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Consistency and convergence for a family of finite volume
discretizations of the Fokker–Planck operator

Martin Heida, Markus Kantner, Artur Stephan

Abstract

We introduce a family of various finite volume discretization schemes for the Fokker–Planck
operator, which are characterized by different weight functions on the edges. This family par-
ticularly includes the well-established Scharfetter–Gummel discretization as well as the recently
developed square-root approximation (SQRA) scheme. We motivate this family of discretizations
both from the numerical and the modeling point of view and provide a uniform consistency and
error analysis. Our main results state that the convergence order primarily depends on the quality
of the mesh and in second place on the quality of the weights. We show by numerical experiments
that for small gradients the choice of the optimal representative of the discretization family is highly
non-trivial while for large gradients the Scharfetter–Gummel scheme stands out compared to the
others.

1 Introduction

The Fokker–Planck equation (FPE), also known as Smoluchowski equation or Kolmogorov forward
equation, is one of the major equations in theoretical physics and applied mathematics. It describes
the time evolution of the probability density function of a particle in an external force field (e.g., fluctuat-
ing forces as in Brownian motion). The equation can be generalized to other contexts and observables
and has been employed in a broad range of applications, including physical chemistry, protein syn-
thesis, plasma physics and semiconductor device simulation. Thus, there is a huge interest in the
development of efficient and robust numerical methods. In the context of finite volume (FV) methods,
the central objective is a robust and accurate discretization of the (particle or probability) flux implied
by the FPE.

A particularly important discretization scheme for the flux was derived by Scharfetter and Gummel
[SG69] in the context of the drift-diffusion model for electronic charge carrier transport in bipolar semi-
conductor devices [vR50]. The typically exponentially varying carrier densities at p-n junctions lead
to unphysical results (spurious oscillations), if the flux is discretized in a naive way using standard
finite difference schemes [MW94]. The problem was overcome by considering the flux expression as
a one-dimensional boundary value problem along each edge between adjacent mesh nodes. The
resulting Scharfetter–Gummel (SG) scheme provides a robust discretization of the flux as it asymp-
totically approaches the numerically stable discretizations in the drift- (upwind scheme) and diffusion-
dominated (central finite difference scheme) limits. The SG-scheme and its several generalizations to
more complex physical problem settings are nowadays widely used in semiconductor device simulation
[Mar86, FRD+17] and have been extensively studied in the literature [BMP89, EFG06, FKF17, Kan20].
The SG-scheme is also known as exponential fitting scheme and was independently discovered by
Allan and Southwell [AS55] and Il’in [Il’69] in different contexts.
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M. Heida, M. Kantner, A. Stephan 2

Recently, an alternative flux discretization method, called square-root approximation (SQRA) scheme,
has been derived explicitly for high dimensional problems. The original derivation in [LFW13] aims
at applications in molecular dynamics and is based on Markov state models. However, it can also
be obtained from a maximum entropy path principle [DJSD15] and from discretizing the Jordan–
Kinderlehrer–Otto variational formulation of the FPE [Mie13a]. In Section 3.3, we provide a derivation
of SQRA scheme, which is motivated from the theory of gradient flows. In contrast to the SG-scheme,
the SQRA is very recent and only sparsely investigated. The only contributions on the convergence
seem to be [Mie13a] in 1D, [DHWK] (formally, rectangular meshes) and [Hei18] using G-convergence.

The SG and the SQRA schemes both turn out to be special cases of a family of discretization schemes
based on weighted Stolarsky means, see Section 3.2. This family is very rich and allows for a general
convergence and consistency analysis, which we carry out in Sections 4–5. Interestingly, there seems
to be no previous results in the literature.

1.1 The FPE and the SG and SQRA discretization schemes

In this work, we consider the stationary Fokker–Planck equation

−∇ ⋅ (κ∇u) − ∇ ⋅ (κu∇V ) = f, (1.1)

which can be equivalently written as
divJ(u,V ) = f

using the flux J(u,V ) = −κ (∇u + u∇V ), where κ > 0 is a (possibly space-dependent) diffusion
coefficient and V ∶ Ω → R is a given potential. The flux J consists of a diffusive part κ∇u and a
drift part κu∇V , which compensate for the stationary density π = e−V (also known as the Boltzmann
distribution) as J(e−V , V ) = 0. This reflects the principle of detailed balance in the thermodynamic
equilibrium. The right-hand side f describes possible sink or source terms.

The SG and the SQRA schemes of the Fokker–Planck operator divJ(u,V ) that are considered
below are given in the form

(FTB u)i ∶= − ∑
j∶ i∼j

mij

hij
κij (B (Vi, Vj)uj −B (Vj, Vi)ui) , (1.2)

where∑j∶ j∼i indicates a sum over all cells adjacent to the i-th cell of the mesh,mij is the mass of the
interface between the i-th and j-th cell, hij is the distance between the corresponding nodes and κij
is the discretized diffusion coefficient κ. We are particularly interested in the two cases

B (Vi, Vj) = B1 (Vi − Vj) ∶=
Vi − Vj

eVi−Vj − 1
(1.3)

or B (Vi, Vj) = B2 (Vi − Vj) ∶= e−
1
2
(Vi−Vj) (1.4)

with either the Bernoulli function B1 (for SG) or with the SQRA-coefficient B2. The schemes are
derived under the assumption of constant flux, diffusion constant and potential gradient along the
respective edges.

In the pure diffusion regime, i.e., for Vi − Vj → 0, the Bernoulli function provides B1 (Vi − Vj) → 1,
such that the SG scheme approaches a discrete analogue of the diffusive part of the continuous flux:
Jij = κij(ui − uj)/hij . In the drift-dominated regime, i.e., for Vj − Vi → ±∞, the asymptotics of B1

recover the upwind scheme

Ji,j → −κi,j
Vj − Vi
hi,j

⎧⎪⎪⎨⎪⎪⎩

uj if Vj > Vi
ui if Vj < Vi

, (1.5)
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Discretization for the Fokker–Planck operator 3

which is a robust discretization of the drift part of the flux, where the density u is evaluated in the donor
cell of the flux. Hence, the Bernoulli function B1 interpolates between the appropriate discretizations
for the drift- and diffusion-dominated limits, which is why the SG scheme is the preferred FV scheme
for Fokker–Planck type operators. Indeed, the SQRA scheme is consistent with the diffusive limit, but
is less accurate than the SG scheme in the case of strong gradients ∇V .

1.2 The Stolarsky mean approximation schemes

In this work, we investigate the relative L2-distance between the discrete SQRA and SG solutions on
the same mesh and the order of convergence of the SQRA scheme, which was an open problem. It
turns out that both methods are members of a broad family of finite volume discretizations that stem
from the weighted Stolarsky means

Sα,β (x, y) = (β (xα − yα)
α (xβ − yβ))

1
α−β

,

see Section 3.2. We benefit from the general structure of these schemes and prove order of con-
vergence on consistent meshes in the sense of the recent work [DPD18]. We will see that the error
naturally splits into the consistency error for the discretization of the Laplace operator plus an error
which is due to the discretization of the stationary solution π and the Stolarsky mean, see Theorem 5.4.

We will demonstrate below that the Stolarsky discretization schemes for (1.1) read

− ∑
j∶ j∼i

mij

hij
κijSij (

uj
πj

− ui
πi

) = fi, (1.6)

where πi = e−Vi , fi = ∫Ωi
f is the integral of f over the i-th cell and Sij = Sα,β (πi, πj) is a Stolarsky

mean of πi and πj . We sometimes refer to the general form (1.6) as discrete FPE.

The Stolarsky means Sα,β generalize Hölder means and other f -means (see Table 2). An interesting
aspect of the above representation is that all these schemes preserve positivity with the discrete linear
operator being an M -matrix. Furthermore, with the relative density U = u/π we arrive at

− ∑
j∶ j∼i

mij

hij
κijSij (Uj −Ui) = fi,

which is a discretization of the elliptic equation

−∇ ⋅ (κπ∇U) = f,

where the discrete Fokker–Planck operator becomes a purely diffusive second order operator in U .
Furthermore, if κ is a symmetric strictly positive definite uniformly elliptic matrix, this operator is also
symmetric strictly positive definite and uniformly elliptic. In the latter setting, we can thus rule out the
occurrence of spurious oscillations in our discretization.

Although we treat the Stolarsky means as an explicit example, note that the main theorems also hold
for other smooth means.

1.3 Major contributions of this work

Since we look at the FV discretization of the FPE from a very broad point of view, we summarize our
major findings.
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● We provide a derivation of the general Stolarsky mean FV discretization in Section 3.2.

● We discuss the gradient structure of the discretization schemes in view of the natural gradient
structure of the FPE in Section 3.3.

● We provide order of convergence of the schemes as the fineness of the discretization tends to
zero. In particular we show

● that the order of convergence is mainly determined by two independent parts: the consis-
tency (Def. 2.7) of the mesh (Section 5.1) and an error due to the discretization of π along
the edge by the means S∗(πi, πj).

● that the order of convergence strongly depends on the constant α + β, where α and β
are the Stolarsky coefficients in Sij = Sα,β (πi, πj) (Corollary 4.3).

● that the SG coefficients are to be preferred in regions of strong gradient∇V (Section 5.2).

1.4 Outlook

The results of this work suggest to search for “optimal” parameters α and β in the choice of the
Stolarsky mean in order to reduce the error of the approximation as much as possible. However, from
an analytical point of view, the quest for such optimal α and β is quite challenging. Moreover, since
the optimal choice might vary locally, depending on the local properties of the potential V , we suggest
to implement a learning algorithm that provides suitable parameters α and β depending on the local
structure of V and the mesh.

1.5 Outline of this work

After some preliminaries regarding notation and a priori estimates in Section 2, we will recall the
classical derivation of the SG scheme in Section 3.1 and discuss its formal relation to SQRA. We
will then provide a derivation of SQRA from physical principles in Section 3.3, based on the Jordan–
Kinderlehrer–Otto [JKO98] formulation of the FPE. In Section 3.2, we show that SG and SQRA are
elements of a huge family of discretization schemes (1.6).

Section 5 provides the error analysis and estimates for the consistency and the order of convergence.
We distinguish the cases of small and large gradients and have a particular look at cubic meshes.

Finally, we show hat the optimal choice of S∗ depends on V and f but is not unique. If Sα,β denotes
one of the Stolarsky means, we will prove in Section 4 that the Stolarsky means satisfying α + β =
const show similar quantitative convergence behavior as suggested in Corollary 4.3. Finally, this result
is illustrated in Section 6 by numerical simulations.

2 Preliminaries and notation

We collect some concepts and notation, which will frequently be used in this work.

DOI 10.20347/WIAS.PREPRINT.2684 Berlin 2020



Discretization for the Fokker–Planck operator 5

2.1 The Mesh

For a subset A ⊂ Rd, A is the closure of A.

Definition 2.1. Let Ω ⊂ Rd be a polygonal domain. A finite volume mesh of Ω is a triangulation
T = (V ,E ,P) consisting of a family of control volumes V ∶= {Ωi, i = 1, . . . ,N} which are convex
polytope cells, a family of (d − 1)-dimensional interfaces

E ∶= EΩ ∪ E∂
EΩ ∶= {σij ⊂ Rd ∶ σij = ∂Ωi ∩ ∂Ωj}
E∂ ∶= {σ ⊂ Rd ∶ σ = ∂Ωi ∩ ∂Ω is flat}

and points P = {xi, i = 1, . . . ,N} with xi ∈ Ωi satisfying

(i) ⋃i Ωi = Ω

(ii) For every i there exists Ei ⊂ E such that Ωi/Ωi = ⋃σ∈Ei σ. Furthermore, E = ⋃i Ei.

(iii) For every i, j either Ωi ∩Ωj = ∅ or Ωi ∩Ωj = σ for σ ∈ Ei ∩ Ej which will be denoted σij .

