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1 Introduction 

We introduce a class of endomorphisms which are piecewise smooth and have hyper-
bolic attractors. This class generalizes the class of piecewise smooth diffeomorphisms 
with hyperbolic attractors studied by Pesin [9], Sataev [13], and others [l]. Exam-
ples in our class are the fat Belykh map, projections of Solenoids onto cross-sections, 
and crossed horseshoes. 
We first develop the stable manifold theory, the existence of SBR measures and 
the ergodic theory of our class of maps. This theory mostly parallels the invertible 
case so we only sketch some of the important arguments. We generally follow the 
outline of (9], details can be found there. Our main results, theorem 5.2 hold in the 
two dimensional case: if the product of the Lyapunov exponents is less than one 
the mapping being invertible µsBR-a.e. on the attractor is equivalent to the Young 
formula holding. If the mapping is not invertible a.e. we can calculate the defect in 
the dimension formula 5.4. If the product of the Lyapunov exponents is greater than 
one then the attractor is two dimensional and the mapping restricted to the attractor 
is not invertible on a set of positive measure. Finally, we also give an easily checkable 
sufficient condition for a map to belong to the general class of maps we consider. This 
condition is easy to check for the systems we were motivated. In particular, in (15) 
this theorem is applied to fat Belykh maps where the entire picture of everywhere 
invertibility, invertibility on the attractor, almost everywhere invertibility on the 
attractor and noninvertibility almost surely is understood. Kaplan and Yorke have 
conjectured that for a broad class of systems the dimension of the attractor equals 
the Lyapunov dimension for most maps from the class. The results of [15) imply that 
for the Belykh family the·Kaplan-Yorke conjecture holds for almost all parameter 
values. 

2 Generalized hyperbolic attractors 

Let (M, d) be a Riemannian manifold, KC Man open, bounded connected subset 
with compact closure and N C K a closed subset. Let K\N = K(l) U ... U K(r) 
where the K(i) are open disjoint sets (r < oo) and f : K\N -+ K. We assume the 
following conditions (Al) and (A2) hold. 

(Al) flK<i) can be continu.ed to a map f : K(i) -+ f (K(i)) which is a C2-diffeomorphism 
i = 1, 2, ... r. We sometimes write fi for flK<i)· 

Remark: Here is the main difference to (9) and [13]. They assume the map f to 
be a C2-diffeomorphism from the open set K\N onto its image f(K\N). In our 
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setting the images f (K(i)) need not be disjoint. Furthermore let 

N+ NuaK 
N- {y EK: 3z EN+, Zn E K\N+ s.t. Zn-+ z, f(zn)-+ y}. 

Thus N+ consists of the singularity set and the boundary of K and N- is the full 
· "preimage" of N+. Since we are interested in the asymptotic behavior of infinite 
orbits we have to exclude those points which are eventually mapped onto the singu-
larities or the boundary: 

(A2) 3Ci > 0, ai 2:: 0, i = 1, 2 such that 
llD2 !xii ~ C1 d(x, N+)-a1 

llD2(fi);1 ll ~ C2 d(x, N-)-a2 

Vx E K\N 
Vx E f(K(i)), i = 1, 2, ... , r. 

Let K+ = {x E K: fnx ~ N+, n = 0, 1, 2, ... } and D = n fn(K+). A= D is 
n;?:O 

called the attractor for f. 
Obviously, D is invariant: f(D) = D. Although no trajectory in K+ hits the 
singularities N+ it may happen that some of them come arbitrarily close to them. 
This makes it difficult to control their behavior in comparison to nearby points. In 
order to get more control we define _the following filtration: 
Ve > 0, l = 1, 2, ... we define 

Dt,z = {z EK+: d(fnz, N+) 2:: z-1e-en, n = 0, 1; 2, · · ·} 

De. z = Dc.z n A 
' ' 

De. z is closed (as a subset of A) and De. = Uz>i De. z is !-invariant. A is called 
re;ular if De. i= r/J Ve > 0 small enough. The main advantage of points in De. 
is that Lyapunov charts exist for all x E De. [5]. The description of Lyapunov 
charts will be given in §3. Next we assume hyperbolic structure for our maps. 
This structure enables us to develop the main tools for constructing "physically" 
motivated measures. 
Denote by C(z', a, P) a cone at point z E K (here a > 0, is a number, P is a 
subspace in TzM) consisting of all v E TzM such that 

L(v, P) def min L(v, w) ~a. 
wEP 

We say that f is hyperbolic if there exist constants C > 0, 0 <A< 1, a function a(z) 
and two fields of subspaces p(s)(z),P(u)(z) C TzM, dimP(s)(z) = q, dimP(u)(z).= 
p- q (p = dimM), z E K\N+ such that the cones C(s)(z) = C(s)(z,a(z),P(s)(z)) 
and C(u)(z) = C(z, a(z), p(u)(z)) satisfy the following conditions: 

(CI) the angle between C(s)(z) and C(u)(z) is greater than a positive constant for 
all z E K\N+, in particular, C(s)(z) n C(u)(z) = O; 
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(C2) DJ (C(u)(z)) C C(u)(j(z)) for any z E K\N+ and Dfi-1 (C(s)(z)) c C(s)(ji- 1(z)) 
for any z E fi(K\N+) for i = 1, 2, ... r. 

(C3) for any n > 0 

(a) llDfnvll 2:: c-i_A-nllv!lfor z E K+,v E C(u)(z); 
(b) llDfnvll ~ C..\nllvllfor z E fn(K+),v E C(s)(z). 

For z E D we set 
E(s)(z) := n Df-nc(s)(fn(z)), 

n~O 

with the understanding that the backwards branch taken is the one following the 
orbit of z. 
Note that condition (C2) means that any preimage of the stable cone is contained 
in the stable cone of that particular preimage. Since endomorphisms do not have a 
uniquely determined past we are not able to define the unstable manifold of a given 
point nor to use the common definition or' the unstable Lyapunov exponent. In 
fact, Przytycki [11] proved by using inverse limit spaces that for particular examples 
the uncountability of unstable manifolds at a given point. Thus the corresponding 
definition for the unstable space 

Eu(z) :== n D fnc(u) (!-n(z)) 
n~O 

depends on the particular choice of the preimage paths of z. Nevertheless the hy-
perbolic structure ensures that each unstable space is contained in the cone cu(z)'. 
For Axiom A systems there are three equivalent definitions of SBR measures. 

(Sl) Lebesgue a.e. point is generic for the SBR measure. 

(S2) The conditional measures of the SBR measure on unstable manifolds are ab-
solutely continuous with respect to the Lebesgue measures on them. 

(S3) The SBR measure is the limit measure for measures that are stationary for 
suitable small stochastic perturbations. 

