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Additive functionals as rough paths
Jean–Dominique Deuschel, Tal Orenshtein, Nicolas Perkowski

Abstract

We consider additive functionals of stationary Markov processes and show that under Kipnis-
Varadhan type conditions they converge in rough path topology to a Stratonovich Brownian mo-
tion, with a correction to the Lévy area that can be described in terms of the asymmetry (non-
reversibility) of the underlying Markov process. We apply this abstract result to three model prob-
lems: First we study random walks with random conductances under the annealed law. If we
consider the Itô rough path, then we see a correction to the iterated integrals even though the
underlying Markov process is reversible. If we consider the Stratonovich rough path, then there
is no correction. The second example is a non-reversible Ornstein-Uhlenbeck process, while the
last example is a diffusion in a periodic environment.

As a technical step we prove an estimate for the p-variation of stochastic integrals with respect
to martingales that can be viewed as an extension of the rough path Burkholder-Davis-Gundy
inequality for local martingale rough paths of [FV08, CF19, FZ18] to the case where only the
integrator is a local martingale.

1 Introduction

In recent years there has been an increased interest in the link between homogenization and rough
paths. It had been observed previously that homogenization often gives rise to non-standard rough
path limits [LL03, FGL15]. The more recent investigations were initiated with the work of Kelly and
Melbourne [KM17, KM16, Kel16] who study rough path limits of additive functionals of the form√
n
∫ n·

0
f(Ys)ds, where Y is a deterministic dynamical system with suitable mixing conditions. In

that way they are able to prove homogenization results for the convergence of deterministic multiscale
systems of the type

dXn =
√
nb(Xn

t , Y
n
t )dt,

dY n = nf(Y n
t )dt,

for which under suitable conditions Xn converges to an autonomous stochastic differential equation.
This line of research was picked up and extended for example by [BC17, CFK+19b, CFK+19a, LS18,
LO18]. More recent results also cover discontinuous limits [CFKM19].

Motivated by this problem, as well as by the aim of understanding the invariance principle for random
walks in random environment in rough path topology, we want to study rough path invariance princi-
ples for additive functionals

√
n
∫ n·

0
f(Xs)ds of Markov processes X in generic situations. If we are

only interested in a central limit theorem at a fixed time, then there are of course many results of this
type and many ways of showing them. See for example [Pel19] for a recent and fairly general result. A
particularly successful approach for proving such a central limit theorem and even the functional cen-
tral limit theorem (invariance principle) is based on Dynkin’s formula and martingale arguments, and it
was developed by Kipnis and Varadhan [KV86] for reversible Markov processes and later extended to
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many other situations; see the nice monograph [KLO12]. Here we extend this approach to the rough
path topology and we study some applications to model problems like random walks among random
conductances, additive functionals of Ornstein-Uhlenbeck processes, and periodic diffusions.

This can also be seen as a complementary direction of research with respect to the recent advances
in regularity structures [BHZ19, CH16, BCCH17], where the aim is to find generic convergence results
for models associated to singular stochastic PDEs. In those works the equations tend to be extremely
complicated, but the approximation of the noise is typically quite simple (the prototypical example is
just a mollification of the driving noise, but [CH16] also allow some stationary mixing random fields that
converge to the space-time white noise by the central limit theorem). In our setting the equation that
we study is very simple (just a stochastic ODE), but the approximation of the noise is very complicated
and (at least for us) it seems difficult to check whether the conditions of [CH16, Theorem 2.34] are
satisfied for the kind of examples that we are interested in.

The most interesting model that we study here is probably the random walk among random con-
ductances. Here we distribute i.i.d. conductances (η({x, y}))x,y∈Zd:x∼y on the bonds of Zd (where
x ∼ y means x and y are neighbors). Then we let a continuous time random walk move along Zd,
with jump rate η({x, y}) from x to y (resp. from y to x). We are interested in the large scale behavior,
i.e. we study n−1/2Xnt for n→∞. It is well known that the path itself converges in distribution under
the annealed law to a Brownian motion B with an effective diffusion coefficient. Our contribution is to
extend this convergence to the rough path topology, which allows us for example to understand the
limit of discrete stochastic differential equations

dY n
t = σ(Y n

t−)dXn
t , (1)

but also of SPDEs driven by Xn. And here we encounter a surprise: Even though X is in a certain
sense reversible (more precisely the underlying Markov process of the environment as seen from the
walker is reversible), the iterated integrals

∫ ·
0
Xn
s ⊗dXn

s do not converge to
∫ ·

0
Bs⊗dBs, but instead

we see a correction: We have(
Xn,

∫ ·
0

Xn
s− ⊗ dXn

s

)
−→

(
B,

∫ ·
0

Bs ⊗ dBs + Γt

)
,

where Γ is a correction given by

Γ =
1

2
〈B,B〉1 − Eπ[η({0, e1})]Id =

1

2
(〈B,B〉1 − Eπ[η({0, e1}) + η({0,−e1})]Id)

for the law π of the random conductances. Of course, Γ vanishes if the conductances are deterministic
(i.e. if π is a Dirac measure). But if the conductances are truly random, then typically the effective
diffusion is not just given by the expected conductance, and in d = 1 one can even show that this is
never the case (see the discussion at the top of p.89 of [KLO12]). Therefore, Γ is typically non-zero,
and the solution Y n of (1) converges to the solution Y of

dYt = σ(Yt)dBt +
∑
j,k,`

∂kσ·j(Yt)σk`(Yt)Γj`dt.

If on the other hand we denote by X̃n the linear interpolation of the pure jump path Xn, then
(X̃n,

∫
0
X̃n
s dX̃n

s ) converges to the limit that we would naively expect, namely to the Stratonovich
rough path above B. From the point of view of stochastic calculus this is a bit surprising: After all,
there are stability results for Itô integrals [KP91], while the quadratic variation (i.e. the difference be-
tween Itô and Stratonovich integrals) is very unstable. In fact, we are not aware of any previous results
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of this type (naive limit for the Stratonovich rough path, correction for the Itô rough path), but it seems
to be a generic phenomenon. The same effect appears for periodic diffusions, and we expect to see it
for nearly all models treated in the monograph [KLO12]. On the other hand, for ballistic random walks
in random environment, after centering, a correction to the Stratonovich rough path is identified in
terms of the expected stochastic area on a regeneration interval [LO18, Theorem 3.3]. Moreover, for
random walks in deterministic periodic environments simple examples for non-vanishing corrections
are available [LS18, Section 1.2] (or [LO18, Section 4.2]). For processes that can be handled with the
Kipnis-Varadhan approach we generically expect to see a correction to the Stratonovich rough path if
and only if the underlying Markov process is non-reversible.

Structure of the paper In the next section we introduce some basic notions from rough path theory.
Section 3 presents our main result Theorem 3.3, the rough path invariance principle for additive func-
tionals of stationary Markov processes, which holds under the same conditions as the abstract result
in [KLO12]. The proof is based on recent advances on Itô rough paths with jumps due to Friz and
Zhang [FZ18], on stability results for Itô integrals under the so called UCV condition by Kurtz and Prot-
ter [KP91], on Lépingle’s Burkholder-Davis-Gundy inequality in p-variation [Lép75], and on repeated
integrations by parts together with a new estimate on the p-variation of stochastic integrals (Proposi-
tion 3.13). In Section 4 we apply our abstract result to three model problems: random walks among
random conductances, additive functionals of Ornstein-Uhlenbeck processes, and periodic diffusions.
Finally, Section 5 contains the proof of Proposition 3.13 which might be of independent interest.

Notation For two families (ai)i∈I , (bi)i∈I of real numbers indexed by I the notation ai . bi means
that ai ≤ c bi for every i ∈ I where c ∈ (0,∞) is a constant. Let ∆T := {s, t ∈ [0, T ] : s ≤ t} for
T > 0. We interpret any function X : [0, T ] → Rd also as a function on ∆T via Xs,t := Xt −Xs,
(s, t) ∈ ∆T . For a metric space (E, d) we write C([0, T ], E) resp. D([0, T ], E) for the continuous
resp. càdlàg functions from [0, T ] to E. A function X : ∆T → E is called continuous resp. càdlàg
if for all s ∈ [0, T ) the map t 7→ Xs,t on [s, T ] is continuous resp. càdlàg, and we write C(∆T , E)
resp. D(∆T , E) for the corresponding function spaces.

2 Elements of rough path theory

Here we recall some basic elements of rough path theory for Itô rough paths with jumps. See [FZ18]
for much more detail.

Let us write ‖X‖∞,[0,T ] := supt∈[0,T ] |Xt| (resp. ‖X‖∞,[0,T ] := sup(s,t)∈∆T
|Xs,t|) to denote the

uniform norm of X ∈ D([0, T ],Rd) (resp. X ∈ D(∆T ,Rd×d)). For 0 < p < ∞ and a normed
space (E, | · |E), we define the p-variation of Ξ : ∆T → E (and so in particular of Ξ : [0, T ]→ E)
by

‖Ξ‖p,[0,T ] :=

(
sup
P

∑
[s,t]∈P

|Ξs,t|p
)1/p

∈ [0,+∞], (2)

where the supremum is taken over all finite partitionsP of [0, T ] and the summation is over all intervals
[s, t] ∈ P . Note that for any 0 < p ≤ q <∞, we have that ‖Ξ‖q,[0,T ] ≤ ‖Ξ‖p,[0,T ].

Definition 2.1 (p-variation rough path space). For p ∈ [2, 3), the space Dp-var([0, T ],Rd × Rd×d)
(resp. Cp-var([0, T ],Rd × Rd×d)) of càdlàg (resp. continuous) p-variation rough paths is defined by
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the subspace of all functions (X,X) ∈ D([0, T ],Rd) × D(∆T ,Rd×d) satisfying Chen’s relation,
that is,

Xr,t − Xr,s − Xs,t = Xr,s ⊗Xr,t (3)

for 0 ≤ r ≤ s ≤ t ≤ T , and

|X0| + ‖X‖p,[0,T ] + ‖X‖1/2
p/2,[0,T ] < ∞. (4)

The p-variation Skorohod distance on Dp-var([0, T ], (Rd,Rd×d)) is

σp,[0,T ]((X,X), (Y,Y)) := inf
λ∈ΛT
{|λ|∨

(
‖X ◦λ−Y ◦λ‖p,[0,T ] +‖X◦(λ, λ)−Y◦(λ, λ)‖p/2,[0,T ]

)
},

where ΛT are the strictly increasing bijective functions from [0, T ] onto itself, and |λ| = supt∈[0,T ] |λ(t)−
t|. The uniform Skorohod distance is defined similarly, except with the p-variation respectively p/2-
variation distance replaced by the uniform distance; see [FZ18, Section 5] for details.

For X, Y ∈ D([0, T ],Rd) we use the notation
∫ t

0
Ys−⊗ dXs for the left-point Riemann integral, that

is ∫ t

0

Ys− ⊗ dXs :=

∫
(0,t]

Ys− ⊗ dXs := lim
n→∞

{ ∑
[u,v]∈Pn

Yu ⊗
(
Xv −Xu

)}
,

whenever this limit is well defined along an implicitly fixed sequence of partitions (Pn) of [0, t] with
mesh size going to zero. Note that if X is a semimartingale and Y is adapted to the same filtration,
then this definition coincides with the Ito integral. We remark also that the iterated integrals

Xs,t :=

∫ t

s

Xs,u− ⊗ dXu =

∫
(s,t]

Xs,u− ⊗ dXu,

satisfy Chen’s relation (3). Moreover, so do X̃s,t := Xs,t + (t− s)Γ, for any fixed matrix Γ.

