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Divergence-preserving reconstructions on polygons and a really
pressure-robust virtual element method for the Stokes problem

Derk Frerichs, Christian Merdon

ABSTRACT. Non divergence-free discretisations for the incompressible Stokes problem may suffer from a
lack of pressure-robustness characterised by large discretisations errors due to irrotational forces in the mo-
mentum balance. This paper argues that also divergence-free virtual element methods (VEM) on polygonal
meshes are not really pressure-robust as long as the right-hand side is not discretised in a careful man-
ner. To be able to evaluate the right-hand side for the testfunctions, some explicit interpolation of the virtual
testfunctions is needed that can be evaluated pointwise everywhere. The standard discretisation via an L2-
bestapproximation does not preserve the divergence and so destroys the orthogonality between divergence-
free testfunctions and possibly eminent gradient forces in the right-hand side. To repair this orthogonality and
restore pressure-robustness another divergence-preserving reconstruction is suggested based on Raviart–
Thomas approximations on local subtriangulations of the polygons. All findings are proven theoretically and
are demonstrated numerically in two dimensions. The construction is also interesting for hybrid high-order
methods on polygonal or polyhedral meshes.

1. INTRODUCTION

Recently, the mathematical community became interested in flexible approximation methods on polygonal
or polyhedral meshes. For the Stokes problem, several approaches are available, see e.g. [14, 28, 15, 13,
10, 12] and the references therein. One very popular and elegant approach is the virtual element method
[6, 7] that preserve the H1-conformity and the divergence constraint of the velocity field on the discrete
level on polygonal meshes. Usually, conforming divergence-free methods are also pressure-robust as any
divergence-free function is orthogonal against (pressure) gradients that appear in the momentum balance
[19], in particular in the right-hand side.

However, the fact that the virtual test functions are only known at the degrees of freedom complicates the
discretisation of the right-hand side. Consequently, in the context of virtual element methods the right-hand
side functional

F pvhq :“

ż

Ω
f ¨ vh dx

in general cannot be evaluated exactly and has to be approximated. To do so, the information on the
ansatz functions allows to compute an L2 bestapproximation πk of a certain degree k. This leads to the
approximative right-hand side

Fhpvhq :“

ż

Ω
f ¨ πkvh dx.

In the a priori error estimate for the velocity error }∇pu ´ uhq}L2 an additional discretisation error pops
up that can be quantified by the dual norm of F ´ F h with respect to the divergence-free VEM subspace
V 0,h, i.e.

}F ´ F h}V ‹
0,h

:“ sup
vhPV 0,hzt0u

F pvhq ´ Fhpvhq

}∇vh}L2

À Ophk`2q|f |Hk`1

Since this consistency error enters the a priori velocity estimate with the inverse of the viscosity 1{ν, the
velocity error might be large in case of large complicated pressures p{ν, e.g. f “ ∇p in the worst case.
A pressure-robust discretisation would be pressure-independent and locking-free for ν Ñ 0 in the sense
of [3, 2], see [19, 25, 24, 17] for more details on pressure-robustness and why it is important. Although
an enhanced version of the VEM achieves a discretisation error in the right-hand side of higher order, the
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method is only asymptotically pressure-robust for hÑ 0, but still can show large errors on coarser meshes
which is demonstrated in the numerical examples below.

This contribution argues that uniform pressure-robustness, meaning on any mesh, can only be attained
by an Hpdiv,Ωq-conforming interpolation Π that preserves the divergence of the virtual test functions.
On triangles, such an interpolation is given by a standard Raviart-Thomas interpolation in the spirit of
[22, 20, 23], that also can be evaluated for the virtual ansatz functions of [6] as studied in the master’s thesis
[16] for order k “ 2 and proven here for arbitrary order k. On polygons, the same idea can be exploited
on a subtriangulation of the polygon and requires to solve small local Dirichlet boundary value problems for
each virtual test function on each polygon. This leads to the alternative right-hand side discretisation

FRTk´1
pvhq :“

ż

Ω
f ¨ IRTk´1

vh dx

“

ż

Ω
Pf ¨ IRTk´1

vh dx for vh P V 0,h

and the corresponding discretisation error can be estimated by

}F ´ FRTk´1
}V ‹

0,h
À }hT pPf ´ πk´2pPfqq}L2 À ν}hkTD

k´1∆u}L2 .

Here, Pf P L2pΩq is the (divergence-free) Helmholtz projector of f , that can be identified as
Pf “ ´ν∆u when testing with divergence-free test functions, see [26] for details. Surprisingly, for the
virtual element method of order k “ 2, also a lowest order Raviart–Thomas interpolation IRT0 seems
enough to preserve the optimal velocity convergence order, i.e. it holds the estimate

}F ´ FRT0}V ‹
0,h
À }h2

T curlpfq}L2

but at the price that the pressure error converges only suboptimally with order 1. The proof employs tech-
niques from [21].

Finally, we want to stress that the design of the reconstruction operator can be transferred also in the setting
of hybrid high order methods on general meshes [28] which can be seen as a generalisation of the design
in [12] on simplicial meshes. This observation together with other conclusions are reported at the end of
the paper. Also, although all results are stated in two dimensions, everything can be extended to three
dimensions in a straightforward way.