Measures satisfying (81) are the ones we "see", those satisfying (S2) have inherited 
as much as possible geometric properties from the Lebesgue measure as possible, 
while those satisfying (S3) are the only ones that can be seen in the presence· of 
noise. While it is known for Axiom A attractors all 3 conditions coincide this is 
not known in general. In fact, one can construct counterexamples. However, for 
hyperbolic diffeomorphisms with singularities it was proved by Pesin [9] and Sataev 
[13] that (Sl) and (82) are equivalent. Also there is a variety of literature in which 
there are proofs for special stochastic perturbations leading to a measure satisfying 
(83) having properties (Sl) and (S2). Since it is not obvious how to formulate 
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property (82) in the non-invertible case, we will follow condition (Sl) and will give 
a criterion when it makes sense to formulate condition (82). 
An invariant Borel probability measure µsBR is called a SER measure if for any 
measure v on K which is absolutely continuous with respect to the Riemannian 
volume: 

where;;:= vlWS (suppµSBR) and ws(suppµSBR) = {y E Kld(fny,suppµSBR)--+ O} 
with the understanding that i/ = 0 if v(W8 (supp µsaR)) = 0. 
Let v be Riemannian volume on K. Let {Ki(n)} be a maximal open set such that 
fnlKfn> is continuous and UC Kan open subset. Let 

(f*)"v(U) := vn(U) = L v (1;y., [rKJnl n uJ) := L v ( KJ"l n J;f·> u), 
i i 

Let µsaR be any limit measure of µn. The measure µsBR is clearly supported an A 
and is !-invariant (vn(f-1U) = Vn+i(U)) and a SBR measure. 
However, the measure may be distributed on the singularities N+ or on points with 
uncontrollable trajectories. To avoid this situ~tion we make the following crucial 
assumption ([9], [13], [1]): 

(A3) 3C > 0, q > 0 such that Ve> 0 \:/n > 0, v(f-nU(c, N+)) ::; Ccq. 

Definition 2.1 We say A is a generalized hyperbolic attractor if A is regular and 
satisfies { A3). 

The following proposition underlines the usefulness of the above assumption. It is 
proved in [9] and [13]. To give an insight into the meaning of (A3) we repeat the 
proof which also works in the non-invertible case. 

Proposition 2.2 If A is a generalized hyperbolic attractor then µsBR(De) = 1 for 
all suffici~ntly small c. 

Proof: K\D:z c {x E Kl3 m E z+ such that fm(x) E U(te-em, N+)}. Thus 
' ' 

< ~ C (~e-em)q - C · _!_ l 
' LJ l - zq 1 - e-eq. 
m=O 
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The right-hand side tends to 0 if l tends to infinity. 0 
At this stage we define Lyapunov exponents. While in the forward direction (the 
positive exponent) there are no problems we have to change the definition of the 
smallest negative exponent because of the non-invertibility of f : 

-1 -1 Xs(x) :== lim - ln llDJn(x)ll and Xu(x) :== lim -ln ll(Dfn(x))-1 11-1 . 
n-+oo n n-+oo n 

(1) 

In the invertible case such a definition of Xu is equal to the usual definition. 
The main idea to get ergodic properties for the. class of maps considered is to solve 
the problem to the invertible case for a related system. For this we have to "unravel" 
the different preimages of points. One possibility is to use the inverse limit space 
of the map f (see [11]). But this approach destroys the manifold structure of the 
set where f lives and we cannot apply Pesin's and Sataev's results. A solenoidal 
construction is more useful and simple for our purposes. We lift the map f to a map 
J which is invertible. Namely, we set for I== [O, 1], 0 < ,.,- < r-1 

M :== M x I, k :== K x I, f((i) :== K(i) x I, x :== (x,w) EM; 

f (x, w) := (fx, rw + i ~ 1) , for x E K('), w. E J, i = 1, ... , r. 

Let 1r : M -t M be the projection of M onto the first coordinate. Then f 1r == 1r J 
and j is invertible. In the next section we will briefly survey the results of [9] and 
[13] where it is proved that an SER-measure PsBR for f exists provided that the 
assumption (Al) - (A3) are fulfilled for the lifted system f. But this is trivially true 
if these conditions hold for f. We then set 

" -1 µ == µSBR O 1r 

Lemma 2.3 µ is a· SBR-measure for f. 

Remark: Thus we will write µsBR instead ofµ. 
Proof. Let fl and v be the Lebesgue measure on k and K, respectively. Then 
v == f; o 'Tr-1 . Hence, for U c K, U open 

l/ o J-n(u) ==fl o J-n o 1r-1 (U) :== Vn(U) 

and 1 n-1 1 n-1 
"'""" "'""" " -1 µn :== - L...t Vk == - L...t Vk • 1r , 

n k=O n k=l 

" " 1-n Vk == lJ • • 

n-1 
By [9] and [13] PsBR is a limit point of Pn == ~ :E flk. Consequently, µsBR is a limit 

k=O 
point of {µn}· D 

We want to "project" the ergodic theory for invertible systems to the non-invertible 
ones. For this goal we have to pay a price: the invertible system is three-dimensional 
and has two-dimensional stable spaces with different contracting rates! 
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3 Stable manifolds and ergodic theory 

In this section we give a brief overview of the theory of hyperbolic diffeomorphisms 
with singularities as it was developed in [5], [9], [13] and others and we discuss which 
parts of this theory "project" to our endomorphism. 
Let j be as in §2 and assume that hypothesis (Al) and (A2) hold. Let n:1 = , 
7r-1(D:1), tJ-: = 7r-1(Dt). Since j is invertible there is no confusion about preim-
ages an'd we are also interested in having control over inverse map. We define 

f.r+ := N+ x [O, 1]; f.r- := N- x [O, 1]; 

fJ--;,.,1,n := {XE <Jl:i/-k(X) and d(/-k(X), N+)?: Te-e.k, k = 0, 1, ... , n}; 

fJ--;,_,1 := { X E Dld(/-"(X), fe+) ?: Te-e.n} . 
Then 

b~ l = n fJ~ l n. , , , 
n2:0 

Let us assume that J has a hyperbolic structure with cone fields C(s) and C(u) 

defined as in §2. We now have a unique unstable space 

E(u)(z) = n njnc(u)(z) (J-n(z)) z E fJ. 
n2:0 

We note that if {C(z, a, P) = C(s)(z)} is a stab~e cone-field for f then 

C ((z, w),a,P XI)= { v E T(z,w)M,L(v, PX I) ~a} 

creates a stable cone field for J. 
Let E(ss)(z), z = (x0 , w0 ) be the tangent space to the vertical line (x, w0 ) at (x 0 , w0 ). 

If ln r < Xs(x0 ) then E(ss)(z) is the strongest stable space for J. Since f (respectively 
f) is a local diffeomorphism we always can choose In r < ,,\ < inf Xs ( x). 