Remark 2.2. Note that by Chen’s relation Xs,t = X0,t−X0,s−X0,s⊗Xs,t whenever 0 6 s 6 t 6 T ,
and therefore

‖X− Y‖∞,[0,T ] = sup
06s<t6T

|Xs,t − Ys,t|

. ‖X0,· − Y0,·‖∞,[0,T ] + (‖X0,·‖∞,[0,T ] ∨ ‖Y0,·‖∞,[0,T ])‖X0,· − Y0,·‖∞,[0,T ].

Consequently, the uniform resp. Skorohod distance of the (one-parameter) paths (X0,·,Xn
0,·) and

(Y0,·,Y0,·) controls the uniform resp. Skorohod distance of (X,X) and (Y,Y).

The following lemma by [FZ18] will be useful in the sequel.

Lemma 2.3. Let (Zn,Zn) be a sequence of càdlàg rough paths and let p < 3. Assume that there
exists a càdlàg rough path (Z,Z) such that (Zn,Zn)→ (Z,Z) in distribution in the Skorohod (resp.
uniform) topology and that the family of real valued random variables (‖(Zn,Zn)‖p,[0,T ])n is tight.
Then (Zn,Zn) → (Z,Z) in distribution in the p′-variation Skorohod (resp. uniform) topology for all
p′ ∈ (p, 3).

Proof. This follows from a simple interpolation argument, see the proof of Theorem 6.1 in [FZ18].
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Invariance principles for rough path sequences guarantee the convergence of the solutions to rough
differential equations where the noise is approximated by the path sequence. Moreover, whenever
the second level (the first order ‘iterated integrals’) of the rough path has a correction, the limit-
ing path solves a drift-modified rough equation defined explicitly in terms of the correction. More
precisely, [FZ18, Theorem 6.1 and Proposition 6.9] proved the following. Let (Zn) be a sequence
of semimartingales and assume that (Zn,

∫ ·
0
Zn
s−dZn

s ) converges in distribution in p-variation Sko-
rohod (resp. uniform) distance to a rough path (Z,Z), where Z is a semimartingale and Zs,t =∫ t
s
Zs,r− ⊗ dZr + Γ× (t− s) for Γ ∈ Rd×d. Then the solutions (Y n) of

dY n
t = σ(Y n

t−)dZn
t , Y n

0 = y,

converge in distribution in the Skorohod (resp. uniform) topology to the solution Y of

dYt = σ(Yt−)d(Z,Z)t = σ(Yt−)dZt +
∑
j,k,`

∂kσ·j(Yt)σk`(Yt)Γj`dt, Y0 = y,

where d(Z,Z)t denotes rough path integration and dZt is just the Itô integral.

3 Additive functionals as rough paths

Here we present our abstract convergence result for additive functionals of stationary Markov pro-
cesses. We place ourselves in the context of Chapter 2 in [KLO12]: Let (Xt)t>0 be a càdlàg Markov
process in a filtration satisfying the usual conditions, with values in a Polish space E, and let π be a
stationary probability measure for X and X0 ∼ π. We assume that the transition semigroup of X
can be extended to a strongly continuous contraction semigroup (Tt)t>0 on L2(π). We write L for the
infinitesimal generator of (Tt) and we assume that π is ergodic for L, i.e. that F is π-almost surely
constant whenever π({LF = 0}) = 1. We also assume that there exists a common core C for L
and L∗, where L∗ is the L2(π)-adjoint of L, and that C contains the constant functions. We write

LS =
1

2
(L+ L∗) and LA =

1

2
(L − L∗).

Notation. We write P or Pπ (and E or Eπ) for the distribution of the stationary process (Xt)t>0 on
the Skorohod space D(R+, E). The notation Eπ is reserved for the integration with respect to π on
the space E.

Definition 3.1. The spaceH1 is defined as the completion of C with respect to the norm

‖F‖2
1 := Eπ[F (−L)F ] = Eπ[F (−LS)F ],

or more precisely we identify F,G ∈ C if ‖F −G‖1 = 0, andH1 is the completion of the equivalence
classes. The spaceH−1 is the dual ofH1: We define for F ∈ C

‖F‖2
−1 := sup

G∈C:
‖G‖161

Eπ[FG] = sup
G∈C
{2Eπ[FG]− ‖G‖2

1}

and thenH−1 is the completion of {F ∈ C : ‖F‖−1 <∞} with respect to ‖ · ‖−1.

If F takes values in Rd we also write F ∈ H1(Rd), F ∈ H−1(Rd) or F ∈ L2(π,Rd), etc.
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Note that if Eπ[F ] 6= 0 then we can take G = λ ∈ C for λ ∈ R so that ‖G‖1 = 0 and by sending
λ→ ±∞ we see that ‖F‖−1 =∞. Therefore, we get that Eπ[F ] = 0 for all F ∈ L2(π) ∩H−1.

Let now F ∈ H−1(Rd)∩L2(π,Rd). Our aim is to derive a scaling limit for the (absolutely continuous)
rough path (Zn,Zn), where

Zn
s,t :=

1√
n

∫ nt

ns

F (Xr)dr, Zns,t :=

∫ t

s

Zn
s,r ⊗ dZn

r ,

and the integration with respect to Zn
r is in the Riemann-Stieltjes sense. Let us first recall the following

result:

Lemma 3.2 ([KLO12], Theorem 2.33). Assume that π is ergodic for L∗. Let F ∈ L2(π,Rd) ∩
H−1(Rd) and assume that the solution Φλ to the resolvent equation (λ − L)Φλ = F with λ > 0
satisfies

lim
λ→0

(√
λ‖Φλ‖π + ‖Φλ − Φ‖1

)
= 0 (5)

for some Φ ∈ H1(Rd). Then (Zn)n converges in distribution in C([0, T ],Rd) to a Brownian motion
with covariance matrix

〈B,B〉t = 2t〈Φ,⊗Φ〉1 := 2t(〈Φ(k),Φ(`)〉1)16k,`6d = 2t lim
λ→0

(〈Φ(k)
λ ,Φ

(`)
λ 〉1)16k,`6d.

Our aim is to extend Lemma 3.2 to the rough path topology. Our main result is:

Theorem 3.3. Let p > 2. Under the assumptions of Lemma 3.2 the process (Zn,Zn) converges
weakly to (

Bt,

∫ t

0

Bs ⊗ ◦dBs + Γt

)
t>0

(6)

in the (uniform) p-variation topology on Cp-var([0, T ],Rd × Rd×d), where B is the same Brownian
motion as in Lemma 3.2, ∫ t

0

Bs ⊗ ◦dBs :=

∫ t

0

Bs ⊗ dBs +
1

2
〈B,B〉t

denotes Stratonovich integration, and Γ is given by the following limit, which exists:

Γ = lim
λ→0

Eπ[Φλ ⊗ LAΦλ].

For the rest of the section we shall assume without further mention that the conditions of Theorem 3.3
are satisfied.

Remark 3.4. As Zn is of finite variation the iterated integral
∫ t

0
Zn
s ⊗ dZn

s “wants” to converge to the
Stratonovich integral, and Γ describes the area correction. Note that Γ = 0 if L is symmetric, i.e. if X
is reversible, so in that case we indeed obtain the Stratonovich rough path over B.

Remark 3.5. In Lemma 3.2 and Theorem 3.3 the ergodicity of π with respect to L∗ is only needed for
proving the tightness of (Zn,Zn) in the uniform topology. This is relatively subtle because we need
tightness of certain martingalesMΨ for which we only know that E[〈MΨ〉t−〈MΨ〉s] . |t−s|, which
is insufficient to apply Kolmogorov’s continuity criterion. If we can show E[|〈MΨ〉t − 〈MΨ〉s|1+δ] .
|t− s|1+δ for some δ > 0 and for the martingales MΨ of Lemma 3.9 below, then we do not need the
ergodicity of π with respect to L∗ (although we do need ergodicity with respect to L).

DOI 10.20347/WIAS.PREPRINT.2685 Berlin 2020
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The strategy for proving Theorem 3.3 is to apply Lemma 2.3, which separates the convergence proof
into two problems: Showing tightness of (Zn,Zn) in the p-variation topology, and identifying the limit
in the Skorohod topology. To identify the limit we follow a similar strategy as in [KLO12] and combine
it with tools from rough paths together with a simple integration by parts formula.

Let us formally sketch how the correction Γ arises, under the assumption that we can solve the Poisson
equation −LΦ = F (which is for example the case if X has a spectral gap and Eπ[F ] = 0). In that
case we have

Zn
t =

1√
n

Φ(X0)− 1√
n

Φ(Xnt) +MΦ,n
t

for a sequence of martingales (Mn). Therefore,∫ t

0

Zn
s ⊗ dZn

s =

∫ t

0

(Φ(X0)− Φ(Xns))⊗ F (Xns)ds+

∫ t

0

Mn
s ⊗ dZn

s .

By the ergodic theorem, the first term on the right hand side converges to

t(Φ(X0)⊗ Eπ[F ]− Eπ[Φ⊗ F ]) = tEπ[Φ⊗ LΦ].

To understand the contribution of the remaining contribution we use integration by parts: Since Zn is
of finite variation, we have∫ t

0

Mn
s ⊗ dZn

s = Mn
t ⊗ Zn

t −
∫ t

0

Zn
s ⊗ dMn

s .

Since X is stationary, we have Zn = Mn + O(n−1/2), and (Zn,Mn) converges jointly to (B,B).
And the martingale sequence (Mn) satisfies the “UCV condition” (see the next section for details),
and therefore

∫ t
0
Zn
s ⊗ dMn

s →
∫ t

0
Bs⊗ dBs. After passing to the limit we apply integration by parts

once more and deduce that∫ t

0

Mn
s ⊗ dZn

s → Bt ⊗Bt −
∫ t

0

Bs ⊗ dBs =

∫ t

0

Bs ⊗ dBs + 〈B,B〉t.

So overall ∫ t

0

Zn
s ⊗ dZn

s →
∫ t

0

Bs ⊗ ◦dBs +
1

2
〈B,B〉t + tEπ[Φ⊗ LΦ]

=

∫ t

0

Bs ⊗ ◦dBs + tEπ[Φ⊗ (−LS)Φ] + tEπ[Φ⊗ LΦ]

=

∫ t

0

Bs ⊗ ◦dBs + tEπ[Φ⊗ LAΦ]

3.1 Tightness in p-variation

The following notion was introduced by Kurtz-Protter [KP91].

Definition 3.6 (UCV condition). Let (Xn)n>1 ⊂ D([0, T ],R) be a sequence of càdlàg local martin-
gales. We say that (Xn)n>0 satisfies the Uniformly Controlled Variation (UCV) condition if

sup
n

E [[Xn]T ] <∞.

DOI 10.20347/WIAS.PREPRINT.2685 Berlin 2020
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Strictly speaking this is a very particular special case of the definition by Kurtz and Protter, who are
much more permissive and consider general semimartingales rather than local martingales, and they
allow for localization with stopping times as well as truncation of large jumps. But here we only need
the special case above.

The celebrated result of Kurtz-Protter [KP91] guarantees the convergence in the Skorokhod topology
of the stochastic integrals of a sequence of càdlàg local martingales satisfying the UCV condition.
Before we state it, recall that a sequence of processes (Y n)n∈N in D(R+,Rd) is called C-tight if it is
tight in the Skorohod topology and all limit points are continuous processes.

