 2 + 1 Gaussian counterpart of the model considered in [9]. To 
be more precise, we consider the free lattice field (Xi)iESN, in a square box SN C Z 2 of side length 
2N. This is the centered Gaussian random field whose covariance matrix is given by (-..6.)-1 where 
..6. is the discrete Laplacian on SN with Dirichlet boundary conditions. We interpret this field as 
three dimensional random surface in the 2 +I-dimensional space Z2 x Ill This random field is then 
equipped with three additional ingredients which govern the relation between this surface and the 
"wall" Z 2 x {0}: 

1. An attractive surface to wall interaction, 
2. A hard wall condition, meaning that the surface has to stay on the positive side of the wall, 
3. A macroscopic restriction on the volume between the surface and the wail. 

A formal description will be given in 1.3. 

This is the microscopic model. The macroscopic picture is obtained by scaling the lengths by 
a factor 1 / N. The main aim of this paper is to prove a law of large number for this macroscopic 
shape. 
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FIGURE 1 

Our limit macroscopic shape is reminiscent of the one provided by the general Winterbottom 
construction, and, because of the underlying Gaussian field, we call it harmonic crystal. Compared, 
for example, with the Ising model or even with the supercritical Bernoulli bond percolation the 
model itself provides a rather poor approximation to the phenomena of phase separation. In 
this respect our intrusion into three dimensions, though, perhaps, being not without physical and 
mathematical appeal, is of a quite restricted nature, and many of the core problems for higher 
dimensional interfaces remain unsolved. An interesting aspect of our results and the method to 
prove them is that in three dimensions a nontrivial coarse graining procedure becomes imperative 
for the proof. This could be relevant for studying more complicated 3D _ models in the phase 
separation regime. Indeed, probably one of the most formidable problems on the way to a rigorous 
justification of a genuine Wulff construction directly from the microscopic local interactions, e.g. 
in the context of the 3D Ising model, is to define a natural scaling, which would substitute the 2D 
skeleton computations of (12] or [27]. 

A simplifying feature of the Gaussian interactions is the possibility to use random walk represen-
tations to compute many quantities exactly. This is lost if we substitute the quadratic interaction 
by a general convex one, whatever growth, smoothness and strict convexity properties are assumed. 
Furthermore, the geometry of the anharmonic crystal becomes more complicated as well - instead 
of a Poisson problem for the Laplacian one has to solve a semilinear elliptic equation. Besides the 

. fact that the corresponding solution in the latter case cannot be explicitly computed, one also looses 
the scaling relation enjoyed by the torsional rigidity in the Gaussian case. Recently, however, there 
has been considerable progress in the study of anharmonic models with convex potentials (16], (26]. 
In particular, it was shown that such models admit a useful random walk representation, and, more-
over, many computations for this random walks can be reduced to the corresponding computations 
for the simple random walk using the Brascamp-Lieb inequalities [8]. Based on these works, one 
can derive a droplet construction also in the non Gaussian setting. The corresponding results are 
under way. 

Finally, we would like to remark that the concentration results here are obtained in the L1 norm. 
It would certainly be possible to upgrade them to L2 or even to Lp. The real issue, however, 
would be to obtain concentration in the £ 00 norm. Apart from being a stronger and geometrically 
nicer result, such an assertion would confirm a heuristic belief that an intrinsic statistical stability 
of shapes is better than an impartial stability of the isoperimetric problems involved (see a brief 
discussion about the corresponding problem for the 3D Wulff problem in [12]). One result of this 
type was obtained for the membrane problem in [4] and [32]. 

We conclude this subsection by giving a brief description of the Winterbottom construction 
(cf. [35], [19]): 

Consider a small particle P placed on a solid foreign substrate S and in the equilibrium with its 
vapour V. (Figure 1). 



FIGURE 2 

If the gravitation is disregarded, then the energy of the particle is given by 

E(P) = { r.Pv(ns) ds + IPSl(rts - r?8 ), 
}pv 
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where Tpv : 8 2 --+ JR+ is the anisotropic particle-vapour surface tension, and rts and rtv are 
surface tensions of the particle-solid and vapour-solid flat interfaces respectively, and PV, PS are 
the corresponding interfaces. n 5 is the normal vector to the particle-vapour interface at the points 
and IP SI denotes the area of the particle-solid interface, to which we will refer as to the "wetted" 
region. 

The equilibrium shape of the particle is assumed to minimize the energy E(P) at a fixed volume 
v. The solution to this variational problem was formulated in [35] and is, in fact, a version of the 
Wulff construction. The particle-vapour equilibrium Wulff shape Kpv centered at the origin, is 
defined by 

Kpv = n {x E JR.3 
: (x, n) ~ Tpv(n)}, 

nES2 

where ( •, •) is the scalar product in JR.3 . K$v is its intersection with the halfspace H = { x E R3 

f f - " (x, e3) ~ Tvs - Tps }, where e3 - (0, 0, 1). 
If r?s - rts ~ rtv, where rtv ~ rpv(e3), we are in the situation of complete wetting, i.e. the 

particle will spread out to form a thin layer separating V from S. Otherwise the equilibrium shape 
is obtained by an appropriate dilatation of K$v in order to adjust its volume. In the latter case 
there are still three possibilities: 

Complete drying: 
Repelling wall: 

and 
Attracting wall: 0 f f f < 7 vs - rps< 7 Pv· 

In the first case the shape K$v coincides with the "free" Wulff shape Kpv. In the case of a 
repelling wall S the optimal shape K$v is depicted in Figure 2. 
Finally, in the case of an attracting wall, the optimal shape K$v is presented in Figure 3. 

Note that in the latter case the optimal PV interface can be represented as a function over the 
"wetted" region PS. Our model tacitly assumes the attractiveness of the wall: 

(1.1.1) f ~ f f f 7 Pv > D.1 - 7 Pv - rvs + 7 Ps > O, 
i.e. our results pertain to this case only. Strict ·positivity of!::,. f, which emerges in the macroscopic 
limit for the model we consider here is discussed in Subsection 8.2. 



4 

FIGURE 3 

We proceed by specifying the exact expression for the energy in the harmonic case. 

1.2. The macroscopic description of the harmonic crystal. For the Gaussian model we consider 
here, the angle dependent surface tension is defined as follows (see [22] for general definitions and 
related properties) : 

Let e E JR.2 , and consider the Gaussian random field over SN g NS(l) n Z2 ~ N(-1, 1]2 n Z2 

with the Hamiltonian 

11.N,e(x) = ~ I:(xk - xz)2, x E JR8
N 

(k,l} 

with e-tilted boundary conditions on 8SN: 

Xk = (e, k), 

fork E asN, where(•,•) is the scalar product in JR.2 ' and asN is the outer boundary of SN, i.e. 
the set of points in Z 2 \SN which have a neighbor in SN. The sum in the above definition of the 
Hamiltonian is over unordered pairs of nearest neighbor points in SN U 8SN. Then the Gaussian 
surface tension ua in the direction of the unit vector n E § 2; n = b(e, 1), is defined by vi+e-

1 . 1 ZN e 
ua(n) = - hm N 2 log-Z ' , J1+1e12 N-roo N,O 

where the partition function ZN,e is given by: 

ZN,e = r e-11.N,e(x)dx. 
}'RsN , 

In the Gaussian case one can easily compute ua 

Consequently, the integrated Gaussian surface tension over an interface, parametrized by a function 
u = u(x) is given _by the integral 

U1\7ul2dx. 
With this computation in mind we proceed to define the macroscopic model in more precise terms. 
Let H 1'2 be the usual Sobolev space of functions with one square integrable weak derivative, and 
H5'2 be the ones with compact support. If D is an open set, we denote by H5'2(D) the H 1•2 

functions which have a compact support in D. A nonnegative function u E H5'2 is called a profile, 
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and supp(u) (which is uniquely defined by u, up to Lebesgue measure 0) the wetted region. Then 
the energy of the particle with the profile u is given by 

(1.2.1) 

where At is assumed to be positive, At> 0. We define the harmonic crystal of volume v to be.the 
H~'2 solution to the variational problem 

(1.2.2) E(u) i-t min, given V(u) ~ j udx = v. 

Note that if u solves (1.2.2), then so do all the shifts of u, u(x + • ), for any x E ~2 . Below we will 
see that actually all the solutions of (1.2.2) are shifts of some function hv( • ). 

In order to determine hv, we remark the the minimum in (1.2.2) equals 

inf ( inf inf -2
1 r IV'ul 2 dx + A1a)' 

a D o~en uEH5•2(D) } D 
IDl-a V(u)=v 

(1.2.3) 

and thus, (1.2.2) is splitted into three m~nimization problems which we can all solve. Indeed, 

(1.2.4) 1 v2 
inf jV'ul 2 dx = --

uEH5•2(D) D x(D). 
V(u)=v 

where x(D) is the torsional rigidity of D [28], given by 

(1.2.5) x(D) = L uv(x) dx, 

where, UD is the solution of the Poisson equation 

AUD = -1 in D 
UD,8D = 0. 

Moreover, the infimum in (1.2.4) is attained at u[; ~ (v/x(D))uD. Nex.t, it is well known [28], that. 
the maximal torsional rigidity over domains of a fixed area a is the one for the circle Ba, 

a2 
max x(D) = x(Ba) = -

8 
. 

IDl=a 7r 
(1.2.6) 

Substituting this into (1.2.3) we find that the optimal area a = a( v, A f) is found by minimizing 
the convex function 

and the optimal profile hv is given by 

(1.2.7) hv(x) = 
2
; (i - 7r[:i

2
) VO 

Obviously, any shift of hv is also optimal, and these are all the solutions of (1.2.2). 
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1.3. The microscopic model and the result. The first result on the droplet_ shape in the scaling 
limit of a Gaussian higher dimensional model is contained in ?- recent article [3), based on results 
on entropic repulsion for Gaussian lattice fields. In this model however, the wetted region played 
no role, more precisely, all the microscopic droplets under consideration were bound to wet the 
square S(l) = [-1, 1)2 (actually in [3) all the computations were done in the general case of d > 1 
dimensional cubes). 