The mesh is called h-consistent if

(iv) The Family (xi)i=1...N is such that xi /= xj if i /= j and the straight line Dij going through xi
and xj is orthogonal to σij .

and admissible if

(v) For any boundary interface σ ∈ E∂∩Ei it holds xi /∈ σ and forDi,σ the line through xi orthogonal
to σ it holds that Di,σ ∩ σ /= ∅ and let yσ ∶=Di,σ ∩ σ.

Property (iv) is assumed in [GHV00] in order to prove a strong form of consistency in the sense of
Definition 2.10 below. It is satisfied for example for Voronoi discretizations.

We write mi for the volume of Ωi and for σ ∈ E we denote mσ its (d − 1)-dimensional mass. In case
σij ∈ Ei ∩ Ej we write mij ∶= mσij . For the sake of simplicity, we consider P̃ ∶= (xi)i=1,...,N and

P ∶= P̃ ∪ {yσ ∶ σ ∈ E∂, according to (v)}. We extend the enumeration of P̃ to P = (xj)j=1,...,Ñ and

write i ∼ j if xi, xj ∈ P̃ with Ei ∩ Ej /= ∅. Similarly, if xi ∈ P̃ and xj = yσ for σ ∈ Ei we write σij ∶= σ
and i ∼ j. Finally, we write hij = ∣xi − xj ∣.
We further call

P∗ ∶= {u ∶ P → R} , P̃∗ ∶= {u ∶ P̃ → R} , and E∗ ∶= {w ∶ E → R}

the discrete functions from P resp. P̃ resp. E to R. For w ∈ E∗ we write wij ∶= w(σ) if σij = σ. Then
for fixed i the expression

∑
j∶ i∼j

wij ∶= ∑
σij∈Ei

wij

is the sum over all wij such that Ei ∩ Ej /= ∅ and

∑
j∼i

wij ∶= ∑
σij∈E

wij ∶= ∑
σ∈E

w(σ)
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symbol meaning symbol meaning

u density mi vol(Ωi)
V real potential on Ω ⊂ Rd hi diam(Ωi)
κ diffusion coefficient σij ∂Ωi ∩ ∂Ωj

π stat. measure e−V (x) on Ω mij area of σij
U u/π hij xi − xj
ui u(xi) hij ∣hij ∣
πi stat. measure e−V (xi) on Ωi di,ij dist (xi, σij)
f̄i

1
∣Ωi∣ ∫Ωi

fdx diamT diameter, i.e. supi∼j ∣xi − xj ∣
fi mif̄i V ∗, V∗ −∞ < V∗ ≤ V ≤ V ∗ < ∞
κij

hij κ̄iκ̄j
κ̄idi,ij+κ̄jdj,ij

κ∗, κ∗ 0 < κ∗ ≤ κ ≤ κ∗ < ∞

Table 1: Commonly used notations.

is the sum over all edges.

Moreover, we define the diameter of a triangulation T as

diamT = sup
i∼j

∣xi − xj ∣.

The identity

∑
i

∑
j∶j∼i

Aij = ∑
j∼i

(Aij +Aji) (2.1)

will frequently be used throughout this paper, where we often encounter the case Aij = αijUi with
αij = −αji:

∑
i

∑
j∶j∼i

αijUi = ∑
j∼i

(αijUi + αjiUj) = ∑
j∼i

αij (Ui −Uj) . (2.2)

Formula (2.1) in particular allows for a discrete integration by parts:

∑
i

∑
j∶j∼i

(Uj −Ui)Ui = ∑
j∼i

((Uj −Ui)Ui + (Ui −Uj)Uj) = −∑
j∼i

(Uj −Ui)2
. (2.3)

On a given mesh T = (V ,E ,P), we consider the linear discrete operator LTκ ∶ P∗ → P∗, which is
defined by a family of non-negative weights κ ∶ E → R and acts on functions u ∈ P∗ via

∀xi ∈ P ∶ (LTκ u)i ∶= ∑
i∼j

κij
mij

hij
(uj − ui) . (2.4)

While (2.4) is very general, it is shown in [GHV00], Lemma 3.3, that the property (iv) of Definition 2.1
comes up with some special consistency properties for the choice of

κij ∶=
κ̄iκ̄j

κ̄i
di,ij
hij

+ κ̄j dj,ijhij

, (2.5)

where di,ij and dj,ij are the distances between σij and xi and xj respectively and averaged diffusion
coefficient is defined by κi = 1

mi ∫Ωi
κ(x)dx.

DOI 10.20347/WIAS.PREPRINT.2684 Berlin 2020



Discretization for the Fokker–Planck operator 7

Lemma 2.2 (A consistency lemma, [GHV00]). Let the T = (V ,E ,P) satisfy Definition 2.1 (i)–(v) and
let d ∈ {2,3} and let hij be uniformly bounded from above and from below. Then for every u ∈H2 (Ω)
it holds

∣∫
σij
κ∇u ⋅ νij − κij

mij

hij
(u (xj) − u (xi))∣ ≤ Cm

1
2
ijh

1
2
ij ∥u∥H2(Ωi∪Ωj)

.

Lemma 2.2 was one of the motivations to provide a more general and powerful concept of consistency
in [DPD18], as we will discuss in Section 2.5

2.2 Existence and a priori estimates

From the standard theory of elliptic systems ([Eva98] Chapter 6), we have the following theorem.

Theorem 2.3. Let Ω be as above and f ∈ L2(Ω), κ ∈ C1 (Ω ∶ Rd×d) such that κ is uniformly

bounded, symmetric and elliptic and V ∈ C2(Ω). Then there is a unique u ∈ H2(Ω) ∩H1
0(Ω) solving

−∇ ⋅ (κ∇u) − ∇ ⋅ (κu∇V ) = f in the weak sense.

In what follows, we frequently use the following transformations in (1.1) and (1.6): we define the relative
densities U = u/π and UTi = uTi /πi to find

−∇ ⋅ (κπ∇U) = f , (2.6)

∀i ∶ − ∑
j∶ j∼i

mij

hij
κijS(πi, πj) (UTj −UTi ) = fi . (2.7)

If κ and π are non-degenerate (in the sense of π > c > 0 and ξ ⋅κξ > c ∣ξ∣2), the left hand side of (2.7)
defines a strongly elliptic operator on the finite volume space L2(P) and hence there exists a unique
solution UT . Concerning the right hand side, using (2.7) as the discretization of (2.6), one natural
choice for fi is fi =mif̄i, where f̄i =m−1

i ∫Ωi
f . We immediately see that the Boltzmann distribution

πi = exp (−V (xi)) = exp (−Vi) is the stationary solution, i.e., ui = πi solves (2.7) for f = 0.

Having shown the existence of solutions to (2.6) and (2.7), we recall the derivation of some natural a
priori estimates for both the continuous Fokker–Planck equation and the discretization.

Continuous FPE Let u, resp. U = u/π, be a solution of the stationary Fokker–Planck equation (2.6)
with Dirichlet boundary conditions. Testing withU , we get (assuming homogeneous Dirichlet boundary
conditions and exploiting thus the Poincaré inequality), that

∫
Ω
κπ∣∇U ∣2 = ∫

Ω
Uf ≤ C (∫

Ω
f 2)

1
2

(∫
Ω
κπ∣∇U ∣2)

1
2

⇒ ∫
Ω

1
κπ ∣κπ∇U ∣2 ≤ C ∫

Ω
f 2 . (2.8)

Furthermore, the standard theory of elliptic equations (e.g., [Eva98]) yields that ∥U∥H2(Ω)
≤ C ∥f∥L2 ,

where C depends on the C1-norm of κπ and the Poincaré-constant.

Discrete FPE Let UTi be a solution of (2.7) with fi = mif̄i = ∫Ωi
fdx (as specified in the Tab. 1),

i.e.,

∀i ∶ − ∑
j∶j∼i

mij

hij
κijSij (UTj −UTi )=mif̄i .

DOI 10.20347/WIAS.PREPRINT.2684 Berlin 2020
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Then, multiplying with UTi we get

− ∑
j∶j∼i

mij

hij
κijSij (UTj −UTi )UTi =mif̄iU

T
i .

Summing over all xi ∈ P and using (2.3), we conclude with help of the discrete Poincaré inequality
(see Theorem 2.5 below)

∑
j∼i

mij

hij
κijSij (UTj −UTi )2 = ∑

i

mif̄iU
T
i ≤ ∑

i

((UTi )2mi + 1
πi
f̄ 2
i mi)

⇒∑
j∼i

mij

hij
κijSij (UTj −UTi )2 ≤ C∑

i

mif̄
2
i .

Additionally, one gets

∑
j∼i

mij

hij
κij

1

Sijκ2
ij

(κijSij(UTj −UTi ))2 ≤ C∑
i

f̄ 2
i mi. (2.9)

2.3 Fluxes and L2-spaces

In order to derive and formulate variational consistence errors for the discrete FPE (2.7), we introduce
the discrete fluxes

JSijU
T ∶= −κij

hij
Sij (UTj −UTi ) ,

J ijU ∶= − 1

mij
∫
σij
κπ∇U ⋅ νij .

(2.10)

In particular, if Sij =
√
πiπj we get the flux of the SQRA JSQRA

ij UT ∶= −κijhij
√
πiπj (UTj −UTi ). Note

that J ijU is the spatial average of J(U) = −κπ∇U on σij . The quantity JSijU
T can indeed be con-

sidered as a flux in the sense that it will be shown to approximate J ij , Sij is a discrete approximation
of π∣σij , κij is a discrete approximation of κ∣σij and 1

hij
(UTj −UTi ) is a discrete version of ∇U .

While former approaches focus on the rate of convergence of 1
hij

(uTj − uTi ) → ∇u, we additionally

follow the approach of [DPD18] applied to U and are interested in the rate of convergence of JSijU
T →

J(U), which is an indirect approach to the original problem as this rate of convergence is directly
related to 1

hij
(UTj −UTi ) → ∇U .

In view of the natural norms for the variational consistency (see (2.17)–(2.19)), we introduce the fol-
lowing

∀U ∈ L2(Ω) ∶ ∥U∥2
L2(Ω)

∶= ∫
Ω
U2dx ∥U∥2

L2
π(Ω)

∶= ∫
Ω

1
πU

2dx

∀U ∈ P∗ ∶ ∥U∥2
L2(P)

∶= ∑
i∈P

miU
2
i ∥U∥2

L2
π(P)

∶= ∑
i∈P

mi
1
πi
U2
i (2.11)

∀J ∈ E∗ ∶ ∥J∥2
L2(E)

∶= ∑
i∼j

mijhijJ
2
ij ∥J∥2

L2
S(E)

∶= ∑
i∼j

mijhij
1

Sij
J2
ij

Let us introduce the discrete flux JSUT ∈ E∗ via JSUT (σij) ∶= JSijUT and similarly also 1
κJ

SUT ∈
E∗ via JSUT (σij) ∶= 1

κij
JSijU

T . With all the above notations, our a priori estimates (2.8) and (2.9)

DOI 10.20347/WIAS.PREPRINT.2684 Berlin 2020



Discretization for the Fokker–Planck operator 9

now read

∥ 1√
κ
J(U)∥

2

L2
π(Ω)

≤ C∥f∥2
L2
π(Ω)

∥ 1√
κ
JSUT ∥

2

L2
S(E)

≤ C∥f̄∥2
L2
π(P)

.

Assuming that the diffusion coefficient is bounded, i.e. κ∗ ≥ κ ≥ κ∗, we further get

1
κ∗ ∥J(U)∥2

L2
π(Ω)

≤ C∥f∥2
L2
π(Ω)

1

κ∗
∥JSUT ∥2

L2
S(E)

≤ C∥f̄∥2
L2
π(P)

.

Remark 2.4 (Naturalness of norms). Let us discuss why these norms are natural to consider. The
left norms in (2.11) can be interpreted as the Euclidean L2-norms on Ω, P and E , while the right
norms are the natural norms for the study of the Fokker–Planck equation as they are weighted with
the inverse of the Boltzmann distribution π, resp. πi. Note that assuming V is bounded from above
and below, the L2-norms ∥ ⋅ ∥L2

π(Ω) and ∥ ⋅ ∥L2(Ω) are equivalent and the same holds true for the two
norms in the discrete setting.