· xEK+ 

Definition 3.1 We call a point z = (x, w) E k+ regular if there exist numbers 
Xs(z) < 0 < Xu(z) such that 

(i) lim 1 Iog11Df!1vll = Xs(z) for v E E(s)(z)\E(ss)(z) 
n-t+oo n z 

(ii) lim l Iog llDffvll = Xu(z) for v E E(u)(z). 
n-t±oo n 
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Remark: For z E fJ we have 

lim ]:_log I ID ffvl I = ln r = Xss for v E J3(ss) (z). 
n-+±oo n 

For regular points the numbers Xs(z) and Xu(z) coincide with the Lyapunov expo-
nents Xs(x) and Xu(x) for the projected non-invertible system provided ln T < Xs(x). 
If the set N+ is empty - i.e. f is a diffeomorphism of a compact manifold - and 
µ is an invariant measure, Oseledec' theorem tells us that µ-almost every point is 
regular. In general this statement is no longer true in the presence of singularities. 
Nevertheless one can prove an analogous statement for the set De [5]. More pre-
cisely let x = (x,, x2, x3) E R3 , lxl =max lxil and R(p) = {x E R3 I lxl ::; p}. We 
fix c > 0 small. Then for 8 sufficiently small there exists a measurable function 
r : be --+ (1, oo) with r(f± z) ::; eer(z) and an embedding ~2 : R(r(z)-1) --+ Jvl for 
each z E be such that the following conditions hold: 

(i) ~20 = z and D~2 (0) maps R x {O} x {O}, {O} x R x R, {O} x {O} x R to 
Eu(z), E8 (z) and J3ss(z), respectively; 

(ii) exp:;-1 o~2 coincides with D~2 (0) on R(r(zt1 ); 

(iii) For fz = ~jz1 ofo~2 andu E {R}x{O}x{O},v E {O}xRxR\{O}x{O}xR,w E 
{O} x {O} x R 

eXu-8 lul ::; ID f2(0)ul ::; eXu+81ul, 
exs-81vl ::; ID f.z(O)vl ::; eXs+<>1v1, 

eXss-8 jwl ::; ID f.z(O)wl ::=; eXss+81wl; 

·(iv) For the Lipschitz constants L hold 

L ( fz - D f.z (0)) ::; c 

L (J;-1 - D f;- 1 (0)) ::; c and 

L ( D f.z) ::; r ( z), L ( D f 2 )-1 
::; r ( z); 

(v) For ally, y' E R(r(zt1
) 

K-1d( ~zf;, ~zf/) ::; IY - :Y'I ::; r(z)d( ~.zy, ~2:91) 

for some constant K. 

The system of local charts { ~.z, z E De} is called the Lyapunov chart system. 
Remark: In the situation of diffeomorphisms with an invariant probability measure 
with compact support'Lyapunov charts exist for a.e. point. 
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We described the notion of Lyapunov charts in detail because they are the main tool 
in developing stable and unstable manifold theory. Lyapunov charts give control over 
stretching and contracting in the first step of iterating J while Lyapunov exponents 
are effective only asymptotically. Unfortunately, we have only little control over the 
size of the charts and in general the metric in the charts derived from the Euclidean 
metric is only measurable. Also we have to pay an exponentially small error in 
the exact stretching and contracting exponents. However it is possible to show the 
following stable manifold theorem. 
For C > 0, 8 > 0, z E De. let 

wu(z) = { fJ E Ald(j-ny, J-n2) :s; c. e-Xu(z)n' n = o, 1, ... }' 

w;(z) , { fJ E Ajd(f-ny, J-n2) :s; 8, n = 0, 1, ... }' 

W 8 (z) = { fJ E k+ld(jny, jnz) :s; C · eXs(z)n, n = 0, 1, ... }, 

WJ(z) = { fJ E k+ld(jny, Jnz) :s; 8, n = 0, 1, ... }. 

Theorem 3.2 ([9], [13]) Let J satisfy (Al)- (A3). Then the following assertions 
hold for z E De.,z and some C > 0 

(i) There is a 80 (c-, l) such that for 0 < 8 < 80 (c-, l) the sets W8u(z) and W/(z) are 
embedded disks (if dimM =2 then dim WJ' = 1, dim Wt = 2). . 

(ii) For fJ E WJ'(z) (W/(z)) the tange~t space T11W;(z) (T11Wt(z)) coincides with 
Eu(fJ) 
(Es (fl)). 

(iii) w;(z)(Wt(z)) is a ball of radius 8 inside wu(z)(W8 (z)) with the intrinsic 
metric. 

(iv) WJ'(z)(W§(z)) depend continuously on z on the set De.,Z· 
( v) For 81 sufficiently small 

J- 1w;: (z) c w;(J-12) 
Jw;l (z) c w;(J z). 

We stated these facts because we will use them in the following sections. On the other 
hand they are the main tools in analyzing hyperbolic systems with singularities. To 
finish this section we cite two theorems compiled from Pesin [9], which give the 
existence of SER-measures fessa for J and describe their properties. Throughout to 
the end of this section we assume that f satisfies conditions (Al) - (A3). Let Mj 
denote the class of SER-measures defined in §2. 
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Theorem 3.3 PsBR has absolutely continuous conditional measures on unstable man-
ifolds. 

Theorem 3.4 There exist sets An C A, n = 0, 1, 2, ... and measures Pn E M}u), n = 
1, 2, ... such that: 

(1) A= Un~o An, Ann Am= 0 for n-=!= m, m,n = 0,1, ... ; 

(2) D(W(s)(An)) > 0 Jorn> 0 and D(W(s)(An)nW(s)(Am)) = 0 Jorn-=/= m, n, m > 
0 (where D denotes the Riemannian volume in M); 

(3) for n > 0 : An C fJ, f (An) = An, Pn(An) = 1, f!An is ergodic with respect to 
Pn; 

( 4) for n > 0 : there exist kn > 0 and subset An C An such that 

(a) the s.ets A~= ji(An) are disjoint for i = 1, ... , kn - 1 and A~n =A~, 
A,... _ Ukn-1 A"i. 

n - i=l n' 

(b) jkn IA~ is isomorphic to a Bernoulli automorphism (with respect to Pn); 

(5) for any P, E Mt) 

an 2: o, 2.:: an = 1; 
n>O 

(6) for any z E W(s)(An) (n > 0) and any continuous function r.p in M there exists 

1 n-1 ,... 1 
lim - 2-::r.p(fk(z)) = -,...-jr.pdP,. 

n-too n µ"' (A ) k=O n An 

( 7) If D is a measure in f< being absolutely continuous with respect to the Rieman-
nian volume and Dn = DlW(s)(A_n), n > 0 then . 

(8) for the metric entropy hµ.(/IA) the following formula takes place 

s(x) 

hp.(/IA) = J ~ Xi(x)dp,(x) 
A i=l 

where {Xi(x) }, i = 1, ... , s(x) is the collection of all positive values of the 
Lyapunov exponents at x. 
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Remark: Since µ(A) = 1 for any P, E Mt) conditions (3) and (5) imply that 

µ(Ao)= o. 
If our original map f would be invertible at least on a set of full measure we could 
"project" the assertions of theorem 3.3 - 3.4 and would get the analogous results 
for f rather then J, directly. On the other hand if we cannot find a set of positive 
measure on which f is invertible there is nothing we can do about theorem 3.3. 
For this and many other questions mentioned before it is crucial to know when f 
is invertible at least when restricted to a set of full measure. The next sections are 
devoted to this problem. 
What concerns theorem 3.4 we can derive its conclusions for f if we knew that 

µSBR ( 7r(A{) n 1r(A{:)) = 0 for (i,j) i= (i',j'). (2) 

But this is always true because the projection is along the strong stable manifolds 
W1(ss)(i) = W1(ss)((x, w)) = { (x, w')I w' EI}. To see this let r.p be a continuous 

A A • A •/ 

function on M which has di:ff erent integrals on Ai and Ai' : 

(3) 

Such a function exists since ( i, j) i= ( i' ,j'). If we assume the contrary of (2) we can 
find two points i, z' EA with i EA~, z' E AJ,, and 'ffZ = 1rZ1

• Then dM(jn.z, jn.z') ~ 
rn. This yields 

1 n-1 ,.. 1 n-1 ,.. 
lim - I: r.p(f k .z) = lim - I: r.p(f k 2') 

n-+oo n k=O n-+oo n k=O 

and by theorem 3.4 inequality (3) is impossible. Hence, the sets A; are uniquely 
determined up to measure 0 by their ·projections under 7r and we can state the 
following theorems. 