The rest of the paper is organised as follows. Section 2 introduces the Stokes model problem and some
preliminaries. Section 3 discusses the classical virtual element discretisation and some improvements
invented by the VEM community that already help to repair the lack of pressure-robustness to a certain
extent. Section 4 observes and proves that a pressure-robust discretisation on shape-regular polygons is
possible with the help of Raviart–Thomas interpolations which can be computed despite the virtuality of
the VEM testfunctions. The resulting pressure-robust a priori estimates are shown in Section 5 as well
as the surprising fact that also a standard Raviart–Thomas interpolation of lower order is enough to keep
the optimal order of convergence for the velocity error. Section 6 shows some numerical examples that
confirm the theoretical results. Finally, Section 7 discusses some generalisations and the relevance of the
reconstruction operator for the full Navier-Stokes problem.

2. PRELIMINARIES

This section recalls the Stokes model problem and the Helmholtz–Hodge projector which is an important
tool to explain pressure-robustness and to derive pressure-robust error estimates.
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Divergence-free reconstruction on polygons 3

2.1. Stokes model problem. Consider some two dimensional Liptschitz domain Ω with boundary BΩ.
The Stokes equations seek some velocity field u P H1

0pΩq and some pressure field p P L2
0pΩq :“ tq P

L2pΩq :
ş

Ω q dx “ 0u such that

´ν∆u`∇p “ f , and divu “ 0 in Ω

for some given right-hand side f P L2pΩq and positive viscosity ν ą 0.

The weak solution is characterised by

apu,vq ` bpp,vq “ F pvq for all v PH1
0pΩq,

bpq,uq “ 0 for all q P L2
0pΩq

where

apu,vq :“ ν

ż

Ω
∇v : ∇udx,

bpq,vq :“ ´

ż

Ω
qdivv dx,

F pvq :“

ż

Ω
f ¨ v dx.

From standard saddle point theroy (see e.g. [9]) it is well known that it exists a unique solution pu, pq P
H1

0pΩq ˆ L
2
0pΩq to the Stokes equations.

2.2. Helmholtz–Hodge projector and pressure-robustness. Recall the L2-orthogonal
Helmholtz–Hodge decomposition (see e.g. [18]) that decomposes any vector field f P L2pΩq uniquely
into

f “ ∇α` Ppfq,(2.1)

where α P H1pΩq{R, and

Ppfq P L2
σpΩq :“ tw P L2pΩq : p∇q,wq “ 0 for all q P H1pΩqu.

The latter one is called the Helmholtz–Hodge projector Ppfq of f and is divergence-free. Also note that
Pp∇qq “ 0 for any q P H1pΩq.

On the continuous level the ∇α part of the right-hand side in the momentum balance of the Stokes equa-
tions goes into the pressure p, whereas the Helmholtz-projector determines the velocity. Pressure-robust
discretisations respect this balance and avoid an influence of α on the velocity [19, 25, 26].

Therefore, a pressure-robust discretisation is characterised by a velocity error that is independent of the
exact pressure.

3. VIRTUAL ELEMENT METHODS FOR THE STOKES PROBLEM

This section introduces some notation and the setup of the virtual element method for the Stokes problem as
given in [5]. The last two subsections comment on known a priori estimates and an enhanced version of [6]
that improves the disretisation error of the right-hand side without healing the lack of pressure-robustness
completely.
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3.1. Mesh notation and assumptions. Throughout the paper, T denotes a decomposition of the domain
Ω Ă R2 into non-overlapping simple polygons K with

hK :“ diampKq and h :“ sup
KPTh

hK .

Moreover, E denotes the set of faces of the decomposition T and EpKq denotes the set of faces of a
polygon K P T .

For simplicity, T is supposed to fulfill the following standard shape regularity properties, see e.g. [4, 5]:
There exist two positive constants γ1, γ2 P R, such that each K P T satisfies the assumptions

(A1) K is star-shaped with respect to a ball of radius larger or equal to γ1 hK ,
(A2) the distance between any two vertices of K is larger or equal to γ2 hK .

As usual this shape regularity properties can be weakend a little, see [4, 5].

References to convergence rates in this paper always are meant with respect to a series of decompositions
with uniformly bounded γ1, γ2. Constants hidden in À may depend on these bounds but not on h.

3.2. Virtual element method. The virtual element method (VEM) for solving the Stokes problem given in
[5] shall serve as a starting point for the new pressure-robust version.

For a fixed integer k P N, on each element K P T the local virtual element spaces are defined by

V K
h :“

!

vh PH
1pKq : vh|BK P C

0pBKq, vh|E P P kpKq for all E P EpKq,

´ ν∆vh `∇s P Gk´2pT q
K for some s P L2pKq, div vh P Pk´1pKq

)

,

QKh :“ Pk´1,

where PkpKq and P kpKq denote the scalar-valued and vector-valued polynomials of degree at most k
on K , respectively, and Gk´2pKq

K Ă P k´2pKq is the L2-orthogonal complement to ∇Pk´1pKq. This
means that every vector valued polyonomial qk´2 of degree at most k ´ 2 can be decomposed into a
gradient and an orthogonal part, i.e.

qk´2 “ ∇rk´1 ` s
K
k´2,(3.1)

where rk´1 P Pk´1 and sKk´2 P GKk´2.

For a given function vh P V
K
h the following degrees of freedom are chosen:

� DV1: the values of vh at the vertices of the polygon K ,
� DV2: the values of vh at k ´ 1 disctinct internal points of every edge E P EpKq,
� DV3: the moments

ż

K
vh ¨ g

K
k´2 dx for all gKk´2 P GKk´2,

� DV4: the moments
ż

K
div vh qk´1 dx for all qk´1 P Pk´1{R.