Given a discretization T , the linear map

Cc (Rd) → R , f ↦∑
i∈P

mif(xi)

defines an integral on Ω w.r.t. a discrete measure µT having the property that µT → Ld vaguely,
where Ld is the d-dimensional Lebesgue measure. In particular µT (A) → Ld (A) for every bounded
measurable set with Ld (∂A) = 0. The norm ∥U∥2

L2(P)
is simply the L2-norm based on the measure

µT .

Similar considerations work also for the norm on E∗. The norm ∥ ⋅ ∥2
L2(E)

is given via a measure µ̃T
having the property

µ̃T ∶ Cc (Rd) → R , f ↦∑
i∼j

mijhijf(xij) ,

with the property that µ̃T → d ⋅ Ld vaguely: every Voronoi cell Ωi consists of disjoint cones with mass
1
dmijhij , where one has to account for all cones with j ∼ i. In particular, we obtain µ̃T (A) ≈ d ⋅L(A)
for Lipschitz domains – an estimate which then becomes precise in the limit. Without going into details,
let us mention that heuristically the prefactor d balances the fact that Jij ≈ (xi−xj)

∣xi−xj ∣
⋅ ∇U which yields

for functions U ∈ C1
c (Rd):

∑
i∼j

mijhij ∣
(xi − xj)
∣xi − xj ∣

⋅ ∇U ∣
2

→ ∫
Rd

∣∇U ∣2 .

For the particular case of a rectangular mesh, this is straight forward to verify.

2.4 Poincaré inequalities

In order to derive the a priori estimates in Section 2.2 we need to exploit (discrete) Poincaré inequalities
to estimate ∥u∥L2(Ω)

by ∥∇u∥L2(Ω)
or ∥uT ∥L2(P)

by ∥DuT ∥L2(E)
, where (DuT )ij = Uj − Ui. In

particular, we use the following theorem.
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Theorem 2.5. Given a mesh T = (V ,E ,P) let hinf ∶= inf {∣x − y∣ ∶ (x, y) ∈ P2} > 0 and hsup ∶=
sup{∣x − y∣ ∶ (x, y) ∈ P2} > 0 correspondingly. Then for every u ∈ L2 (P) and for every η ∈ Rd it
holds

∫
Ω
∣∑
i

uiχΩi(x) −∑
i

uiχΩi(x + η)∣
2

dx ≤ ∣η∣ (diamΩ
hsup

hinf
∑
i∼j

mij

hij
(uj − ui)2) , (2.12)

and particularly

∥u∥2
L2(P)

≤ (diamΩ)2 hsup

hinf
∑
i∼j

mij (uj − ui)2
.

Proof. This follows from Lemma A.1 with C# ≤ diamΩ
h0

and the choice ∣η∣ > diamΩ.

2.5 Consistency and inf-sup stability

Results such as Lemma 2.2 motivated the authors of the recent paper [DPD18] to define the concepts
of consistency and inf-sup stability as discussed in the following. For readability, we will restrict the
general framework of [DPD18] to cell-centered finite volume schemes and refer to general concepts
only as far as needed.

Definition 2.6 (inf-sup stability). A bilinear form aT on L2 (P) for a given mesh T = (V ,E ,P) is
called inf-sup stable with respect to a norm ∥⋅∥HT on a subspace ofHT ⊂ L2 (P) if there exists γ > 0
such that

∀u ∈HT ∶ γ ∥u∥HT ≤ sup
v∈HT

aT (u, v)
∥v∥HT

.

Usually, and particularly in our setting, aT is the discretization of a continuous bilinear form, say
a (u, v) = ∫Ω∇u ⋅ (κ∇v). We are interested in the problem

∀v ∈H1
0 (Ω) ∶ a (u, v) = l (v) , (2.13)

where l ∶ H1
0 (Ω) → R is a continuous linear map, and in the convergence of the solutions of the

discrete problems
∀v ∈ L2 (T ) ∶ aT (uT , v) = lT (v) . (2.14)

Definition 2.7 (Consistency). Let B ⊂ H1
0 (Ω) be a continuously embedded Banach subspace and

for given T = (V ,E ,P) consider continuous linear operatorsRT ∶ B → L2 (P) with uniform bound.
Let u be the solution to the linear equation (2.13) and let lT ∶ L2 (P) → R be a family of linear
functionals. The variational consistency error is the linear form ET (u; ⋅ ) ∶ L2 (P) → R where

∀u ∈ B ∶ ET (u; ⋅ ) ∶= lT (⋅) − aT (RT u, ⋅ ) .

Let now a family (T , aT , lT ) with diamT → 0 be given and consider the corresponding family of
linear discrete problems (2.14). We say that consistency holds if

∥ET (u; ⋅ )∥H∗
T
→ 0 as diamT → 0 .

Remark 2.8. A typical situation is the case d ≤ 3, where H2 (Ω) ∩H1
0 (Ω) ↪ C0 (Ω) continuously.

We then might set B =H2 (Ω) ∩H1
0 (Ω) and (RT u)i ∶= u (xi).
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Consistency measures the rate at which RT u − uT → 0 and particularly provides a positive answer
to the question whether the numerical scheme converges, at least if the solution of (2.13) lies in B.
This is formulated in Theorem 10 of [DPD18].

Theorem 2.9 (Theorem 10, [DPD18]). Using the above notation, it holds

∥uT −RT u∥HT ≤ γ−1 ∥ET (u; ⋅ )∥H∗
T

(2.15)

In our setting, ∥ ⋅ ∥HT = ∥ ⋅ ∥HT ,κ (see (2.17)) is a norm on the discrete gradients. By the discrete
Poincaré inequality, (2.15) also implies an convergence estimate for the discrete solutions itself. The
theorem can be understood as a requirement on the regularity of u, resp. the right hand side of (2.13).

The combination of the proofs of Theorems 27 and 33 of [DPD18] shows that the variational consis-
tency error for

a (u, v) = ∫
Ω
∇u ⋅ κ∇v , aT (u, v) = ∑

i∼j

mij

hij
(uj − ui)κij (vj − vi)

becomes

ET (u; v) = ∑
i∼j

(vj − vi)(∫
σij
κ∇u ⋅ νij −

mij

hij
κij ((RT u)j − (RT u)i)) . (2.16)

Introducing on L2 (P) the HT -norm given by

∥u∥HT ,κ ∶= ∑
i∼j

mij

hij
κij (uj − ui)2

, (2.17)

we find

∥ET (u; ⋅)∥H∗
T ,κ

≤ ∑
i∼j

hij
mij

κ−1
ij (∫

σij
κ∇u ⋅ νij −

mij

hij
κij ((RT u)j − (RT u)i))

2

. (2.18)

In view of the Poincaré inequality in Theorem 2.5 the norm ∥⋅∥L2(P)
is bounded by ∥⋅∥HT ,κ in case κ

is uniformly bounded away from 0. The right hand side of equation (2.18) gives rise to the definition of
a “dual” HT -norm which we denote

∥u∥H−
T ,κ

∶= ∑
i∼j

mij

hij
κij (uj − ui)2

. (2.19)

With regard to (2.15) and Lemma 2.2, the above considerations motivate the following definition.

Definition 2.10 (ϕ-consistency). Let Th = (Vh,Eh,Ph) be a family of meshes with diamTh → 0 as
h → 0. We say that Th is ϕ-consistent (satisfies ϕ-consistency) on the subspace B ⊂ H1

0 (Ω) if for
every u ∈ B there exists C ≥ 0 such that for every h > 0

∑
σij∈Eh

hij
mij

κ−1
ij ∣∫

σij
κ∇u ⋅ νij − κij

mij

hij
((RThu)j − (RThu)i)∣

2

≤ Cϕ (h)2
.

Hence, we immediately obtain the following.

Proposition 2.11. Under the assumptions of Lemma 2.2 and assuming hij ≤ Ch for some constant
C > 0 the mesh is ϕ-consistent with ϕ(h) = h. We say that the mesh is h-consistent.
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2.6 Consistency on cubic meshes

For d ≤ 3, we consider a polygonal domain Ω ⊂ Rd with a cubic mesh where Ωi = xi + [−h/2, h/2]d,
xi ∈ hZ ⊂ Ω,

Then we want to estimate the terms

mij ∣JSijÛ − J⋆ijU ∣ = Sij ∣mijκij
Ûj − Ûi
h

− ∫
σij
κ∇U ⋅ νij∣

≤ Sij ∣mijκij
Ûj − Ûi
h

− κij ∫
σij
∇U ⋅ νij∣ + Sij ∣∫

σij
(κij − κ)∇U ⋅ νij∣ .

In fact the following calculations are quite standard and, therefore, we shorten our considerations.

Now, we want to estimate ∣mij
Ûj−Ûi
h − ∫σij ∇U ⋅ νij ∣ . We have Ûj = U(x) +∇U ⋅ (xj − x) +O(h2)

and Ûi = U(x) + ∇U ⋅ (xi − x) +O(h2). Moreover, we can write xi − x = −h2νij + x̃ where x̃ ⊥ νij
and xj − x = h

2νij + x̃ (the normal νij points outside or inside of Ωi). Hence, we conclude

Ûj = U(x) + ∇U ⋅ (h
2
νij + x̃) +O(h2)

Ûi = U(x) + ∇U ⋅ (−h
2
νij + x̃) +O(h2).

Subtracting both equations, we end up with Ûj−Ûi
h = ∇U ⋅ νij +O(h2), and hence,

∣mij

Ûj − Ûi
h

− ∫
σij
∇U ⋅ νij∣ ≤mijO(h2).

Theorem 2.12 (Consistency on cubic meshes). Let Ω ⊂ Rd with d ≤ 3 be a polygonal domain with a
cubic mesh where Ωi = xi + [−h/2, h/2]d, xi ∈ hZ ⊂ Ω and let κ ≡ 1. Then

∥ET (u; ⋅)∥H∗
T
≤ Ch2.

We will consider a general κ in Section 5.3 below.

3 Derivation of the methods and formal comparison

In this section, we recall the original derivation of the Scharfetter–Gummel scheme and then show that
both the SG and the SQRA scheme are members of a huge family of discretization schemes. Finally,
we provide a physically motivated derivation of the SQRA scheme.

3.1 Motivation of the Scharfetter–Gummel scheme

One dimensional case The Scharfetter–Gummel scheme for the discrete flux on the interval [0, h]
is derived under the assumption of constant flux J , force q = −dV /dx and diffusion coefficient κ on
[0, h]. We consider the two-point boundary value problem

J = −κ(du

dx
− qu) on [0, h], u (0) = u0, u (h) = uh, (3.1)
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Discretization for the Fokker–Planck operator 13

where q ∶ [0, h] → R describes the constant force inducing the drift current (i.e., the potential V is a
linear function on [0, h]) and κ > 0 is a constant, positive diffusion coefficient. The problem has an
elementary solution of the form

u (x) = J

κq
+ (u0 −

J

κq
) eqx.

Using the second boundary value u(h) = uh, we get an explicit form for the flux

J = κ
h
(u0B (−qh) − uhB (qh)) , (3.2)

where B(r) = r/ (er − 1) is the Bernoulli function. Finally, using q = −(Vh − V0) /h, we can equally
write

J = −κ
h

Vh − V0

eVh − eV0
(uh
πh

− u0

π0

) . (3.3)

Higher dimensional case In higher dimensions, the flux between two neighboring cells j ∼ i is
discretized along the same lines as in the one dimensional case (i.e., assumption of constant force, flux
and diffusion constant along each edge of the mesh). We project the flux J on the edge hij ∶= xj −xi

hij ⋅ J = −κij (hij ⋅ ∇u + uhij ⋅ ∇V ) ,

where the assumption of a linear affine potential (inducing the constant force q = −∇V ) implies that
hij ⋅ ∇V = Vi − Vj . Moreover, we write u (x) = u (x (s)) with x (s) = sxi + (1 − s)xj , where
0 ≤ s ≤ 1 parametrizes the position on the edge. Then, with du/ds = hij ⋅ ∇u and hij ⋅ J = hijJij ,
we arrive at the two-point boundary problem

hijJij = −κij (
du

ds
+ u (Vi − Vj)) on s ∈ [0,1] , u (0) = uj, u (1) = ui,

which is equivalent to the one dimensional problem. (3.1). The solution reads

Jij =
κij
hij

(ujB (Vi − Vj) − uiB (− (Vi − Vj))) ,

which can also be written as

Jij = −
κij
hij

Vi − Vj
eVi − eVj (

ui
πi
− uj
πj

) .