In order to obtain limit shapes given by (1.2. 7) one has to consider a "gas of droplets" with 
varying microscopic wetted regions as, for example, the one studied in [9] in the case of 1 + 1-
dimensional models. To set up notations, let SN = N S(l) n Z2 and nN =~SN. Our random field 
X( •) E nN represents then the heights of droplets at lattice points k E SN and we assume that all 
the mass of the particle is confined to the box SN, i.e. X(•) = 0 on Z2 \SN. We define 

(1.3.1) 
iiiiN(X(•) E dx) = texp{-! L:1k-ll=I(xk-X1)2

} 

x ITkESN(e-J dxk + oo(dxk)) ITkEV\SN oo(dxk), 

where I • I denotes the L1-norm on Z2. The oo(dxk) part is responsible for the attraction between 
the surface and the wall. If it is absent, we have the purely Gaussian model which had been starting 
point of [3). Our model becomes more transparent, if we rewrite it in a different form after opening 
all the brackets on the right hand side of (1.3.1): 

PN(X( •) E dx) = _J._ L:Acs e-JIAI exp{-2
1 (~dx, x)} 

ZN - N 

x ITkEA dxk ITkEV\A oo(dxk), 

where IAI is the cardinality of A, ~dis the lattice Laplacian and ( •, •) is the scalar product in ~z 2

• 
Indeed,the expression above gives joint distribution of the microscopic wetted region A~ SN and 
microscopic droplet profiles X ( •) over A. Our scaled microscopic profile eN E L 1 (~2 ) is given by 

1 
(1.3.2) eN(x) = N L X(k)l{JJk-Nxll<l/2}' 

kEV . 

where ll(x1, x2)ll ~ max(lx1I, lx21). Thus, eN is just a scaled plaquette reconstruction of the micro-
scopic particle profile over ~2 from the field X( • ). Note that 

supp(eN) ~ S(l). 
Finally, define the volume VN of the gas of droplets as 

VN ~ L X(k) = N 3 { eN(x) dx. 
kESN J S(l) 

We are going to prove a result about convergence to the optimal harmonic shape under the hard 
wall condition 

X(•) E O+ ~ {x(•) E~z 2 : x(k) ~OV k EZ2
}. 

Define: 

Theorem A. For each J E ~ define 

~f,N = ~f,N(J) 
1 ZN,+ 

= J + ISNI log ZN · 
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where ZN,+ ~ zNffeN(O+), ZN is the normalizing constant in (1.3.1) and 

(1.3.3) ZN~ r exp(l/2(~NX, x)) dx, lnN 
~N being the lattice Laplacian with zero boundary conditions on SN. Then the limit 

(1.3.4) ~! = lim ~! N 
N-+oo ' 

exists and is a nondecreasing convex nonnegative function of J. Moreover, 

(1.3.5) ~1(J) > 0 

for J large enough. 
Assume now that J is such that (1.3.5) holds, and let v > 0 be fixed (and small enough to enable 

Ba, C S(l)) and let hv(•) be given by (1.2.7) with a= a(v,~1). Then there exists a sequence VN, 
limN-+oo VN = 0, such that 

(1.3.6) ffeN,+ (~k~ llhv(x + •) -eN(•)llL1(JR2) > VN,VN;:::: N 3v) :::; VN. 

The theorem above implies a sharp concentration of microscopic profiles around the optimal 
harmonic crystal shape (1.2.7) under the measures (1.3.1) and the hard wall condition n+· 
Remark 1.3.1. In contrast with the situation in [3], the box SN is playing here a very minor role 
and could be replaced by any region NV n Z2, V C IR2 , where V satisfies the condition that some 
translate of Ba, is contained in V, and still the same limiting shape would appear. It is in fact true, 
although we don't need this, that a thermodynamic limit P 00 of PN as N --+ oo exists and defines 
a random field on Z2 (see [11]). Of course, we cannot start with P00 as then, due to translation 
invariance, the droplet does not "know" where to emerge, but it should be obvious that the only 
role of the finite box 8 N is to keep the droplet confined. 

In the next section we sketch the scheme of the proof and describe the principal results and 
estimates involved. Subsequent. sections are devoted to rigorous proofs of these results: section 3 
deals with the coarse graining, section 4 with the estimates on various partition functions, section 5 
with the stability of the related torsional rigidity problem, section 6 with the concentration estimates 
over fixed wetted regions, section 7 with the approximation of relevant macroscopic quantities by'. 
their mesoscopic counterparts, and, finally, section 8 contains the proof of the main Theorem A. 

Remark 1.3.2. ·In what follows we shall use two types of constants: fixed constants related to 
coarse graining or symbols like 7r, and two varying constants c and 6. The exact values of the 
latter convention are of no importance for us, except that they should belong to (0, oo ). Moreover, 
they will always enter the estimates below in such a way, that if a certain estimate is true with 
('c, 6), it will also be true with (c', 6'), where c' ;:::: c and 6' :::; 6. Thus, whenever we write c (6) 
we actually mean the maximum (minimum) of the corresponding constant over all the estimates 
involved. Luckily, we get by with only finite number of them, so, all the res'll:lts remain valid under 
this convention. 

2. OUTLINE OF THE PROOF 

2.1. Strategy. For A ~ SN let ~A to denote the lattice Laplacian with zero boundary conditions on 
A. Define 

(2.1.1) 
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where the partition function Z A is given by 

(2.1.2) ZA = kA expG(t,,.Ax,x)) dx. 

Then JiD N,+ is a convex combination; 

iP>N,+( •) = L e-JIAI :A lP' A(• ; fl+)· 
A~SN N,+ 

(2.1.3) 

Under each IP' A the volume VN has a Gaussian distribution, and it is not difficult to compute that 

(2.1.4) lP' A(VN;::: N 3v) =exp (-N2 2X;~A) (1 + o(l))), 

where XN(A) is the approximate torsional rigidity of A, given by 
1 

(2.1.5) XN(A) = N2 L UA,N, 
kEA 

where uA N E JR.A solves 
' 

(2.1.6) N 2 AAUA,N = -1 in A. 

One might naively think that the main contribution to PN(VN ~ N 3v) in the representation (2.1.3) 
comes from those A-s which are close in shape to some optimal microscopic wetted region Aopt, 
which minimizes 

(2.1.7) 
2 v2 

JIAI - log ZA + N XN(A) 

This, however, is not the case. It turns out that microscopically the wetted region under JiDN,+ is 
given by an almost optimal shape, which supports most of the droplet volume and a non negligible 
"noisy" shallow region. One already sees the problem, when remarking that the logarithm of the 
number of terms in the right hand side of (2.1.3) is of the same order of magnitude as (2.1.7). In 
other words, on the microscopic scale the entropy competes with probabilistic weights. Note also 
that the macroscopic quantity At in (1.3.4) is not produced in (2.1. 7). 

As usual, in order to cancel the entropy and to generate all the relevant macroscopic quanti-
ties, one has to introduce an intermediate (mesoscopic) scale. We describe this scale in the next 
subsection, it enables us to restrict attention to mesoscopic wetted regions B ~ SN, which are 
composed of blocks of the size Nb, b E (0, 1). We then decompose JiDN,+ according to the value of 
the mesoscopic wetted region M; 

L JiDN,+(•; M = B) 

mesoscopic 

In its turn, due to our basic expansion (2.1.3) of PN,+ in microscopic wetted regions, 

(2.1.8) iP>N,+( • ; M = B) = L e-JIAI ZZA IP' A(• ; M = B ; fl+). 
A~SN N,+ 

It happens that the essential contribution to the above sum comes only from those microscopic 
A~ SN, which cover B sufficiently well. A precise formulation of the latter statement is given in 
Subsection 2.2. Thus, given a mesoscopic B ~ SN, the sum on the right hand side of (2.1.8) is 
effectively only over A-s, satisfying B ~ A. In order to make estimates on such a sum one should 
be able to decouple both Z A and ZN,+ over the boundary of B. The corresponding estimates on 
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va::!_ous partition functions are stated in Subsection 2.3. Roughly all this leads to the representation 
of 1P'N,+ as 

(2.1.9) L 
BCSN 

mesoscopic 

where ZB,+ is defined analogously to ZN,+, with B playing the role of SN. Note that there are only 
0 ( ecN

2
<
1
-b)) terms in the right hand side of ( 2.1.10). Thus the mesoscopic wetted regions should 

concentrate around minimizers of 

(2.1.10) v ~ IBI 1 . ZB,+ 1 v2 

EN,f (B) - J N2 + N2 log ZB + 2 XN(B). 

Provided that E''N,J(B) is a good approximation to 

~ IBI 1 v2 
f N 2 + 2x(B) 

and that the shape of the infimum in (1.2.3) is stable, one obtains a concentration of the meso-
scopic wetted regions around the shifts of macroscopic optimal Ba,, and the problem is reduced to 
concentration estimates on 

1P'B,+(• I VN ~ N 3v) 
for almost optimal B. The latter task can be accomplished by means of Gaussian computations, 
which however yield concentration around 

.6. v 
= XN(B) UB,N 

instead of hv. Thus, the last step should be to estimate the L1 (IR2 ) deviation of uB N from hv for 
almost optimal B. ' 

To summarize we have the following tasks to perform: 
1. Coarse graining, i.e. introduction of an intermediate mesoscopic scale and derivation of the 

corresponding control estimates, 
2. Estimates on the·partition functions ZA and ZB,+, 
3. Stability estimates on the torsional rigidity, 
4. Concentration estimates on 1P'B,+(•IVN ~ N 3v) for B close to Ba, 
5. Approximation of X by XN and of hv by u'B N· 

' 
We proceed by stating all the relevant results along these lines. The proofs are relegated to 

subsequent sections. 

2.2. Coarse graining. Our coarse graining procedure is based on ideas introduced by Donsker and 
Varadhan in their treatment of the Wiener sausage. There are two scales involved: 

1. The coarse graining scale M = Nb, 
and 

2. The cutting level H = N'Y; r E (0,1). 
The choice of b and 'Y is specified in subsection 3.1 below, but we always assume for notational 
convenience that 2M + 1 divides 2N + 1, but this is, of course, of no importance. Recall that 
S(l) = [-1, 1]2 and SN= NS(l) n Z2. We define the smoothing kernel rM, supported in SM, as 
follows: 
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Let Dk = { i E Z2 : llill = k} ~ 8Sk and set Dk(i) = i +Dk to denote the boundary of the 
k-square Sk(i) centered at i, find let {77n}nEN to denote the simple random walk on Z2. For any 
i E Z 2 and j E Dk(i) define 

(2.2.1) rk(i,j) = IFfW (17rDk(i) = j), 

where lP'fW is the law of 77. starting at i, and TDk(i) is the first hitting time of Dk(i) by 77 •. Then 
we define 

M 

rM{i,j) = M(~ + l) L k7k(i,j). 
k=l 

(2.2.2) 

Note that rM(i, •)is a probability measure on SM(i). Also, rk and rM are shift invariant; rk(i,j) = 
rk(i - j) and rM(i,j) = rM(i'-j). The smoothened field XM E RZ

2 is defined by 

(2.2.3) XM(i) = L rM(i - j)X(j), i E z2• 

j 

Note that XM = 0 outside SN+M under PN. Define the coarse grained lattice 
zL = (2M + 1)z2 . 

The next step is to split Z2 into the blocks of the size M: 

Z 2 = U SM(i). 
iEZ1t 

Our coarse grained field XM( •) is defined to be constant on each of these blocks, namely 

(2.2.4) XM(j) = L XM(i)l{llj-ill~M}· 
iEZ1t - . 

Obviously, the support of XM is contained in SN . 
. We shall call a finite union of M~blocks SM(i); i E ZL, a mesoscopic region. Remark that the 

number of mesoscopic subsets of SN equals to 

2(2N+1)2/(2M+1)2 :::; 2(N/M)2 = exp(N2(1-b)log2). 

Given our cutting level H = N--Y, we define the mesoscopic wetted region 
- 2 -M = M(XM) = { i E Z : XM ~ H} ~ SN. 