In addition to that, the local pressure qh P QKh is defined by the degrees of freedom

� DQ: the moments
ż

K
qh rk´1 dx for all rk´1 P Pk´1pKq.
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Divergence-free reconstruction on polygons 5

Lemma 3.1. The degrees of freedom DV and DQ are unisolvent for the virtual space V K
h andQKh , respec-

tively.

Proof. See Proposition 3.1 in [5]. �

The global virtual element spaces are defined as

V h :“
!

vh PH
1
0pΩq : vh|K P V

K
h for all K P T

)

Qh :“
!

qh P L
2pΩq : qh|K P Q

K
h for all K P T

)

,

with global degrees of freedom as the collection of the local ones, with appropriate continuity of facial
degrees of freedom DV1 and DV2 across polygonal boundaries.

Next, discrete bilinearforms are chosen. For this purpose, on each K P T the energy projection Π∇,K
k :

V K
h Ñ P kpKq is needed, defined as solution of

aKpqh,vh ´Π∇,K
h vhq “ 0 for all qh P P kpKq

π0pvh ´Π∇,K
h vhq “ 0,

whereπk denotes the piecewise bestapproximation into the polyonomialsP k, and aKpuh,vhq :“ ν
ş

K ∇uh :

∇vh dx for all uh,vh P V
K
h .

As shown in [5] the projection Π∇,K
k vh of any virtual function vh P V

K
h can be computed using only the

degrees of freedom and it holds the Poincaré inequality

}vh ´Π∇,K
h vh}L2pKq À hK}∇vh}L2pKq.(3.2)

The discrete bilinear forms aPh : V K
h ˆ V

K
h Ñ R and bPh : QKh ˆ V

K
h Ñ R are defined by

aKh puh,vhq :“ aK
´

Π∇,K
k uh,Π

∇,K
k vh

¯

` νSK
´

pI ´Π∇,K
k quh, pI ´Π∇,K

k qvh

¯

,

bKh pqh,vhq :“ bKpqh,vhq :“

ż

K
qhdivvh dx

for all uh,vh P V
K
h , qh P Q

K
h , where SK : V K

h ˆ V
K
h Ñ R is some stability bilinear form. Possible

choices for the stability bilinear form are given for instance in [8]. Since the choice of the stability bilinear
form does not matter for our purpose, we simply use the vector product of the evaluations of the degrees of
freedoms

SK puh,vhq “ DVpuhq ¨ DVpvhq.

The global bilinearforms ahp¨, ¨q and bhp¨, ¨q are the sums over the local contributions. The ’classical’
discretisation of the VEM (see e.g. [5]) right-hand side reads

F hpvhq :“

ż

Ω
πk´2f ¨ vh “

ż

Ω
f ¨ πk´2vh

where πk´2 is the piecewise L2-bestapproximtion onto the vector-valued polynomials of degree k ´ 2.
Later, alternative (pressure-robust) discretisations are introduced. However, we first turn our focus on the
possible a priori error estimates one obtains with this classical choice.

It can be easily checked that all the bilinear forms and the projections can be evaluated only with the degrees
of freedom, see e.g. [11] for details. Therefore, the discrete problem reads as follows: Find puh, phq P
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V h ˆQh such that

ahpuh,vhq ` bhpph,vhq “ F pvhq for all vh P V h

bhpqh,uhq “ 0 for all qh P Qh.

The discrete problem has a unique (but virtual) solution which is pointwise divergence free [5].

3.3. A priori error estimates. This section recalls a priori error estimates for the velocity and pressure of
the VEM. To focus on the discretisation error of the right-hand side consider the following dual norms

}F ´ F h}V ‹
0,h

:“ sup
vhPV 0,hzt0u

F pvhq ´ Fhpvhq

}∇vh}L2

,

}F ´ F h}V ‹
h

:“ sup
vhPV hzt0u

F pvhq ´ Fhpvhq

}∇vh}L2

.

Here V 0,h :“ tvh P V h : divpvhq “ 0u denotes the subspace of divergence-free virtual functions. The
first dual norm refers to testing only with divergence-free velocity test functions and the second dual norm
to testing with arbitrary ones that appear in a priori pressure estimates.

Theorem 3.2 (A priori estimates). Under sufficient regularity assumptions on u and p, there holds

}∇pu´ uhq}L2 À inf
vhPV h

}∇pu´ vhq}L2 ` inf
vhPP kpT q

}∇hpu´ vhq}L2 `
1

ν
}F ´ F h}V ‹

0,h

}p´ ph}L2 À inf
qhPQh

}p´ qh}L2 ` ν inf
vhPV h

}∇pu´ vhq}L2 ` ν inf
vhPP kpT q

}∇hpu´ vhq}L2

` }F ´ F h}V ‹
h

where ∇h is the piecewise gradient with respect to T . Since the bestapproximations converge optimally
([5, 4]), the VEM has the optimal velocity and pressure convergence order k whenever the consistency
errors of the right-hand side discretisation is of the right order.

Proof. See [5, 4] and adapt to dual norms. �

Lemma 3.3 (Right-hand side discretisation consistency error). The consistency errors of the classical right-
hand side discretisation are bounded by

}F ´ F h}V ‹
0,h
ď }F ´ F h}V ‹

h
À }hT pf ´ πk´2fq}L2 À }hkT Dk´1f}L2

where the last estimate requires f PHk´1pΩq and Dk´1 collects all derivatives of order k ´ 1.