Remark 3.1. In case of a sufficiently fine discretization that accurately takes into account the structure
of V , we can expect that ∣Vj − Vi∣ ≪ 1 is small such that Vi−Vj

eVi−eVj
≈ √

πiπj +O (πi − πj)2. We then
infer

Jij = −
κij
hij

√
πiπj (

uj
πj

− ui
πi

) ,

which is the flux discretization according to the SQRA scheme. This becomes more clear in the fol-
lowing sections.

Remark 3.2 (Motivation of discretized diffusion coefficient κij). Considering inhomogeneous media,
where the diffusion coefficient is not necessarily constant, a suitable discretization for the diffusion κij
is needed. Let us neglect for a moment the drift qu and assume that we have κi on Ωi around xi and
κj on Ωj around xj . We compute the flux Jij from xi to xj . Let x0 be the intersection of hij and σij ,
and moreover, di = ∣x0 − xi∣ and dj = ∣xj − x0∣. The density at x0 is denoted by u0. The flux Ji from
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xi to x0 is then given by Ji = −κi u0−ui
di

and the flux Jj from x0 to xj is then given by Jj = −κj uj−u0

dj
.

The flux from xi to xj is then given by Jij = −κij uj−uidi+dj
. Hence, we have

Jij = −
κij

di + dj
(uj − u0 + u0 − ui) =

κij
di + dj

(di
κi
Ji +

dj
κj
Jj) .

Kirchhoff’s law says Ji = Jj = Jij , which implies that 1 = κij
di+dj

( diκi +
dj
κj

) and hence the weighted
harmonic mean

κij =
(di + dj)
di
κi
+ dj
κj

= 1
1
κi

di
di+dj

+ 1
κj

dj
di+dj

.

Note that 1/κ is the mobility and hence we conclude 1
κij

= 1
κi

di
di+dj

+ 1
κj

dj
di+dj

, i.e. the arithmetic mean

of the mobilities 1/κi and 1/κj .
Interestingly, the harmonic mean is yet another special case of Stolarsky means (see below) forα = −2
and β = −1. Thus classical FV discretizations of classical elliptic problems based on discretizations of
−∆ are another particular case of our general study.

3.2 A family of discretization schemes

Repeating the above calculations from a different point of view reveals some additional structure of
the Scharfetter–Gummel scheme and puts it into a broader context.

Taking into account the special structure of the Fokker–Planck equation in (3.1), we solve

1

κ
J = −(u′ (x) + u (x)V ′ (x)) , u(0) = u0, u(h) = uh,

for a general potential V ∶ [0, h] → R not necessarily assumed to be affine. The general solution
reads

u(x) = −(1

κ
J ∫

x

0
eV + u0eV0) e−V (x).

The flux can be computed explicitly from the assumption J = const. and setting x = h in the above
formula. This yields

J = −κuhe
Vh − u0eV0

∫
h

0 eV
= −κ1

h
(1

h ∫
h

0
π−1)

−1

(uh
πh

− u0

π0

) = −κπmean
1

h
(uh
πh

− u0

π0

)

for the averaged πmean = ( 1
h ∫

h

0 π−1)
−1

, which clearly determines the constant flux along the edge. In

particular, assuming that V is affine, i.e. V (x) = Vh−V0

xh−x0
(x − x0)+V0, one easily checks that πmean =

(Vh − V0) / (eVh − eV0), which is the mean corresponding to the Scharfetter–Gummel discretization.
However, a potential can also be approximated not by piecewise affine interpolation but in other ways,
resulting in different means πmean. We provide an example of such an approximation for the SQRA in
the Appendix A.4.

We aim to express πmean by means of the values π0 and πh at the boundaries. The choice of this
average is non-trivial and determines the quality of the discretization scheme, as we will see below. In
the present work, we focus on the (weighted) Stolarsky mean, although there are also other means like

general f -means (Mf(x, y) = f (f
−1(x)+f−1(y)

2 ) for a strictly increasing function f ). The Stolarsky
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mean has the advantage that it is a closed formula for a broad family of popular means and that its
derivatives can be computed explicitly.

The weighted Stolarsky mean Sα,β [Sto75] is given as

Sα,β(x, y) = (β(x
α − yα)

α(xβ − yβ))
1
α−β

, (3.4)

whenever these expressions are well defined and continuously extended otherwise. We note the
symmetry properties Sα,β (x, y) = Sα,β (y, x) = Sβ,α (x, y). Interesting special limit cases are
S0,1(x, y) = x−y

log(x/y) = Λ(x, y) (logarithmic mean), S−1,1(x, y) = √
xy (geometric mean) and

S0,−1(x, y) = xy
Λ(x,y) (Scharfetter–Gummel mean). A list of further Stolarsky means is given in Ta-

ble 2.

An explicit calculation shows that ∂2
xS0,−1 (x,x) = −(3x)−1 and ∂2

xS−1,1 (x,x) = −(4x)−1. For the
general Stolarsky mean Sα,β one obtains (see Appendix A.3)

∂2
xSα,β (x,x) =

1

12x
(α + β − 3) , (3.5)

particularly reproducing the above findings for ∂2
xS0,−1 and ∂2

xS−1,1. With respect to (1.3)–(1.4), we
observe that

B1 (Vi − Vj) =
Vi − Vj

eVi−Vj − 1
= S0,−1 (πi, πj)π−1

j , (3.6)

B2 (Vi − Vj) = e−
1
2
(Vi−Vj) = S−1,1 (πi, πj)π−1

j , (3.7)

and (1.2) can be brought into the form (1.6), which we equally write as

− ∑
j∶ j∼i

mij

hij
κijS∗ (πi, πj)(

uTj
πj

− u
T
i

πi
) = fi , (3.8)

whereS∗ equals eitherS0,−1 orS−1,1. For general meansSα,β (x, y), we have the relationSα,β (x, y) =
xSα,β (1, y/x), such that the weight function for arbitrary parameters α and β reads

Bα,β (x) = Sα,β (1, e−x) .

In particular, it holds for any α and β

Bα,β (−x) = exBα,β (x) ,

which guarantees the consistency of the scheme with the thermodynamic equilibrium.

Interestingly, the derivation of the SQRA in Section 2.2 of [LFW13] relies on the assumption that the
flux through a FV-interface has to be proportional to (uTj /πj − uTi /πi) with the proportionality factor
given by a suitable mean of πi and πj . The choice of S−1,1 in [LFW13] seems arbitrary, yet it yields
very good results [WE17, FKN+19, DHWK].

3.3 The Wasserstein gradient structure of the Fokker–Planck operator and the
SQRA method

The choice of S∗ turns out to be crucial for the convergence properties. In this section, we look at
physical structures which are desirable to be preserved in the discretization procedure. Our consider-
ations are based on the variational structure of the Fokker–Planck equation. Let us note at this point
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mean weight B(x) α β α + β

max

⎧⎪⎪⎨⎪⎪⎩

e−x, x ≤ 0

1, x > 0
+∞ 1 +∞

quadratic mean
√

1
2 (1 + e−2x) 4 2 6

arithmetic mean 1
2 (1 + e−x) 2 1 3

logarithmic mean 1
x (1 − e−x) 0 1 1

geometric mean (SQRA) e−x/2 −1 1 0

Scharfetter–Gummel mean x/ (ex − 1) 0 −1 −1

harmonic Mean 2/ (ex + 1) −2 −1 −3

min

⎧⎪⎪⎨⎪⎪⎩

ex, x ≤ 0

1, x > 0
−∞ 1 −∞

Table 2: Examples for popular mean values expressed as (weighted) Stolarsky means Sα,β with cor-
responding weight functions in (1.2) that generalize the Bernoulli function. The geometric mean corre-
sponds to the SQRA, the S0,−1-mean to the Scharfetter–Gummel discretization.

that a physically reasonable discretization is not necessarily the best from the rate of convergence
point of view. Indeed, this last point will be underlined by numerical simulations in Section 6. However,
the physical consideration is helpful to understand the family of Stolarsky discretizations from a further,
different point of view.

In [JKO98] it was proved that the Fokker–Planck equation

u̇ = ∇ ⋅ (κ∇u + κu∇V ) (3.9)

has the gradient flow formulation u̇ = ∂ξΨ∗(u,−DE(u)) where

E(u) = ∫
Ω
(u logu + V u − u + 1) = ∫

Ω
(u log (u

π
) − u + 1) , Ψ∗(u, ξ) = 1

2 ∫Ω
κu ∣∇ξ∣2 ,

(3.10)
and π = e−V is the stationary solution of (3.9). Indeed, one easily checks that DE(u) = logu + V =
log (u

π
) and ∂ξΨ∗(u, ξ) = −∇ ⋅ (κu∇ξ) such that it formally holds

∂ξΨ
∗(u, ξ)∣ξ=−DE(u) = −∇ ⋅ (κu∇ξ)∣ξ=−DE(u) = ∇ ⋅ (κu(∇u

u
+∇V )) = ∇ ⋅ (κ∇u + κu∇V ) = u̇.

Given a particular partial differential equation, the gradient structure might not be unique. For example,
the simple parabolic equation ∂tu = ∆u can be described by (3.10) with V = 0. But at the same time
one might choose E(u) = ∫ u2 with Ψ∗ (ξ) = ∫ ∣∇ξ∣2, which plays a role in phase field modeling
(see [HMR11] and references therein) or E(u) = −∫ logu with Ψ∗ (ξ) = ∫ u2 ∣∇ξ∣2.

In view of this observation, one might pose the question about “natural” gradient structures of the dis-
cretization schemes. This is reasonable if one believes that discretization schemes should incorporate
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the underlying physical principles. The energy functional is clearly prescribed by (3.10) with the natural
discrete equivalent

ET (u) = ∑
i

mi (ui log (ui
πi

) − ui + 1) . (3.11)

The discrete linear evolution equation can be expected to be linear. Since we identified the continuous
flux to be J = −κπ∇U with U = u/π, we expect the form

u̇imi = ∂ξΨ∗
T (u,−DET (u)) = ∑

j∶i∼j

mij

hij
κi,jπij (

uj
πj

− ui
πi

) (3.12)

for some suitably averaged πij . Equation (3.12) can be understood as a time-reversible (or detailed
balanced) Markov process on the finite state space P . Recently, various different gradient structures
have been suggested for (3.12): [Mie11, Maa11, EM12, CHLZ12, Mie13b] for a quadratic dissipation
as a generalization of the Jordan–Kinderlehrer–Otto approach; and [MPR14, MPPR17], where a dis-
sipation of cosh-type was appeared in the Large deviation rate functional for a hydrodynamic limit of
an interacting particle system. All of them can be written in the abstract form

Ψ∗
T (u, ξ) =

1

2
∑
i

1

mi
∑
j∶i∼j

mij

hij
Sijaij(u,π)ψ∗ (ξi − ξj) , (3.13)

where

aij(u,π) = (ui
πi
− uj
πj

)∂ξψ∗ (log (ui
πi

) − log(uj
πj

))
−1

. (3.14)

In fact, any positive and convex function ψ∗ defines a reasonable dissipation functional Ψ∗ by (3.13)
and (3.14). A special case is when choosing for ψ∗ and exponentially fast growing function ψ∗(r) ∶=
C∗(r) ∶= 2 (cosh(r/2) − 1). Then aij simplifies to

aij(u,π) =
√

uiuj
πiπj

,

and hence, the square root appears. Choosing Sij =
√
πiπj , we end up with a dissipation functional

of the form

Ψ∗
T (u, ξ) = ∑

i

∑
j∶i∼j

mijhij
√
uiuj

1

h2
ij

C∗ (ξi − ξj) . (3.15)

There are (at least) three good reasons why choosing this gradient structure, i.e., modeling fluxes in
exponential terms: a historical, a mathematical and a physical:

1 Already in Marcelin’s PhD thesis from 1915 ([Mar15]) exponential reaction kinetics have been
derived, which are still common in chemistry literature.