Theorem 3.7 ([KP91], Theorem 2.2). Let (Xn, Y n)n>1 ⊂ D([0, T ],R2) be converging in proba-
bility in the Skorokhod topology (or jointly in distribution) to a pair (X, Y ) ∈ D([0, T ],R2). Sup-
pose that (Xn)n>1 is a sequence of local martingales which satisfies the UCV condition. Then,
(Xn, Y n,

∫ ·
0
Y n
s−dXn

s ) converges to (X, Y,
∫ ·

0
Ys−dXs) as n → ∞ in probability (or weakly) in

D([0, T ],R3). In particular, if in addition
∫ ·

0
Ys−dXs ∈ C([0, T ],R), then

∫ ·
0
Y n
s−dXn

s is C-tight.

Corollary 3.8. Let (Xn, Y n)n>1 ⊂ D([0, T ],R2) satisfy the same assumptions as in Theorem 3.7. If
in addition (Yn)n≥1 is a sequence of semimartingales and (Xn, Y n, [Xn, Y n]) converges to (X, Y,A)
in probability (or jointly in distribution), where Y is a semimartingale and A is an adapted càdlàg pro-
cess of finite variation, then(
Xn, Y n,

∫ ·
0

Xn
s− ⊗ dY n

s ,

∫ ·
0

Y n
s− ⊗ dXn

s

)
−→

(
X, Y,

∫ ·
0

Xs− ⊗ dYs + [X, Y ]− A,
∫ ·

0

Ys− ⊗ dXs

)
in probability (or weakly) in D([0, T ],R4). In particular, if in addition

∫ ·
0
Xs− ⊗ dYs ∈ C([0, T ],R),

then
∫ ·

0
Xn
s− ⊗ dY n

s is C-tight.

Proof. Using integration by parts, we have∫ ·
0

Xn
s− ⊗ dY n

s = Xn ⊗ Y n −Xn
0 ⊗ Y n

0 −
∫ ·

0

Y n
s− ⊗ dXn

s − [Xn, Y n],

so that the claim follows from the Kurz-Protter result together with another integration by parts:

X ⊗ Y −X0 ⊗ Y0 −
∫ ·

0

Ys− ⊗ dXs − A =

∫ ·
0

Xs− ⊗ dYs + [X, Y ]− A.

Throughout this section we will often use the following representation of additive functionals:

Lemma 3.9. Let Ψ ∈ C(Rm). Then we have for T > 0∫ t

0

LSΨ(Xs)ds =
1

2
(MΨ

t + M̂Ψ
T − M̂Ψ

T−t), t ∈ [0, T ] (7)

where MΨ is a martingale and M̂Ψ is a martingale with respect to the backward filtration F̂t =
σ(XT−s : s 6 t), such that

E[〈MΨ〉t] = E[〈M̂Ψ〉t] = 2Eπ[Ψ⊗ (−LS)Ψ]t = 2t(〈Ψk,Ψ`〉1)16k,`6m, t ∈ [0, T ]. (8)

Assume that π is ergodic for L∗. Then under the rescaling T → nT and MΨ,n
t = n−1/2MΨ

nt and
similarly for M̂Ψ,n both processes converge in distribution in D([0, T ],Rm) to a Wiener process,
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and by (8) they satisfy the UCV condition. If G,H ∈ L2(π,Rm) and As,t =
∫ t
s

∫ r1
s
G(Xr2)dr2 ⊗

H(Xr1)dr1 for 0 6 s < t 6 T , then

As,t =
1

2

∫ t

s

∫ r1

s

G(Xr2)dr2 ⊗ dMΨ
r1
− 1

2

∫ T−s

T−t

∫ t

T−r1
G(Xr2)dr2 ⊗ dM̂Ψ

r1
(9)

+
1

2

∫ t

s

G(Xr)dr ⊗ (M̂Ψ
T−s − M̂Ψ

T−t) +

∫ t

s

∫ r1

s

G(Xr2)dr2 ⊗ (H(Xr1)− LSΨ(Xr1))dr1.

Proof. The representation (7) is obtained e.g. by applying Dynkin’s formula to Ψ(X) and Ψ(X̂) on
[0, u], u ∈ [0, T ], and then computing MΨ

t + M̂Ψ
T − M̂Ψ

T−t. If Ψ2 is in the domain of L, then
also (8) follows from Dynkin’s formula; otherwise we use an approximation argument, see p.35 of
[KLO12]. For the convergence of MΨ,n and M̂Ψ,n see the proof of Theorem 2.32/2.33 in [KLO12].
The representation for As,t follows by writing the integral against M̂Ψ

T−· as a limit of Riemann sums
– note that

∫ ·
0
G(Xr)dr is continuous and of finite variation, so the integral is defined pathwise and

we do not need to worry about quadratic covariations or the difference between forward and backward
integral.

For f ∈ D(R+,Rd) and δ, T > 0 we define the modulus of continuity

wT (f, δ) := sup
s, t ∈ [0, T ] :
|s− t| 6 δ

|f(t)− f(s)|.

We will need the following lemma:

Lemma 3.10 ([JS03], Proposition VI.3.26). The sequence (Y n) is C-tight if and only if the following
two conditions hold:

i. For all T > 0 we have

lim
K→∞

lim sup
n→∞

P( sup
t∈[0,T ]

|Y n
t | > K) = 0;

ii. for all ε, T > 0 we have

lim
δ→0

lim sup
n→∞

P(wT (Y n, δ) > ε) = 0.

If (Y n) is a sequence of processes in C(R+,Rd), then these two conditions are equivalent to tight-
ness in the uniform topology.

Since the uniform modulus of continuity is subadditive, i.e. wT (f + g, δ) 6 wT (f, δ) + wT (g, δ), it
follows from this Lemma that the sum of two C-tight sequences is again C-tight. Note that the same is
not necessarily true for sequences that are tight in the Skorohod topology on D(R+,Rd).

Lemma 3.11. Under the assumptions of Lemma 3.2 the sequence (Zn,Zn) is tight in C(R+,Rd ⊕
Rd⊗d).

Proof. By Lemma 3.2 and Remark 2.2 it suffices to show that Zn0,· is tight in C(R+,Rd⊗d). We shall
use Lemma 3.10. Since the set LSC is dense in H−1, see Claim B on p.42 of [KLO12], we can
find Φm ∈ C(Rd) so that ‖F − LSΦm‖−1 <

1
m

. Then eq. (9) from Lemma 3.9 (or rather a slight

DOI 10.20347/WIAS.PREPRINT.2685 Berlin 2020



J.–D. Deuschel, T. Orenshtein, N. Perkowski 10

modification with the inner integral in the second term on the right hand side running from T − r1 to
T instead of from T − r1 to t) gives

Zn0,t =
1

2

∫ t

0

Zn
s ⊗ dMΦm,n

s − 1

2

∫ T

T−t
(Zn

T − Zn
T−s)⊗ dM̂Φm,n

s +
1

2
Zn
T ⊗ (M̂Φm,n

T − M̂Φm,n
T−t )

+

∫ t

0

Zn
s ⊗
√
n(F (Xns)− LSΦm(Xns))ds.

By Theorem 3.7 together with Lemma 3.2 the two stochastic integrals are C-tight in D([0, T ],Rd)
(note that Zn

T − Zn
T−s is adapted to F̂s). The third term on the right hand side is C-tight by the

characterization of Lemma 3.10. It remains to treat the term∫ t

0

Zn
s ⊗
√
n(F (Xns)− LSΦm(Xns))ds

=

∫ t

0

1

2
(MF,n

s + M̂Φm,n
T − M̂F,n

T−s)⊗
√
n(F (Xns)− LSΦm(Xns))ds

+

∫ t

0

1√
n

∫ ns

0

(F (Xr)− LSΦm(Xr))dr ⊗
√
n(F (Xns)− LSΦm(Xns))ds.

By Corollary 3.8 the integral of the two martingales can be handled as before. The remaining term
satisfies

E

[
sup
t∈[0,T ]

∣∣∣∣ 1n
∫ nt

0

∫ s

0

(F (Xr)− LSΦm(Xr))dr ⊗ (F (Xs)− LSΦm(Xs))ds

∣∣∣∣
]
. T‖F−LSΦm‖2

−1 <
1

m2

by Lemma A.1 in the appendix. Combining all this with the necessity of the conditions in Lemma 3.10,
we get

lim
K→∞

lim sup
n→∞

P

(
sup
t∈[0,T ]

|Zn0,t| > K

)

6 lim
K→∞

lim sup
n→∞

P

(
sup
t∈[0,T ]

∣∣∣∣ 1n
∫ nt

0

∫ s

0

(F (Xr)− LSΦm(Xr))dr ⊗ (F (Xs)− LSΦm(Xs))ds

∣∣∣∣ > K

2

)
= 0

by Chebyshev’s inequality, and similarly we get by bounding wT (f, δ) ≤ 2‖f‖∞,[0,T ]:

lim
δ→0

lim sup
n→∞

P(wT (Zn0,·, δ) > ε)

6 lim
δ→0

lim sup
n→∞

P
(
wT

(
1

n

∫ n·

0

∫ s

0

(F (Xr)− LSΦm(Xr))dr ⊗ (F (Xs)− LSΦm(Xs))ds, δ

)
>
ε

2

)
.

2

ε
T‖F − LSΦλ‖2

−1 <
2T

m2ε
→ 0 as m→∞.

Hence Zn0,· satisfies the assumptions of Lemma 3.10 and therefore it is tight in C(R+,Rd⊗d) and the
proof is complete.

To apply Lemma 2.3 it remains to show that ‖(Zn,Zn)‖p,[0,T ] is a tight sequence of real valued
random variables. For that purpose we first recall the following estimate:

Lemma 3.12. Let G ∈ L2(π) ∩H−1 and T > 0 and p > 2. Then

E

[
sup
t6T

∣∣∣∣∫ t

0

G(Xs)ds

∣∣∣∣2 +

∥∥∥∥∫ ·
0

G(Xs)ds

∥∥∥∥2

p,[0,T ]

]
. T‖G‖2

−1.
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Proof. See Corollary 3.5 in [GP18]. This corollary is written for the specific process studied in [GP18],
but the proof carries over verbatim to the general situation considered here.

In particular, we get E[‖Zn‖2
p,[0,T ]] . T‖F‖2

−1. To bound ‖Zn‖p,[0,T ] we need the following auxiliary
result, which is the core technical result of this section and which replaces the Burkholder-Davis-Gundy
inequality for local martingale rough paths of [CF19, FZ18] in the case where only the integrator is a
local martingale:

Proposition 3.13. Let (Yt)t∈[0,T ] be a predictable càdlàg process with Y0 = 0 and such thatE[‖Y ‖2
p,[0,T ]] <

∞ for some p > 2 and let (Nt)t∈[0,T ] be a càdlàg local martingale with E[〈N〉T ] < ∞. Define

As,t :=
∫ t
s
Ys,rdNr. Then for any q > p > 2 and for all sufficiently small ε > 0

E[‖A‖1−ε
q/2,[0,T ]] .

(
1 + E

[
‖Y ‖2

p,[0,T ]

]1/2)E[〈N〉T ]1/2.

To not disrupt the flow of reading we give the proof in Section 5 below, see in particular the more
precise result in Proposition 5.2.

Corollary 3.14. Let G,H ∈ H−1 ∩ L2(π) and set As,t =
∫ t
s

∫ r1
s
G(Xr2)dr2H(Xr1)dr1. Then we

have for all p > 2 and T > 0 and ε > 0

E[‖A‖1−ε
p/2,[0,T ]] . (1 + T 1/2‖G‖−1)(1 + T 1/2‖H‖−1).