Proof. This follows directly from the approximation properties of the L2 bestapproximation πk´2, see e.g.
[4] for details. �

Remark 3.4 (Classical VEM is not pressure-robust). Although the virtual element method is divergence-
free, it is in general not pressure-robust with the classical right-hand side discretisation. This drawback can
be seen e.g. when f “ ∇q for some q R Pk´1 and small viscosity parameters ν. Then, the method shows
a locking-phenomenon for ν Ñ 0 as it is also observed for classical finite element methods that are not
divergence-free, see e.g. [2, 19] for a comprehensive introduction. The reason for that is that the operator
πk´2 alters the divergence and therefore destroys the orthogonality between divergence-free functions and
gradient forces. The numerical examples below demonstrate this lack of pressure-robustness.
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3.4. Extended virtual ansatz spaces. One way of rendering the method more robust against gradient
forces is to enlarge the order of the projection πs used in the right-hand side discretisation. With the so
called enhanced spaces introduced in [6] it is possible to employ πkvh instead of πk´2vh.

For each K P T the local enlarged virtual element space is given by

UK
h :“

!

vh PH
1pKq : vh|BK P C

0pBKq, vh|E P P kpKq for all E P EpKq,

´ν∆vh `∇s P GkpKqK for some s P L2pKq, div vh P Pk´1pKq
)

,

where the order of the space GKs was increased from k ´ 2 to k.

This enlarged space can now be restricted to the enhanced space

WK
h :“

!

vh P U
K
h :

´

vh ´Π∇,K
k vh, g

K
k

¯

L2pKq
“ 0 for all gKk P GKk {GKk´2

)

.

This space has the interesting properties that it has the same dimension as the classical virtual element
space, but additionally allows to compute the L2-projection onto polynomials of degree k, see e.g. [6, 1] for
more details.

The discretisation of the right-hand side for the enhanced space then reads

F e
hpvhq :“

ż

Ω
πkf ¨ vh “

ż

Ω
f ¨ πkvh.

This discretisation leads to a pk ` 2q-order consistency error, i.e.

}F ´ F e
h}V ‹

0,h
ď }F ´ F e

h}V ‹
h
À }hT pf ´ πkfq}L2 À }hk`2

T Dk`1f}L2 ,

and hence the velocity error can be bounded by

}∇pu´ uhq}L2 À inf
vhPV h

}∇pu´ vhq}L2 ` inf
vhPP kpT q

}∇hpu´ vhq}L2 `
1

ν
}hk`2

T Dk`1f}L2 .

Remark 3.5 (Only asymptotic pressure-robustness). As for the classical VEM the enhanced VEM is not
pressure-robust. Consider again the situation f “ ∇q for some q R Pk`1 and small viscosity parameters
ν. Then, on a fixed mesh, the method still shows the same locking-behaviour for ν Ñ 0. However,
for h Ñ 0, the discretisation error converges with a faster rate and renders the enhanced VEM at least
asymptotically pressure-robust.

Uniform pressure-robustness, in particular on coarse grids, requires the replacement of πk by some oper-
ator that preserves the divergence of vh. This is the goal of the next section.

4. DIVERGENCE-PRESERVING RECONSTRUCTION OPERATORS ON POLYGONS

This section describes the design of a reconstruction operator that isHpdivq-conforming and preserves the
divergence of the virtual functions for all polygons K P T . The main idea is to employ a subtriangulation of
each polygon and to compute a suitable Raviart–Thomas interpolation on that subtriangulation T pKq.

4.1. Raviart–Thomas finite element space and interpolation. The Raviart–Thomas finite element space
of order m on a subtriangulation T pKq is defined by

RTmpT pKqq :“
!

wh P Pm`1pT pKqq XHpdiv,Kq : @T P T pKq Da P PmpT q, b P PmpT q,

wh|T pxq “ apxq ` bpxqx
)

.
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FIGURE 4.1. A polygon (left) and a possible subtriangulation (right) and its facial (arrows)
and interior (squares) degrees of freedom for the Raviart–Thomas interpolation of order
1. Light-gray arrows relate to the degrees of freedom of the lowest-order Raviart–Thomas
space.

The standard Raviart-Thomas interpolation ΠRTmvh P RTmpT pKqq of some (virtual) function vh P V h

is defined by
ż

T
pΠRTmvh ´ vhq ¨ qh ds “ 0 for all qh P Pm´1pT pP qq,

ż

E
pΠRTmvh ´ vhq ¨ nqh ds “ 0 for all E P EpT pP qq and qh P PmpEq.

Here EpT pP qq denotes the set of edges in the subtriangulation T pP q. The following lemma collects the
well-known properties of the Raviart–Thomas standard interpolation.

Lemma 4.1 (Properties of the Raviart–Thomas standard interpolation). For any V h P V h, there holds

(iq divpΠRTmpvhqq “ πmpdivpvhqq

(iiq }vh ´ΠRTmvh}L2pKq À }hT pKq∇vh}L2pKq ď hK}∇vh}L2pKq,

(iiiq if m ą 0 :

ż

K
pvh ´ΠRTmvhq ¨ qh dx “ 0 for all qh P Pm´1pT pKqq.