2 Recently, convergence for families of gradient systems has been derived based on the energy-
dissipation principle (the so-called EDP-convergence [Mie16, LMPR17, DFM18]). Vice versa,
the above cosh-gradient structure appears as an effective gradient structure applying EDP-
convergence to Wasserstein gradient flow problems [LMPR17, FL19].

3 Recalling the gradient structure for the continuous Fokker–Planck equation (3.10), we observe
that the dissipation mechanism Ψ∗ is totally independent of the particular form of the energy
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E , which is determined by the potential V . This is physically understandable, since a change
of the energy resulting, e.g., from external fields should not influence the dissipation structure.
The same holds for the discretized version (3.15). In fact it was shown in [MS19], that the only
discrete gradient structure, where the dissipation does not depend on V resp. π = e−V , is
the cosh-gradient structure with the SQRA discretization Sij = S−1,1(πi, πj). In particular, this
characterizes the SQRA. For convenience, we add a proof for that to the Appendix A.2.

We think that these properties distinguish the SQRA, although in the following the convergence proofs
do not really rely on the particular discretization weight Sij .

Remark 3.3 (Convergence of energy and dissipation functional). Let us finally make some comments
on the convergence of ET and Ψ∗

T
given in (3.11) and (3.15) to the continuous analogies E and

Ψ∗. Γ-convergence can be shown if the fineness of T tends to 0. For the energies it is clear, since
u ↦ u log (u/π) − u is convex. For the dissipation potentials Ψ∗

T
(u, ξ) we observe the following:

For smooth functions u and ξ, we have 1
h2
ij
C∗ (ξi − ξj) ≈ 1

2 ( xi−xj
∣xi−xj ∣

⋅ ∇ξ)
2
+ O(h2

ij) and
√
uiuj ≈

u (1
2(xi + xj)). The considerations from Section 2.3 then yield Ψ∗

T
(u, ξ) ≈ 1

2 ∫Q u ∣∇ξ∣2.

For quadratic dissipation, qualitative convergence results in 1-D using the underlying gradient struc-
ture are obtained in [DL15] looking at energy-dissipation mechanism, and in [GKMP19] proving con-
vergence of the metric.

4 Comparison of discretization schemes

We mutually compare any two discretization schemes of the form (1.6) in case of Dirichlet boundary
conditions. In this case, even though the problem is only defined on P̃ , we can simply sum over all P
once we multiplied with a test function that assumes the value 0 at all P/P̃ .

Let us recall the formula (2.10) for the fluxes

JSijU = −κij
hij
Sij(Uj −Ui).

Moreover, let ui = Uiπi and ũi = Ũiπi be the solution of the discrete FPE (1.6) for two different smooth
mean coefficients Sij = S(πi, πj) and S̃ij = S̃(πi, πj) (e.g. once for Scharfetter–Gummel and once
for SQRA) such that

∑
k∶k∼i

mikhikJ
S
ikU =mif̄i (4.1)

∑
k∶k∼i

mikhikJ
S̃
ikŨ =mif̄i. (4.2)

In order to compare the solutions of (4.1) and (4.2) we take the difference of these two equations and
multiply with Ei = Ui − Ũi. We obtain

0 = ∑
i

∑
k∶k∼i

mikhik (JSikU − J S̃ikŨ)Ei

= ∑
i

∑
k∶k∼i

mik

hki
κij(Sik(Ui −Uk) − S̃ik(Ũi − Ũk))Ei
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Introducing the notation αik = κik mikhik
and using (2.2) we get

0 = ∑
k∼i

αik (Sik(Ui −Uk) − Sik(Ũi − Ũk) + (Sik − S̃ik) (Ũi − Ũk)) (Ei −Ek)

= ∑
k∼i

αik (Sik (Ei −Ek) + (Sik − S̃ik) (Ũi − Ũk)) (Ei −Ek) .

Using the notation DikA = Ak −Ai for discrete gradients

(S̃ik − Sik) (Ũi − Ũk) (Ei −Ek) ≤
1

2
[Sik (DikE)2 + (Sik − S̃ik)2

Sik
(DikŨ)2]

we get

1

2
∑
k∼i

αikSik (DikE)2 ≤ 1

2
∑
k∼i

(S̃ik − Sik)2

SikS̃ik
αikS̃ik (DikŨ)2

. (4.3)

In the case of Stolarsky means the constants are more explicit. We have the following expansion of
Sij : writing πij = 1

2 (πi + πj), π+ = π− = 1
2 (πi − πj) and πi = π0 + π+ and πj = π0 − π−

Sij = Sα,β (πij, πij) +
1

2
(π+ − π−) +

1

2
∂2
xSα,β (πij, πij) (π+ + π−)

2 +O (π3
±)

= πij +
1
3 (α + β) − 1

8πij
(πi − πj)2 +O (πi − πj)3

. (4.4)

In case (α + β) = (α̃ + β̃), we obtain Sij − S̃ij = O (πi − πj)3 and hence this yields the following
first comparison result:

Theorem 4.1. Let T be a mehs with right hand side f ∈ L2(P) and let u and ũ be a two solution of
the discrete FPE for different Stolarsky mean coefficients Sij = Sα,β (πi, πj) and S̃ij = Sα̃,β̃ (πi, πj)
respectively. Then

1

2
∑
k∼i

κik
mik

hik
Sik (DikE)2

≤ 1

2
∑
k∼i

⎛
⎝
((α + β) − (α̃ + β̃))2

242 π2
ijS̃ikSik

(πi − πj)4 +O (πi − πj)5⎞
⎠
κik

mik

hik
(DikŨ)2

In case (α + β) = (α̃ + β̃) we furthermore find

1

2
∑
k∼i

κik
mik

hik
Sik (DikE)2 ≤ 1

2
∑
k∼i

O (πi − πj)6
κik

mik

hik
(DikŨ)2

.

We aim to refine the above result to an order of convergence result for JSU −J S̃Ũ .. We introduce the
auxiliary smooth mean Ŝik = Ŝ(πi, πk) and find

Ŝik (Ei −Ek) = Ŝik (Ui − Ũi − (Uk − Ũk))
= Sik(Ui −Uk) − Sik(Ui −Uk) + S̃ik(Ũi − Ũk) − S̃ik(Ũi − Ũk) + Ŝik (Ui − Ũi − (Uk − Ũk))
=mikα

−1
ik (JSikU − J S̃ikŨ) + (Ŝik − Sik) (Ui −Uk) − (Ŝik − S̃ik) (Ũi − Ũk) .
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Hence, we have

∑
k∼i

αik (Sik(Ui −Uk) − S̃ik (Ũi − Ũk)) (Ei −Ek)

= ∑
k∼i

hik
κik

mik
1

Ŝik
(JSikU − J S̃ikŨ)

2

+∑
k∼i

mik
1

Ŝik
(JSikU − J S̃ikŨ) [(Ŝik − Sik) (Ui −Uk) + (Ŝik − S̃ik) (Ũi − Ũk)] ,

and using Cauchy-Schwartz inequality, we get

∑
k∼i

αik (Sik(Ui −Uk) − S̃ik (Ũi − Ũk)) (Ei −Ek) ≤ −
1

2
∑
k∼i

hikmik

κik

1

Ŝik
(JSikU − J S̃ikŨ)

2

+∑
k∼i

mikκik

hikŜik
((Ŝik − Sik)

2 (Ui −Uk)2 + (Ŝik − S̃ik)
2 (Ũi − Ũk)

2) .

Altogether we obtain

1

2
∑
k∼i

hikmik

κik

1

Ŝik
(JSikU − J S̃ikŨ)

2
≤ ∑
k∼i

mikhik

κikŜikS2
ik

(Ŝik − Sik)
2 (κik
hik

Sik (Ui −Uk))
2

+∑
k∼i

mikhik

κikŜikS̃2
ik

(Ŝik − S̃ik)
2 (κik
hik

S̃ik (Ũi − Ũk))
2

.

We make once more use of (4.4) writing Cα,β ∶= α+β
24 and exploiting πi = πij + πij (Vi − Vij) +

O (Vi − Vij)2 with

πi − πj ≈ πij (Vi − Vj) +O (Vi − Vij)2 +O (Vj − Vij)2

Sij ≈ πij +O (πi − πj) .

Hence, we conclude the following result.

Theorem 4.2. Let T be a mesh with right hand side f ∈ L2(P) and let u and ũ be two solutions of
the discrete FPE for different Stolarsky means S and S̃. Moreover, let Ŝ be any Stolarsky mean and
assume that either α+β ≠ α̂+ β̂ or α̃+ β̃ ≠ α̂+ β̂. Then the solutions u and ũ of the discretized FPE
satisfy the symmetrized error estimate up to higher order

1

2
∑
k∼i

hikmik

κik

1

Ŝik
(JSikU − J S̃ikŨ)

2
≤ ∑
k∼i

mikhik
κikSik

(Cα,β −Cα̂,β̂) (Vi − Vj)
2 (JSikU)2

+∑
k∼i

mikhik

κikS̃ik
(Cα̃,β̃ −Cα̂,β̂) (Vi − Vj)

2 (J S̃ikŨ)
2
.

More general, for any mean we have

1

2κ∗
∥JSU − J S̃Ũ∥2

L2
Ŝ
(E)

≤ 1

κ∗

⎧⎪⎪⎨⎪⎪⎩
sup
i,k

(Ŝik − Sik)
2

ŜikSik
∥JSU∥2

L2
S(E)

+ sup
i,k

(Ŝik − S̃ik)
2

ŜikS̃ik
∥J S̃Ũ∥

2

L2
S̃
(E)

⎫⎪⎪⎬⎪⎪⎭
, (4.5)

and in particular for Stolarsky means with α + β = α̃ + β̃ = α̂ + β̂ we find the following result:
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Corollary 4.3. Let T be a mesh with right hand side f ∈ L2(P) and let u and ũ be two solutions of
the discrete FPE for different Stolarsky mean coefficients Sij = Sα,β (π,πj) and S̃ij = Sα̃,β̃ (π,πj)
with α + β = α̃ + β̃ = α̂ + β̂. Then estimate (4.5) holds. In particular, we find the refined estimate

1

2κ∗
∥JSU − J S̃Ũ∥2

L2
Ŝ
(E)

≤ O (πi − πj)6 (∥JSU∥2

L2
S(E)

+ ∥J S̃Ũ∥
2

L2
S̃
(E)

) .

In particular, the last result shows that convergence rates are similar up to order 3 for different α,β
which satisfy α + β = const.

5 Convergence of the discrete FPE

In this section, we derive general estimates for the order of convergence of the Stolarsky FV operators.
Throughout this section, we assume that the mesh satisfies the consistency property of Definition 2.10
with a suitable consistency function ϕ ∶ R≥0 → R≥0 and discretization operator RT ∶ H1(Ω) ⊃ B →
L2(P). The parameters πi are then given in terms of πi = (RT π)i.
We derive consistency errors for U in Section (5.1) and consistency errors for u in Section (5.2).

5.1 Error Analysis in U

In what follows, we assume that the discrete and the continuous solution satisfy Dirichlet conditions. In
view of the continuous and the discrete FPE given in the form (2.6) and (2.7) as well as formula (2.16)
we observe that the natural variational consistency error for a given Stolarsky mean S takes the form

ET ,FPE (U ; v) = ∑
i∼j

(vj − vi)(∫
σij
κπ∇U ⋅ νij − κijSij

mij

hij
((RT U)j − (RT U)i)) .

We recall that an estimate for ET ,FPE (U ; ⋅) implies an order of convergence estimate by (2.15). Our
main result of this section provides a connection between ET ,FPE (U ; ⋅) and the variational consis-
tency ET (U ; ⋅) (given by (2.16)) of the second order equation

−∇ ⋅ (κ∇U) = f

with the discretization scheme

∀i ∶ − ∑
j∶ j∼i

κij
mij

hij
(UTj −UTi ) = fi .