Proof. Lemma 3.9 shows that

As,t =
1

2

∫ t

s

∫ r1

s

G(Xr2)dr2dMΨ
r1
− 1

2

∫ T−t

T−s

∫ t

T−r1
G(Xr2)dr2dM̂Ψ

r1
+

1

2

∫ t

s

G(Xr)dr(M̂
Ψ
T−s − M̂Ψ

T−t)

+

∫ t

s

∫ r1

s

G(Xr2)dr2(H(Xr1)− LSΨ(Xr1))dr1. (10)

The first two terms on the right hand side will be controlled with Proposition 3.13 and Lemma 3.12.
The third term of (10) is bounded by∣∣∣∣12

∫ t

s

G(Xr)dr(M̂
Ψ
T−s − M̂Ψ

T−t)

∣∣∣∣ . ∥∥∥∥∫ ·
0

G(Xr)dr

∥∥∥∥
p,[s,t]

‖M̂Ψ‖p,[T−t,T−s], (11)

and the fourth term by∣∣∣∣∫ t

s

∫ r1

s

G(Xr2)dr2(H(Xr1)− LSΨ(Xr1))dr1

∣∣∣∣
. sup

r∈[s,t]

∣∣∣∣∫ r

0

G(Xr2)dr2

∣∣∣∣ ∫ t

s

|H(Xr1)− LSΨ(Xr1)|dr1.

(12)

Recall also Lépingle’s p-variation Burkholder-Davis-Gundy inequality, see Theorem A.2, and note that
E[[MΨ]T ] = E[〈MΨ〉T ] which can be easily seen by stopping the local martingale [MΨ] − 〈MΨ〉
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and then applying monotone convergence. So by Proposition 3.13 together with (10)-(12) we obtain

E[‖A‖1−ε
p/2,[0,T ]] .

1 + E

[∥∥∥∥∫ ·
0

G(Xr)dr

∥∥∥∥2

p,[0,T ]

]1/2
 (1 + |E[〈MΨ〉T ]|1/2 + |E[〈M̂Ψ〉T ]|1/2)

+ E

[∥∥∥∥∫ ·
0

G(Xr)dr

∥∥∥∥2

p,[0,T ]

](1−ε)/2

E[‖M̂Ψ‖2
p,[0,T ]]

(1−ε)/2

+ E

[
sup
r∈[0,T ]

∣∣∣∣∫ r

0

G(Xr2)dr2

∣∣∣∣2
](1−ε)/2

E

[(∫ T

0

|H(Xr1)− LSΨ(Xr1)|dr1

)2
](1−ε)/2

.

1 + E

[∥∥∥∥∫ ·
0

G(Xr)dr

∥∥∥∥2

p,[0,T ]

]1/2
 (1 + T 1/2‖Ψ‖1 + T‖H − LSΨ‖L2(π))

. (1 + T 1/2‖G‖−1)(1 + T 1/2‖Ψ‖1 + T‖H − LSΨ‖L2(π)),

where the last step follows from Lemma 3.12. Now we take Ψ = ΦH
λ as the solution to the Poisson

equation (λ − LS)ΦH
λ = −H . Note that in general ΦH

λ 6∈ C, but we can approximate ΦH
λ with

functions in C and get the same estimate. Then standard estimates for the solution of the resolvent
equation, see eq. (2.15) in [KLO12], give ‖ΦH

λ ‖1+
√
λ‖ΦH

λ ‖L2(π) . ‖H‖−1, and sinceH−LSΦH
λ =

λΦH
λ we can send λ→ 0 to deduce the claimed estimate.

Corollary 3.15. The process (Zn,Zn) is tight in the p-variation topology on C(R+,Rd ⊕ Rd⊗d).

Proof. It remains to show that (‖Zn‖p/2,[0,T ])n is tight for all T > 0, for which it suffices that
E[‖Zn‖1−ε

p/2,[0,T ]] 6 C for all n. But this follows from Corollary 3.14: We set G = H = n−1/2F
and replace T with nT to obtain

E[‖Zn‖1−ε
p/2,[0,T ]] . (1 + (nT )1/2‖n−1/2F‖−1)(1 + (nT )1/2‖n−1/2F‖−1) = (1 + T 1/2‖F‖−1)2.

3.2 Identification of the limit

To prove tightness we worked with the forward-backward decomposition of Lemma 3.9. But since the
process M̂Ψ from that lemma is only a martingale in the backward filtration, this decomposition is not
useful for identifying the limit. So here we work instead with the following decomposition based on the
resolvent equation:

Lemma 3.16. For λ > 0 we write Φλ for the solution of the resolvent equation (λ − L)Φλ = F .
Then

λ‖Φλ‖2
L2(π) + ‖Φλ‖2

1 6 ‖F‖2
−1 (13)

and there exists a martingale Mλ with Mλ
0 = 0 and with E[〈Mλ〉t] = 2Eπ[Φλ ⊗ (−LS)Φλ]t, such

that ∫ t

0

F (Xs)ds = Φλ(X0)− Φλ(Xt) +

∫ t

0

λΦλ(Xs)ds+Mλ
t =: Rλ

t +Mλ
t .

We write Mλ,n
t := n−1/2Mλ

nt and Rλ,n
t := n−1/2Rλ

nt.
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Proof. This formally follows by applying Dynkin’s formula to Φλ, and to make it rigorous if Φλ⊗Φλ 6∈
dom(L) one can use an approximation argument (see p.35 of [KLO12]).

Lemma 3.17. Assume (5). Then there exist processesRn,Mn ∈ D(R+,Rd) such that for all T > 0
and n ∈ N

lim
λ→0

{
E
[

sup
t6T
|Mn

t −M
λ,n
t |2

]
+ E

[
sup
t6T
|Rn

t −R
λ,n
t |2

]}
= 0.

Moreover, Mn is a martingale with E[〈Mn〉t] = 2t limλ→0Eπ[Φλ ⊗ (−LS)Φλ].

Proof. This is all shown in [KLO12], see Lemma 2.9 and (2.26) therein.

The following corollary completes the proof of Theorem 3.3:

Corollary 3.18. Under the assumptions of Theorem 3.3 the process (Zn,Zn) converges in distribu-
tion in the p-variation topology on C(R+,Rd ⊕ Rd⊗d) to(

Bt,

∫ t

0

Bs ⊗ ◦dBs + Γt

)
t>0

, (14)

where B is a d-dimensional Brownian motion with covariance

2t lim
λ→0

Eπ[Φλ ⊗ (−LS)Φλ] = 2t lim
λ→0
〈Φλ,⊗Φλ〉1,

and where

Γ = lim
λ→0

Eπ[Φλ ⊗ LAΦλ].

Proof. Let Zn = Mn + Rn as above. In Theorem 2.32 of [KLO12] it is shown that both (Mn) and
(Zn) converge in distribution in the Skorohod topology on D(R+,Rd) to a Brownian motion B with
covariance 〈B,B〉t = 2t limλ→0Eπ[Φλ ⊗ (−LS)Φλ]. Therefore both Zn and Mn are C-tight, and
thus also Rn is C-tight. It is shown in Proposition 2.8 of [KLO12] that E[|Rn

t |2] → 0 for each fixed
t > 0, which together with the C-tightness gives the convergence of Rn to zero in distribution in
C(R+,Rd) (and thus in probability because the limit is deterministic). Since Zn = Mn + Rn, this
gives the joint convergence of (Zn,Mn, Rn) in distribution inC(R+,R3d) to (B,B, 0). By the ‘more-
over’ part of Lemma 3.17Mn satisfies UCV. Consequently, Corollary 3.8 shows the joint convergence(

Zn,Mn,

∫ ·
0

Mn
s ⊗ dZn

s

)
→
(
B,B,

∫ ·
0

Bs ⊗ dBs + 〈B,B〉
)
.

It remains to study the term
∫ ·

0
Rn
s ⊗ dZn

s . We claim that for all T > 0

lim
n→∞

E
[
sup
t6T

∣∣∣∣∫ t

0

(Rn
s + n−1/2Φn−1(Xns))⊗ dZn

s

∣∣∣∣] = 0. (15)

Indeed,Rn
s −Rn−1,n

s = Mn−1,n
s −Mn

s , and since E[supt6T |Mn
t −M

n−1,n
t |2] . ‖Φ−Φn−1‖2

1 → 0
we can apply integration by parts together with the Burkholder-Davis-Gundy inequality to show that

E
[
supt6T

∣∣∣∫ t0 (Rn
s −Rn−1,n

s )⊗ dZn
s

∣∣∣]→ 0. The remaining term involves only the continuous finite
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variation process Rn−1,n
s + n−1/2Φn−1(Xns), so that we can apply Lemma A.1 to obtain

lim sup
n→∞

E
[
sup
t6T

∣∣∣∣∫ t

0

(Rn−1,n
s + n−1/2Φn−1(Xns))⊗ dZn

s

∣∣∣∣]
= lim sup

n→∞
E
[
sup
t6T

∣∣∣∣ 1√
n

∫ nt

0

(Rn−1,n
n−1s + n−1/2Φn−1(Xs))⊗ F (Xs)ds

∣∣∣∣]
. lim sup

n→∞
E[ sup

t6nT
|Rn−1,n

n−1t + n−1/2Φn−1(Xt))ds|2]1/2T 1/2‖F‖−1.

To bound the expectation on the right hand side note that

E[sup
t6T
|Rn−1,n

t + n−1/2Φn−1(Xnt)|2] . E[|n−1/2Φn−1(X0)|2] + E

[
sup
t6T

∣∣∣∣n−1/2

∫ nt

0

n−1Φn−1(Xs)ds

∣∣∣∣2
]

. n−1‖Φn−1‖2
L2(π) + T 2n−1‖Φn−1‖2

L2(π)

= (1 + T 2)n−1‖Φn−1‖2
L2(π),

and since according to assumption (5) the right hand side vanishes for n→∞we deduce (15). There-
fore, it suffices to study the limit of

∫ t
0
n−1/2Φn−1(Xns)⊗dZn

s = n−1
∫ nt

0
Φn−1(Xns)⊗F (Xns)ds.

Let λ > 0, then

E
[
sup
t6T

∣∣∣∣n−1

∫ nt

0

(Φn−1(Xns)− Φλ(Xns))⊗ F (Xns)ds

∣∣∣∣] 6 TEπ[|(Φn−1 − Φλ)⊗ F |]

6 T‖Φn−1 − Φλ‖1‖F‖−1,

and by assumption the right hand side converges to T‖Φ − Φλ‖1‖F‖−1, which goes to zero for
λ→ 0. Moreover, by the ergodic theorem the term n−1

∫ nt
0

Φλ(Xns)⊗F (Xns)ds converges almost
surely and in L1(P) to tEπ[Φλ⊗F ]. By Lemma A.3 in the appendix this convergence is even uniform
in t ∈ [0, T ] (to get the required uniform integrability note that

sup
t∈[0,T ]

∣∣∣∣n−1

∫ nt

0

Φλ(Xns)⊗ F (Xns)ds

∣∣∣∣ ≤ n−1

∫ nT

0

|Φλ(Xns)⊗ F (Xns)|ds,

and the right hand side converges in L1 by the ergodic theorem). Now it suffices to send λ → 0 to
deduce that

∫ t
0
Rn
s ⊗dZn

s converges to the deterministic limit−t limλ→0Eπ[Φλ⊗F ] in C(R+,Rd).
Consequently,

(Zn,Zn)→
(
B,

∫ t

0

Bs ⊗ dBs + 〈B,B〉t − t lim
λ→0

Eπ[Φλ ⊗ F ]

)
=

(
B,

∫ t

0

Bs ⊗ ◦dBs +
1

2
〈B,B〉t − t lim

λ→0
Eπ[Φλ ⊗ F ]

)
,

and finally we have

lim
λ→0

Eπ[Φλ ⊗ F ] = lim
λ→0

Eπ[Φλ ⊗ (λ− L)Φλ] = lim
λ→0

Eπ[Φλ ⊗ (−L)Φλ]

because
√
λΦλ → 0 in L2(π). The limit on the left hand side exists because Φλ converges in

H1 and F ∈ H−1, and thus also the limit on the right hand side exists. Moreover, 1
2
〈B,B〉t =

t limλ→0Eπ[Φλ⊗(−LS)Φλ] and sinceL−LS = LA we get the claimed form Γ = limλ→0Eπ[Φλ⊗
LAΦλ] (and in particular this limit exists).
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4 Applications

To illustrate the applicability of our results we derive here scaling limits in the rough path topology for
three classes of models, random walks with random conductances, Ornstein-Uhlenbeck process with
divergence free drift, and diffusions with periodic coefficients.