The mesoscopic M-scale above leads to "entropic reduction" in the representation of IPN given 
in (1.3). In fact, this representation has just too many summands to be immediately useful. The 
small heights cutoff given by H is necessary to get rid of the "shallow" part of the wetted region 
and, simultaneously, to produce the macroscopic quantity lit. It happens that as far as questions 
of concentrations are considered, one can restrict attentiofl: to mesoscopic profiles: 

Theorem 2.2.1. For all N and all A~ SN, 

{2.2.5) Il"A(~2 IX(i)-XM{i)I ~ N3-•) :s; exp(-~N2+o). 

Consequently, if eN,M is the scaled plaquette reconstruction from XM, i.e. 
l~-

eN,M(x) = N ~ XM(k)l{llk-Nxll<l/2}, 
kEZ2 
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then 

(2.2.6) 

This super exponential estimate lies at the heart of our coarse graining approach. 

We need also another super exponential estimate, which we call the volume filling lemma. It 
asserts that a :r;:esoscopic. wetted region B cannot be effectively produced by IP' A in the decomposi-
tion (2.1.3) of IP'N,+, unless B is sufficiently well covered by A. 

Lemma 2.2.2. For all N and A, B ~ SN, 

(2.2.7) 

as soon as IE\ Al 2::: N 2- 8 • 

2.3. Estimates on partition functions. Let A~ SN. We use the following notations: 

(2.3.1) 

(2.3.2) 

8A = { k E A : :3l E Z2 \A with Ilk - lll = 1} 

At = {k E A : min Ill - xii 2::: t} 
lEZ 2\A 

Lemma 2.3.1. a) There exist constants q, r > O, such that for any A cs Z2 

(2.3.3) qlAI - rmax l8Atl :::; log ZA :::; qlAI. 
t 

b) For any t > 0, there exists a constant· q > 0 such that for any me$oscopic wetted region 
. B <S Z2, satisfying IBI 2::: tN2 , 

(2.3.4) logZB < .... q,. - cN-b logN < q lBI -
c) For any mesoscopic region B ~SN and any sets A~ SN\ B and C ~ B; 

1 ZAvc 0 < -log-- < N-b - N 2 ZAZc - c . (2.3.5) 

d) For any sets B, A and C as above 

(2.3.6) 

Remark 2.3.2. The condition of IBI 2::: tN2 is not essential, but it simplifies the proof of (2.3.4). 
The notion of t > 0 being small enough is quantified in Subsection 8.1. If t > 0 is chosen small 
enough, the restriction to mesoscopic regions satisfying IBI 2::: tN2 will be seen to be harmless, as 
regions where this fails have a negligible contribution in (2.1.9) for the events we are interested in. 
(See the proof of Proposition 8.1.2.) 
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2.4. Stability results for the torsional rigidity. Let D ~ IR2 be a bounded domain with a 
piecewise C 2 boundary, UD the solution of the Poisson equation 

Di..un = -1 in D 
ujJR2\D =: 0 

and let lev µUD be the level sets of un, 
lev µU D = { x E D : u D ( x) 2 µ } . 

Define a(µ)= llevµunl· Then, a(µ) is a strictly decreasing continuous function and letµ= µ(a) 
(0, ID I] -t 114, be the inverse of a(•). Finally, set 

Da = levµ(a)UD and ln(a) = l8Dal· 
Note, that !Dal =a and ln(a) ~ j8Bal, where as in the Subsection 1.2 Ba is the circle of the area 
a. 

Theorem 2.4.1. 

(2.4.1) 
[IDI a2 

x(D) ::; Jo ln(a)2 da 

and 

(2.4.2) 1 11DI ( s(a) ) max x(B) - x(D) = x(B1n1) - x(D) ~ -4 a 1 - -l ( ) da. B:IBl=IDI 7r o D a 
The right hand side of (2.4.2) is a measure of deviation of D from the shape of the circle B1n1, 

and the claim itself asserts that the torsional rigidity is stable with respect to this measure. From 
the representation 

x(D) = ~iv JFtM TD dx, 

where TD is the first exit time from D of the two dimensional Brownian motion, it is clear the 
x( •) cannot be stable with respect to the Hausdorff distance, indeed adding a thin long hair 
does not change substantially both the area and the torsional rigidity. We shall see, 'however, 
that Theorem 2.4.1 above already implies stability with respect to another "natural" measure of 
deviation - the area of symmetric difference, 
(2.4.3) dD. (D) = inf IDDi..(x + B1n1)I. 

xEJRd 

An even more important consequence for us here is the stability with respect to the inradius of D: 
Let D be simply connected and let (] = e(D) be the inradius (i.e. the radius of the largest inscribed 
circle) of D. Note that 

max e(B) = e(B1n1) = . 
IBl=IDI 

Lemma 2.4.2. 

(2.4.4) 

As a consequence we obtain the following result on the L1 (IR2 ) stability of the crystal shape: Let 
v2 

Ej (D) = 2x(D) + Di..1IDI 

and u!J = .Jv/x(D)un, i.e. u!J is the shape of the minimal energy harmonic drop of the volume v 
bound to wet D. Then, 
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Lemma 2.4.3. Let D ~ S(l) with a piecewise smooth boundary 8D, and let v be a fixed number; 
v > 0 Then, 

(2.4.5) 

where hv is the harmonic crystal shape defined in (1.2. 7). 

Remark 2.4.4. The power 1/6 in (2.4.5) is by no means optimal, but is adequate for our purpose. 
In Lemma 2.4.3 the region D is not required to be simply connected. 

2.5. Concentration of lP'B(• I VN ~ N 3v). Let A~ SN, and UA,N is the solution of the approxi-
mate Poisson equation (2.1.5) on A. Define uA.,N : S(l) -+IR: as 

(2.5.1) uA.,N(x) = ~A) L UA,N(k)l{JJk-NxJJ<l/2}· 
XN kESN 

Then the following estimate on the concentration of the scaled profile eN( • ), defined in (1.3.2), 
around uA_ N is valid: 

' 
Lemma 2.5.1. For each A ~ SN and a E ~, 

(2.5.2) IP' A (lleN - il'.4,Nli£I{lll.2) ::'.:a I VN ::'.: N 3v) :S exp(- a: N 2). 

2.6. Approximation by discrete quantities. For a mesoscopic region B ~ SN we define B ~ S(l) 
by 

(2.6.1) 

Lemma 2.6.1. 

(2.6.2) 

uniformly in N and mesoscopic B ~ SN. 

This, combined with the estimates on the partition functions stated in Lemma 2.3.1, leads to 
the following approximation result: 

Lemma 2.6.2. For any t > 0 there exist 8 = 8(t) > 0 and c = c(t) > 0, such that any mesoscopic 
B ~SN, satisfying IBI ~ tN2 and XN(B) ~ t, also satisfies 

(2.6.3) IE/ (B) - E}r,1(B)I :::; cN-8
, 

where EN,J(B) is given by (2.1.10), and, as before, Ej (B) ~ ~tlBI + ~v2 /x(B). 

Finally, we get the following stability estimate for mesoscopic wetted regions B: 

Lemma 2.6.3. For any mesoscopic B ~ SN, 

(2.6.4) 

where uB N is the approximated profile defined in (2.5.1), and a is the area of the optimal wetted 
region, which was defined in Subsection 1.2. 
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3. COARSE GRAINING. 

3.1. Scaling parameters. We start by fixing a small (say b ::; 0.1) but positive value of b. The 
exact condition on the "smallness" of b will be be made precise at the end of Subsection 3.2. We 
choose 'Y satisfying 

! + 2b < i < 1 + 28 < ! + 4b. 
The first inequality enables to make the following reduction, which paves the way to the proof of 
Theorem A in the Subsection 8.1: 

Let i E Zit- and assume that XM(i)::; NI, that is assume that BM(i) nM(XM) = 0. Then, for 
each "(1 E (I+ 2b, 1), 

{i ~ M(XM)} n fl+ ===} {X(k) ::; cN11 V' k E SM(i)}. 

This implication is explained in Subsection 8.1. Finally, the inequality 1 + 28 < 'Y + 4b is used to 
prove the volume filling estimate of Subsection 3.3. 

3.2. Proof of Theorem 2.2.1. 

Proposition 3.2.1. For all A~ SN and for any t E It4, the following estimate holds: 

(3.2.1) lP' A (I; IX(k) - XM(k)i ?: tN3
) ~exp ( cN2 

- ~NH8bt2). 
kESN 

Remark 3.2.2. The claim of Theorem 2.2.1 follows from the proposition above, if we take t = N-8 

for 8 small enough. 

Proof: We follow [13], to estimate 

(3.2.2) J£D A (I; IX(k) - XM(k)I ?:. tN3 ) ::; 2(2NH)
2 

max s J£D A(YM(a) ?:. N 3t), 
kESN crE{-1,1} N 

where 
YM(a) g I; a(k)(X(k) - XM(k)). 

kESN 

Now, YM(a) is zero mean Gaussian under each J£D A with the variance V(A, a) g lEA(YM(a))2 given 
by 

(3.2.3) 

where XA( •, •) is given by 

V(A, a) = I: I: awi'XA(i, i'), 
k,k'EZ~ iESM(k) 

i' ESM(k') 

XA(i, i') g a A(i, i') - I: rM(k - j)G AU, i') 
j 

- I;rM(k' -j')GA(i,j') 
j' 

.. , 
J,J 

GA above stays for the Green function of the simple random walk on A with zero boundary 
conditions, and the smoothing kernel rM was defined in (2.2.2). 
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Pick now a E (0, 1), a> b, (the exact value is to be specified later), and set L =Na. In order to 
split the right hand side in (3.2.3) define 

a LA = { k E A : min II k - z 11 ~ L}. 
lEAc 

We introduce, then, the following families of pairs of subindices (k, k') E ZL x ZL: 

Setting 

we obtain: 

(3.2.4) 

A1 = { (k, k') : ilk - k'll 2:: 2L + 1 and {k, k'} n (A\ 8LA) # 0 }, 

A2 = { (k, k') : Ilk - k'll ~ 2L }, 

A3 ={(k,k'): {k,k'}~AcuaLA}. 

'I!(k, k') ~ max 5 N I L L awiXA(i, i')I, 
o-E{-l,l} iESM(k) i' ESM(k') 

V(A, a)~ L 'I! A(k, k') + L W A(k, k') + L 'I! A(k, k'). 

Estimate on 2=A1: Assume that k E A \ aLA and Ilk - k'll > 2L + 1. . This means that 
SL(k) ~A\ SL(k'). Consequently, for each l E SL(k'), the function 

ii-+GA(i,l) 
is harmonic on SL(k). Therefore, for i E SM(k) and i' E SM(k'), 

XA(i, i') = [GA(i, i') - GA(k, i')] + L rM(k' - j')[GA(k,j') - GA(i,j')]. 
j'ESN(k') 

Similarly, for each l E SM ( k'), the function 

i I-+ GA(i,l)-GA(k,l) 
is again harmonic on SL(k) and equals to zero at i = k. Also, by Theorem 1.6.6 in [20], 
(3.2.5) G A(i, l) ~ G sN (0, 0) ~clog N. 