Proposition 5.1. Let T = (V ,E ,P) be a mesh. The variational consistency error ET ,FPE (U ; ⋅) can
be estimated by

∥ET ,FPE (U ; ⋅)∥2
H∗
T ,κS

≤ ∥π∥
∞

∥ET (U ; ⋅)∥2
H∗
T ,κ

+∑
i∼j

hij
mij

κ−1
ij S

−1
ij (∫

σij
(π − Sij)κ∇U ⋅ νij)

2

.

(5.1)
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Proof. For simplicity, we write Û ∶= RT U . We observe that

ET ,FPE (U ; v) = −∑
i∼j

(vj − vi)mij (J ijU − JSijÛ)

= −∑
i∼j

(vj − vi)mij ((J ijU − J⋆ijU) + (J⋆ijU − JSijÛ)) ,

where
J
⋆

ijU ∶= −m−1
ij ∫

σij
κSij∇U ⋅ νij .

satisfies

mij ∣J ijU − J⋆ijU ∣ ≤ ∣∫
σij

(π − Sij)κ∇U ⋅ νij∣ . (5.2)

Using the fact that

mij (J
⋆

ijU − JSijÛ) = −Sij (∫
σij
κ∇U ⋅ νij − κij

mij

hij
(Ûj − Ûi))

we obtain

∣∑
i∼j

(vj − vi)mij (J
⋆

ijU − JSijÛ)∣ (5.3)

≤ ∥v∥HT ,κS (sup
ij
Sij)

1
2 ⎛
⎝∑i∼j

hij
mij

κ−1
ij (∫

σij
κ∇U ⋅ νij − κij

mij

hij
(Ûj − Ûi))

2⎞
⎠

1
2

. (5.4)

From (5.2) we conclude

∣∑
i∼j

(vj − vi)mij (J ijU − J⋆ijU)∣ ≤ ∥v∥HT ,κS
⎛
⎝∑i∼j

hij
mij

κ−1
ij S

−1
ij (∫

σij
(π − Sij)κ∇U ⋅ νij)

2⎞
⎠

1
2

.

(5.5)
Taking together (5.3)–(5.5) we obtain (5.1).

Lemma 5.2. Assume there exists a constant C > 0 such that for all cells Ωi,Ωj with hi = diamΩi it
holds

∥f∥2
L2(σij)

≤ 1

hi
C2 ∥f∥2

H1(Ωi)
. (5.6)

Then for C2-smooth means S

∣∫
σij

(π − Sij)κ∇U ⋅ νij∣ ≤ 2C (mijhi)
1
2 ∥κ∇U∥H1(Ωi)

. (5.7)

Remark 5.3. Note that (5.6) can be easily verified for cubes.

Proof. Observe that

∫
σij

∣π − Sij ∣ ∣κ∇U ⋅ νij ∣ ≤ (∫
σij

∣π − Sij ∣2)
1
2

(∫
σij

∣κ∇U ⋅ νij ∣2)
1
2

≤ c(∫
σij

∣π − Sij ∣2)
1
2

( 1

hi
∥κ∇U∥2

H1(Ωi)
)

1
2

. (5.8)
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It remains to study 1
mij ∫σij ∣π − Sij ∣

2 in more detail. We have

π − Sij =
1

2
(π − πi) +

1

2
(π − πj) + (πi + πj

2
− Sij) .

The first term can be estimated by ∣π − πi∣ ≤ hi ⋅ ∇π + O(h2
i ) and a similar estimate holds for the

second term. The last term, assuming that the mean is C2-smooth, can be estimated by

S(πi, πj) − S (πi + πj
2

,
πi + πj

2
) = 1

2
(πi − πj)∇S ⋅ (1,−1)T +O(∣πi − πj ∣).

Using that πi − πj = ∇π ⋅ hij +O(hij) and that S (πi+πj
2 ,

πi+πj
2

) = πi+πj
2 , we obtain that ∣π − Sij ∣2 ≤

O (h2
i ). In total we obtain

∫
σij

∣π − Sij ∣ ∣κ∇U ⋅ νij ∣ ≤ 2C (mijh
2
i )

1
2 ( 1

hi
∥κ∇U∥2

H1(Ωi)
)

1
2

.

Using the above estimates, we can now show the main result of the section.

Theorem 5.4 (Localized order of convergence). Let the mesh T be admissible in sense of Definition
2.1 and consistent in sense of Definition 2.10. Let u ∈ C2

0(Ω) be the solution to (1.1). Let fT ∶= R∗
T
f

and let uT ∈ ST be the solution to (2.3). Moreover, let κ ≤ κ∗, b > 0 and S ∈ C2(R≥0 ×R≥0). Then it
holds it holds

∥uT −RT u∥2
HT ≤ C(κ∗, π, d, ∥U∥C2) × (ϕ(h)2 + h2) .

Proof. Inserting estimate (5.7) int to the estimate of the variational consistency, we get

∥ET ,FPE (U ; ⋅)∥2
H∗
T ,κS

≤ ∥π∥
∞

∥ET (U ; ⋅)∥2
H∗
T ,κ

+C∑
i∼j

hijκ
−1
ij S

−1
ij hi∥κ∇U∥2

H1(Ωi)

≤ ∥π∥
∞

∥ET (U ; ⋅)∥2
H∗
T ,κ

+C(κ∗, π, d) h2∑
i

∥κ∇U∥2
H1(Ωi)

.

Using (2.15) we obtain an estimate for the discretization error in the form

∥uT −RT u∥2
HT ≤ ∥π∥

∞
∥ET (U ; ⋅)∥2

H∗
T ,κ

+C(κ∗, π, d, ∥U∥C2) Size(T )2.

Using the consistency assumption on the discretization of the pure elliptic problem we obtain the
desired estimate.

5.2 Error Analysis in u

In the following, we will discuss how to derive bounds on the rate of convergence of u instead of U .
As a basis for both proofs of this section, we start with the discrete FP operator which we rewrite as

− ∑
j∶ j∼i

mij

hij
κijSij (

uj
πj

− ui
πi

) = − ∑
j∶ j∼i

mij

hij
κij (uj − ui) − ∑

j∶ j∼i

mij

hij
κij (

Sij − πj
πj

uj −
Sij − πi
πi

ui) .

We have

ET ,FPE (U ; v)−ET (u; v) = ∑
i∼j

(mij

hij
κij (

Sij − πj
πj

uj −
Sij − πi
πi

ui) − ∫
σij
κu∇V ⋅ νij)(vj − vi) ,
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where we want to estimate the right-hand side. For Vi − Vj = O (h) we have

Sij − πj
πj

= 1

2
(πi
πj

− 1) +O (πi − πj) =
1

2
(Vj − Vi) +O (πi − πj) +O (Vi − Vj) (5.9)

and hence

ET ,FPE (U ; v)−ET (u; v) = ∑
i∼j

(mij

hij
κij

1

2
(Vj − Vi) (ui + uj) − ∫

σij
κu∇V ⋅ νij +O(h)) (vj − vi) .

Since κij ≈ κ., ui+uj2 ≈ u, Vj−Vihij
≈ ∇V it holds ET ,FPE (U ; v) ≈ ET (u; v).

Theorem 5.5. For smooth potentials V ∈ C2 it holds ∥ET (u; v) ∥H∗
T ,κS = O(h).

Remark 5.6. The calculation (5.9) is an approximation for small values of ∣Vj − Vi∣. In the particular

case of large discrete gradients a general approximation of Sij−πj
πj

is not at hand. However, in the

SG case S∗ = S0,−1 we observe (compare with (1.5) and (3.6)) introducing f (x) = −x−ex−1
(ex−1)x (with

f (x) → 0 as x→ +∞ and f (x) → 1 as x→ −∞)

1

hij

Sij − πj
πj

= 1

hij

Vj − Vi − (eVi−Vj − 1)
eVi−Vj − 1

= Vi − Vj
hij

f (Vi − Vj) →
⎧⎪⎪⎨⎪⎪⎩

−∇V ⋅ νij if Vi ≫ Vj

0 if Vj ≫ Vi
as hij → 0 .

Hence we observe that the SG method is particularly suited to minimize the error term

mij

hij
κij (

Sij − πj
πj

uj −
Sij − πi
πi

ui) − ∫
σij
κu∇V ⋅ νij

for large gradients ∇V .

5.3 Qualitative comparison on cubic meshes

In view of Section 2.6 we consider a polygonal domain Ω ⊂ Rd with d ≤ 3 and a cubic mesh where

Ωi = xi + [−h/2, h/2]d, xi ∈ hZ ⊂ Ω to show that ∣∫σij (π − Sij)κ∇U ⋅ νij ∣ = O(h2). In fact the
following calculations are quite standard and, therefore, we shorten our considerations. We have for
x ∈ σij

Sij − π(x) = S(πi, πj) − S(π(x), π(x)) =

= ∇S(x) ⋅
⎛
⎝
πi − π(x)
πj − π(x)

⎞
⎠
+
⎛
⎝
πi − π(x)
πj − π(x)

⎞
⎠
⋅ ∇2S(x) ⋅

⎛
⎝
πi − π(x)
πj − π(x)

⎞
⎠
+O(h3).

Moreover, we have πi−π(x) = ∇π ⋅(xi−x). The gradient of S is given by (1/2,1/2)T and hence, we

Sij−π(x) = πi+πj−2π(x)

2 +O(h2).We compute the first term in more detail. We have πj−π(x) = ∇π ⋅
(xj−x) and πi−π(x) = ∇π⋅(xi−x) and the sum yields πi+πj−2π(x) = ∇π⋅(xi+xj−2x) = 1

2∇π⋅x̃,
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where x̃ = x − xi+xj
2 the coordinate on the cell surface with respect to the middle point x̄ = xi+xj

2 .
Hence, we get

∫
σij

(π − Sij)κ∇U ⋅ νij =
1

4 ∫σij
∇π(x) ⋅ x̃κ(x)∇U(x) ⋅ νijdσ(x̃) +O(h2).

Now we can fix the function s(x) = κ(x)∇U(x) ⋅ νij∇π(x) with respect to x̄. We have s(x) =
s(x̄) + (x − x̄)∇s(x̄) +O(h2), which implies (assuming that U,π ∈ C2 and κ ∈ C1) that ∫σij(π −
Sij)κ∇U ⋅ νij = 1

4 ∫σij (s(x̄) + (x − x̄)∇s(x̄)) ⋅ x̃dσ(x̃) +O(h2) = 1
4 ∫σij s(x̄) ⋅ x̃dσ(x̃) +O(h2).

But the first vanishes, since the interface σij is symmetric w.r.t. the mid point x̄ and we are integrating

along x̃. Hence, we have ∣∫σij (π − Sij)κ∇U ⋅ νij ∣ = O(h2).
Hence, iterating the above argument twice for κ and π and exploiting in the first step Theorem 2.12
we proved the following.

Theorem 5.7. Let d ≤ 3. On a polygonal domain Ω ⊂ Rd with a cubic mesh where Ωi = xi +
[−h/2, h/2]d, xi ∈ hZ ⊂ Ω, it holds

∥ET ,FPE (U ; ⋅)∥H∗
T ,κS

≤ Ch2.

6 Numerical simulation and convergence analysis

In this section, we provide a numerical convergence analysis of the flux discretization schemes based
on weighted Stolarsky means described in the previous sections. For the sake of simplicity, we restrict
ourselves to one-dimensional examples, for which already non-trivial results can be observed.

Example 6.1. We consider the potential V (x) = 2 sin (2πx) and the right hand side f (x) =
x (1 − x) on x = (0,1). We assume the diffusion constant κ = 1 and Dirichlet boundary condi-
tions u (0) = 0 and u (1) = 1. The Stolarsky mean discretizations are compared point-wise with a
numerically computed reference solution uref (and Jref) that was obtained by the shooting method (us-
ing a fourth order Runge–Kutta scheme) in combination with Brent’s root finding algorithm [Bre71] on
a very fine grid with 136474 nodes (h ≈ 7.3 × 10−6).