Theorem 3.5 Theorem 3.4 holds for f and A, µsBR as well. 

Remark: Since µ(A) = 1 for any µ E Mju) parts (3) and (5) imply that µ(Ao) = 0. 

4 Preparatory machinery 

From now on let us assume that dim M = 2. In this section we want to develop the 
basic machinery we have to use to prove theorem 5.2 . As we have explained we 
added a third dimension to overcome the difficulties of non-invertibility. The price we 
have to pay for it is that we cannot use the dimension theory for two-dimensional 
systems introduced by Young [18]. Our aim is to use the generalized theory of 
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Ledrappier and Young [7] which is valid in any finite dimension. This theory gives 
a relation between Lyapunov-exponents, Hausdorff dimension and entropy of an 
invariant measure. Unfortunately, we cannot apply this theory directly for two 
reasons. First their theory is stated for 0 2-diffeomorphisms rather than systems 
with singularities and second their analysis works a priori only within the stable 
or the unstable foliation of the system. While the first reason is more or less a 
question of the formal statement of Ledrappier's and Young's results the second is 
more serious. Thus we give a brief overview of the machinery they use and extract 
the changes we need for our analysis. In fact, we are going to glue together the tools 
from [18] and [7] in our special three-dimensional case. We want to get a formula 
for the Hausdorff dimension for the SBR measure of our original (projected) system. 
In the case of a diffeomorphism with singularities Young [18] gives the answer. But 
in the case of an endomorphisms our lifted system has a two-dimensional stable 
manifold and Young's theory doesn't work any longer, because it relies on the one-
dimensionality of the stable and unstable manifolds. Here we could apply [7] but the 
disadvantage to [18] is that we can calculate only the stable and unstable dimension 
of the measure and we have no information about the projection. But, fortunately, 
our three-dimensional lifted system has enough additional structure - both the stable 
and unstable foliation are Lipschitz - to find a way out. 
In this section we give the main definition and results from [7] and produce a mea-
surable partition of our system which is needed for the proof of our main .result: 
theorem 5.2. 
Remark: In this paper the results_ ·are stated for 0 2-diffeomorphisms but they 
depend only on the existe~ce of Lyapunov charts with standard properties. 
As we explained before we are in the situation that the set of regular points - i.e. 
the points for which Lyapunov charts exist - has full PsBa-measure. Thus we are 
able to apply the results of [7]. The basic idea in [7] is to consider conditional mea-
sures on the manifolds wju)(x), wjs)(x) and wjss)(x). Unfortunately, the partitions 
into stable and unstable manifolds is not in general measurable. Thus we have to 
construct a measurable partition which gives us the information we want to have. 
Let iii be an ergodic measure for J with non-zero exponents such that A is regular. 
Let Xss == ln r < Xs = ln A < 0 < Xu = ln "'( be its Lyapunov exponents. Let us 
assume that r is so small that 

Xss < Xs - Xu· 

Definition 4.1 (see [7] or [12]) A partition ~ is measurable iff form - a. e. x. there 
is a normalized measure m~ living on the partition element ~(x) containing x such 
that for the sub-0'-algebra Be generated by the partition~ and A a measurable set the 
function x-+ mHA) is Be - measurable and m(A) = f m~(A)dm. 

Definition 4.2 The measures m~ are called the conditional measures of m w. r. t e. 
They are uniquely defined up to a set of measure 0. 
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Definition 4.3 A partition t is subordinate to the W(u) (W(s)) foliation if form.-
a. e. x 

(i) t(x) c w(u)(x) 

(ii) t(x) contains a neighborhood of x in W(u)(x) 

Remark: The partition into local stable manifolds tss ( x) = w{ SS) ( ( x' w)) = { x' w') I w' E I} 
is measurable. 
Partitions like this were considered by several authors ([17], [6], [7]). Their existence 
is ensured by: 

Proposition 4.4 [7] There exist measurable partitions tu (ts) with the following 
properties: 

,,... ,,... 00 ,.. ,., 00 " ..... 

(ii) eu(e) is generating - i.e. v f-ne ( v fne) is the partition into points. 
n=O n=O 

Let { m,~sJ, { m~}, { mn be fixed versions of conditional measures associated to m 
and es, C, eu, respectively. We define . 

h.i(x, c, ti)= liminf-l ln m~ vi(x, n, c) and 
n~oo n 

hi(x, c, ti) = lim sup-~ ln m~ vi(x, n, c) 
n~oo 

forx E M,c > 0, i = ss,s,uwith Vi(x,n,c) ={:OE Wi(x)ldi(]kx,]ky) < c,O::; k::; n} 
and di is the induced metric on wi. 
The above definitions are motivated by the Shannon-McMillan-Breiman theorem 
on the pointwise entropy of a measure. They serve as characterizations of entropy 
type along the stable strong stable and unstable direction, respectively. In [7] these 
definition are justified by a refinement of the Shannon-McMillan-Breiman theorem. 
Then ([7], Prop. 7.2.1 and Cor. 7.2.2) 

h.i ( x) = lim h.i ( x, c, ti) = lim hi ( x, c, ti) = hi, i = s s, s, u 
e:~O e:~O 

. for m a.e. x and 

(4) 
Our next step is to define the dimension of the measure along the stable, strong 
stable and unstable direction. Again this is done pointwise. We consider for the 
di-ball Bi(x, c) in Wi(x) centered at x of radius c the quantities (i = ss, s, u) 

MX, f) = Jim inf log ~~B'(X, c) and 
e:~O ogc 

r: (" ii) 1. logm~Bi(x, c) 
ui x,'::. = imsup 1 . 

c~O Oge 
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For these dimension values we also have a theorem corresponding to the Shannon-
McMillan-Breiman theorem for entropies. Then ([7], Prop. 7.3.1) for m-a.e. x 

~i(x, ti) = <fi(x, ti) = <5i (5) 

The main result of [7] is the relationship between these numbers: 

hss - -dssXss 
hs - Xs( <5ss - 8s) + hss (6) 
hu 8uXu· 

At this stage we fix once f~r al! the copditional measures { m,~s}, { m~}, and { m£} as-
sociated to the partitions es, C and ~u, respectively. Now we are ready to construct 
a finite entropy partitions fan which simulates each ts, tss and tu in the appropriate 
directions. 
We are in the special situation that both foliations w(u) and W(s) are Lipschitz. 
This allows to sum up the stable and the unstable dimension ([10]). In fact, we have 

Theorem 4.5 The limit 
, M 

8 = 8(z) = lim logmB (z, c:) 
c:-+O log c: 

exists m - a. e., (BM is the ball in M) and equals 8u + <5s. 

Now we have collected all facts we need to prove a criterion for the invertibility of 
the map f on a set of full measure. 