Consequently, using Theorem 1.7.l. a) of [20], we infer that there exist~ a constant c > 0, such that· 

Therefore, 

(3.2.6) 

for some c > 0 .. 

max max JXA(i,i')I ~ cML logN. 
(k,k')EA1 iESM(k) 

i'ESM(k') 

L 'I! A(k, k') ~ cN4 Nb-a log N 
Ai 

Estimate on LA
2

: From (3.2.5) and a trivial estimate 

I
A J < N2+2a-4b 

2 - ' 

it follows that 

(3.2.7) L 'I! A(k, k') ~ cN2+2a log N. 
A2 
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Estimate on 2=As :. Note, first of all, that 

L L o-(i)a-(i')XA(i, i') =LG A(i, i')f' M(o-)(i, i'), 
iESM(k) i 1ESM(k') i,i' 

where 

f'M(o-)(i, i) = o-(i)o-(i') - o-(i)rM(k, i') L o-(l) - o-(i')rM(k - i) L o-(Z) 
l'ESM(k') lESM(k) 

+ rM(k - i)rM(k' - i') L o-(Z) L o-(Z'). 
lESM(k) l'ESM(k') 

However, due to our definition of the kernel rM(•) and by the well known results on the exit 
distribution of the simple random walk (see e.g. Lemma 1.7.4 in [20]), there exists a constant c > 1, 
such that cl.r2 s; rM(l) s; ~2 for all l E SM. As a result, all jf'MI are, independently of Mand o-, 
bounded above by some finite constant c > 0, and 

L WA(k, k') s; c L GA(i,j) 
As i,jEfhA 

Thus, it remains to estimate the right hand side of (3.2.8). 
Let TA be the exit time of a simple random walk (RW) from A. Define the following sequence of 

stopping times: 
T1 = inf { n 2:: 0 : T/n E 8LA, n < TA}, 

and for m 2:: 1, 
Tm+i =inf{ n 2:: L 2 +Tm : TJn E 8LA,n <TA} 

(with the usual convention inf{0} = oo ). Then, for each i E 8LA, 
TA oo 

L GA(i,j) = JBiRW L l<hA(TJn) s; L 2 L IP'fW (rm< oo). 
jE8LA 

Now, for each i E 8LA, 

But, 

(3.2.9) 

n=O m=l 

for some g > 0. In fact, we have by the last exit decomposition 
£2 

IP'~w ( r{k} s; L 2) 2:: L IP'~w (em = k) IP'~w ( r{o} > L 2). 
m=l 

From the standard local central limit theorem, we have IP'~w (~m = k) 2: c/ L2 , if L2 /2 s; k s; L2, 
and m has the same parity ask. Therefore 

£2 

L IP'~w (ek = k) 2:: c > o. 
m=l 

On the other hand, it is known that IP'~w ( T{o} > L2) "' 7r /2 log L (see [31 ], Section 16, Theorem E.l). 
Therefore, (3.2.9) follows. Consequently, 

IP'fw (rm< oo) s; (1 - g/ log Lr, 
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and 

(3.2.10) LwA(k,k') ~ cN2+2a1ogN. 
A3 

Combining (3.2.6), (3.2.7) and (3.2.10), we obtain that there exists c > 0, such that VA~ SN, 

(3.2.11) max V(A, a) :::; c(N2+2a log N + N 4+b-a). 
crE{-1,1} 5 N 

Therefore with b E (0, 1) fixed the optimal a to yield the best possible estimate along these lines is 
given by 2 + 2a = 4 + b - a < 4. For our purposes, however, it would be sufficient to remark that 
for a choice of b E (0, 1) small enough, (3.2.11) implies that 

max V(A, a) :::; cN4- 8b. 
crE{-l,1}5 N 

In a view of (3.2.2) this leads to the claim of the proposition. 

3.3. Volume filling estimate. The volume filling lemma (Lemma 2.2.2) is a direct consequence 
of (3.2.1). Indeed if IB \Al 2:: N 2- 8, then IP' A-a.s. on {µ(XM) = B}, 

L IX(k) - XM(k)I 2:: N2-H~. 
kESN 

Therefore, by virtue of (3.2.1), for any such A, 

ll' A (M(XM) = B) :::; exp ( cN2 - ~N2h+4b-5)). 
Thus, (2.2. 7) follows, as soon as 

7 + 4b - J > 1 + ~ 
which is one of the two scaling conditions, specified in Subsection 3.1 

4. ESTIMATES ON PARTITION FUNCTIONS. 

4.1. Random walk representation. Recall that for A~ Z2, we have defined ZA as 

ZA = f A exp (~(AAX, x)) fl dxk, 
~ .kEA 

where AA is the discrete Dirichlet Laplacian on A ~ Z2 ; 

AA= 4(PA - I), 
where I is the identity operator, and PA the transition matrix of the simple random walk, killed 
at exiting from A. Let .>..f; k = 1, ... , IAI, be the eigenvalues of -AA, and µf; k = 1, ... , IAI, the 
corresponding eigenvalues of PA; 

Then, 

IAI r IAI A IAI rr 1 IAI A 
(4.1.1) log ZA = 2 1og 2rr -. 2 L log .>..k = 2 log 2 - 2 L log(l - µk ). 

k=l k=l 

We follow [14] in our approach to the right hand side of (4.1.1): Note, first of all, that 

IAI 00 1 !Al 00 1 
L log(l - µf) = - L; L(µf t = - L ;Tr(P.4). 
k=l n=l k=l n=l 
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Furthermore, since obviously Tr(P.A) = 0 for any odd n, we obtain: 
IAI 00 . 

Llog(l - µf) = -L 2~ Tr(Pln). 
k=l n=l 

(4.1.2) 

To investigate the right hand side of (4.1.2) we use the following random walk representation: 

2n '"""" RW . Tr(PA ) = L..,. IP'k (7J2n = k; TA> 2n), 
kEA 

and,. consequently, 

IAI . 00 1 . 
(4.1.3) - L log(l - µf):::: LL 

2
n IPfW (7J2n = k, TA> 2n), 

k=l kEAn=l 

where TA is the first exit time from A. 

4.2. Estimates of ZA. It is easy to see what the volume term of (4.1.3) is. Let T1, T2, ... be the 
hitting times of 0 c Z 2 by our random walk. Set 

RW~ 1 ~ 1 RW (4.2.1) q = IF.Q L...- Tk = L...- 2n IP'o (7J2n = 0). 
k=l n=l 

Then, as it follows from (4.1.3), 

IAI 
(4.2.2) - L log(l - µf) ~ qlAI. 

k=l 

Remark 4.2.1. Note that the right hand side of (4.2.1) is summable, since by the local CLT (see 
e.g. [20), Theorem 1.2.1). IP'~w (7J2n = 0) rv l/n. 

Proposition 4.2.2. Define 

(4.2.3) r = ~ ~JE1fW ( max l77ml ) l{TJ2n=O}· L...- 2n 1 <m<2n n=l - -

Then, r < oo, and for each A <S Z2, 

IAI 
(4.2.4) -Llog(l - µf) 2:: qlAI - rmtxl8Atl, 

k=l 

where At was defined in Subsection 2. 3. 

Proof: Consider 

We claim that 

(4.2.5) g(n) ~ cvn 
for some c > 0. Since, as mentioned before, IP'~w (7J2n = 0) rv l/n, then-th term in the sum on the 
right hand side of (4.2.3) is, thereby, of order n-312 , and r < oo as claimed. To show (4.2.5) set 
Yn = max1:::;m::;2n l7Jm I· Then, for each K E Z+, 

(4.2.6) g(n) = JE1fW (Yn I 7J2n = 0) ~ K + L IP'~W (Yn 2:: k I 7J2n = 0). 
k?:_K 
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However, 

1 
IP'~W (Y 2:: k I T/2n = 0) = IP'RW ( _ O) ~W l{rsk<2n}l{7J2n=O}' 

O T/2n - -
( 4 .. 2.7) 

where Tsk is the exist time fromthe box sk. Decomposing the expectation in the right hand side 
of ( 4.2. 7) we obtain · 

2n 

JEtW l{rsk::;2n}l{7J2n=O} = :E ~W l{rsk=m}IP':: (TJ2n-m = 0). 
m=l 

By the local CLT, Vy : llYll = k E [K, 2n], 

IP':w ('72n-m = 0) :$ (1+o(l))7r(2n 
2
_ m) exp( 2n ~ m). 

Therefore, optimizing in the right hand side above and substituting the result into ( 4.2. 7), we 
obtain that 

IP'~W (Y 2:: k I T/2n = 0) ~ c ~ IP'~W (Yn 2:: k) 

for some c > 0. Thus, choosing K = fo, we infer from ( 4.2.6) that 

g(n) ~ Vn + c :E IP'~W (Yn 2:: k) ~ Vn + c~Wyn· 
k?_yn 

Finally, eyw Yn is of order fo by the usual submartingale argument. 
We turn now to the proof of (4.2.4): By (4.1.3), 

JAJ oo 1 - :E log(l - µt) = qjAI - :E :E 2n IP'fW (TJ2n = k, TA~ 2n). 
k=l kEAn=l 

(4.2.8) 

Recall that fort EN we defined At= { k EA : minzEV\A Ill - kJJ 2:: t }. Now, if k E 8At, 

~ 1 RW . ~ 1 RW ~ 2nTI\ (TJ2n = k, TA~ 2n) ~ ~ 2n IP'0 (TJ2n = O; TSt ~ 2n). 
n=l n=l 

Therefore, 

(4.2.9) 

However, 
00 

:E IP'~W (TJ2n = O; TSt ~ 2n) = ~WYn1{172n=O}' 
t=l 

where, as before, Yn = max1<m<2n llTJmll· Consequently, the right hand side of (4.2.9) equals 
r maxt J8Atl, and, substituting the latter estimate into (4.2.8), we arrive at the claim of the propo-
sition. 
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Our next task is to prove the decoupling estimate (2.3.5). Let A, B, C be as in the conditions 
of Lemma 2.3.1 c), i.e. B ~SN is a mesoscopic region, A~ SN\ B and C ~ B. Then it follows 
from ( 4.1.1) and the representation ( 4.1.3), 

(4.2.10) 

00 . 

ZAvC ~~ 1 RW 0:::; 2log z z = 6 6 211\ (7J2n = k;rA:::; 2n < TAvc) 
A C kEAn=l n 

"V ~ 1 RW . 
+ 6 6 2n lP'k (7J2n = k, re:::; 2n < TAvc). 

kECn=l 
The contribution to the right hand side of ( 4.2.10) comes only from those random walks, which 

start in A (respectively C), and in 2n steps visit C (respectively A) without leaving A v C. Any 
6. such random walk has to cross ·aBC=8B n C. Consequently 

00 

:::; l8BCI max L lP'fW (7J2n = k; rsN > 2n) kE8BC 
n=l 

= l8BCI max GsN(k, k), kE8BC 
where GsN is the Green's function of the simple random walk, killed upon an exist from SN. 
However, by Theorem 1.6.6 of [20], maxkESN GsN(k, k):::; clogN for some c > 0. Also, by the very 
definition of the mesoscopic region, l8BCI :::; IBBI :::; cN2-b. Therefore, 

1 ZAvc 2 b 

21og ZAZc :::; clog Nl8BCI :::; cN - log N 

as was asserted in (2.3.5). 