The convergence results are summarized in Fig. 1. In Figure 1 (a), the logarithmic error log10(∥u −
uref∥L2) is shown in the (α,β)-plane of the Stolarsky mean parameters for an equidistant mesh with
210 + 1 = 1025 nodes. First, we note that the accuracy for a mean Sα,β is indeed practically invariant
along α + β = const, which is consistent with our analytical result in Section 4. In this particular
example, we observe optimal accuracy at about α + β ≈ 4.2. This coincides with the convergence
results under mesh refinement shown in Figure 1 (b), where the fastest convergence is obtained for the
scheme involving the S3.2,1-mean. The other considered schemes, however, show as well a quadratic
convergence behavior with a slightly larger constant. Interestingly, for the same example, we find that
the optimal mean for an accurate approximation of the flux J is on α+β = −3, see Figure 1 (c). This is
further evidences in Figure 1 (d), where the harmonic mean S−1,−2 converges significantly faster than
the other schemes. Obviously, in the present example, the minimal attainable error for both u and J
can not be achieved by the same discretization scheme.

Example 6.2. We consider the potential V (x) = 5 (x + 1)x. The right hand side function, the diffu-
sion constant and the boundary conditions are the same as in Example 6.1. The problem has an exact
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Fig. 1. Numerical results for Example 6.1. (a) Discretization error log10(∥u−uref∥L2) in the (α,β)-plane on an equidistant
mesh with 210 + 1 nodes. The error is color-coded. Several special means (see Tab. 2) are highlighted by crosses. Notice
the symmetry Sα,β (x, y) = Sβ,α (x, y). (b) Quadratic convergence of the discrete solution to the exact reference solution
uexact under mesh refinement in the L2-norm. See the inset for a legend and color-coding of the considered means Sα,β .
In the present example, the best numerical result for u is achieved by S3.2,1. (c) Logarithmic error of the numerically
computed flux density log10(∥J − Jref∥L2) in the (α,β)-plane on the same mesh as in (a). (d) Convergence of the
numerically computed flux density to Jref. In contrast to the convergence of u shown in (b), here the harmonic average
S−1,−2 yield the highest accuracy.

solution involving the imaginary error function (which is related to the Dawson function), that has been
obtained using Wolfram Mathematica [WR17].

The numerical results are show in Figure 2. The discretization errors of both the density u and the flux
J shown in Figure 2 (a) and (c) exhibit a sharp minimum on α+β = −1. This includes the Scharfetter–
Gummel mean S0,−1, which converges fastest to the exact reference solutions for u and J , as shown
in 2 (b) and (d). The SQRA scheme, with geometric mean Sα,−α, is found to be second best in the
present example.

The numerical results are in line with our previous statements from Remark 5.6: In the case of strong
gradients ∇V , the Scharfetter–Gummel scheme provides the most accurate flux discretization, in
particular, the SG mean S0,−1 is the only Stolarsky mean that recovers the upwind scheme (1.5).
Away from that drift-dominated regime, the situation is less clear and other averages Sα,β can be
superior, see for instance Example 6.1.

DOI 10.20347/WIAS.PREPRINT.2684 Berlin 2020



Discretization for the Fokker–Planck operator 27

-4 -2 0 2 4
-4

-2

0

2

4

harm.

SG

geom.
log.

arith.

10-2 10-1 100-3 -1 1 3

-3

-1

1

3
(c) (d)

-4 -2 0 2 4
-4

-2

0

2

4

harm.

SG

geom.
log.

arith.

10-2 10-1 100

10-3

10-2

10-1

10-4

100

-3 -1 1 3

-3

-1

1

3
(a) (b)

10-5

10-3

10-2

10-1

10-4

10-5

10-6

100

101

-6.5

-6.0

-5.5

-5.0

-4.5

-7.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-6.5

-6.0

Fig. 2. Discretization errors and convergence behavior of the numerically computed u and J in Example 6.2 using the
Stolarsky mean schemes. The errors in (a) and (c) are color-coded. The coloring of the means in (b) and (d) is the same
as in Figure 1 (b). The plots clearly show a superior performance of the Scharfetter–Gummel scheme, which corresponds
to the Stolarsky mean S0,−1 for the approximation of both the density u and the flux J .

A Appendix

A.1 A General Poincaré Inequality

We derive a general Poincaré inequality on meshes. The idea behind the proof seems to go back to
Hummel [Hum99] and has been adapted in a series of works e.g. [Hei18, HKP17]. Let e0 = 0 and
(ei)i=1,...,n be the canonical basis of Rn. Define:

Dd−1 ∶= {ν ∈ Sd−1 ∣ ∃m ∈ {1,⋯, d} ∶ ν ⋅ ei = 0 ∀ i ∈ {0,1,⋯,m − 1} and ν ⋅ em > 0} .

Every ν ∈ Sd−1 satisfies ν ⋅ ei ≠ 0 for at least one ei. Thus, for every ν ∈ Sd−1 it holds ν ∈ Dd−1 if and
only if −ν /∈Dd−1.

We denote Γ = ⋃σ∈EΩ σ and say that x ∈ Γ is a Lipschitz point if Γ is a Lipschitz graph in a neighbor-
hood of x. The set of Lipschitz-Points is called ΓL ⊂ Γ and we note that for the (d − 1)-dimensional
Hausdorff-measure of Γ/ΓL it holdsHd−1 (Γ/ΓL) = 0.

For x ∈ ΓL, we denote νx ∈Dd−1 the normal vector to Γ in x.. Let

C1
0(Ω; Γ) ∶= {u ∈ C(Ω/Γ) ∶ u∣∂Ω ≡ 0 , ∀i∃vi ∈ C1 (Ωi) ∶ u∣Ωi = vi}
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and for u ∈ C1
K,0(Ω) define in Lipschitz points x ∈ ΓL

u±(x) ∶= lim
h→0

(u (x ± hνx)) , ⟦u⟧(x) ∶= u+(x) − u−(x) .

For two points x, y ∈ Rn denote (x, y) the closed straight line segment connecting x and y and for
ξ ∈ (x, y) ∩ ΓL denote

⟦u⟧x,y(ξ) ∶= lim
h→0

(u (ξ + h(y − x)) − u (ξ − h(y − x)))

the jump of the function u at ξ in direction (y − x), i.e. ⟦u⟧x,y(ξ) ∈ ±⟦u⟧ (ξ). We can extend ⟦u⟧ to
Γ by ⟦u⟧ (x) = 0 for x ∈ Γ/ΓL and define

∥u∥H1(Ω;Γ)
∶= (∫

Ω/Γ
∣∇u∣2 + ∫

Γ
⟦u⟧2)

1
2

,

H1
0 (Ω; Γ) ∶= C1

0 (Ω; Γ)
∥⋅∥H1(Ω;Γ)

.

Then we find the following result:

Lemma A.1 (Semi-discrete Poincaré inequality). Let Ω ⊂ Rd be a bounded domain. The space
H1

0 (Ω; Γ) is linear and closed for every s ∈ [0, 1
2) and there exists a positive constant Cs > 0 such

that the following holds: Suppose there exists a constant C# > 0 such that for almost all (x, y) ∈ Ω2

it holds # ((x, y) ∩ Γ) ≤ C#.. Then for every u ∈H1
0 (Ω; Γ) it holds

∥u∥2
Hs(Ω)

≤ Cs (C#∫
Γ
⟦u⟧2 + ∥∇u∥2

L2(Ω/Γ)
) . (A.1)

Furthermore, for every u ∈H1 (Ω; Γ) and every η ∈ Rd it holds

∫
Ω
∣u(x) − u(x + η)∣2 dx ≤ ∣η∣ (C#∫

Γ
⟦u⟧2 + ∥∇u∥2

L2(Ω/Γ)
) . (A.2)

Proof. In what follows, given u ∈ C1
0(Ω; Γ), we write ∇̂u(x) ∶= ∇u(x) if x ∈ Ω/Γ and ∇̂u(x) = 0

else. For y ∈ Rd we denote (x, y) = {x + s (y − x) ∶ s ∈ [0,1]}. Using 2ab < a2 + b2, we infer for
u ∈ C1

0(Ω; Γ) and x, y ∈ Ω/Γ such that (x, y) ∩ Γ is finite the inequality

∣u(x) − u(y)∣2 ≤
⎛
⎝ ∑
ξ∈(x,y)∩Γ

⟦u⟧x,y(ξ) + ∫
1

0
∇̂u (x + s(y − x)) ⋅ (x − y)ds

⎞
⎠

2

< ∣x − y∣2∫
1

0
∣∇̂u (x + s(y − x))∣2 ds +

⎛
⎝ ∑
ξ∈(x,y)∩Γ

⟦u⟧x,y(ξ)
⎞
⎠

2

Since ⟦u⟧x,y = ⟦u⟧ we compute

⎛
⎝ ∑
ξ∈(x,y)∩Γ

⟦u⟧x,y(ξ)
⎞
⎠

2

≤ # ((x, y) ∩ Γ) ∑
ξ∈(x,y)∩Γ

⟦u⟧2(ξ)

and obtain

∣u(x) − u(y)∣2 < ∣x − y∣2∫
1

0
∣∇̂u (x + s(y − x))∣2 ds

+# ((x, y) ∩ Γ) ∑
ξ∈(x,y)∩Γ

⟦u⟧2(ξ) . (A.3)
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We fix η > 0 and consider the orthonormal basis (ei)i=1,...,d of Rd. The determinant of the first
fundamental form of Γ is bigger than 1 almost everywhere. Hence we can observe that

∫
Ω

∑
ξ∈(x,x+ηe1)∩Γ

⟦u⟧2(ξ)dx = ∫
R

⎛
⎝∫Rd−1

∑
ξ∈(x,x+ηe1)∩Γ

⟦u⟧2(ξ)dx2 . . .dxd
⎞
⎠

dx1

≤ ∫
R
∫

Γ∩((x1,x1+η)×Rd−1)
⟦u⟧2(x)dσ dx1

≤ η∫
Γ
⟦u⟧2(x)dx ,

where we used that the surface elements are bigger than 1. Furthermore, we have

η2∫
1

0
∣∇̂u (x + sηe1)∣

2
ds = η∫

η

0
∣∇̂u (x + se1)∣

2
ds .

Replacing e1 in the above calculations with any unit vector e, we obtain from integration of (A.3) with
y = x + η, η = ηe, over Ω that

∫
Ω
∣u(x) − u(x + η)∣2 dx ≤ ∣η∣ (C#∫

Γ
⟦u⟧2 + ∥∇u∥2

L2(Ω/Γ)
) .

Dividing by ∣η∣ and integrating over η ∈ Rd, we obtain that for every s ∈ [0, 1
2) there exists a positive

constant Cs > 0 independent from u and K such that

∥u∥2
Hs(Ω)

≤ Cs (C#∫
Γ
⟦u⟧2 + ∥∇u∥2

L2(Ω/Γ)
) . (A.4)

Hence, by approximation, the last two estimates hold for all u ∈H1
0 (Ω; Γ)..

A.2 Physical relevance of the geometric mean

Theorem A.2. Let Sij = S∗ (πi, πj) be a Stolarsky mean and let ψ∗ be a symmetric strictly convex
function with ψ∗(0) = 0. If ∂π (Sijaij) = 0 then Sij =

√
πiπj and ψ∗ is proportional to C∗.

Proof of Theorem A.2. The case Sij =
√
πiπj and ψ∗(ξ) = cosh ξ − 1 was explained in detail in

[Hei18].

In the general case, symmetry of ψ∗ in ξi − ξj implies ψ∗ (ξi − ξj) = ψ∗ (∣ξi − ξj ∣). We make use
of the fact that the original C∗(ξ) = cosh ξ − 1 is a bijection on [0,∞) and suppose that hence
ψ∗ (ξi − ξj) = θ (C∗ (ξi − ξj)). This implies particularly that

0 ≤ x∂x (θ (C∗(x))) = x∂ξθ (C∗(x))∂xC∗(x) .