4.1 Random walks with random conductances

We place ourselves in the setting of Chapter 3.1 of [KLO12] or [Mou12]. Namely, let

η = {η({x, y}) = η({y, x}) : x, y ∈ Zd, |x− y| = 1}

be a set of numbers with 0 < c 6 η({x, y}) 6 C for all x, y and let us write Xη for the continuous
time random walk in Zd withXη

0 = 0 and that jumps from x to y (resp. from y to x) with rate η({x, y}).
Since the rates are bounded from above this random walk exists for all times. We interpret η({x, y})
as the conductance on the bond {x, y}. To simplify notation we will write

η(x, y) = η(y, x) = η({x, y})

from now on. We are interested in the situation where (η({x, y}))|x−y|=1 is an i.i.d. family of random
variables (and each η(x, y) still takes values in [c, C]).

4.1.1 Scaling limit for the Itô rough path

Let us write π for the distribution of η and write Xη
t− = lims↑tX

η
s and then

Xη
s,t =

∫ t

s

Xη
s,r− ⊗ dXη

r .

We also define

Xη,n
t = n−1/2Xη

nt, Xη,n
s,t =

∫ t

s

Xη,n
s,r− ⊗ dXη,n

r .

Our aim is to show an invariance principle in the rough path topology for (Xη,n,Xη,n) under the
annealed measure ∫

E[f(Xη)]π(dη).

The corresponding annealed invariance principle for Xη in the Skorohod topology is established in
Chapter 3.1 of [KLO12]. The approach there is based on writing Xη as an additive functional of a
certain Markov process plus a martingale, and on applying Lemma 3.2 to the additive functional. The
Markov process is the “environment as seen from the walker”: For x ∈ Zd let us write

τxη(y, z) = η(y + x, z + x),

and then we define
ηt := τXη

t
η,

which is a càdlàg process with values in the compact space [c, C]E
d

equipped with the product topol-
ogy, where Ed = {{x, y} : x, y ∈ Zd, |x− y| = 1} are the bonds in Zd. We write

Ft = σ(Xη
s ∨ η : s 6 t),

so that (ηt) is adapted to (Ft). In the following all martingales are with respect to (Ft) and the
annealed measure, unless explicitly stated otherwise.
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Lemma 4.1 ([KLO12], Lemma 3.1). The process (ηt)t>0 is Markovian with respect to (Ft), with
generator

LF (η) =
∑

y ∈ Zd :
|y| = 1

η(0, y)(F (τyη)− F (η))

and with reversible and ergodic invariant distribution π.

In Lemma 3.1 of [KLO12] the filtration with respect to which the Markov property holds is not specified,
but (a slight modification of) their proof shows that we can take (Ft) and not just the canonical filtration
of (ηt).

Let us define the local drift F : [c, C]E
d → Rd by

F (η) =
∑
|y|=1

yη(0, y).

It is shown on p.86 of [KLO12] that there exists a càdlàg martingale (Nt)t>0 such that

Xη
t = Nt +

∫ t

0

F (ηs)ds =: Nt + Zt, (16)

and thereforeXη,n
t = Nn

t +Zn
t with the obvious definition of the rescaled processesNn andZn. The

idea is now to apply the invariance principle for additive functionals to Zn and to apply the martingale
central limit theorem to Nn. Recall that (ηt) is reversible, so by the discussion in Chapter 2.7.1 in
[KLO12] we have F ∈ L2(π)∩H−1 and the assumptions of Theorem 3.3 are satisfied. Of course, we
also have to understand the joint convergence of (Nn, Zn), and for that purpose on p.88 of [KLO12]
the predictable quadratic covariation between Nn and the martingale Mλ,n from the decomposition
of Lemma 3.16 is derived, namely for a, b ∈ R

〈aNn + bMn,λ, aNn + bMn,λ〉t =
∑
|y|=1

1

n

∫ nt

0

ηs(0, y)(ay + b(Φλ(τyηs)−Φλ(ηs)))
⊗2ds (17)

A simple adaptation of Theorem 3.2 in [KLO12] now leads to the following:

Lemma 4.2. Under the annealed measure the pair (Nn, Zn) converges in distribution in the Skorohod
topology on D(R+,R2d) to a 2d-dimensional Brownian motion (BN , BZ) such that for a, b ∈ R

〈aBN + bBZ , aBN + bBZ〉t = t lim
λ→0

∑
|y|=1

Eπ[η(0, y)(ay + b(Φλ(τyη)− Φλ(η)))⊗2]. (18)

Moreover, the sequence of processes (Nn) satisfies the UCV condition.

Combining this result with Theorem 3.3, we easily obtain the following convergence in rough path
topology:

Theorem 4.3. The process (Xη,n,Xη,n) converges in distribution in the p-variation rough path topol-
ogy to (

B,

(∫ t

0

Bs ⊗ dBs + Γt

)
t>0

)
,
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where B is a Brownian motion with covariance

〈B,B〉t = t lim
λ→0

∑
|y|=1

Eπ[η(0, y)(y + (Φλ(τyη)− Φλ(η)))⊗2],

and where for the unit matrix Id and the vector e1 = (1, 0, . . . , 0) ∈ Zd

Γ =
1

2
〈B,B〉1 − Eπ[η(0, e1)]Id.

Proof. Using (17) together with the arguments from the proof of Corollary 3.18 it is not hard to
strengthen Lemma 4.2 to obtain the joint convergence

(Nn, Zn,Zn0,·) −→
(
BN , BZ ,

∫ ·
0

BZ
s ⊗ dBZ

s +
1

2
〈BZ , BZ〉

)
.

Since the limit is continuous the triple is even C-tight, and therefore by Lemma 3.10 also Xη,n =
Nn +Zn converges in distribution in the Skorohod topology toB = BZ +BN , and the convergence
is jointly with (Nn, Zn,Zn0,·). The iterated integrals of Xη,n are given by

Xη,n
0,t =

∫ t

0

Xη,n
s− ⊗ dNn

s +

∫ t

0

Nn
s− ⊗ dZn

s + Zn0,t. (19)

Recall from Lemma 4.2 that Nn satisfies the UCV property. Since Zn is continuous and of finite
variation, we get from Theorem 3.7 and Corollary 3.8 the joint convergence(
Nn, Zn,Zn0,·, Xη,n,

∫ ·
0

Xn
s− ⊗ dNn

s ,

∫ ·
0

Nn
s− ⊗ dZn

s

)
→
(
BN , BZ ,

∫ ·
0

BZ
s ⊗ dBZ

s +
1

2
〈BZ , BZ〉, B,

∫ ·
0

Bs ⊗ dBN
s ,

∫ ·
0

BN
s ⊗ dBZ

s + 〈BN , BZ〉
)
.

Since all the limiting processes are continuous the tuple is C-tight and the joint convergence extends
to sums of the entries, so from (19) we get

(Xη,n,Xη,n
0,· )→

(
B,

∫ ·
0

Bs ⊗ dBs +
1

2
〈BZ , BZ〉+ 〈BN , BZ〉

)
=

(
B,

∫ ·
0

Bs ⊗ dBs +
1

2
〈B,B〉 − 1

2
〈BN , BN〉

)
and by (18) the last term on the right hand side is given by

−1

2
〈BN , BN〉t = − t

2

∑
|y|=1

Eπ[η(0, y)y ⊗ y] = − t
2
Eπ[η(0, e1)]

∑
|y|=1

y ⊗ y = −tEπ[η(0, e1)]Id.

To complete the proof it remains to show tightness of the p-variation. Since (5) holds in the re-
versible case, see [KLO12, Section 2.7.1], Theorem 3.3 implies that (‖Zn‖p,[0,T ] + ‖Zn‖p/2,[0,T ])n
is tight. For the first level of the rough path we have ‖Xη,n‖p,[0,T ] 6 ‖Nn‖p,[0,T ] + ‖Zn‖p,[0,T ], and
E[‖Nn‖2

p,[0,T ]] . E[〈Nn〉T ] . 1 by Theorem A.2 together with (17), and we already know that
‖Zn‖p,[0,T ] is tight. From (19) we get

‖Xη,n‖p/2,[0,T ] 6

∥∥∥∥∥
(∫ t

s

Xη,n
r,s− ⊗ dNn

r

)
06s6t6T

∥∥∥∥∥
p/2,[0,T ]

+

∥∥∥∥∥
(∫ t

s

Nn
r,s ⊗ dZn

r

)
06s6t6T

∥∥∥∥∥
p/2,[0,T ]

+ ‖Zn‖p/2,[0,T ].
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We apply Proposition 3.13 for the first term on the right hand side and obtain

E

∥∥∥∥∥
(∫ t

s

Xη,n
r,s− ⊗ dNn

r

)
06s6t6T

∥∥∥∥∥
1−ε

p/2,[0,T ]

 . (1 +E[‖Xη,n‖2
p′,[0,T ]]

1/2)(1 +E[〈Nn〉T ]1/2) . 1,

where p′ ∈ (2, p). The second term on the right hand side can be controlled via integration by parts
and a similar application of Proposition 3.13. And we already know that (‖Zn‖p/2,[0,T ])n is tight. Hence
we get the tightness of (‖Xη,n‖p/2,[0,T ])n, and this concludes the proof.

Remark 4.4. We did not really use that the conductances are i.i.d., and the same proof works if they
are only ergodic with respect to the shifts on Zd. In that case the correction Γ of Theorem 4.3 is given
by

Γ =
1

2
〈B,B〉1 − diag(Eπ[η(0, e1)], . . . , Eπ[η(0, ed)]),

where diag(. . . ) is a diagonal matrix with the respective entries on the diagonal. In the i.i.d. setting
and for d > 2 we expect that it is possible to get stronger results (Hölder topology instead of p-
variation, speed of convergence, convergence under the quenched measure) by using the spectral
gap result of [GNO15].