4.3. Estimates on ZB. The partiti?n function z. obviously possesses the following superadditive 
property: 

(4.3.1) B n B' = 0 ~log ZBvB1 2:: log ZB +log ZB'· 

Because of the results of the previous subsection, one can supplement (4.3.1) with an appropriate 
lower bound: 

(4.3.2) 

where, 

ZBvB' = L L e-J(IAl+ICI) ZAvC :::; exp(cj8B'l Iog N)ZBZc, 
A~BC~B' 

8BB1 = { k EB' : 3 l EB with Ilk - lll = 1}:::; cN2-b. 

For each k E Z+, define Q(k) = 18~ 1 log Zsk. Then, {Q(2mk)}~=l is an increasing sequence, and, 
by (4.3.2), 

Thus, if we define, 

(4.3.3) 

then, fork< N, 
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Of course, we have to justify the tacit assumption that q in ( 4.3.3) doesn't depend on the base k 
chosen, but this again follows from ( 4.3.2), since for all k, l E Z+, 

Q(k):::; Q(kl):::; Q(k) + c10!k 

and, in a completely symmetric way, 

Q(l) ::; Q(kl) ::; Q(l) + c lo~ z. 
In particular, for M = Nb, 

( 4.3.4) Q(M) ::; (j ::; Q(M) + cN-b log N. 

Therefore, for a mesoscopic region B = V kEBcz2 SM(k), 
- M 

L l~g ZsM(k) ::; log Zs ::; L log ZsM(k) + cN2(l-b) log N. 
kE!3 kE!3 

Since log ZsM(k) = (2Nb+l) 2Q(M), IBI = (2Nb+1)2 IBI, and also due to our assumption IBI 2:: tN2 , 
we conclude that for some c = c(t) > 0, 

1 ~ b 
Q(M) ::; iBT log Zs ::; Q(M) + cN- log N, 

and (2.3.4) now follows from (4.3.4). 

4.4. The hard wall condition. If D C SN, we denote by a+ D the outer boundary of D, i.e. the 
points which are not in D but have a neighbor point in D. If x E (IR+) a+ D, we write IP' D ,x for 
the law of the free field on !RD with boundary condition x on a+ D. With this notation, we have 
IP'D 0 = IP'D, where the latter is restricted to configurations on D. We will need some properties of 

' FKG type 

.Lemma 4.4.1. a) For all x E (IR~ )8+ D, we have 

IP'D,x (fl+) 2:: IP'D (fl+). 
b) Let D 1 c D 2 and f : IRD1 -+ IR be bounded, measurable and increasing in all arguments. Then 

IEv1 (f (X) I fl+) ::; IED2 (f (X) I f2+)· 

Proof. a) Let hx be the solution of the discrete Dirichlet problem in D, with boundary condition x 
on a+ D. If X(i), i ED, is distributed according to IP'D, then X(i) + hx(i) is distributed according 
to IP'D,x· As hx 2:: 0, the statement follows. 

b) If Ac SN, let fl~ be the event {X(i) 2:: 0, i EA}. It was proved in [10], Lemma 3.1 that for 
A c B the law IP's( • I fl~) on IRE is associated, i.e. for any bounded measurable functions Ji, h 
IRE -+IR which are increasing in all arguments, one has 

IEs (!1/2 I fl1) 2:: IEs (!1 I fl1)IEs (h I fl~). 
(See the proof of Lemma 3.1 of [10].) We apply this to B ~ D2 and A~ (D1 ua+D1) nD2. Setting 

. IP't,A = IP's( • I fl~"), we obtain for any t > 0 

IEt,A (f (X) I X(i) ::; t, i E a+ D1 n D2) ::; IEt,A (f (X)). 

Letting t-!- 0, the l.h.s. converges to IEv1 (f (X) I fl+), and so we have 

IEv1 (f (X) I fl+) ::; IEv2 (f (X) I fl~). 
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Using the fact that f and lnD2 \A are increasing, the r.h.s. is 
+ 

which proves the claim. D 

Lemma 4.4.2. Let e > 0. Then there exists Ne: E N such that for N ;::: Ne: and all D c SN, we 
have 

Proof. 

( 4.4.1) 

By Lemma 4.4.lb), we have 

.(4.4.2) IP'D(m9-XXi >NE: In+):::; IP'sN (~axXi >NE: In+):::; IP'sN (~axXi > NE:)/IP'sN(n+)· 
i iESN iESN 

The· numerator is estimated in a rough way by 

IP'sN (~ax Xi> Ne:) :::; 5N2 m9-xIP'sN(Xi >Ne:):::; 5N2 exp(-c1N
2
Nc: ) , 

iESN i og 

as the maximal variance of Xi under IP'sN is of order log N. PsN (O+) is of order exp(-c(log N)2 ) 

([5]). 

Let now A, C, B be as in the statement of Lemma 2.3.1, i.e. B is a mesoscopic region, and 
C c B, A c SN\ B. · Let a-B be the set of points in B which are at distance 1 from 8B, i.e. 
those points in B which can be joined by two bonds' of the lattice with Be but not with one. Let 
n- :@: a-B n C, D :@: 8B n C, n+ :@: a+ B n A. We denote by y+, y-, Y the restriction of a 
configuration X to D+, n-, and D respectively. If y+ E RD+ , y- E RD- , y E RD, we denote by 
f (y+, y-1 y) the conditional density of the IP' Ave-law of (Y+, y-) given Y = y. 

Lemma 4.4.3. If e > 0, then there exists c > 0 such that 
!Iogf(y+,y- j y) -logf(y+,y-1 O)I:::; c1DIN2c:, 

for 0 :::; y, y+, y- :::; Ne:. Here we write 0 :::; y :::; Ne: if all the components of y satisfy this condition. 

Proof. With an abuse of notation, we write f (y+, y-) for the density of (Y+, y-) under IP' Ave, f(y) 
for the density of Y ,· and f (y I y+, y-) for the conditional density of Y given (Y+, y-). Writing 

f( + _ 1 ) = J(y I y+,y-)J(y+,y-) 
y 'y y f (y) ' 

we see that it suffices to prove 

( 4.4.3) 

and 

( 4.4.4) I log f (y) - log f (O)I :::; clDIN2c:, 

uniformly in 0 :::; y, y+, y- :::; Ne:. For some positive function cp : RD+uD- --+ R, we have 

L 
iED 

jED+,li-jl=l 

(y(i) - y+(j))2 - ~ 
2 L 

iED 
jf_D- ,li-jl=l 



Using this, (4.4.3) clearly follows. To prove (4.4.4), we introduce f(y) as the density of 

PAvG{Y E •, IY+I ::; 2Nc, IY-1::; 2Nc:}. 

Clearly 

( 4.4.5) f (y) = f(y) + f(y) JfD AVG(. max . IX(i)I > 2Nc: I Y = y). 
iED+uD- · 

By a similar argument as in the proof of Lemma 4.4.2, we have 

lim JfD AVG ( max IX(i)I > 2Nc: I Y = .y) = 0, 
N-+oo · iED+uD-

uniformly in A, CC SN, and IYI ::; Ne:. Using this, we get from (4.4.5): 

( 4.4.6) f(y) ::; f(y) ::; 2/(y), 

uniformly in A, CC SN, IYI::; Ne:, provided N is large enough. Now 

f (y) = f f f (y I y+, y-) JfD AvG(Y+, y-)-1 (dy+, dy-). 
}{y+,Jy+l9Ne} }{y-: Jy-J$2Ne} 
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By an obvious slight modification of the argument leading to (4.4.3), this proves (4.4.4). D 

Proof of Lemma 2.3.ld) For two expressions cp(A, C, N), 'lj;(A, C, N) > 0, where C c B, A c 
SN \ B, B mesoscopic, we write cp ,...., 'ljJ if 

llogcp(A,C,N)-log'lf;(A,C,N)I::; c!DIN2c:, 

for any e, uniformly in A, B, C, if N is large enough. Let 

C' :@: C \ (D v n-), A':@: A\ n+. 

If y+ E JRD+, y- E ffi.D-, we write fj(y+,y-) for the boundary condition on a+(A' V C') which is 
y+ on n+' y- on n- and 0 otherwise. . 

Using Lemma 4.4.2, we get 

JfD AvG(n+),...., JfD AvG(n+ and Y, y+, y- ::; Ne:) 

= f 1fDAvGY-1(dy). f dy+ dy-f(y+,y-1 y)JP'A'VG1,y(O+) 
J {O::;y::;Ne} J {O:::;y+ ,y-::;Ne} 

~ f 1fDAvcY-1(dy) f dy+dy-f(y+,y-10)1fDA1vG1 ,y(O+) 
J{o:::;y:::;Ne} J{o:::;y+,y-::;Ne} 

= PAvG(o::; Y::; Ne:) JfD(Avc)\D(n+, o::; y+, y- ::; Ne:) 

"'JfD(AVC)\D(!1+) 

= JfD A(n+) JfDG, (n+), 

where we have used Lemma 4.4.3 and Lemma 4.4.2. Applying that to A = 0, we get 

and therefore 
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5. STABILITY RESULTS FOR THE TORSIONAL RIGIDITY. 

5.1. Main estimate. We use the notations introduced in the Subsection 2.4. Since un is analytic 
in the interior of D, '\l u n = 0 at most at finitely many points inside D, and r µ g8lev µ u n is an 
analytic curve for all, except finitely manyµ E [0, max un]. _Following [2], 

, r ~ 1 r ~ 
a(µ) = - lrµ JVunl =~Ir µ 1 Jr µJ lrµ JVunl' 

where we use Jr µJ to denote the length of r µ- Therefore, by Jensen's inequality, 

I ( 1 r )-1 1r µJ2 
a(µ) ~-Ir µJ Jr µJ lrµ j'\lunl ds = - a(µ). 

Consequently, 

'( ) 1 I a 1 µ a = a'(µ) "?:. - l2 (a) "?:. - 47r' 
µ=µ(a) D 

for all but at most finite number of a E (0, IDJ]. Now note that 

(5.1.1) 

{ {IDI 
x(D) = ln un(x) dx =lo µ(a) da 

{IDI [IDI a2 
= - lo aµ'(a) da ~lo l'JJ(a.) da, 

and (2.4.1) follows. 
An explicit calculation reveals that 

(5.1.2) 
{IDI a2 JDl2 

x(B1n1) =lo s(a)2 da = 87r . 

Subtracting (5.1.1) from (5.1.2) (recall s(a) = 2y'mi), we obtain 

(5.1.3) [IDI 2 ( 1 1 ) 1 [IDI ( s(a) ) 
x(B1n1) - x(D) "?:. lo a s(a)2 - l'JJ(a) da "?:. 47r lo a 1 - ln(a) da, 

and the proof of Theorem 2.4.1 is, thereby, concluded. 