5 A criterion for invertibility 

As discussed before we have the Young formula for the Hausdorff dimension for 
invertible maps in two dimensions which says that 

. ( 1 1) Xu dlmH µSBR = hµSBR - - - = 1 - -. • 
Xu Xs Xs 

A simple example shows that this is no longer true if the map is not injective. 
Consider the following map of the square Q = [-1, 1) x [-1, 1) into itself defined by 
the formula 

{ (~x, 2y -1) y 2:: 0 
g(x, y) = ·(l 2 + 1) < 0 · 2x, y y 

Then the SER-measure is simply the normalized Lebesgue measure on the interval 
{O} x [-1, 1] and, hence, its dimension is 1. On the other hand, the Young formula 
gives 

dimH µSBR = log 2 (1 1 
2 - -1 1 1) = 2. og og 2 
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Other examples for the failure of the Young formula were considered by J. Alexander 
and J. Yorke [2]. 
By looking at these examples and knowing that the formula holds for invertible 
systems we can conjecture that "gluing" together different points breaks down the 
dimension and vice versa. Since we are considering dimensions of measures this effect 
should come into account if and only if it happens on a set of positive measure. 

Definition 5.1 We call a map f µ-almost surely invertible iff we can find a mea-
surable set E of full µ-measure such that f restricted to E is invertible. 

The main result of this article is the following criterion: 

Theorem 5.2 Let (A1)-(A3) hold for the map f. Then the following assertions are 
equivalent: 

'/,') d" log 'Y Xu 
ImH µSBR = 1 - -1 \ = 1 - -; 

og A Xs 

ii) f is µsBR - a.s.invertible. 

Corollary 5.3 If A· 'Y > 1 then f is not invertible on a set of positive measure. 

Proof. We always have dim(µsBR) ~ 2. But if A · 'Y > 1 then 8 := 1 - ~~:1 > 2 and 
the main theorem 5.2 gives the assertion. D 
With a bit more work we can show the following defect formula for the dimension 
formula. 

Theorem 5.4 Let (A1)-(A3) hold for the map f. Then 

. ( ) log')' hss 
d1mH µsBR = 1- log A+ In;\. 

We want to derive the criterion from two lemmata which are valid in the set up of 
the previous section. For this purpose suppose m is an ergodic measure for J with 
non-zero exponents such that A is regular. Let Xss = lnr < Xs < 0 < Xu be its 
Lyapunov exponents. Let us assume that r is so small that 

Xss < Xs - Xu· 

The first lemma is a version of the well-known fact that entropy 0 means that a 
process is deterministic - i.e. the future (past) is determined by the past (future) 
almost surely. Although our systems have positive entropy the preimages of a given 
point correspond to the strong stable fibers in the lifted system. In fact, the number 
of components of Jn(f<+)nE(ss)(z) is the number of preimages of z and the partition 
~ss generates them. 
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Lemma 5.5 There is a set E c M of full mo?r-1-measure such that f IE is invertible 
if and only if hss == 0. 

Proof. Let (tss)~ == V'k=n J-ktss. The proof uses several standard facts about the 
entropy of a partition H(P) and the conditional entropy of two partitions H(PIQ) 
which can be found in [8] for example. In [7] it is shown that 

But 

Thus 

(7) 

where 2l(P) is the a~algebra generated by the partition P. But the right hand side 
of 7 is equivalent to f being invertible almost surely since tss is a generator for the 
preimages. D 
The next auxiliary lemma tells us that if hss == 0 the projection 7r preserves the 
dimension. Note that the Ledrappier-Young formula tells us that for a.e. z == 
(x, w) E M the dimension 58 is preserved under 7r provided hss == 0 but we do not 
know if the summation formula 5 == bu+ 58 holds for the projected measur~. The 
lemma says that the projection 7r "commutes" with the summation formula. 

Lemma 5.6 Let hss == 0. Then for a set of positive iii-measure the limit 

exists (BM is the ball in M) and 

Remark: The above lemma is a verification of the Eckmann-Ruelle conjecture for 
2-dimensional endomorphism. The proof actually does not depend on the dimension 
2 but on the existence of the pointwise dimension for the 3-dimensional lift what is 
ensured by the existence for general 2-dimensional diffeomorphisms. A recent result 
by Barreira, Pesin and Schmeling [3] gives the existence of the pointwise dimension 
for the lift in any dimension. This together with our method seems to be enough 
to generalize the Eckmann-Ruelle conjecture to higherdimensional endomorphisms 
with regular hyperbolic measures. 
Another point of view is that theorem 5.2 is a generalization of the Falconer projec-
tion theorem to the nonlinear case. 
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The proof of theorem 5.2 consists of several steps and uses techniques from [7]. 
The main technical difficulty is to get control over the sizes of partition elements 
as they are evolved according to J. This is done in great detail in [7]. It needs a 
considerable amount of estimations and technicalities. Therefore we do not repeat 
these arguments but refer to [7] for all details. 
The idea for the proof is to construct a partition such that a lot of the partition 
elements behave nicely w.r.t. the Lyapunov exponents of m under the iterates of j. 
So we get control over the measure, the sizes of their faces. This will help us to 
estimate the Hausdorff dimension of the projected measure. 
Proof of lemma 5.6. We first define a set f' where the dimension and Lyapunov 
exponents are almost correct after N0 iterations 

f' = f' ( N0 , c, Ll, l, c1) : = { x E fJ ~,z : conditions (I) - (IV) listed below hold for n ~ N 0} 

(I) c-le(xu-e)·n < I IDJ"nl A 11 < c e(Xu+e)·n 
1 E(u)(i:) 1 

c-le(Xs-e)·n < I ID Jnl A 11 < c e(Xs+e)·n 
1 E(s)(x) 1 

where Ll < min(IXssl, Xu - Xs + Xssl) and l ~ 1, C1 > 1. 

We note that additionally for all points x E M in the strong stable direction the 
Lyapunov exponent is the actual contracting exponent: 

ll DJ"nl II= eXss·n. _E(ss)(z) 

We also want to sieve out all points imitating the pointwise Hausdorff dimension 
already within scales of large enough radius: 

(II) 

(III) 

(IV) 

log mBM (x, e(Xss-xs+xu)·n) 
---------- > 8 - c 

n(xss - Xs·+ Xu) -

logm~B8 (x e(xss·n)) 
x ' ~ 88 + c 

n · Xss 

The existence of Lyapunov exponents and (5) imply that for fixed c > 0 m(f') -t 1 
as N0 -too. The latter fact is a simple consequence of Lusin's theorem. 
We are now at the point to construct suitable partitions pn for n large. These 
partitions will consists of a finite number of squares and, hence, they are measurable 
and of finite entropy. 
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Claim 5. 7 Fix c > 0. Let n be sufficiently large (depending on the parameters in-
volved in the definitions off') then there is a finite partition pn of k+ and constants 
c2 , r > 0 such that: 

{V) pn == {P;:, ... , P;}, 
for 1 :::; i :::; r :::; s there are points Yi E f' with 

{VI) B 8 (Yi, c;-1e(Xss-e:)n) c ~8 (Yi) n Pr c B 8 (Yi, C2e(Xss+e:)n) and 

(VII) BM (Jrof-nyi, c21e(Xss-xs)n) xI c j-n Pr c BM (1rof-nyi, C2e(Xss-xs)·n) xI, 1 :::; 
i :::; r 

{VIIIJ m (.u Pr) > r. 
i::;r 

Proof of the claim. We prove for an arbitrary probability measure in JR2 that we 
always can find a partition into squares such that the measure of the points located 
away from the boundary is still large. This ensures that we can inscribe balls around 
those points of radii bounded away from 0. This will give one of the conditions VIII) 
or VII). The remaining condition holds simply by the properties off'. 
Let µbe a probability measure on 1R2 and r > 0. We construct a partition Pi of M 
and set Pi == f> x I simply by looking at a lattice of boxes with side length e(X.ss -xs)n 
(or ceXssn). What we must ensure is that a positive measure part is contained inside 
(in inside a box of 1/2 the side length of Pi) of the boxes. For simplicity we do this 
in JR2 • We look at three partitions of JR2 into squares (A, B, C) and show that at 
least one of them fulfills the above conditions, i.e. the measure is not contained in 
the 1/2-neighborhood of the boundary. For r > 0 we define the partition A as 

A:== {(x, y) E 1R2 : Ix - 3ril:::; 
3
r and IY- 3rjl:::; 

3
r for some (i,j) E 3z2

}. 