Proof. See textbooks like e.g. [9]. �

Note, that the Raviart–Thomas standard interpolation of some virtual function cannot be calculated in gen-
eral (see Remark 4.3 for an exception on triangles). Hence, one has to devise a strategy based on the known
degrees of freedom. The goal of the design below is to ensure crucial properties of the Raviart–Thomas
standard interpolation.

4.2. Design of reconstruction operator by local minimisation problems. On a fixed subtriangulation
T pKq of a polygon K (such that no additional nodes on BK are introduced), the local reconstruction of
some local basis function vh is defined by

IRTmpvhq :“ argmin
whPWhpK,vh,mq

}Π∇,K
k pvhq ´wh}L2pKq(4.1)

DOI 10.20347/WIAS.PREPRINT.2683 Berlin 2020



Divergence-free reconstruction on polygons 9

where

WhpK,vh,mq :“
!

wh P RTmpT pKqq : @qh P PmpT pKqq,
ż

K
divpvh ´whqqh dx “ 0

and @qKh P GKm´1,

ż

K
pvh ´whq ¨ q

K
h dx “ 0

and @E P EpKq, qh P PmpEq,
ż

E
pvh ´whq ¨ n qh ds “ 0

)

.

The following lemma states that the setWhpK,vh,mq is non-empty, and the minimisation problem defining
IRTmpvhq therefore is well-defined. Remark 4.4 however shows that we have to choose m ď k ´ 1 and
the a priori error estimates in Section 5 show that only m P tk ´ 2, k ´ 1u are reasonable choices.

Lemma 4.2 (WhpK,vh,mq is non-empty). The piecewise standard Raviart-Thomas interpolation ΠRTmvh
is included in WhpK,vh,mq. Moreover, if K is a triangle, it holds WhpK,vh,mq “ tΠRTmvhu.

Proof. It suffices to show that the moments of the divergence are preserved by the standard interpolation.
An integration by parts indeed shows, for any qh P PmpT pKq,
ż

K
divpvh ´ΠRTmvhqqh dx “ ´

ż

K
pvh ´ΠRTmvhq ¨∇qh dx`

ż

BK
pΠRTmvh ´ vhq ¨ nqh ds

“ 0

due to ∇qh P Pm´1pT pP qq and the properties of the standard interpolation. Form “ 0, the first property
of the standard interpolation is not available, but also the integral over K on the right-hand side vanishes.
This shows ΠRTmvh PWhpK,vh,mq.

On a triangle (with no interior edges), a similar backward calculation employing the splitting (3.1) shows
that every wh P WhpK,vh,mq satisfies the properties of ΠRTmvh, and hence WhpK,vh,mq “
tΠRTmvhu. �

Remark 4.3. In general the standard interpolation ΠRTmvh of Lemma 4.2 is not computable due to the
virtuality of vh. However, if K is a triangle the standard interpolation is directly computable up to degree
m ď k ´ 1, due to the explanations in the next remark.

Remark 4.4 (Constraints are computable for m ď k´ 1). Observe, that the computation of IRTmpvhq up
to degree m ď k ´ 1 for any virtual function vh P V h is possible and only involves the evaluation of the
degrees of freedom of vh. Indeed, the divergence is a polynomial of degree at most k ´ 1 and is explicitly
available using only DV1, DV2 and DV4 (see [11]), and hence

ż

K
divpvh ´whqqh dx “ 0 for all qh P PmpT pKqq

is an integral over polynomials that can be computed.

The integrals related to the space GKm´1 are also directly available from DV3 up to degree m ď k´ 1 (this
condition in fact prohibits to choose m larger than k ´ 1).

Finally, since vh along the boundary is a polynomial of degree at most k also the boundary integral
ż

E
pwh ¨ nqqh ds “

ż

E
pvh ¨ nqqh ds for all E P EpBKq and qh P PmpEq

is computable. Please confer to [16] for more details and instructions for the implementation in the case
k “ 2.
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Remark 4.5. It is possible to fix all degrees of freedom related to the lowest order Raviart–Thomas functions
(gray arrows in Figure 4.1 for m “ 1) separately via the preservation of the integral mean of the polynomial
divergence of the virtual function V h. This slightly reduces the costs of the local minimisation problems.
However, please note that in any case the costs of the local minimisation problems are comparable to the
costs of the computation of Π∇,K

k and hence do not cause severe computational overhead.

Remark 4.6. It is also possible to replace the finite element spaces RTm by the slightly larger Brezzi–
Douglas–Marini spaces BDMm`1, which may offer a slightly better divergence-free postprocessing of the
solution uh.

The following Lemma summarises the properties that can be expected from this strategy.

Theorem 4.7 (Properties of the reconstruction). For any vh P V hpKq, there holds

(iq divpIRTmpvhqq “ πmpdivpvhqq

(iiq }vh ´ IRTmvh}L2pKq À hK}∇vh}L2pKq,

(iiiq if m ą 0 :

ż

K
pvh ´ IRTmvhq ¨ qh dx “ 0 for all qh P Pm´1pKq.

Proof. Property (i) directly follows from the definition of WhpK,vh,mq.

For the proof of (ii), consider the piecewise RTm standard interpolation ΠRTmvh of vh on the subtriangu-
lation and once again note that ΠRTmvh PW hpK,vh,mq. Since

pIRTmvh ´Π∇,K
k pvhq,whq “ 0 for all wh PW hpK,vh,mq

by (4.1), we obtain forwh “ IRTmvh andwh “ ΠRTmvh

}IRTmvh ´ΠRTmvh}
2
L2pKq “ pIRTmvh ´ΠRTmvh, IRTmvh ´ΠRTmvhq

“ pΠ∇,K
k pvhq ´ΠRTmvh, IRTmvh ´ΠRTmvhq

ď }Π∇,K
k pvhq ´ΠRTmvh}L2pKq}IRTmvh ´ΠRTmvh}L2pKq.