4.1.2 Scaling limit for the Stratonovich rough path

In our discrete setting of the random walk in random environment it seems natural to consider the Itô
iterated integrals

∫ t
s
Xη,n
s,r− ⊗ dXη,n

r . But of course this is not the only option, and we might also turn
Xη into a continuous path by connecting the jumps piecewise linearly, as it is often done for Donsker’s
invariance principle. More precisely, if σnk , k = 1, 2, . . . are the jump times of the process Xη,n, then
we set

X̄η,n
t := Xη,n

σnk
+

t− σnk
σnk+1 − σnk

Xη,n
σnk ,σ

n
k+1

for σnk 6 t < σnk+1. We then define X̄η,n
s,t =

∫ t
s
X̄η,n
s,r ⊗ dX̄η,n

r , and as usual X̄η,n
t = X̄η,n

0,t . Note

that supt>0 |X̄
η,n
t −X

η,n
t | 6 n−1/2, and therefore X̄η,n converges to the same Brownian motion as

Xη,n. The difference arises only on the level of the iterated integrals: We have

∫ σnk+1

σnk

X̄η,n
0,r ⊗ dX̄η,n

r =
1

2
(σnk+1 − σnk )Xη,n

σnk ,σ
n
k+1
⊗

Xη,n
σnk ,σ

n
k+1

σnk+1 − σnk
+Xη,n

σnk
⊗Xη,n

σnk ,σ
n
k+1

=
1

2
(Xη,n

σnk
+Xη,n

σnk+1
)⊗Xη,n

σnk ,σ
n
k+1
,

Therefore,

X̄η,n
σnk
− Xη,n

σnk
=

k−1∑
j=0

(∫ σnj+1

σnj

X̄η,n
0,r ⊗ dX̄η,n

r −X
η,n
σnj
⊗Xη,n

σnj ,σ
n
j+1

)

=
1

2

k−1∑
j=0

(Xη,n
σnj ,σ

n
j+1

)⊗2.
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Using the ergodic theorem for the stationary ergodic sequence ({η(s) : s ∈ [k, k + 1]})k>0 and the
fact that σnk = nσ1

k, we get for fixed t

1

2

∑
k:σnk6t

(Xη,n
σnk ,σ

n
k+1

)⊗2 =
1

2n

∑
0<s6nt

(Xη
s−,s)

⊗2

=
bntc
2n

1

bntc

bntc−1∑
k=0

 ∑
k6s<k+1

∑
|y|=1

y1η(s)=τyη(s−)

⊗2
+

1

2n

∑
bntc6s<nt

(Xη
s−,s)

⊗2

=
bntc
2n

1

bntc

bntc−1∑
k=0

Ψ(θk{η(s) : s ∈ [0, 1]}) + O

(
1

n

)
→ t

2
Eπ[Ψ({η(s) : s ∈ [0, 1]})]

=
t

2
Eπ

 ∑
0<j:σ1

j61

(Xη

σ1
j−1,σ

1
j
)⊗2


where the convergence as n → ∞ is in L1(Pπ) (easy to see) and Pπ almost surely (to be justified
below), and where

Ψ({η(s) : s ∈ [0, 1]}) =
∑

0<s61

∑
|y|=1

y1η(s)=τyη(s−)

⊗2

. (20)

To see that the O( 1
n
) term converges Pπ almost surely to zero, note that by stationarity and since the

norm of t 7→
∑

0<s6t

(∑
|y|=1 y1η(s)=τyη(s−)

)⊗2

∈ Rd×d is increasing in t:

Eπ

∣∣∣∣∣∣ 1

2n

∑
bntc6s<nt

(Xη
s−,s)

⊗2

∣∣∣∣∣∣
2 ≤ 1

4n2
Eπ

∣∣∣∣∣ ∑
06s<1

(Xη
s−,s)

⊗2

∣∣∣∣∣
2
 .

Our jump rates are uniformly bounded and the size of each jump is bounded by 1, and therefore the
expectation on the right hand side is finite. Consequently,

Eπ

∑
n

∣∣∣∣∣∣ 1

2n

∑
bntc6s<nt

(Xη
s−,s)

⊗2

∣∣∣∣∣∣
2 <∞,

and thus the summands converge almost surely to zero.

By Lemma A.3 in the appendix the L1(π)-convergence holds even locally uniformly in time. Let us
compute the limit: Since the additive functional in the decomposition of Xη in (16) does not jump we
have Xη

t−,t = Nt−,t for all t > 0, and therefore

Eπ

 ∑
0<j:σ1

j61

(Xη

σ1
j−1,σ

1
j
)⊗2

 = Eπ

[∑
0<t61

(Xη
t−,t)

⊗2

]
= E

[∑
0<t61

(Nt−,t)
⊗2

]
= Eπ[[N,N ]1] = Eπ[〈N,N〉1] = 〈BN , BN〉1.
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Therefore, (
X̄η,n
t − Xη,n

t

)
t∈[0,T ]

→ 1

2

(
〈BN , BN〉t

)
t∈[0,T ]

as n→∞, (21)

and since the left hand side is increasing in the sense of positive definite matrices and thus in norm and
the convergence is uniform in L1, it holds even for the 1-variation norm. In the proof of Theorem 4.3
we saw that

1

2
〈BN , BN〉t =

1

2
〈B,B〉t − Γt,

so together with (21) and the fact that the Stratonovich integral equals
∫ t

0
Bs ⊗ ◦dBs =

∫ t
0
Bs ⊗

dBs + 1
2
〈B,B〉t, we deduce for the case of linear interpolations that the limit is the Stratonovich

Brownian rough path, with no correction:

Corollary 4.5. Let (X̄η,n, X̄η,n) be the linear interpolation of the path Xη,n and its corresponding
iterated integral defined above. Then (X̄η,n, X̄η,n) converges in distribution in the p-variation topology
to
(
B,
∫ ·

0
Bs ⊗ ◦dBs

)
, where B is the same Brownian motion as in Theorem 4.3, and ◦ denotes

Stratonovich integration.

4.2 Additive functional of Ornstein-Uhlenbeck process with divergence-free
drift

In this section we give a simple example of an additive functional of an Ornstein-Uhlenbeck process
with divergence free drift with a non-vanishing area anomaly, i.e. so that the correction Γ from (6) is
non-zero. Let U : R2 → R be given by U(x) = 1

2
|x|2 − log 2π and let

b(x) =

(
−x2

x1

)
e−U(x) = Axe−U(x), where A =

(
0 −1
1 0

)
.

Note that b is divergence free. We define the operator

Lf = ∆f −∇U · ∇f − beU · ∇f = eU∇ · (e−U∇f)− beU · ∇f,

which is the generator of the Ornstein-Uhlenbeck process

dXt = −∇U(Xt)dt− b(Xt)e
U(Xt)dt+

√
2dWt = −(I + A)Xtdt+

√
2dWt.

One can check that π(dx) = e−U(x)dx is invariant for X . Indeed, if f ∈ C2
b (Rd), then integration by

parts yields∫
Lfe−Udx =

∫ (
∇ · (e−U∇f)− b · ∇f

)
dx =

∫ (
∇1 · (e−U∇f) + f∇ · b

)
dx = 0,

because ∇ · b = 0. We consider X started in the invariant measure and we are interested in the
rough path limit of

Zn
t =

1√
n

∫ nt

0

Xsds.

For that purpose let F (x) = x. Since X has a spectral gap, it converges exponentially fast to its
invariant measure and we can directly the Poisson equation −LΦ = F , i.e. there is no need to first
consider the resolvent equation (λ − L)Φλ = F and then send λ → 0. To compute the explicit
solution to the Poisson equation, we use the standard ansatz

Φ(x) = Cx =

(
C11 C12

C21 C22

)(
x1

x2

)
=

(
C11x1 + C12x2

C21x1 + C22x2

)
.
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Write Φ(x) =

(
Φ1(x)
Φ2(x)

)
, then ∇Φ(x) =

(
∇Φ1(x)
∇Φ2(x)

)
=

(
C11 C12

C21 C22

)
= C for Φ(x) = Cx.

Hence, for j = 1, 2,

−LΦj(x) = ((I + A)x−∇) · ∇Φj(x) = (I + A)x · Cj,·,

or more compactly
−LΦ(x) = C(I + A)x.

The equation −LΦ(x) = F (x) = x then yields

C(I + A) = I.

Since A2 = −I , this implies

C =
1

2
(I − A) =

1

2

(
1 1
−1 1

)
.

The Ornstein-Uhlenbeck operator has a spectral gap, so condition (5) is satisfied; see [KLO12, Theo-
rem 2.18]. By Theorem 3.3, we get the convergence

(Zn,Zn) −→

(
B,

(∫ t

0

Bs ◦ dBs + Γt

)
t∈[0,T ]

)
,

in distribution in p-variation, where B is a Brownian motion with covariance

〈Bi, Bj〉t = 2tEπ[Φi(−LS)Φj] = 2tEπ[(Cx)i(Cx)j] = 2t(Ci1Cj1 + Ci2Cj2) = tI,

where we used that under π the coordinates (x1, x2) are independent standard Gaussians, and where

Γij = Eπ[ΦiLAΦj] = Eπ[(Cx)i(−CAx)j] =
(
Ci1 Ci2

)
Eπ[x(Ax)T ]

(
Cj1
Cj2

)
=
(
Ci1 Ci2

)
Eπ

[(
−x1x2 x2

1

−x2
2 x1x2

)](
Cj1
Cj2

)
= −Ci2Cj1 + Ci1Cj2 =

(
0 −1
1 0

)
ij

.

In other words, we see a nontrivial correction to the iterated integrals of B.

4.3 Diffusions with periodic coefficients

Consider a smooth Zd-periodic function a : Rd → Rd×d and L = ∇ · (a∇), that is

Lf(x) =
d∑

i,j=1

(aij(x)∂i∂jf(x) + ∂iaij(x)∂jf(x)) .

We assume that the symmetric part of a is uniformly elliptic (a itself is not necessarily symmetric).
Then there is a unique diffusion process associated with L, with coefficients

dXj
t =

d∑
i=1

∂iaij(Xt)dt+
√

2
d∑
i=1

σji(Xt)dW
i
t ,

where

σ =
√
aS, aS =

1

2
(a+ a∗), aA =

1

2
(a− a∗).

DOI 10.20347/WIAS.PREPRINT.2685 Berlin 2020



J.–D. Deuschel, T. Orenshtein, N. Perkowski 22

To simplify notation we write

bj =
d∑
i=1

∂iaij = ∇ · a·j

so
dXt = b(Xt)dt+

√
2σ(Xt)dWt.

We assume that X0 is uniformly distributed on [−1
2
, 1

2
]d (just so that the Markov process Y below is

stationary) and we want to understand the large scale behavior of X in rough path topology, for which
we will derive the following result:

Theorem 4.6. Let
Xn
t = n−1/2Xnt, t ∈ [0, T ].

Then the following convergence holds in p-variation rough path topology:(
Xn
t ,

∫ t

0

Xn
s ⊗ ◦dXn

s

)
→
(
Bt,

∫ t

0

Bs ⊗ ◦dBs + t

∫
(∇Φi · (−aA)∇Φj)ijdx︸ ︷︷ ︸

=:Γ

)
,

where Φ solves the Poisson equation

−∇ · (a∇Φ) = b

and B is a Brownian motion with quadratic variation

〈Bi, Bj〉t = 2t

∫
(∇Φi + ei) · aS(∇Φj + ej)dx,

for the standard basis (e1, . . . , ed) of Rd. For the Itô rough path we see an additional correction:(
Xn
t ,

∫ t

0

Xn
s ⊗ dXn

s

)
→
(
Bt,

∫ t

0

Bs ⊗ dBs +
1

2
〈B,B〉t − t

∫
aSdx− t

∫
(∇Φi · aA∇Φj)ijdx

)
.

Remark 4.7. The convergence of the Stratonovich rough path was previously shown by Lejay and
Lyons [LL03, Proposition 6]. Their proof uses the fact that we control all moments of X , from where
the required tightness in Hölder topology (which is stronger than p-variation) easily follows via a Kol-
mogorov continuity criterion for rough paths, and there is no need to invoke a result like Proposi-
tion 3.13. Our general approach has the advantage that it applies to a much wider class of models
and that we can apply it without having to do additional estimations, but in this special case it gives a
weaker result.

We now sketch the proof of the claimed convergence. Let us rewrite

Yt = Xt modZd.

Since the coefficients of X are periodic, Y is a Markov process with values in Td = (R/Z)d, with
generatorL given by the same expression asL, except now it acts onC2(Td) rather than onC2(Rd).
The Lebesgue measure on Td is invariant for Y , and we have∫

Td
bj(x)dx =

∫
Td

d∑
i=1

∂iaij(x)dx = 0
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by the periodic boundary conditions.