2 2 . (8) 

The 1/2-neighborhood of the boundary of A is then 

A:= { (x,y) E R2
: Ix- 3rZI <~or IY - 3rZI < ~}. (9) 

The partitions B (respectively C) and the boundary B (resp. C) are defined analo-
gously with 3rZ replaced by 3rZ + r (resp. 3rZ + 2r) in the definition. 
We claim that at least one of A, B, C has measure less or equal to ~· We have the 
following problem of optimization: 

µ(A)==µ (A\(B u C)) +µ(An B) +µ(An C) 
µ(B) == µ (B\(A u C)) + µ(B n A)+ µ(B n C) 
µ(C) == µ (C\(A u B)) + µ(C n A)+ µ(C n B) 
µ(A n B n C) == 0 
µ(A\(B u C)) + µ(B\(A u C)) + µ(C\(A u B)) +µ(An B) +µ(An C) + µ(B n C) == 1 
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and we have to find min max(µ( A), µ(B), µ(C)) = a under the above conditions. 
µ 

0 bviously, we have for the optimum 

µ(A\(B u C)) = µ(B\(A u C)) = µ(C\(A u B)) = 0 

since, otherwise one of those sets would get more mass the others would have less. 
By symmetry we also see that the solution 

1 
µ(An B) = µ(An C) = µ(B n C) = 3 

is optimal and give a = l· Hence, at least one of the complements, say JR.2 \A has 
measure not less then 1/3. Let Q be the partition of JR.2 into squares built up by 
(r3Z) 2 . If G is an arbitrary set of full measure then Gn(A\(BnC)) has measure not 
less than 1/3 and for every point q E G the ball B ( q, ~) is contained in the element 
G(q) containing q and the ball B(q,.6r) contains the element G(q). 
Using local coordinates for M, setting µ = m · 7r-1 l7r(f') - the restriction of the 
projected measure to the projection off' - we have for appropriate c2 , T a partition 
fm ={Ff,. .. ,P;i} of M with 

BM (Yi, c;-le(Xss-xs)n) c Pr c BM (Yi, C2e(Xss-xs)n)' Yi E 7r(f') 

for 1 ~ i ~ r ~ s, and 

µ (.u Pr) < 1 - 'T. 
i2::r · 

Now let P;: = J-n(Pi) x I, i. = 1, ... , s. Then pn = {P{', ... , P;i} fulfills VII) and 
VIII) with Yi E 7r-1 (yi) nr. From I) we can derive that for n large enough and some 

Bs(Yi, c;-le(Xss-s)n) c es(Yi) n Pr c Bs(yi, C2e(Xss+s)n) 
what is exactly VII). The proof of the claim is complete. D 
Furthermore given x E f' we can always choose Yi = x. Equations V) - VII) 
mean that P;:, 1 ~ i ~ r essentially look like parallelepipeds with side lengths 
Tn, Tn, rn ,\ -n'Yn (see figure). Note that f' C fJ ~,z ensures for large l that J-n pn and 
Pn(x), x E f', are contained in kjn) or Jn kjn), for some j, respectively, and we don't 
have to care about singularities. 
Let c = max(c1, c2). 
Let f'n = f' n Ui<r Pr and f'' = nL=l u~=L f'n. Then by a-additivity m(f'') ~ r. 
Choosing the cha;acteristic functions for the set f' 1 as the function g in lemma from 
the appendix we have that given a > 0, c1 > 1, for N0 large enough, for a.e. point 
x E f' 1 there exists n1(x) ~ N0 such that the following conditions hold: 

(IX) 
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m7r;:;1(r' n BM __ (f-nx, C1e(Xss-Xs)n)) > 1 - a 
m . 1f~l BM u-nx, C1 e(Xss-xs)n)) -

(X) 

(XI) 
m(f1' n !3M(x, Crle(Xss-xs+Xu)n)) > l - a 

mBM(x, c!1e(Xss-xs+Xu)n)) -

m(r' n BM (x, Cie(Xss-xs+xu)n)) 
A >1-a mBM (x, c1e(Xss-xs+xu)n)) -

This means (IX) to (XI) hold for x E f' infinitely often in rn. 
Fix f/1 = x E r' and consider the box B = BM(x, ce(Xss-xs-xn)n), n > ni(x) such 
that (IX) to (XI) hold for fin i.e. the box with side length equal to the longest side of 
the parallelepiped Pr. We are going to calculate how many different parallelepipeds 

· Pt(l::; i::; r) are contained in the box B. We call this number T. 
By V) to VII) good parallelepipeds (Pi, 1 ::; i ::; r) which cross the stable box 
B 8 (xi, eXss-xs+Xu)-n) are contained in B: 

u { pn(fJ) n ~s c Bs(x, e(Xss-xs+xu)·n)} c BM (x, ce(Xss-xs+Xu)·n). 
distinct.Pi ,l~i~r 

Clearly, the total mass of the large stable ball of radius e(Xss-xs-xu)n is not larger 
than the number of smaller balls contained in it times their maximal mass. 
Therefore we can estimate: 

and by III) and IV) 

en(xss-xs+xu)(8s-e:)-lnc 
T?:. (l - a)--e-n-(x_s_s+_e:_)(_8s-+-e:)--

19 



Hence, 

where Ai, A2 are independent of c and n. 
Since ih is invariant we have by VII) 

mPn(x) = mf-n pn(x) ;:::: ih 0 7r;i (BM u-nx, c-le(Xss-xs)n)) . (11) 

Hence by II) 

en(xss-xs+Xu)Hc·A3n+A4 2:: mBM (x, ce(Xss-xs+xu)n) 2:: 
2:: (1 _ a )en(xu<>s-xsc5s)-c·n·A1-A2 X 

x min ih o 71"-i BM(J"-nx· c-ieC~ss-xs)n) (12) 
i~i~r w i, 

where the right-hand inequality is obtained from (10) and (11) and Ai are constants 
independent of c and n. 
We are going to estimate the essential lower bound for the pointwise dimension of 
the measure ih o 7r-i. We set for x E f' 

and 

log m 0 71"-1 BM (j-n(i;e(Xss-Xs)n) 
d ( x) = lim inf w ( ) 

n-+oo n Xss - Xs 

d = ess sup d(y). 
f}Ef' 

It remains to proof that d 2:: o. We now restrict our considerations to a set f" c f' 
such that fqr some Ni > N0 , for all x E f" and n > Ni conditions I) - X) 

(A6 independent of n) hold. Then the definition of d ensures that m(f") > 0. 
Now let hss = 0 then (6) and theorem 4.5 read as 

h h 
O=---. 