This, a triangle inequality and the first-order approximation properties of Π∇
k pvhq (see (3.2)) and ΠRTmvh

(piecewise for each subtriangle, see Lemma 4.1.(ii)) show

}IRTmvh ´ΠRTmvh}L2pKq ď }Π
∇,K
k pvhq ´ΠRTmvh}L2pKq À hK}∇vh}L2pKq.

Another triangle inequality gives the desired result (ii).

For the proof of (iii), consider any qh P Pm´1pKq and its decomposition (3.1) into some rh P PmpKq
and sKh P GKm´1 such that

qh “ ∇rh ` sKh .
Then, an integration by parts shows

ż

K
pvh ´ IRTmvhqqh dx “ ´

ż

K
divpvh ´ IRTmvhqrh dx`

ż

K
pvh ´ IRTmvhqs

K
h dx.

Both integrals vanish due to IRTmvh PWhpK,vh,mq. �

5. PRESSURE-ROBUST A PRIORI ERROR ESTIMATES

This section shows pressure-robust estimates for the discretisation error of the right-hand side. Together
with Theorem 3.2 convergence rates for the modified method can be derived.
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5.1. Estimates for IRTk´1
. Consider the modified right-hand side discretisation

FRTk´1
pvhq :“

ż

Ω
f ¨ IRTk´1

pvhqdx.

Lemma 5.1 (Modified right-hand side discretisation consistency error). The consistency error of the modi-
fied right-hand side discretisation is bounded by

}F ´ FRTk´1
}V ‹

0,h
:“ sup

V hPV hzt0u

F pvhq ´ FRTk´1
pvhq

}∇vh}L2

À }hT pPf ´ πk´2pPfqq}L2 ,

}F ´ FRTk´1
}V ‹

h
:“ sup

V hPV hzt0u

F pvhq ´ FRTk´1
pvhq

}∇vh}L2

À }hT pf ´ πk´2fq}L2

where π´1 ” 0. If ∆u P Hk´1, then it holds

}F ´ FRTk´1
}V ‹

0,h
À ν}hkTD

k´1∆u}L2 .

Proof. Indeed, for any (divergence-free) vh P V 0,h, it holds
ż

Ω
pf ´ Pfq ¨ pvh ´ IRTk´1

vhq dx “ 0.

This and the properties (i)-(iii) of Lemma 4.7 yield

F pvhq ´ FRTk´1
pvhq “

ż

Ω
Pf ¨ pvh ´ IRTk´1

vhqdx

“

ż

Ω
pPf ´ πk´2pPfqq ¨ pvh ´ IRTk´1

vhqdx

À
ÿ

KPT
}Pf ´ πk´2pPfq}L2pKq}vh ´ IRTk´1

vh}L2pKq

À
ÿ

KPT
hP }Pf ´ πk´2pPfq}L2pKq}∇vh}L2pP q

ď }hT pPf ´ πk´2pPfq}L2}∇vh}L2 .

Since also pPf`ν∆u,vh´IRTk´1
vhqL2 “ 0, the same calculation can be performed with Pf replaced

by ´ν∆u and leads to

F pvhq ´ FRTk´1
pvhq À ν}hT p∆u´ πk´2p∆uqq}L2}∇vh}L2 À ν}hkTD

k´1∆u}L2}∇vh}L2 .

For (non divergence-free) vh P V h, one has to do the same calculation with f instead of Pf . �

Hence, the reconstruction operator with m “ k ´ 1 results in a discretisation error of optimal order that is
pressure-robust.

5.2. Alternative estimate for m “ 0. Consider the lowest-order interpolation

IRT0pvhq :“ argmin
whPWhpK,vh,0q

}Π∇,K
k pvhq ´wh}L2pKq.

Theorem 5.2. Given some right-hand side f with f P Hpcurl,Ωq, it holds

}F ´ FRT0}V ‹
0,h
À }h2

T curlpfq}L2 .
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Proof. The proof is based on the same idea as the proof in [21, Theorem 7 (for I “ 1 and Π “ IRT0 )] .
Indeed, due to vh P V 0,h and IRT0vh being divergence-free, it holds vh ´ IRT0vh “ curlψ for some
ψ P H1

0 pΩq XH
2pΩq, and hence

F pvhq ´ FRT0pvhq “

ż

Ω
f ¨ pvh ´ IRT0vhq dx

“

ż

Ω
f ¨ curlpψ ´ ILψq dx

“ ´

ż

Ω
curlpfq ¨ pψ ´ ILψq dx

where ILψ is the nodal interpolation due to the commuting properties of the de Rham complex (on sub-
triangles) curlpILψq “ IRT0pcurlψq “ 0. Standard elementwise interpolation estimates then result
in

F pvhq ´ FRT0pvhq À }h
2
T curlpfq}L2}h´2

T pψ ´ ILψq}L2

À }h2
T curlpfq}L2}h´1

T ∇ψ}L2

“ }h2
T curlpfq}L2}h´1

T curlψ}L2

“ }h2
T curlpfq}L2}h´1

T pvh ´ IRT0vhq}L2

À }h2
T curlpfq}L2}∇vh}L2 .