Therefore, we can write (slightly abusing notation by also considering b, σ etc. as functions on Td)

n−1/2Xnt = n−1/2

∫ nt

0

b(Ys)ds+ n−1/2

∫ nt

0

√
2σ(Ys)dWs = Zn

t +Mn
t ,

where Mn is a martingale with quadratic variation

〈Mn〉ijt =
2

n

∫ nt

0

(σσ∗)ij(Xs)ds =
2

n

∫ nt

0

aSij(Xs)ds =
2

n

∫ nt

0

aSij(Ys)ds,

and where Zn is a functional that we can control with our tools from Section 3. By the uniform ellipticity
of aS together with the Poincaré inequality we have for all f with

∫
fdx = 0∫

f(−L)fdx =

∫
∇f · a∇fdx =

∫
∇f · aS∇fdx &

∫
|∇f |2dx &

∫
f 2dx,

i.e. L has a spectral gap and Y is exponentially ergodic. Thus 〈Mn〉t → 2t
∫
aS(x)dx, from where

we can show with some more work that Mn → BM for a d-dimensional Brownian motion with
covariance

〈BM , BM〉t = 2t

∫
aS(x)dx.

Since Mn satisfies the UCV condition, the convergence of the lifted path also holds in the p-variation
rough path topology for every p > 2 by Proposition 3.13 or, since both integrator and integrand are
martingales, also by [FZ18, Theorem 6.1]. To control the term Zn we use that Y has a spectral gap
and that therefore we can directly solve the resolvent equation with λ = 0, i.e. we consider the solution
Φ to the Poisson equation

−LΦ = −∇ · (a∇Φ) = b,

which is given by Φ =
∫∞

0
Ptbdt, where (Pt) is the semigroup of Y . The time integral converges

because Ptb converges exponentially fast to
∫
bdx = 0. Since Y has a spectral gap, the conditions of

Theorem 3.3 are satisfied (see [KLO12, Theorem 2.18]), and therefore (Zn,
∫ ·

0
Zn
s ⊗dZn

s ) converges
to the corrected Stratonovich rough path(

BZ ,

∫ ·
0

BZ
s ⊗ ◦dBZ

s + t

∫
Φ⊗ LAΦdx

)
,

where BZ is a Brownian motion with covariance

〈BZ , BZ〉ijt = 2

∫
Φi(−LS)Φjdx = 2

∫
∇Φi · aS∇Φjdx,

and where (∫
Φ⊗ LAΦdx

)
ij

= −
∫
∇Φi · (aA∇Φj)dx

It remains to understand the quadratic covariation of BM and BZ , as well as the cross-integrals∫
Zn ⊗ dMn and

∫
Mn ⊗ dZn. To derive the covariation, note that we get with the solution to the

Poisson equation Φ

Zn
t =

1

n
Φ(Y0)− n−1/2Φ(Ynt) + n−1/2

∫ nt

0

√
2
∑
j,i

∂jΦ(Xs)σji(Xs)dW
i
s = Rn

t +Nn
t ,
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and the covariation of Nn and Mn is thus given by

〈Nn,Mn〉ijt =
2

n

∫ nt

0

∑
k,`

∂kΦ
i(Xs)σk`(Xs)σj`(Xs)ds

=
2

n

∫ nt

0

∑
k

∂kΦ
iaSkj(Xs)ds

→ 2t

∫ ∑
k

∂kΦ
iaSkjdx,

so that B = BZ +BM is a Brownian motion with covariance

〈B,B〉t = 〈BM , BM〉t + 〈BZ , BZ〉t + 2〈BZ , BM〉t

= 2t

∫ (
aSij +∇Φi · aS∇Φj + 2

∑
k

∂kΦ
iaSkj

)
ij

dx

= 2t

∫ (
(∇Φi + ei) · aS(∇Φj + ej)

)
ij

dx

The cross-iterated integrals satisfy according to Theorem 3.7 and Corollary 3.8

∫ ·
0

Zn
s ⊗ dMn

s →
∫ ·

0

BZ
s ⊗ dBM

s ,∫ ·
0

Mn
s ⊗ dZn

s →
∫ ·

0

BM
s ⊗ dBZ

s + 〈BM , BZ〉 − 0,

so that overall(
Xn
t ,

∫ t

0

Xn
s ⊗ dXn

s

)
→
(
Bt,

∫ t

0

Bs ⊗ dBs +
1

2
〈BZ , BZ〉t + 〈BM , BZ〉t + t

∫
Φ(x)⊗ LAΦ(x)dx

)
,

and the first part of the correction can be further simplified to

1

2
〈BZ , BZ〉t + 〈BM , BZ〉t =

1

2
〈B,BZ〉t +

1

2
〈BM , BZ〉t =

1

2
〈B,B〉t −

1

2
〈BM , BM〉t,

which finally yields the limit

∫ t

0

Xn
s ⊗ dXn

s →
∫ t

0

Bs ⊗ dBs +
1

2
〈B,B〉t − t

∫
aSdx− t

∫
(∇Φi · aA∇Φj)ijdx.

Tightness in p-variation follows as in the example of the random conductance model. This proves the
first claim of Theorem 4.6, about the limit of the Itô rough path.
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To identify the limit of the Stratonovich rough path we use that 〈Xn, Xn〉 = 〈Mn,Mn〉 and thus∫ t

0

Xn
s ⊗ ◦dXn

s =

∫ t

0

Xn
s ⊗ dXn

s +
1

2
〈Xn, Xn〉t

=

∫ t

0

Xn
s ⊗ dXn

s +
1

2
〈Mn,Mn〉t

→
∫ t

0

Bs ⊗ dBs +
1

2
〈B,B〉t −

1

2
〈BM , BM〉t + t

∫
Φ(x)⊗ LAΦ(x)dx+

1

2
〈BM , BM〉t

=

∫ t

0

Bs ⊗ dBs +
1

2
〈B,B〉t + t

∫
Φ(x)⊗ LAΦ(x)dx

=

∫ t

0

Bs ⊗ ◦dBs − t
∫
∇Φi · (aA∇Φj)dx.

5 Proof of Proposition 3.13

We write ‖f‖p,[s,t] for the p-variation of f restricted to the interval [s, t].

Definition 5.1. A control function is a map c : ∆T → [0,∞) with c(t, t) = 0 for all t ∈ [0, T ] and
such that c(s, u) + c(u, t) 6 c(s, t) for all 0 6 s 6 u 6 t 6 T .

Observe that if f : [0, T ] → Rd satisfies |fs,t|p 6 c(s, t) for all (s, t) ∈ ∆T , then the p-variation of
f is bounded from above by c(0, T )1/p. Indeed, we have for any partition π of [0, T ]∑

[s,t]∈π

|fs,t|p
1/p

6

∑
[s,t]∈π

c(s, t)

1/p

6 c(0, T )1/p.

Conversely, if f is of finite p-variation, then c(s, t) := ‖f‖pp,[s,t] defines a control function because

c(t, t) = |ft,t| = 0 and

c(s, u) + c(u, t) = sup
π Part. of [s,u]

∑
[r,v]∈π

|fr,v|p + sup
π Part. of [u,t]

∑
[r,v]∈π

|fr,v|p

= sup
π Part. of [s, t]

s.t. u ∈ π

∑
[r,v]∈π

|fr,v|p 6 sup
π Part. of [s,t]

∑
[r,v]∈π

|fr,v|p

= c(s, t).

Note also that the sum of two control functions is a control function. Proposition 3.13 directly follows
from the next result:

Proposition 5.2. Let (Yt)t∈[0,T ] be a càdlàg adapted process such that ‖Y ‖p,[0,T ] < ∞ and let N

be a square-integrable martingale. Set As,t :=
∫ t
s
Yr−dNr − YsNs,t. Then we have for all p, q > 2

and all r >
(

1
p

+ 1
q

)−1

:

‖A‖r,[0,T ] .
(
1 + | log ‖Y ‖p,[0,T ]|

)
‖Y ‖p,[0,T ]

(
K

1
q + ‖N‖q,[0,T ]

)
, (22)

where K is a random variable with E[K
2
q ] . E[〈N〉T ]. In particular, we get for ε > 0

E
[
‖A‖1−ε

r,[0,T ]

]
.
(

1 + E
[
‖Y ‖2

p,[0,T ]

]1/2)E[〈N〉T ]1/2. (23)
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Remark 5.3. For p < 2 it follows directly from Young integration estimates that ‖A‖1/(1/p+1/r),[0,T ] .
‖Y ‖p,[0,T ]‖N‖r,[0,T ] whenever r > 2 is such that 1/p+ 1/r > 1.

Proof. Define the stopping times τn0 := 0 and τnk+1 := inf{t > τnk : |Yτnk ,t| > 2−n} and set

Y n
t :=

∞∑
k=0

1(τnk ,τ
n
k+1](t)Yτnk ,

such that supt∈[0,T ] |Yt− − Y n
t | 6 2−n, where Yt− := lims↑t Ys and Y0− := Y0 and we also write

(Y−)t := Yt−. We have

|As,t| 6
∣∣∣∣∫ t

s

(Yr− − Y n
r )dNr

∣∣∣∣+

∣∣∣∣∫ t

s

Y n
r dNr − YsNs,t

∣∣∣∣ . (24)

The first term on the right hand side is bounded for q > 2 and n ∈ Z \ {0} by∣∣∣∣∫ t

s

(Yr− − Y n
r )dNr

∣∣∣∣ 6 |n|2−nc(s, t) 1
qK

1
q , (25)

where we define

K :=
∑

m∈Z\{0}

|m|−q2mq
∥∥∥∥∫ ·

0

(Yr− − Y m
r )dNr

∥∥∥∥q
q,[0,T ]

(26)

and

c(s, t) :=

∑
m∈Z\{0} |m|−q2mq

∥∥∫ ·
0
(Yr− − Y m

r )dNr

∥∥q
q,[s,t]∑

m∈Z\{0} |m|−q2mq
∥∥∫ ·

0
(Yr− − Y m

r )dNr

∥∥q
q,[0,T ]

+
‖Y−‖pp,[s,t] + ‖Y ‖pp,[s,t]

‖Y ‖pp,[0,T ]

+
‖N‖qq,[s,t]
‖N‖qq,[0,T ]

.

(27)
Note that ‖Y ‖pp,[0,T ] = ‖Y−‖pp,[0,T ], and therefore c(s, t) 6 c(0, T ) = 4.

To bound the second term in (24) let t0 := min{τnk : τnk ∈ (s, t)} ∧ t. If t0 = τnk0 < t, we let
τnk0+m−1 be the maximal τnk ∈ (s, t), for m > 1, and we write tk := τnk0+k for k = 1, . . . ,m − 1,
while tm := t. Otherwise we set m := 0. Then∣∣∣∣∫ t

s

Y n
r dNr − YsNs,t

∣∣∣∣ 6 ∣∣∣∣∫ t0

s

Y n
r dNr − YsNs,t0

∣∣∣∣+

∣∣∣∣∫ tm

t0

(Y n
r − Y n

t0
)dNr

∣∣∣∣
+ |(Y n

t0
− Yt0)Nt0,tm|+ |(Yt0 − Ys)Nt0,tm|, (28)

The first and third term on the right hand side are bounded by∣∣∣∣∫ t0

s

Y n
r dNr − YsNs,t0

∣∣∣∣+ |(Y n
t0
− Yt0)Nt0,tm| = |Y n

s Ns,t0 − YsNs,t0|+ |(Y n
t0
− Yt0)Nt0,tm|

6 2× 2−nc(s, t)
1
q ‖N‖q,[0,T ], (29)

and the last term is controlled by

|(Yt0 − Ys)Nt0,tm | 6 c(s, t)
1
p

+ 1
q ‖Y ‖p,[0,T ]‖N‖q,[0,T ].