Xu Xs 
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Inserting this and (13) into (12) by comparing exponents and dividing by n we get 

( ) r A A4 ( ) r A2 As + A6 Xss - Xs +Xu u + c 3 + - 2:: Xu - Xs Us - cA1 - - + (Xss - Xs)d - = n n n 

= (Xu - Xs) (--.h) + (Xss - Xs)d - cA1 - As = 
Xs n 

( h h) As = Xu - - - + (Xss - Xs)d - cA1 - - = 
Xu Xs h 

(15) 

As = Xu8 + (Xss - Xs)d - cA1 - -. n 

Letting in (15) n --+ oo and c --+ 0 we get d 2:: 8. The opposite inequality follows 
from (6) and theorem 4.5 since the projection 7r-1 is Lipschitz. We have proved 
lemma 5.6 D 
We are now ready to prove theorem 5.2. 
Proof. Let m = PsBR· Then hm, = log7 =Xu and Xs =log A. Moreover, by (6) and 
theorem 4.5 

dimH(µsBR) :::; dimH(P,sBR) = 1 - llog7 + hss (
1 

l , - 2-) 
og I\ og I\ Xss 

log7 <1---. - log A 

(16) 

Here we used that the projection 7r is· Lipschitz. Assume that there is no set of full 
measure such that the restriction off to this set is invertible. Then by lemma 5.5: 
hss > 0 and by (16) 

On the other hand if we can find such a set then we have hss = 0 and we can apply 
lemma 5.6 what gives P,sBR - a.e. point x 

· ( "') · ( ") r r hu hs log7 dimµSBR 1fX = d1mµSBR07r;1 1fX = 8 = Uu +Us = - - - = 1 - -1 ' 
Xu Xs ogl\ 

(P,sBR-a.e. x implies µsBR-a.e. 1fwx). Frostman's Lemma tells us that dimH(µsBR) 2:: 8. 
This, together with (16), completes the proof of theorem 5.2. D 
Proof of theorem 5.4. If we define hss to be the "non-invertibility degree· of f 
with respect to m" then one can calcu.late the Hausdorff dimension of m in terms 
of the non-invertibility degree. 
Proceeding in (15) we have with: 
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(what is (6) rewritten) instead of (14) we have 

(Xss - Xs)8 + Xu8 2:: (Xu - Xs)8s + (Xss - Xs)d 

or 

or 

or 

or 
(Xss - Xs)(8 - 8ss) 2:: (Xss - Xs)d 

Hence d 2:: 8 - 888 • The opposite inequality is derived from [7] lemma 11.3.1. 

( ) 
h h - hss d = 8 - {)55 = 8u + {)5 - £}55 = - - . 

Xu Xs 

For m = µsBR we get 

. ( ) log"( hss 
d1mH µsBR = 1 - log,:\ + In,:\. 

6 Verifiable conditions and some examples 

We consider a number of examples of maps with generalized hyperbolic attractors in 
the two-dimensional case (i.e. M is a two-dimensional manifold). First we formulate 
some general assumptions which guarantee the validity of hyp~theses (A3). Let f 
be a map satisfying condition (Al). Suppose that 

(A4) Nij, Mij are smooth curves such that 

m ri m ri 

N= LJ LJ Nii, 8K = LJ LJ Mii and 
j=lj=l j=lj=l 

aK(i) = (LJ N;;) u (LJ M•;) 
J=l J=l . 

(A5) f possesses two families of stable and unstable cones C(s)(z), C(u)(z), 

z E K\ U~1 8K(i), which satisfy conditions (1) - (3) and extend continuously 
to the boundary · 
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(A6) the unstable cone C(u)(z) at z depends continuously on z E K(i) and there 
exists a > 0 such that for any z E Nii\8Nij, v E C(u)(z) an any vector w 
tangent to Nii we have that L(v, w) 2: a; 

(A 7) there exists r > 0 such that most L singularity lines Ni~) of r intersect in 
one point and ar > L + 1 where 

a= inf irtf ID fvl > 1. 
zEK\N vEC(u)(z) 

These conditions are the conditions introduced by Pesin for the invertible case in [9] 
(our condition (A7) is weaker than the comparable condition in [9]). He also stated 
the following theorem. Unfortunately, the proof of the theorem in [9] is incomplete 
and therefore we will include a proof of this statement. 

Theorem 6.1 If f satisfies conditions (A1),(A2),(A4)-(A 7) then it satisfies condi-
tion (A3) for any z E Do with constants C, q = 1 (C does not depend on z). 

Proof: First of all it is sufficient to prove this result for the map r instead of f 
which still has properties (Al),(A2),(A4)-(A7) with r = 1. We say that 'Y: [O, b] --t 
M is au-curve if 'Y is smooth and 7(t) E C(u)('Y(t)), t E [O, b] (bis a positive number; 
we assume that l ( 'Y) = b is the length of the curve.) To verify condition ( A3) we 
will show that for any u-curve 'Y the following holds: 

(17) 

Then using the continuity of the cone field we can continuously foliate any small 
enough ball in K by u-curves. Using the Fubini theorem condition (17) implies that 
only Cc percent of the ball contributes to condition (A3). 
Fix 'Y an arbitrary u-curve. By condition (A 7) there exists a constant c > 0 such 
that if 'Y is a u-curve in one of the sets K(i) with the length ~ c then f ( 'Y) can 
intersect only L singularity lines Npq· Let d = min{c, Z('Y)}. A curve 'Y is called 
long if its l~ngth is longer than d otherwise it is called short. If 'Y is a u-curve then 
by virtue of (A4)-(A7) the curve J('Y) for any n > 0 consists of a finite number of 
u-curves. Iterating this we get Jn ( 'Y) = Ui 'Yn,i. Moreover, for each i there exist 
j = j(n, i), l = l(n, i) such that 'Yn,i = f bn-l,j n K(Z)). We prove (17) by induction. 
We give the proof first in a special case since the general case leads to gruesome 
formulas. Namely assume that ID fl restricted to any u-curve is equal to a constant 
which we call a. We call this the constant Jacobian case. This assumption does not 
hold for any examples since the definition of u-curves is too broad, but if we make a 
special choice of u-curves, such as vertical line segments for the Belykh map, then 
the assumption is fulfilled. 
For 'Yan arbitrary u-curve define the bad length of 'Y by bl('Y) = vu('Y n U(E, N+)). 
We define S := supK IDJI, Co:= b1 · L/d 

b2 I )k Ck := Ck-1 + d(L a 
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and C = limk-+oo Ck. where bi, b2 are constants described in the next paragraph. 
In the base case of our induction there are many pieces 'Yn,i· The original curve 'Y 
was long and assumption (A7) implies that at the mth step (m::; n) at least one of 
the "Ym,i is long. Subdivide each long piece 'Yn,i into pieces of length approximately d. 
Then each of these pieces can intersect at most L branches of N+ and is uniformly 
transverse to N+ by condition (A6). Thus there is a constant bi > 0 such that the 
percentage of each of these pieces which is in U(c, N+) is of order biLc/d. Thus the 
total percent of 'Y which is in U(c, N+) is of the same order. Thus we have shown 
that for each long u-curve 'Y:i i 

' 

Using condition (A6) it is clear that there is a constant b2 > 0 such that for any 
short "Y~ i the measure of "Y~ i n U ( c, N+) is at most b2c or 

' ' 
(18) 

Our inductive assumptions are as follows. On the (k - l)st step equations (19)-(20) 
hold. For each long u-curve 'Y~-(k-i),i 

bl('Y~-(k-i),J $ Ck-i · c · Z('Y~-(k-i),i). . (19) 

Each short u-curve "Y~-(k-l),i splits into two parts "Y~-(k-i),i = i'~-(k-l),i U i'~-(k-i),i· 
Each of the pieces consists is a finite union of u-curves. The following estimate 
holds for each of the pieces: 

bl( s ) < b2 . ( L + 1 )k-i . C" i'n-(k-i),i '"' a 
bl(i'~-(k-l),i) < ck-i · c · Z(i'~-(k-1),J. (20) 

In the base case of the induction "Y~ i = i'~ i while)'~ i = 0. Now we come to the kth 
' '' ' step. 