5.2. Stability of the inradius. Let D ~ 8(1) be a simply connected (but not necessarily con-
nected) domain with a piecewise smooth boundary. Since for each a E (0, IDI], the inradius e(Da) 
of Da satisfies e(Da) ~ e(D), the Bonnensen inequality (see e.g [25], (4.7)) implies that 

ln(a)2 
- s(a)2 

::'.'. 11"
2 

( (;- e(D)) 
2 

for each a E [7rg(p)2 , JDj]. Therefore,-

ln(a) "?:. (1 + ~ ( ~ -.g(D)) 2) 1/2' 
s(a) 4a V; 

and, consequently, 

1-~ "?:. 1 - 1 + -(y'a-y'7rg(D))2 . 
( ) ( 1 )-1/2 

ln(a) 4a 



25 

At this point we stop pushing for precise constants, and simply observe that due to a trivial 
estimate; Va~ 0, 1 - (1 + a)-112 ~ a/2(1 +a),, 

1 - s(a) ~ ~(a - 7re(D)2 ). 
lv(a) c 

for all a E [7re(D) 2 , !DI] and c large enough. Substituting this into (5.1.3), and performing -the 
integration -over the interval a E [7re(D) 2 , ID!], we infer that, 

1 
(5.2.1) x(Biv1) - x(D) ~ -(IDI - 7re(D)2

) 3 , c 
and the claim of 2.4.2 follows. 

Remark 5.2.1. As mentioned in the introduction, our stability estimate (5.2.1) readily implies sta-
bility in terms of the area of the symmetric difference function d.D..(•), introduced in (2.4.3). Indeed, 
for a simply connected D, 

(5.2.2) 

We shall see in Subsection 5.4 that such an estimate can be easily extended to the case of not 
simply connected domains as well. 

5.3. Stability of crystal shapes. Let D ~ S(l) be as in the previous subsection, and assume 
without loss of generality that the largest inscribed ci~cle of D is centered at the origin, i.e. that 

B7re(D)2 ~ D. 
We are going to estimate llu0 - hv!IL1(JR2)· Let h~(•) denote the shape of the harmonic droplet 
of the volume v, which is bound to wet the circle of radius r, centered at the origin (see (1.2.6) 
and (1.2.7)), 

h~(x) = 2
v2 (r

2 - lxl 2 ) V 0. 7rr 
Set r(D) = /Tf!-. Then, for any a > 0, 

lluo - hvllL1(JR2)::; lluo - h;~v)llv + llh~(D) - h;~v)llv 

+ llhv - h~(D) llv. (5.3.1) 

We choose a= x(B7re(D)2 )/x(D), so that 
he(D) - _v_ 

av - x(D) UB-rru(D)2. 

Then, using monotonicity in domain of the solution of the Poisson equation with Dirichlet boundary 
condition, 

(5.3.2) II v - he(D) II = (1 - x(B7re(D)2)) 
Uv av L1 v x(D) 

and 

llh~(D) - h~~D) llL• = V ( l - X~;l~~2 ) ). 

On the other hand, a straightforward computation reveals that 

ll hr(D) - h II 1 = v I IDI - al. (5.3.3) v v L 21[ IDI +a 
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To facilitate notations set b.(D) = Ej (D) - Ej (Ba.). Then, 

b.(D) ~ max{Ej (D) - Ej (BIDI) , Ej (BIDI) - Ej (Ba_)}. 

Since Ej (BJDI) can be computed exactly, we infer that for some c > 0, 

Ej (BIDI) - Ej(Ba.) ~ ~(IDI - a)2, 
c 

or, substituting the ab?ve estimate into (5.3.3), 

(5.3.4) 

On the other hand, 

(5.3.5) b.(D) > Ev(D) - Ev(B ) = v2(x(BIDI) - x(D)) > ('rrv)2 ( (B ) - (D)) 
- . t t IDI 2x(B1D1)x(D) - 8 x JDI x ' 

the last inequality follows from (1.2.6) and the fact that D ~ S(l) (and hence, by (1.2.6), both 
x(BIDJ) and x(D) are bounded above by 2/n-). 

By (5.2.1) this means that one can choose c = c(v), such that 

IDI - 7rg(D)2 ~ c( v) V b.(D). 
Consequently, we can use (1.2.6) to derive, 

JDl2 - (7rg(D)2)2 
x(D) - x(B7re(D)2) ~ x(BIDJ) - x(B7re(D)2) = 87r 

~ 2:.(IDI - 7rg(D)2) ~ cV D.(D). 7r 
Substituting the latter inequalities into (5.3.2) an~ (5.3.3), we finally obtain 

(5.3.6) llun - h;~D) llP ~ x(~) V D.(D) 

and 

(5.3.7) ''h~ -h II < _c_{/D.(D) 
v v £1 - 1n12 ·~ 

Since for any k > 0, Ej (D) ~ k => x(D) ~ v2 /2k, (5.3.1) and (5.3.4)-(5.3.7) imply that there 
exists c > 0, such that 

(5.3.8) 

un~formly in simply connected domains D ~ S(l). 

5.4. Estimates for general domains D ~ S(l). It remains to prove 2.4.3 in the case when 
D ~ S(l) is not necessarily simply connected. For such a domain D let {Da}aE[O,IDI] be the 
rearrangement of the level sets of uD, defined in the Subsection 2.4. Recall that 

.:i(D) 2:: E'j(D) - E'j(B1n1) = v; (x(~) - x(~1n1J 
Since we are interested only in the case of b.(D) being small, we may assume that x(D) is bounded 
away from zero uniformly in all domains D in question. Then, by the virtue (2.4.2), 

.:i(D) ;::: ~ t a(i- 1:(~))da. 
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Setting a* =max{ a : lD(a) :::; s(a) + J A(D)} V IDl/2, we therefore obtain (modifying the constant 
c according to the convention of Remark 1. 3. 2): 

J A(D) 2:: IDI - a* = E2.J D*I, 
c c 

where D* ~ Da*. Since D* is a level set of uv, and using the estimate onµ' derived at the beginning 
of Subsection 5.1, we conclude that 

Consequently, 

(5.4.1) 

1 
max uv(x) :::;. -ID\ D*j. 

xED\D* 4rr 

lluv - uv* lb = x(D) - x(D*) :::; cJ A(D) 
and 

~(D*) :::; cJ A(D). 

Thus everything boils down to the following problem: 
Given D ~ S(l) with a piecewise smooth boundary 8D satisfying 

prove that: 

(5.4.2) 

l8DI :::; s(IDI) + A(D), 

inf lluv - hv(x + • )11£1 :::; c{/ A(D). 
xES(l) 

Again, since we are interested only in the case of A(D) being small, it can be assumed from 
the beginning that IDI 2::. a/2. First of all, notice, that if D contains two disjoint components, 
D = Di V D2, then 

and, consequently, 

Therefore, 
2ID1llD2I < 2rr A(D) 

IDl2 - v2 , 

or, min{ID1j, jD21}:::; cA(D). Thus, in order to prove (2.5.2), one can restrict attention to the case 
where D is connected. 

So assume that D satisfies (5.4.1), is connected, but possibly not simply connected, i.e. that 
D = G \ R, where G ~ S(l) is connected and simply connected, and RC G is open; both domains 
having piecewise smooth boundaries. Since, IDI :::; IGI and j8DI = j8GI + l8Rj, we immediately 
infer that j8RI :::; A(D), and, consequently, that IRI :::; A(D)2 /4rr. Furthermore, 

(IDI + IRl)2 
(5.4.3) x(D) :::; x( G) :::; x(B1v1+IRI) = 8rr :::; x(D) + c~(D), 



28 

where the last inequality follows by the estimate on IRI above and by (5.3.5) of the previous 
subsection. Equation (5.4.3) and the above estimate on IRI = IG \DI already contain all the 
information we need to prove (5.4.2). Indeed, we readily obtain that 

A(G) ::; cA(D) and llua - uDllL1 = x(G) - x(D)::; cA(D), 

and it remains, thereby, to apply (5.3.8) to the function u0 over the simply connected domain G. 

6. CONCENTRATION UNDER 1P'B( • I VN ~ N3v) 

6.1. Gaussian concentration estimates. We give a proof of Lemma 2.5.1. Using the representa-
tion of the approximate torsional rigidity 

N 4xN(A) = L~(TAc), 
i 

where ~ is the expectation of an ordinary symmetric random walk on Z 2 , and TAc is the first 
hitting time of Ac, we see that 

and obviously (see also Lemma 2.6.1) 

lim XN(SN) = x(S(l)) < 00. 
N-too 

Therefore, we have 

(6.1.1) K :=sup sup XN(A) < oo. 
N ACSN 

Now, we have 

(6.1.2) 

We write 

JP' A(lleN - uA.,Nll1 ~a I VN ~ N 3v) 

(6.1.3) ::::; 1"+a/2 
lP' A(lleN - uA,Nll1 :::>:a I VN = N 3x)lP' A(~ E dx I VN :::>: N 3v) 

+lP'A(vN;::,: N 3 (v+ i) J VN;::,: N 3v). 
Using (6.1.1) and (6.1.2), we get 

lP'A ( VN :::>: N3 
( v + i) I VN :::>: N3v) ::::; exp{ N~~:1x -2:~(:)}::::; exp(-~~2

). 
Using this, (6.1.3), and the obvious fact that 

lluA.,N - uA,Nll1 ::; Ix - vi, 
it suffices to prove 

(6.1.4) 

The random field (X(i))iEA under the conditioned law JP' A( I VN = N 3v) is Gaussian with mean 

IEA(X(i) I VN = N 3x) = NxuA,N(i) 



and covariances 

cov A(X(i), xu) 1 vN = N 3x) = 9A(i,j) - UA,N;~~1ru) 

where 9A(i,j) ~ lEA(X(i)X(j)). Remark that 
1 

UA,N(i) = N2 L gA.(i, j), 
jEA 

and as XN(A) = L:iEA UA,N(i)/N2 , we see that 

(6.1.5) er~~ L I cov A(X(i), X(j) I VN = N 3x)I ::; 2N4xN(A) ::; 2N4xN(SN ). 
i,jEA 
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We apply now one of the standard isoperimetric inequalities for Gaussian measures (see e.g. 
[21], (4.4)). First remark that 

µ ~ lEA (L IX(j) - xNuA,N(i)l I VN = N3x) ::; L V9A(j,j)::; cN2/fOiN::; aN3-8 
jEA jEA 4 

if N is large enough. Therefore, using (4.4) of [21], we get 

. ll" A (11eN - uA,Nll1 :::: ~ I vN = N 3x) 
= ll" A(~ IX(j) - xNuA,NI 2:: a~

3 

I VN = N 3x) 

::; JP> A (L IX(j) - xNuA,N(i)I 2:: µ + a~
3 

I VN = N 3x) 
JEA . 