This concludes the proof. �

Remark 5.3. In the case k “ 2 this results in a pressure-robust velocity discretisation that converges
with the optimal order. The pressure error however may convergence suboptimally, since this relates to
testing with non-divergence-free functions. In other words, no improved estimate for the full dual norm
}F pvhq ´ FRT0pvhq}V h

is possible, which is also confirmed by the numerical experiments below.

6. NUMERICAL EXPERIMENTS

This Section studies three numerical examples to confirm that the new approach has optimal convergence
rates and is really pressure-robust, opposite to the classical and the enhanced VEM. To conduct the exper-
iments the lowest-order VEM with k “ 2 is implemented allowing for a RT1 and RT0 reconstruction as
described in Sections 4 and 5 to keep the optimal order of convergence with respect to the velocity.

Since the discrete solution uh is still virtual, the errors between the exact solution u and the projection
Π∇

2 uh are computed, i.e.

}∇pu´Π∇
2 uhq}L2 .

Moreover, the error will be computed on a series of meshes with different number of degrees of freedom
ndof to gain convergence rates with respect to ndof´1{2.

In these examples the numerical domain Ω “ r0, 1s2 is partitioned into a series of meshes T0, T1, T2, . . .
with the following structure: The unit square is divided into four parts with equal size. The first part consists
of (deterministically) distorted quadrilaterals whereas the second part is made of smaller regular squares.
Triangles and non-convex pentagons are used to build the third part. Last but not least, the fourth part
is constructed using L-shaped polygons including hanging nodes (after the first refinement) and regular
squares, see figure 6.1 for the first three meshes.

DOI 10.20347/WIAS.PREPRINT.2683 Berlin 2020



Divergence-free reconstruction on polygons 13

0 0.5 1

0

0.5

1

x

y

0 0.5 1

0

0.5

1

x

y

0 0.5 1

0

0.5

1

x

y

FIGURE 6.1. First three refinement levels T0, T1 and T2 of the meshes used for the
computations.
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FIGURE 6.2. Dependence of the velocity error on the viscosity computed on the second
refinement T2 of T0 for different right-hand side discretisations.

6.1. Hydrostatic problem with different viscosities. The first experiment is performed only on the third
mesh T2 of Figure 6.1.

The continuous right-hand side is chosen, such that the exact solution reads

u “ 0 P V h, and ppx, yq “
7
ÿ

j“0

xjy7´j ´
761

1260
R Qh.

To show the lack of pressure-robustness of the classical and enhanced VEM the viscosity is varied between
ν “ 100, 10´1, . . . , 10´6.

All four different right-hand side discretisations are tested: The classical virtual element method (CVEM),
the enhanced virtual element method (EVEM), the new pressure-robust version with RT1 reconstruction
(PRVEM1), and the pressure-robust version using the RT0 reconstruction (PRVEM0).

Figure 6.2 shows the error of the four methods versus the viscosity and visualises the lack of pressure
robustness of the classical and the enhanced VEM. The error of the pressure-robust versions are almost
zero. The reason that they are not closer to machine precision is that the solver only ensures that the
product of the velocity error times ν is close to machine precision.
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FIGURE 6.3. Convergence history of the velocity error for the second experiment for ν “
1 (left) and ν “ 10´4 (right).

TABLE 6.1. Total number of degrees of freedom, pressure error }p´ ph}L2 and conver-
gence rates for the experiment of Subsection 6.2 for viscosity ν “ 1.

CVEM EVEM PRVEM1 PRVEM0

ndof error rate error rate error rate error rate
177 1.939 ¨ 10´1 - 1.367 ¨ 10´1 - 1.367 ¨ 10´1 - 2.099 ¨ 10´1 -
763 8.535 ¨ 10´2 1.12 4.656 ¨ 10´2 1.47 4.655 ¨ 10´2 1.47 1.072 ¨ 10´1 0.92

3171 2.407 ¨ 10´2 1.78 1.227 ¨ 10´2 1.87 1.227 ¨ 10´2 1.87 5.196 ¨ 10´2 1.02
12931 6.257 ¨ 10´3 1.92 3.126 ¨ 10´3 1.95 3.126 ¨ 10´3 1.95 2.576 ¨ 10´2 1.00
52227 1.579 ¨ 10´3 1.97 7.849 ¨ 10´4 1.98 7.848 ¨ 10´4 1.98 1.289 ¨ 10´2 0.99

209923 3.959 ¨ 10´4 1.99 1.965 ¨ 10´4 1.99 1.964 ¨ 10´4 1.99 6.447 ¨ 10´3 1.00
841731 9.907 ¨ 10´5 2.00 4.913 ¨ 10´5 2.00 4.913 ¨ 10´5 2.00 3.225 ¨ 10´3 1.00

6.2. Vorticity problem with constant viscosity. The second experiment is conducted on the series of
meshes T0, T1, T2, . . . of Figure 6.1 to obtain convergence rates.

The right-hand side is set in such a way that the exact solution is given by

upx, yq “

ˆ

´B{By
B{Bx

˙

`

x2px´ 1q2y2py ´ 1q2
˘

R V h, and ppx, yq “ sin p2πxq cos p2πyq R Qh.

For two viscosities ν “ 1, ν “ 0.0001 the discrete solutions are computed on the first seven levels.
The convergence rates for the different viscosities with respect to the total number of degrees of freedom
ndof´1{2 « h are shown in Figure 6.3.