To bound the second term in (28) we use an idea from [PP16, Theorem 4.12]: We apply Young’s
maximal inequality despite the fact that Y− and N are not sufficiently regular for the construction of
the Young integral. This will give us a divergent factor in n, but on the other hand it gives us a large
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power of c(s, t). Then we balance this term with the other terms in the upper bound for |As,t| (which
all contain a factor 2−n) by choosing the right n. Young’s idea is to successively delete points from the
partition t0 < · · · < tm in order to pass from

∑m−1
k=0 YtkNtk,tk+1

to Yt0Nt0,tm . We want to delete the
points in an optimal way, and to express what optimal means we first renormalize Y and N :∫ tm

t0

(Y n
r − Y n

t0
)dNr =

m−1∑
k=0

(Ytk − Yt0)Ntk,tk+1
=

m−1∑
k=0

(Ỹtk − Ỹt0)Ñtk,tk+1
‖Y ‖p,[0,T ]‖N‖q,[0,T ],

where Ỹ = Y
‖Y ‖p,[0,T ]

and Ñ = N
‖N‖q,[0,T ]

. Then c controls Ỹ and Ñ , and by the superadditivity of c

there exists ` ∈ {1, . . . ,m − 1} with c(t`−1, t`+1) 6 2
m−1

c(s, t) whenever m > 1 (for m = 1 the
integral vanishes). By deleting the point t` from the partition and subtracting the resulting expression,
we get

|Ỹt`−1
Ñt`−1,t` + Ỹt`Ñt`,t`+1

− Ỹt`−1
Ñt`−1,t`+1

| = |Ỹt`−1,t`Ñt`,t`+1
| 6 c(t`−1, t`+1)

1
p

+ 1
q

6

(
2

m− 1
c(s, t)

) 1
p

+ 1
q

.

We proceed by successively deleting all points except t0 and tm from the partition, each time in such
an “optimal” way, and obtain∣∣∣∣∣

m−1∑
k=0

(Ỹtk − Ỹt0)Ñtk,tk+1

∣∣∣∣∣ 6
m−1∑
k=1

(
2

k
c(s, t)

) 1
p

+ 1
q

. (m− 1)1− 1
p
− 1
q c(s, t)

1
p

+ 1
q .

Moreover,

m− 1 = #{k : τnk ∈ (τnk0 , t)} 6 2np‖Y ‖pp,[s,t] 6 2npc(s, t)‖Y ‖pp,[0,T ].

So overall ∣∣∣∣∫ tm

t0

(Y n
r − Y n

t0
)dNr

∣∣∣∣ . 2np(1− 1
p
− 1
q )c(s, t)‖Y ‖

p(1− 1
p
− 1
q )+1

p,[0,T ] ‖N‖q,[0,T ]. (30)

We combine (24), (25), (28), (29), (30), and obtain the key bound

|As,t| .|n|2−nc(s, t)
1
q

(
K

1
q + ‖N‖q,[0,T ]

)
+ 2np(1− 1

p
− 1
q )c(s, t)‖Y ‖

p(1− 1
p
− 1
q )+1

p,[0,T ] ‖N‖q,[0,T ]

+ c(s, t)
1
p

+ 1
q ‖Y ‖p,[0,T ]‖N‖q,[0,T ].

To balance the first and second term, choose n ∈ Z \ {0} so that 1
2
< 2nc(s, t)

1
p‖Y ‖p,[0,T ] 6 2.

Then

|As,t| . |n|c(s, t)
1
p

+ 1
q ‖Y ‖p,[0,T ]

(
K

1
q + ‖N‖q,[0,T ]

)
'
∣∣∣log

(
c(s, t)

1
p‖Y ‖p,[0,T ]

)∣∣∣ c(s, t) 1
p

+ 1
q ‖Y ‖p,[0,T ]

(
K

1
q + ‖N‖q,[0,T ]

)
6
(∣∣∣log

(
c(s, t)

1
p

)∣∣∣+ | log ‖Y ‖p,[0,T ]|
)
c(s, t)

1
p

+ 1
q ‖Y ‖p,[0,T ]

(
K

1
q + ‖N‖q,[0,T ]

)
and since c(s, t)

1
p 6 4 we have

∣∣∣log
(
c(s, t)

1
p

)∣∣∣ . c(s, t)−ε for ε > 0. Thus, we get for all

r > (1/p+ 1/q)−1 our first inequality (22). This yields

E[‖A‖1−ε
r,[0,T ]] . E

[(
(1 + | log ‖Y ‖p,[0,T ]|)‖Y ‖p,[0,T ]

)2−2ε] 1
2E
[
K

2
q + ‖N‖2

q,[0,T ]

] 2−2ε
2
.
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The second expectation on the right hand side is easy to control: since 2/q < 1 we have (
∑

m am)2/q 6∑
m a

2/q
m , and Theorem A.2 (Lépingle’s q-variation Burkholder-Davis-Gundy inequality), we get

E
[
K

2
q + ‖N‖2

q,[0,T ]

]
6

∑
m∈Z\{0}

|m|−222mE

[∥∥∥∥∫ ·
0

(Yr− − Y m
r )dNr

∥∥∥∥2

q,[0,T ]

]
+ E[‖N‖2

q,[0,T ]]

.
∑

m∈Z\{0}

|m|−222mE
[[∫ ·

0

(Yr− − Y m
r )dNr

]
T

]
+ E[[N ]T ]

=
∑

m∈Z\{0}

|m|−222mE
[ 〈∫ ·

0

(Yr− − Y m
r )dNr

〉
T

]
+ E[〈N〉T ]

=
∑

m∈Z\{0}

|m|−222mE
[ ∫ T

0

(Yr− − Y m
r )2d〈N〉r

]
+ E[〈N〉T ]

. E[〈N〉T ].

The remaining expectation is bounded by

E[((1 + | log ‖Y ‖p,[0,T ]|)‖Y ‖p,[0,T ])
2−2ε] . 1 + E[‖Y ‖2

p,[0,T ]],

and this concludes the proof.

A Auxiliary estimates

Lemma A.1 (Iterated Kipnis-Varadhan estimate). Let H ∈ H−1 ∩ L2(π) and let A be a continuous
adapted process of finite variation. Then

E
[
sup
t6T

∣∣∣∣∫ t

0

AsH(Xs)ds

∣∣∣∣] . E[sup
t6T
|At|2]1/2T 1/2‖H‖−1,

so in particular we get for At =
∫ t

0
G(Xs)ds with G ∈ H−1 ∩ L2(π)

E
[
sup
t6T

∣∣∣∣∫ t

0

∫ s

0

G(Xr)drH(Xs)ds

∣∣∣∣] . T‖G‖−1‖H‖−1.

Proof. The second inequality follows from the first one together with the usual Kipnis-Varadhan esti-
mate from Lemma 3.12. To show the first inequality, let Ψ ∈ C and apply Lemma 3.9:∫ t

0

AsH(Xs)ds =
1

2

∫ t

0

AsdM
Ψ
s −

1

2

∫ T

T−t
(AT − AT−s)drdM̂Ψ

s

+
1

2
AT (M̂Ψ

T − M̂Ψ
T−t) +

∫ t

0

As(H(Xs)− LSΨ(Xs))ds,

where we need that A is continuous and of finite variation in order to interpret the integrals against
M̂Ψ in a pathwise sense and without having to worry about the difference of forward and backward
integral. Now we get from the Burkholder-Davis-Gundy and Cauchy-Schwartz inequalities together
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with Lemma 3.12

E
[
sup
t6T

∣∣∣∣∫ t

0

AsH(Xs)ds

∣∣∣∣] . E[sup
t6T
|At|2]1/2T 1/2‖Ψ‖1

+ E
[
sup
t6T

∣∣∣∣∫ t

0

As(H(Xs)− LSΨ(Xs))ds

∣∣∣∣]
. E[sup

t6T
|At|2]1/2(T 1/2‖Ψ‖1 + T‖H − LSΨ‖L2(π)).

By approximation we can take Ψ = ΦH
λ as the solution to the Poisson equation (λ − LS)ΦH

λ =
−H and as in the proof of Corollary 3.14 we use that ‖ΦH

λ ‖1 6 ‖H‖−1 for all λ > 0 and that
‖H − LSΦH

λ ‖L2(π) → 0 as λ→ 0 to deduce the claimed estimate.

The following is the Lépingle p-variation inequality [Lép75, Proposition 2] which is here commonly
combined with the well-known Burkholder-Davis-Gundy inequality.

Theorem A.2 (Lépingle p-variation Burkholder-Davis-Gundy inequality). Let (Mt)t>0 be a local mar-
tingale with trajectories in D(R+,Rm). For every T > 0 and p > 2

cpE [[M ]T ] 6 E
[
‖M‖2

p,[0,T ]

]
6 CpE [[M ]T ] ,

where cp, Cp > 0.

Next lemma is a strengthening of the ergodic theorem to give a path uniform convergence.

Lemma A.3. Let (Yt)t>0 be a process with trajectories inD(R+,Rm) and with stationary increments
and such that E[supt∈[0,T ] |Yt|] 6 CT for all T > 0 and such that n−1Yn → a for some a ∈ Rm,
both a.s. and in L1. Assume also that (supt∈[0,T ] n

−1|Ynt|)n∈N is uniformly integrable for all T > 0.
Then we have for all T > 0

lim
n→∞

E
[
sup
t6T
|n−1Ynt − at|

]
= 0.

Proof. This follows from a minor adaptation of the proof of Theorem 2.29 in [KLO12]: Like in that proof
we decompose

|n−1Ynt − at| 6 sup
s∈[0,1]

|Ybntc+s − Ybntc|
n

+
bntc
n

∣∣∣∣Ybntcbntc
− a
∣∣∣∣+ |a|

(
t− bntc

n

)
.

The last term on the right hand side is bounded by |a|/n. The first term on the right hand side is
bounded for all t ∈ [0, T ] by

sup
s∈[0,1]

|Ybntc+s − Ybntc|
n

6 T max
k6bnT c

sups∈[0,1] |Yk+s − Yk|
bnT c

,

and by Lemma 2.30 in [KLO12] the right hand side vanishes as n → ∞, both a.s. and in L1 (here
we need that Y has stationary increments). To handle the last remaining term, we decompose for
δ ∈ (0, T ):

sup
t∈[0,T ]

bntc
n

∣∣∣∣Ybntcbntc
− a
∣∣∣∣ = max

k≤bnT c

k

n

∣∣∣∣Ykk − a
∣∣∣∣ ≤ max

k≤bnδc

k

n

∣∣∣∣Ykk − a
∣∣∣∣+ max

bnδc<k≤bnT c

k

n

∣∣∣∣Ykk − a
∣∣∣∣ .
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The second term on the right hand side converges almost surely to zero by assumption, and it is
bounded from above by supt∈[0,T ] n

−1|Ynt|. Since (supt∈[0,T ] n
−1|Ynt|)n is uniformly integrable by

assumption, this second term also converges to zero in L1. The remaining part satisfies

E
[

max
k≤bnδc

k

n

∣∣∣∣Ykk − a
∣∣∣∣] ≤ 1

n
E
[

max
k≤bnδc

|Yk|
]

+ |a|δ ≤ Cδ + |a|δ,

where the last part follows by assumption on Y . The proof is then completed by sending δ → 0.
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