(6.1.6) 

( a2N6) 
::; exp - 32cr2 ' 

where 

a-2 =sup{ vaIA (~ X(j)g(j) I VN = N 3v) : lg(j)I ::; 1 for all j} ::; a-~. 
Using (6.1.5), we see that the r.h.s. of (6.1.6) is bounded by exp(-a2 N 2 /64XN(SN )). As 

sup XN(SN) < oo, 
N 

we have proved the Lemma 2.5. l. 

7. APPROXIMATION BY DISCRETE QUANTITIES. 

7.1. Estimates on discrete rigidities. Recall that the discrete rigidity XN(A) of a lattice domain 
A~ Z2 was defined in (2.1.5). We follow [34] to take advantage of the variational characterization 
of XN: 

(7.1.1) 
1 = N 4 inf XN(A) u;:::oinA 

u=O on Z 2\A 

L:(k,l)(u(k)-u(l))2 

(l:k u(k))2 

where the sum in the numerator is over all unoriented pairs of nearest neighbours in Z2. 
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Note, by the way, that for a domain D <S ~2 with a piecewise C 2 boundary, the torsional rigidity 
x(D) is given by a similar formula, 

(7.1.2) 

Proposition 7.1.1. Let D <S ~2 have a piecewise C2 boundary, and assume that a finite A. c Z2 

is such that 

(7.1.3) min { 11 x - k 11 : x E ND, k E Z 2 
\ A. } ~ 1/2. 

Then, 

(7.1.4) x(D) ::; XN(A). 

Proof. The proof follows Section 2 of [34), where a similar inequality for the membrane problem 
was established. We adopt it here for the sake of completeness. 

Let u E H{j(D). For each (a, {3) E ~S(l) ~ ~[-1, 1]2, define 

Va,JJ(k) = u ( k + ;• (J)). 

Because of the condition (7.1.3), Va,,B = 0 on Z2 \A. Moreover if u ~ 0 on D, then Va,,B ~ 0 as 
well. By (7.1.1), V (a, {3), 

(I: Va,JJ(k)) 
2 

:::; N 4 XN(A) I;(Va,JJ(k) - Va,.a(l)) 2
• 

k (k,l) 

However, by Jensen's inequality 

and 1 (I: (Vc~,,e(k) - Va,,e(l) )2
) da d(J:::; ~2 l IVul2 dx. 

2S(l) (k,l) D 

The claim follows now by ( 7 .1. 2). 

The estimate (7.1.4) controls the approximation from above by discrete rigidities. A possibility 
to control it below as well is provided by the following 

Proposition 7.1.2. Let A be a finite subset of Z 2 and define 

A.2 = {k E Z2 
: min Ilk - 2lll ::; 1}. 

ZEA 

Then, 

(7.1.5) XN(A) ::; X2N(A2). 

Proof. Given a function u Z2 -t 114, such that ulz2\A = 0 and u is not identically "zero, let us 
define u : Z2 -t114 via 

(7.1.6) U(k) = IA~k)I I; u(m), 
mEA(k) 



where A(k) = { m EA : Ilk - 2mll < 1 }. Then, by the direct substitution of (7.1.6), 

L u(k) = 4 L u(m), 
kE'V mE'.V 

and 
L(u(k) - u(z)) 2

::; L (u(m) - u(n)) 2 • 

(k,l) (m,n) 
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Since by the very construction u = 0 outside A2, (7.1.5) follows from the variational characteriza-
tion (7.1.1). 

We are in position now to prove Lemma 2.6.1. Let B ~SN be a mesoscopic region, and define 
f3 ~ S(l) as in (2.6.1), 

- 1 u B = N (k + (1/2)S(l)). 
kEB 

By the propositions 7.1.1 and 7.1.2, 

x(fJ_ N) ::; XN(B) ::; lim X2mN(B2m ), 
' m-too 

where B-,N ~ { x E f3 : minyE8B llx - Yll > 3/N }, and B2m = ( ... (B2)2)2 ... )2 (m times). Using 
results of [6] and the monotonicity of x in a domain, we conclude that 

XN(B) ::; x(B+,N ), 

where B+,N ~ { x E IR2 minyE.B llx - Yll ::; 3/ N }. qonsequently, for any B ~SN mesoscopic, 

(7.1. 7) lxN(B) - x(B)I::; x(B+,N) - x(B-,N), 
and it remains to estimate the right hand side of (7.1.7) uniformly in B ~SN. 

Let UB,+ and UB,- be the solutions of the Poisson equation on B+,N and B-,N respectively. Set 

. (7.1.8) aN = _max_ UB,+(x) . 
· xEB+,N\B-,N 

Then, 

(7.1.9) 
x(B+,N) - x(B-,N) = z UB,+(x) dx - z UB,-(x) dx J B+,N J B-,N 

Indeed, for x E B-,N 

::; aNIB+,NI ::; 4aN. 

UB,+(x) = UB,-(x) + 1- UB,+(e)i!(x, de), 
8B_,N 

where Q(x, •) is the exit distribution (harmonic measure) on afJ_,N for the Brownian motion 
starting at x. 

In order to estimate aN in (7.1.8), let GN = 38(1) \ Nb- 18(1), and let uaN be the solution of 
the Poisson equation with Dirichlet boundary conditions on aa N. Set 

a~= max ua (x). 
llxll~Nb-1+9/N N 

By the monotonicity considerations one infers that a~ ~ aN for all mesoscopic f3 ~ S(l). In order 
to estimate a~ define a new domain 

GN = Nb-1(28(1) \ S(l)) ~ GN. 
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. -
Then ua N is majorized by the solution of the Poisson equation on G N subject to the boundary 
conditions 0 on 8(Nb-1S(l)) and mN on 8(2Nb-1S(l)), where 

(7.1.10) mN = max uD(x). 
Jlxjj=2Nb-1 

Then, of course, mN :::; c independently of N. Since the blowup of G N by the factor N 1-b is simply 
the square annulus 28(1) \ S(l), we can use Brownian scaling to conclude that 

I < N-b aN _ c , 

and the claim of Lemma 2.6.1 follows. 

Let us turn to the proof of Lemma 2.6.2. By Lemma 2.3.1, for each box SM(k) = (k+NbS(l))n z2 
' 

qjSMI 2:: log ZsM(k) 2:: qjSMI - 8rNb: 
·Consequently, for a mesoscopic B = ukEB~Z~ SM(k), 

qjBI 2:: log ZB 2:: L log ZsM(k) 2:: qlBI - 8rN2-b. 
kEB 

On the other hand, by the estimates (2.3.5) and (2.3.6), 

(7.1.11) N -a < 1 1 ZBvB',+ < N-a -c _ - 2 og ........ ........ _ c , 
N ZB,+ZB',+ 

for any two disjoint mesoscopic regions B and B'. Consequently , a rerun of the subadditivity 
arg~ment of Subsection 4.3 reveals that the limit 

" Ll l" 1 1 z ...... q+ = im N 2 og N + 
N-+oo ' 

exists, and, moreover, any mesoscopic B with IBI 2:: tN2 satisfies 

(7.1.12) 
I 

1 ........ I a q+ - TB! log ZB,+ :::; cN- . 

Since by the definition .6.1 = J + <i+ - q, we conclude that any mesoscopic region B ~SN with 
I BI 2:: tN2 satisfies, 

1 j ·zB j 8 N 2 AtlBl-log-........ --JIBI :::;cN-. 
ZB,+ 

But, by the assumption, XN(B) 2:: t, so the latter inequality combined with Lemma 2.6.1 implies 
the desired estimate (2.6.3). 

7.2. Approximation near the optimal shape. Let us assume that 

AN(B) ~ IEN,1(B) - E!(Ba)I 

is small enough. Such an assumption clearly imposes restrictions on XN(B) from below, and all the 
results from the previous subsections apply. The proof of Lemma 2.6.3 follows closely the scheme 
developed in Section 5, and we shall use some of the notations introduced therein. In particular, 
we can restrict our attention to the case of simply connected domains. So, let 

B = ~ LJ ( k + ~S(l)). 
kEB 
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be connected and simply connected. Also let 'Q = g(B) be the inradius of fJ, and, to facilitate the 
notations, let us assume that B7r-e2 is the corresponding incircle. Note that due to the results of 
the previous subsection and the stability estimate (5.2.1), we may assume that 

(7.2.1) 1 fa e ~ 2V; > 0· 

Finally, let B[j be the discretization of Ba, 

BN ~NB nz2 
a , a , 

and define 

Set a= XN(B:e2)/XN(B). Then, 

Since, B:e2 ~ B, the first term on the right hand side of (7.2.2) equals (1 - XN(B:e2)/XN(B))v. 
However, in a view of Lemma 2.6.1 and (7.2.1), . 

Proceeding as at the end of Subsection 5.3, and using (2.6.3), we obtain that 

By (7.2.1) both XN(B) and XN(BN_2) are bounded below by a positive constant which does not 7rg ' . 
depend on B and 'Q. Consequently, there exists c > 0, such that 

(7.2.3) 

For the second term on the right hand side of (7.2.2) we can simply use results on discretization 
errors [6]] for the Poisson equation on a regular domain B7r-e2, which assert that 

(7.2.4) 

Finally, the remaining term on the right hand side of (7.2.2) can be estimated exactly as it was 
done in Subsection 5.3. Indeed, because of (7.2.1) and Lemma 2.6.2, 

and all the estimates of the Subsection 5.3 apply. Thus 

(7.2.5) 

for some c = c( v) > 0. Substituting (7.2.3)-(7.2.5) into (7.2.2), and following the pattern laid 
down in Subsection 5.4 to incorporate the not simply connected case, we arrive at the conclusion 
of Lemma 2.6.3. 



34 

8. PROOF OF THEOREM A. 

8.1. The proof. In order to facilitate notations let us define 

B N = { x (.) : min 11 eN - hv ( (. + x) 11 £1 2:: ZIN}' 
xED 

where, as before, eN is the plaquette reconstruction from the random field X(. ), hv is the optimal 
harmonic shape given by (1.2.7) and the sequence {ZIN}; limZIN = 0, is to be appropriately selected 
in the course of the proof. Our derivation of the asserted rate of convergence of fP>N,+( SN j VN 2:: 
N 3v) to zero is based on the disjoint decomposition of the event BN with respect to mesoscopic 
wetted regions: 

(8.1.1) 

~ -where £(v,B) = {VN 2:: N 3v} n {M(XM) = B}. 
The proof of the theorem comprises two estimates: 

1. A lower bound on fP>N,+(VN 2: N 3v) 
and 

L TIDN,+( BN; £(v,B)), 

mesoscopic 

2. Uniformly in mesoscopic regions B ~SN an upper bound on fP>N,+( BN; £(B,v)). 

Proposition 8.1.1. 

(8.1.2) 

where mN,f ~ min{E_N,1(B); B ~SN mesoscopic}. 

Proposition 8.1.2. There exists a sequence {ZIN}; limN-+oo ZIN = 0, such that for any B ~ SN 
mesoscopic, 

(8.1.3) 

Since, as we have seen before, the number of all mesoscopic subregions of SN is bounded above 
by exp(N2{l-b)), the conclusion of Theorem A follows with a redefined ZIN =ZIN V exp(-Nb). 