We consider first a long piece 'Yz := 'Y~-k,I· The image J('Yz) can consist of several 
short and long pieces. Keeping the natural order in which they appear, we write 

where 

f ( l) -s u -l u u -s 'Y = "Yn-(k-i),1 "Yn-(k-1),1 · · · 'Yn-(k-1),M 

;ys (k ) . = 'Vs (k ) . U ... U 'Vs (k ) . In- -1 ,i In- -1 ,J1 In- -1 ,Jr 

1'~-(k-1),i = "'f~-(k-1),ji LJ • • • LJ "'f~-(k-1),jr 
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(21) 

(22) 



Here 1 :::; jr :::; L and the first and last set of short curves 1~-(k-l),l and 1~-(k-l) M 
may not appear in equation (21). ' 
To estimate the bad length of 11 we estimate the bad length (for each i < M - 1) of 
f -1-s uj-1-z vsuvz d.c · M 1 t. t vs vz v ln-(k-1),i ln-(k-1),i :=Ti Ii an ior i = - we es ima e rM-l U/M-l U/.M: 
Since we have assumed constant Jacobian any percentage estimate pulls back with-
out change. We do this with the long and the tilde short parts. The hat short parts 
have very small total length and do increase the total percentage only a small bit. 
More precisely we consider the following: · 

M M-1 

bl(rz) = I: {bl(~;)}+ I: [bl(7:) +bl( -rD] + bl(7~) 
i=l i=l 

Now, by the inductive assumption, the image of each of the hat short pieces has 
length at most b2 (L/a)k-l · c. There are at most L short pieces and each one is 
contracted by a factor of 1 /a. Thus the first term of the sum is less than or equal 
to 2b2 (L/a)k · c. Also 2:~11 [l(i'~-k,J + l(7;)] + Z(7~).:::; l(r~-k,i). Combining these· 
remarks we have that equation (23) is less than 

(24) 

This completes the inductive proof of equation (19). We turn to the verification of 
equation (20)' in the kth step. Consider a short piece rs := r~-k,I· The image of rs 
consists of some short pieces and possibly some long pieces, namely 

R 

f ( s) LJ s(l) 
I = ln-(k-1),i (25) 

i=l 

where ls(l) means that the piece is either short or long and R:::; L+ 1 by assumption 
(A7) and the definition of short pieces. We define 7s by !(i's) = U~1i'~-(k-l),i and 
;ys = rs\ 7s. Then since we have constant Jacobian, percentages do not change and 
we have 

'(26) 

For the long pieces and the short hat pieces again using the constant Jacobian we 
estimate 

1L+l L+l (L+l)k-l 
bl( i's):::; - I: bt(i'~-(k-1),i):::; --b2 -- · c. 

a i=l a a 
(27) 

This completes the inductive verification of equation (20). The complete induction 
gives (17) since at the n-th step there is only one long piece - namely /-remaining. 
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Now we sketch how the proof differs without the assumption of constant Jacobian. 
For any k == 0, ... , n the curve 1-k ( rn,i) lies entirely in one of the sets K(i) for some 
j == j ( n, i, k ),. Here the preimage branch taken is the one returning to r· This allows 
us to write that 

l(rn,i) == f IDln(f-n(rn,i(t))I dt == IDln(zn,i)ll(f-n(rn,i)) 
1-n('Yn,i) 

l(rn,i) == f IDln(f-n(rn,i(t))I dt == IDfn(zn,i)ll(f-n(!n,i)) 
1-n('Yn,i) 

where Zn,i E 1-n( rn,i), Yn,i E 1-nern,i) are some points. First we write 

(28) 

Taking into consideration that 1-(n-k) ( rn,i) is a u-curve we have the estimation for 
the distance between points lk(Yn,i), Jk(zn,i), k == 0, ... , n - 1. This implies by virtue 
of condition (A2) that there is C > 0 independent of n and r such that 

. (29) 

It is important that the estimate (29) is independent of n. Now if we apply (29) at 
each step then an exponential factor Ck would appear in equations (19,20). However 
we need to apply (29) only once. Namely, in the above argument, the bad length of 
'Y is gotten by pulling back, one step at a time, the bad lengths of the rk,i· Rather 
than doing this, we modify the argument by directly pulling back the "new" bad 
length gotten at the kth step all the way to 'Y· Thus ea~h contribution to equations 
(19,20) is pulled back to 'Y exactly once and so at the end of the induction, we get 
the estimate corresponding to equation (19) fork== n: 

bl(r) ~ C · Cn · c · l(r)· (30) 

D 
Next we give some examples where conditions (A4)-(A7) can be verified (see [9],[13]). 

6.1 The Belykh map 

Consider the square Q == [-1, 1] x [-1, 1] E JR2 and the map I : Q -+ Q defined by 

(x ) _ { ( -Xx1 + 1 - A, '"'fX2 + 1 - r) x2 > kx1 
I ' y - ( .Xx1 + (A - 1), rx2 + ( r - 1)) X2 < kx1 
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with -1<k<1, 1 < ! :::; ikl~ 1 , 0 <A:::; 1. 

For A 2:: ~· This map is not injective. See figure 
This is our main example. It is most natural for non-invertibility and features a lot 
of properties of the other ones. It was introduced by Belykh [4] as a simple model 
for phase synchronization. The ergodic properties where investigate in [9] and [13]. 
J. Alexander and J. Yorke considered the metric properties of the SBR-measure in 
the special case when k = 0, ! = 2 and A 2:: ~· They called this case the fat baker's 
transformation. This case is very special since the SBR-measure has an explicit 
product structure according to the cartesian coordinates. In [15], using the results 
of this article, similar properties are derived for the fat Belykh map in the general 
case. 

6.2 Other models 

Other examples arise from projecting higher-dimensional hyperbolic systems to two-
dimensional ones. For instance, we can consider the projection of Smale's solenoidal 
map f : 8 1 x VE 

1 1 1 1 f(x, y, z) = (2x mod 1, 4y + 
10 

cos(x), 4z + 
10 

sin(x)) 

to the annulus 8 1 x I 
1 1 f (x, y) = (2x mod 1, 4y + 

10 
cos(x)). 

Also crossed horseshoes as they were considered by Przytycki [11] and Simon [16] 
belong to our class. 
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