All methods converge with their expected rates. In particular, the new pressure-robust versions provide
significant better results for small viscosities compared to the classical VEM and the enhanced version on
coarse grids. As stated earlier the enhanced VEM converges with a convergence rate of 4 as long as the
right-hand side discretisation error is dominant, and hence is asymptotically pressure-robust.
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FIGURE 6.4. Convergence history of the velocity error for the third experiment with a linear
velocity and quadratic pressure for ν “ 1 (left) and ν “ 10´4 (right).

As mentioned in Subsection 5.2 the pressure computed by the pressure-robust VEM with RT0-reconstruction
converges only with order 1 in contrast to all the other discretisations which lead to an expected conver-
gence rate of 2. The pressure error and the rate for the different versions computed for ν “ 1 can be found
in Table 6.1.

6.3. Potential flows with different polynomial degrees. As before, the third experiment is performed on
the series of meshes T0, T1, T2, . . . of Figure 6.1.

The exact velocity is prescribed as a polynomial potential flow u “ ∇r, i.e. the gradient of a smooth
harmonic polynomial r P PspΩq of degree s. Then, it holds ∆u “ ∇p∆rq “ 0 and the pressure
is completely determined by the right-hand side. To demonstrate the usefulness of the pressure-robust
methods in the Navier–Stokes setting, the right-hand side is chosen to be the convection term

f “ pu ¨∇qu “ ∇
ˆ

1

2
|u|2

˙

“ ∇p

which is the gradient of a polynomial p :“ 1
2 |u|

2`C of degree 2ps´ 1q, see e.g. [25]. The constant C is
fixed by the constraint

ş

Ω p dx “ 0.

As in the previous experiment, convergence rates of all methods are computed for the viscosities ν “ 1
and ν “ 0.0001.

6.3.1. Polynomial degree s “ 2. The choice r “ x2 ´ y2 leads to the linear velocity
upx, yq :“ p2x,´2yqT and the corresponding pressure and right-hand side

ppx, yq :“ 2x2 ` 2y2 ´
4

3
, and fpx, yq “ pu ¨∇qu “ p4x, 4yqT .

The convergence rates for all methods for the different viscosities can be found in Figure 6.4. The classical
method converges with its theoretically predicted order. In this case, not only the pressure-robust versions
but also the enhanced VEM can solve the problem exact up to machine precision, since the right-hand can
be exactly approximated.
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FIGURE 6.5. Convergence history of the velocity error for the third experiment with a
quadratic velocity and quartic pressure for ν “ 1 (left) and ν “ 10´4 (right).

6.3.2. Polynomial degree s “ 3. This time, consider r “ x3 ´ 3y2x and the corresponding velocity
u :“ p3x2 ´ 3y2,´6xyqT with exact pressure and right-hand side

ppx, yq :“
9

2
px4 ` y4q ` 9x2y2 ´

14

5
, and fpx, yq “ pu ¨∇qu “ 18px3 ` xy2, y3 ` x2yqT .

In Figure 6.5 the convergence rates for all methods for the different viscosities are presented showing opti-
mal convergence rates for the classical and the enhanced VEM as well as the great asset of the pressure-
robust version.

On the other hand, this problem indicates also an advantage of pressure-robust methods for the Navier-
Stokes setting which is shortly addressed in the outlook.

7. OUTLOOK

This Section discusses several straight-forward extensions of the presented idea.

7.1. Divergence-free postprocessing. The quantity Π∇
k uh is in general not divergence-free, but often

used as a postprocessing to have some quantity that can be evaluated everywhere. The reconstruction
operator IRTk´1

uh can serve as an alternative divergence-free postprocessing of the discrete solution uh.
This might be of importance in coupled multiphysics problems to preserve structural properties like mass
conservation [19].

7.2. Extension to Navier–Stokes. In the spirit of [19, 25, 2], the reconstruction operator can be also
applied in the virtual element discretisation of the Navier–Stokes equations [6]. Then, it appears not only in
the right-hand side but also in the material derivative, i.e. time derivative or the nonlinear convection term.
A modified computable discrete convection form might read

c`h pwh,uh,vhq :“

ż

Ω
pIRTk´1

pwhq ¨ πk´1∇uhqIRT1pvhq dx
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and a modified discretisation of the time derivative is given by

d`h puh,vhq :“

ż

Ω

d

dt
IRTk´1

puhq ¨ IRTk´1
pvhqdx

where d
dt can be replaced by any discrete time stepping scheme.

In fact, as demonstrated in [17] for high Reynolds number flows, there are situations where the material
derivative ut ` u ¨∇u is (close to) a gradient (in particular for f “ 0 and ν Ñ 0) of a possibly non-trivial
pressure. Then, a discretisation of the terms in the material derivative based on the divergence-preserving
reconstruction operator will be a better choice.

7.3. Extension to other discretisation schemes on polygonal or polyhedral meshes. In principle, a
similar design of a reconstruction operator is possible for any discretisation on polygonal or polyhedral
meshes as long as there is a discretely divergence-free constraint that is satisfied exactly. One example
on simplicial meshes can be found in [12] for a discontinuous skeletal method, where also Raviart–Thomas
elements are used for a divergence-preserving reconstruction. In [27] a similar divergence-preserving post-
processing is used in a projection step of a splitting scheme. Those methods are extendable to general
meshes [28] and can then be reconstructed or postprocessed with the subgrid strategy presented here.
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