Furhtermore, the symmetry of ψ∗ implies by the last inequality that ∂ξθ (C∗(x)) > 0. Inserting this
information in (3.13) and (3.14) we observe that

Sij (
ui
πi
− uj
πj

)∂ξθ (C∗ (ln(ui
πi

) − ln(uj
πj

)))
−1

sinh(ln(ui
πi

) − ln(uj
πj

))
−1

has to be independent from πi and πj . From the above case Sij =
√
πiπj , we know that

√
πiπj (

ui
πi
− uj
πj

) sinh(ln(ui
πi

) − ln(uj
πj

))
−1
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is constant in πi and πj . Hence it remains to show that

f (πi, πj) ∶= Sij
√
πiπj

−1∂ξψ (ui
uj

πj
πi

+ uj
ui

πi
πj

)
−1

is independent from πi and πj if and only if ∂ξψ = const and Sij =
√
πiπj .

Assume first that Sij
√
πiπj

−1 = const. Then for p = πi
πj

we obtain that

∂p
⎛
⎝
∂ξθ (

ui
uj
p−1 + uj

ui
p)

−1⎞
⎠
= 0

has to hold. This implies that ∂ξψ = const.

If Sij
√
πiπj

−1 /= const, we use the definition of the weighted Stolarsky means given in (3.4) and note
that

Sij ∶= S (πi, πj) =
⎛
⎝
β(παi − παj )
α(πβi − π

β
j )

⎞
⎠

1
α−β

= πj (
β(pα − 1)
α(pβ − 1))

1
α−β

,

where again p = πi
πj

. Hence we obtain that

f (πi, πj) = f̃(p) ∶=
√

1

p
(β(p

α − 1)
α(pβ − 1))

1
α−β

∂ξθ (
ui
uj
p−1 + uj

ui
p)

−1

=
⎛
⎜
⎝
β (pα2 − p−α2 )
α (pβ2 − p−β2 )

⎞
⎟
⎠

1
α−β

∂ξθ (
ui
uj
p−1 + uj

ui
p)

−1

has to be independent of πi and πj . But then, f̃ is independent of p. Now, we define a = uj
ui

and
observe that

f̃ ( 1

a2p
) =

⎛
⎜
⎝

β ((a2p)−
α
2 − (a2p)

α
2 )

α ((a2p)−
β
2 − (a2p)

β
2 )

⎞
⎟
⎠

1
α−β

∂ξθ (
ui
uj
p−1 + uj

ui
p)

−1

.

We assume for α ≠ β. The case α = β can follows by continuity. For any p it should holds f̃ ( 1
a2p) =

f̃(p), which implies

⎛
⎜
⎝
β (pα2 − p−α2 )
α (pβ2 − p−β2 )

⎞
⎟
⎠

1
α−β

=
⎛
⎜
⎝

β ((a2p)−
α
2 − (a2p)

α
2 )

α ((a2p)−
β
2 − (a2p)

β
2 )

⎞
⎟
⎠

1
α−β

,

or equivalently, after introducing q2 = p,

(aα − aβ) qα+β + (aβ − a−α) qβ−α + (a−β − aα) qα−β + (a−α − a−β) q−β−α = 0.

Since α ≠ β, one of the terms q±α±β grows faster than the other. Hence we conclude that aα = a±β
which means, a = 1, a contradiction.
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A.3 Properties of the Stolarsky mean

Lemma A.3. For every of the above Stolarsky means S∗(x, y) it holds

∂xS∗(x,x) = ∂yS∗ (x,x) =
1

2
and ∂2

xS∗ (x,x) = ∂2
yS∗ (x,x) = −∂2

xyS∗ (x,x) = −∂2
yxS∗ (x,x) .

Proof. Since S∗(x,x) = x and S∗ is symmetric in x and y, we find from differentiating ∂xS∗ = ∂yS∗ =
1
2 . From the last equality, we find ∂xS∗(x,x)−∂yS∗(x,x) = 0 as well as ∂xS∗(x,x)+∂yS∗(x,x) = 1
and differentiation yields

∂2
xS∗ (x,x) − ∂2

yS∗ (x,x) − ∂2
xyS∗ (x,x) + ∂2

yxS∗ (x,x) = 0 , (A.5)

∂2
xS∗ (x,x) + ∂2

yS∗ (x,x) + ∂2
xyS∗ (x,x) + ∂2

yxS∗ (x,x) = 0 . (A.6)

Since −∂2
xyS∗ (x,x) + ∂2

yxS∗ (x,x) = 0, equation (A.5) yields ∂2
xS∗ (x,x) = ∂2

yS∗ (x,x). Inserting
the last two relations into (A.6) yields ∂2

xyS∗ (x,x) = ∂2
yxS∗ (x,x) = −∂2

xS∗ (x,x).

Lemma A.4. It holds (3.5)∂2
xSα,β (π,π) = 1

12π (α + β − 3).

Proof. We know from Lemma A.3 that ∂xSα,β (x,x) = 1
2 and ∂2

xSα,β (x,x) = −∂y∂xSα,β (x,x).
Hence we find

∂xSα,β (x + h,x − h) −
1

2
=
⎛
⎝

h

−h
⎞
⎠
⎛
⎝

∂2
xSα,β (x,x)

∂y∂xSα,β (x,x)
⎞
⎠
= 2h∂2

xSα,β (x,x) .

We make use of the explicit form

∂xSα,β (x, y) = (β
α
)

1
α−β (xα − yα)

1
α−β−1

(xβ − yβ)
1
α−β−1

α (xβ − yβ)xα − β (xα − yα)xβ
(α − β) x (xβ − yβ)2

for x /= y. We insert x = x + h and y = x − h and make use of the following expansions

((x + h)α − (x − h)α)c = (αhxα−1)c (2c +O (h2))
β ((x + h)α − (x − h)α) (x + h)β = 2αβhxα+β−1 + 2αβ2h2xα+β−2

+ 1

3
αβh3 (α2 − 3α + 3β2 − 3β + 2) +O (h4)

α ((x + h)β − (x − h)β) (x + h)α = 2αβhxα+β−1 + 2α2βh2xα+β−2

+ 1

3
αβh3 (β2 − 3β + 3α2 − 3α + 2) +O (h4)

(x + h) ((x + h)β − (x − h)β)
2
= 4β2h2x2β−1 + 4β2h3x2β−2 +O (h4)

α ((x + h)β − (x − h)β) (x + h)α − β ((x + h)α − (x − h)α) (x + h)β

= 2αβ (α − β)h2xα+β−2 + αβ
3
h3xα+β−3 (2α2 − 2β2) +O (h4)
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to obtain

β (xα − yα)xβ − α (xβ − yβ)xα
(α − β) x (xβ − yβ)2 =

α (xα+β−2 + h1
3x

α+β−3 (α + β) +O (h2))
2β (x2β−1 + hx2β−2 +O (h2))

and

(xα − yα)
1
α−β−1

(xβ − yβ)
1
α−β−1

≈ (α
β
)

1
α−β−1

(x
α−1 (1 +O (h2))
xβ−1 (1 +O (h2)))

1
α−β−1

.

Together with

a + bh
c + dh = a

c
+ bc − ad

c2
h +O (h2)

(1 + ah2

1 + bh2
)
c

= 1 + ch2(a − b) +O (h4)

we find

∂xSα,β (x + h,x − h) = ((1 +O (h2))
(1 +O (h2)))

1
α−β−1 ⎛

⎝
(1 + h1

3x
−1 (α + β) +O (h2))

2 (1 + hx−1 +O (h2))
⎞
⎠

= (1

2
+

2
3 (α + β) − 2

4x
h) +O (h2)

and hence (3.5).

A.4 Approximation of potentials to get the SQRA mean

The aim of this section is to provide a class of potentials which are easy to handle and which generate

the SQRA-mean S−1,1(π0, πh) by πmean = ( 1
h ∫

h

0 π−1)
−1

. Clearly, choosing the constant potential

V (x) ∶= Vc ∶= − logS−1,1(π0, πh) we obtain right mean. Although this works for any means, this has
two drawbacks

1 The potential jumps and hence the gradient is somewhere infinite, which means that at these
points the force on the particles is infinitely high which is not physical.

2 Approximating a general function by piecewise constants, on each interval the accuracy is only
of order h. However, approximating a function by affine interpolation the accuracy is of order h2

on each interval (see below for the calculation).

So we want to get a potential which may be used as a good approximation (i.e. approximating of order
h2), is physical (i.e. continuous) and generates the SQRA-mean. Note, that most considerations below
also work for other Stolarsky means. For simplicity we focus on the SQRA mean S−1,1.
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A.4.1 Approximation order for linear approximation

Let us first realize that a linear interpolation provides an approximation of order h2. Let V ∶ [0, h] → R
be a general C2-potential. We define with V (0) = V0 and V (h) = Vh

Ṽ (x) = V0 +
Vh − V0

h
x.

Then one easily checks that

V (x) = V0 + ∂xV (0)x + 1

2
∂2
xV (0)x2 +O(h3)

and hence,

V (x) − Ṽ (x) = (∂xV (0) − Vh − V0

h
)x + 1

2
∂2
xV (0)x2 +O(h3).

Clearly, we also have

Vh = V0 + ∂xV (0)h + 1

2
∂2
xV (0)h2 +O(h3)

which yields

V (x) − Ṽ (x) = −1

2
∂2
xV (0)hx + 1

2
∂2
xV (0)x2 +O(h3) = 1

2
∂2
xV (0)(x − h)x +O(h3) = O(h2).

A.4.2 Definition of potentials V̂ which generate the SQRA mean

We consider a piecewise linear potential of the form

V̂ (x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Vc−V0

x1
x + V0 , x ∈ [0, x1]

Vc , x ∈ [x1, x2]
Vh−Vc
h−x2

(x − x2) + Vc , x ∈ [x2, h]
.

where x1, x2 ∈ [0, h] are firstly arbitrary and Vc = − logS−1,1(π0, πh) = 1
2(Vh +V0) . The potential is

clearly continuous. Then

1

h ∫
h

0
eV̂ (x)dx = x1

h

eVc − eV0

Vc − V0

+ x2 − x1

h
eVc + h − x2

h

eVh − eVc

Vh − Vc
.

Introducing the ratios α = x1

h and β = h−x2

h (which are in [0,1/2]) , we want to solve 1
h ∫

h

0 eV̂ (x)dx =
e

1
2 (Vh+V0). Indeed, introducing the difference of the potentials V̄ = Vh − V0, we obtain

λ = α
β
= eV̄ /2 − V̄ /2 − 1

e−V̄ /2 + V̄ /2 − 1
≈ 1 + 1

3
V̄ + 1

18
V̄ 2.

Hence, any value α,β satisfying this ratio generates a potential with the SQRA-mean.

A.4.3 Proof that the potential approximates an arbitrary potential of order h2

Since the linear potentials approximates a general potential of order h2 it suffices to approximate the
linear potential Ṽ by V̂ . We show that there are α,β satisfying α

β = λ, such that ∥V̂ − Ṽ ∥C([xi,xi+1]) =
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O(h2). The difference of V̂ and Ṽ is the largest at x = x1 or x = x2. We estimate both differences.
We have

Ṽ (x1) = V0 +
Vh − V0

h
x1 = V0 + αV̄ , Ṽ (x2) = V0 +

Vh − V0

h
x2 = V0 + (1 − β)V̄ .

Hence we have to estimate

∆1 ∶= ∣V0 − Vc + αV̄ ∣, ∆2 ∶= ∣V0 − Vc + (1 − β)V̄ ∣.

In the case of SQRA, one possible choice for α,β is given by α + β = 1. Then ∆1 = ∆2 = ∣V0 − Vc +
αV̄ ∣ = ∣V0 − Vc + λ

1+λ V̄ ∣ = 1
1+λ ∣(1 + λ)(V0 − Vc) + λV̄ ∣. We have V0 − Vc = −V̄ /2, and hence

∆1 = ∆2 =
1

1 + λ
V̄

2
∣λ − 1∣.

One can check that λ ≈ 1 + V̄ /3 and hence, ∆1 +∆2 ≈ V 2

6 ≈ O(h2).
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