Proof of Proposition 8.1.1: Let BN _be an optimal mesoscopic region, i.e let 

E_N,1(BN) = mN,f· 

Then, 

2: L e-JIAI ___ zA JP> A ( VN 2:: N3v ; n+) 
A"'::JBN ZN,+ 

2:: L e-JIAl!A JP>A(VN2::N3v)JP>A(n+), 
A2BN ZN,+ 

(8.1.4) 

where the second inequality follows from the FKG properties of JP> A· Moreover, for each A 2 EN, 

and, by Lemma 2.3.1 d), 
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Finally, as it was remarked in Section 4, IP'sN ( n+ ) ~ e-cN2
-b uniformly in mesoscopic regions 

B. Consequently, 

IP'N,+( VN ~ N3v) ~ e-JISNl-cN2-81P'sN( VN ~ N3v) x L e-JIDIZ!NVDIP'n( n+)· 
D:JSC ZN,+ - N 

By (7.1.11), 

Since, VN is Gaussian under IP'sN, 

( 
2 v

2 
) IP'sN( VN ~ N 3v) >exp -N 2XN(BN) -clogN , 

and the substitution of all the above reductions into (8.1.4) leads to 
........ 2 

...... ( 3 ) ( 2 ( I B NI 1 Zs N + v ) 2 a) IP'N,+ VN ~ N v ~ exp -N J N2 + N2 log Zs: + 2xN(BN) - cN - . 

(8.1.2) follows now by the definition (2.1.10) of EN,/ and the optimal choice of EN; E1N,t(BN) = 
fflN,J 

Proof of Proposition 8.1.2: We split all the mesoscopic wetted regions into two families: 

F1 = {B - mesoscopic : E1N,1(B) > '0N,J +EN} 
and 

F2 = {B - mesoscopic : E1N,1(B) < mN,f +EN}, 
where the sequence {EN} is to be specified later. 
Estimates for B E F1: From now on we pick a number 1'; 

I + 2b < 1' < 1, 
which is possible due to the choice of the scaling parameters band I in Subsection 3.1. 

Now, 

(8.1.5) 

Indeed, by Lemma 1.7.4 in [20], r(M) ~ 8/M = 8N-2b. Therefore, 

{X(k) ~ N 11
} =} {XM(k) ~ 8Nl'-2b}, 

which contradicts the assumption {k ~ M(XM )}. 
Next notice that one can disregard mesoscopic B-s which are too small. For fix a small positive 

number t, and assume that IBI ::; tN2• By (8.1.5), 

n+ n £(v, B) ===;.. {Vs~ N 3v - cN2+1' ~ N 3v(l - cN-8)}, 

where Vs ~ LkES X(k). However, for each A~ SN, Vs is a zero mean Gaussian under IP' A with 
the variance bounded above by 

Therefore, 

L GsN(k, l) ::; 2N2IBI ::; 2tN4
• 

k,lEB 
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Thus, fort small enough (8.1.3) is automatically satisfied. 
With such a small positive t fixed we can proceed to consider only those B E F 1 , for which 

IBI 2:: tN2 • We have: 

TIDN,+ ( SN; £( v, B)) :::; TIDN,+ ( £( v, B)) 
(8.1.6) = L e-JIAI _!A IP' A( M(XM) = B; VN 2:: N 3v; n+)· 

A ZN,+ 
Due to the volume filling estimate (2.2. 7}, any substantial contribution to the sum above can come 
only from those A-s, which satisfy IB \Al :::; cN2- 8 . Also, in a view of (8.1.5), we can further 
develop the right hand side of (8.1.6) using: 

IP'A( M(XM) = B; VN 2:: N 3v; D+) :::; PA( XjA\B:::; N 11
; n!\B; VB 2:: N 3 (v - cN-8

)). 

We want to condition on the values of spins at 8A\BB, which are known to stay below Nr', to 
decouple between events over A n B and A \ B. As in Subsection 4.4 let IP' AnB ,x to denote the 
Gaussian measure on An B subject to boundary conditions x on SN\ (An B). Clearly, for each 
number a E ~' 

max IP' AnB,x ( VB 2:: a ) :::; IP' AnB ( VN 2:: a - cN2+1 ' ) . 
xE[O,N"Y']A\B 

Therefore, 
IP'A(£(v,B); D+):::; IP'AnB(VN2::vN3(1-cN- 8 ))IP'A(n!\B). 

Finally, as it becomes apparent from the proof of Lemma 2.3.1 d) in Subsection 4.4, 

IfDA( 0~\B) :::; ecN2
-

8
IfDA\B( f1+), 

and, of course, IP' AnB ( V N 2:: a) :::; IP' B ( V N 2:: a) for each number a E R 
Proceeding as in the proof of the Proposition 8.1.1 we, therefore, obtain: 

(8.1.7) TIDN,+( SN; £(v,B)) :::; exp( -N2E1N,1(B) + cN2- 8). 

Since it was assumed, that E1N,1(B) 2:: mN,t +EN, we deduce from (8.1.2) and (8.1.7) that 

TIDN,+( SN; £(v,B)) :::; exp( -N2 (EN - cN-8 ))PN,+(VN 2:: N 3v). 

Then, the choice EN= cN-8 + cN-b does the job. 

Estimates for B E F2: So let B ~ SN be such, that 

(8.1.8) E1N,1(B) :::; mN,f + EN. 
This, of course, imposes a restriction on IBI from below; for example IBI 2:: N 2a/2 for N large 
enough. We proceed exactly as in the F 1 case to conclude, that uniformly in B-s satisfying (8.1.8) 
and in A~ SN; IB \Al:::; cN2- 8 , 

IP' A (SN; £(v, B); n+) :::; ecN
2

-
8

IP' A\B (n+) max IP' AnB,x (SN; VN 2:: N 3v(l - cN-8)}. 
xE[O,N"Y']SN\(AnB) 

If, E1N,t(A n B) 2:: mN,t +EN, then the corresponding term in the expansion 

TIDN,+( SN; £(v,B)) = L e-JIAI _!A IP' A( SN; £(v, B) ; n+)· 
A ZN,+ 

can be treated as in the F1 case. Thus, it remains to consider only those A-s, for which 
(8.1.9) 
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Only ·at this stage the event BN at last comes into play. Notice that for such an almost optimal 
An Ethe profile U'A.ns,N is already very close to the profile uB,N' and hence, by the approximation 
and stability results of Sections 5 and 7, to some shift of hv itself. More precisely, 

11 -v -v II < 11-v XN(A n E) -v II II (i XN(A n E)) v II UB,N. - UAnB,N L1 - UN:B - XN(E) UAnB,N £1 + - XN(E) UAnB,N £1. 

However, since XN(A n E) ::; XN(E), and the integral of a positive function u1D N is v regardless of 
the region D ~ SN, one infers that ' 

II v v II ( XN(AnE)) uN,B - uN,AnB £1 :S 2v 1 - XN(E) . 

On the other hand, the fact that IE\ Al ::; cN2- 8 in conjunction with the inequalities (8.1.8) and 
(8.1.9) implies that 

IE:Kr,t(E) - EN,J(A n E)I ::; 2EN, 

and that XN(E) 2::: v2 /4mN,f· Consequently, 

lluA.ns,N - u8,N llL1 ::; cEN, 

and, by virtue of the stability result (2.6.4), 

(8.1.10) min lluA.ns N - hv(• + x)llL1 < c{/EN 
xES(l) ' 

Thus, it remains to give an estimate on 

JID AnB,x (lleN - UAnB,N llL1 2::: LIN ; VN 2::: N 3v(l - cN-8
))' 

uniformly in A,E and boundary conditions x E [O, N'1
]
8N\(AnB), and then to choose the sequence 

{LIN} in accordance with all the restrictions imposed by different estimates involved. In fact we can 
reduce the bounds for different x-s to a single estimate at x = 0. Indeed, fix an x E [0, N'']SN\(AnB) 
and define ux to be the plaquette reconstruction of the solution to the (discrete ) harmonic equation 
on An E with boundary conditions x. Then, under JID AnB ,x, the field X ( •) ~X ( •) - ux ( •) is Gaussian 
with zero boundary conditions on SN \ (An E). Therefore, since by the maximum principle 
0 < u,x <NI' - - ' 

JID AnB,x ( lleN - UAnB,NllL1 2::: LIN ; VN 2::: N 3v(l - cN-8)) ::; 

IP'AnB( li~N - UAnB,NiiL1 2::: LIN -N1 '-l; VN 2::: N 3v(l - cN-8)-Nl'-1). 

Combining the latter estimate with (8.1.10), we see that the sequence {LIN} should satisfy 

(8.1.11) N''-1 V c{/EH « LIN « 1. 

However, once the choice of {LIN} complies with (8.1.11), we are entitled to use the concentration 
estimates of Section 6 to assert that for each E E F2 and each A ~ SN, such that IE\ Al,::; cN2- 8 , 

li'N( 'BN; E(v, B)) ~ exp(-N2(mN,f -cN-0) +EN/\ v;). 
Recall that we have already chosen EN= c(N-b + N-8). Then, 

LIN = 1f/€ii v N{T'-l)/2 ' 

both satisfies the requirement (8.1.11) and leads to the desired estimate (8.1.3). 
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8.2. Positivity of At. The fact that the limit in (1.3.2) is well defined was established in the end 
of Subsection 7.1. 

One can rewrite At,N as 

At,N = At,N(J) 

where 

However, by the results of [10], 
. 1 

hm -IS 
1

1ogJP>8N(n+) = o. 
N-+oo N 

Consequently, At is nonnegative. 
Differentiating At,N with respect to J, we obtain: 

d 1 ,.... 
(8.2.1) dJAt,N = 1 - ISNl1EN,+IVI, 

and 
d2 1 

d2JAt,N = ISNI VarN,+(IVI), 

where V is the random microscopic wetted region. Since V ~ SN , At,N is nondecreasing and 
convex. Moreover, (8.2.1) above clearly indicates that the question of whether At,N > 0 for all 
J E JR or not is essentially the question of the wetting transition in our model. We do not attempt to 
solve it here - such a computation would involve a rather delicate analysis of the entropic repulsion 
phenomena for two-dimensional Gaussian fields with 0-boundary conditions, which would be closer 
in spirit to [5) than to the problems we are addressing in this article. Instead we shall give a rather 
crude and straightforward proof of the positivity of At for large enough values of J. Namely, we 
claim that 

(8.2.2) A ( J) J - log y'2 - q 
t > 2 ' 

where q is defined in (4.2.1)'. Indeed, by the results of Subsection 4.2, 

log ZN :::; IBNI G log~ + q). 
On the other hand, a trivial computation shows that for every A ~ SN, 

ZAil' A(!1+) 2:; (l"° e-·: dx ti = exp{ 1;1 logn. 

In particular, for any A~ SN such that !Al = 1s;1, 

1 e-JIAlzAJP> A(n+) ISNI ( In ) og ~ -
2

- J - logv2 - q, e-JJSNIZN 

and· (8.2.2) follows. 
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