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Low-rank tensor reconstruction of concentrated densities with
application to Bayesian inversion

Martin Eigel, Robert Gruhlke, Manuel Marschall

ABSTRACT. Transport maps have become a popular mechanic to express complicated probability den-
sities using sample propagation through an optimized push-forward. Beside their broad applicability and
well-known success, transport maps suffer from several drawbacks such as numerical inaccuracies in-
duced by the optimization process and the fact that sampling schemes have to be employed when
quantities of interest, e.g. moments are to compute. This paper presents a novel method for the accu-
rate functional approximation of probability density functions (PDF) that copes with those issues. By
interpreting the pull-back result of a target PDF through an inexact transport map as a perturbed refer-
ence density, a subsequent functional representation in a more accessible format allows for efficient and
more accurate computation of the desired quantities. We introduce a layer-based approximation of the
perturbed reference density in an appropriate coordinate system to split the high-dimensional represen-
tation problem into a set of independent approximations for which separately chosen orthonormal basis
functions are available. This effectively motivates the notion of h- and p-refinement (i.e. “mesh size” and
polynomial degree) for the approximation of high-dimensional PDFs. To circumvent the curse of dimen-
sionality and enable sampling-free access to certain quantities of interest, a low-rank reconstruction in
the tensor train format is employed via the Variational Monte Carlo method. An a priori convergence
analysis of the developed approach is derived in terms of Hellinger distance and the Kullback-Leibler
divergence. Applications comprising Bayesian inverse problems and several degrees of concentrated
densities illuminate the (superior) convergence in comparison to Monte Carlo and Markov-Chain Monte
Carlo methods.

1. OVERVIEW

We derive a novel numerical method for the functional representation of complicated (in particular
highly concentrated) probability densities. This difficult task usually is attacked with Markov Chain
Monte Carlo (MCMC) methods which yield samples of the posterior. Despite their popularity, the con-
vergence rate of these methods is ultimately limited by the employed Monte Carlo sampling technique,
see e.g. [13] for recent multilevel techniques in this context. Moreover, practical issues e.g. regarding
the initial number of samples (burn-in) or a specific convergence assessment arise.

In this work, we propose a new approach based on function space representations with efficient surro-
gate models in several instances. This is motivated by our previous work on adaptive low-rank approx-
imations of solutions of parametric random PDEs with Adaptive Stochastic Galerkin FEM (ASGFEM,
see e.g. [20, 17]) and in particular the sampling-free Bayesian inversion presented in [18] where the
setting of uniform random variables was examined. A generalization to the important case of Gaussian
random variables turns out to be non-trivial from a computational point of view due to the difficulties of
representing highly concentrated densities in a compressing tensor format which is required in order
to cope with the high dimensionality of the problem. As a consequence, we develop a discretization
approach which takes into account the potentially problematic structure of the probability density at
hand by a combination of several transformations and approximations that can be chosen adaptively
to counteract the interplay of the employed numerical approximations. With the computed functional
representation of the density, the evaluation of moments or other statistical quantities of interest can
be carried out efficiently and with high accuracy.

The central idea of the method is to obtain a map which transports the target density to some con-
venient reference density and employ low-rank regression techniques to obtain a functional represen-
tation, for which accurate numerical methods are available. Transport maps for probability densities
are a classical topic in mathematics, cf.[56, 49]. They are under active research in particular in the
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area of optimal transport [56, 49] and also have become popular in current machine learning re-
search [55, 46, 12]. A main application we have in mind is Bayesian inversion where, given a prior
density and some observations of the forward model, a posterior density should be determined. In this
context, the rescaling approaches in [50, 51] based on the Laplace approximation can be considered
as transport maps of a certain (affine) form. More general transport maps have been examined ex-
tensively in [22, 44] and other works of the research group. Obtaining a transport map is in general
realized by minimizing a certain loss functional, e.g. the Kullback-Leibler distance, between the target
and a pushed-forward reference density. This process has been analyzed and improved using iterative
maps [6] or multi-scale approaches [43]. However, the optimization, the loss functional and the cho-
sen model class for the transport map yield only an approximation to an exact transport. We hence
suppose that, in general, an inexact transport is available. By a pull-back argument, this can be inter-
preted as starting from a different or slightly perturbed reference density. The degree of perturbation
has then to be coped with in subsequent approximation steps to enable an explicit representation of
this new reference and make quantities of interest (QoI) directly accessible. Finding a suitable approx-
imation relies on concepts from adaptive finite element methods (FEM). In addition to the selection
of (local) approximation spaces of a certain degree(“p-refinement”), we introduce a spatial decom-
position of the density representation into layers (“h-refinement”) around some center of mass of the
considered density. This enables to exploit the decay behavior of the approximated density. Overall,
this “hp-refinement” allows to balance inaccuracies and hence perturbations of the reference density
by putting more effort into the discretization part. One hence has the freedom to decide whether more
effort should be invested into computing an exact transport map or into a more elaborate discretization
(with more layers and larger basis) of the perturbed reference density.

For eventual computations with the devised (possibly high-dimensional) functional density representa-
tion, an efficient representation format is required. In our context, hierarchical tensors and in particular
tensor trains (TT) prove to be advantageous, cf. [3, 41]. These low-rank formats enable to alleviate the
curse of dimensionality under suitable conditions and allow for efficient evaluations of high-dimensional
objects. For each layer of the discretization we aim to obtain a low-rank tensor representation of the
respective perturbed reference density. In certain ideal cases, such as transporting to the standard
Gaussian density, a rank-one representation is sufficient. Having a perturbed reference density that is
Gaussian but not standard normal, the theory in [47] applies. In more general cases, a low-rank rep-
resentability may be observed numerically. To allow for tensor methods to be applicable, the desired
discretization layers have to be tensor domains. Therefore, the underlying perturbed reference den-
sity is transformed to an alternative coordinate system which benefits the representation and allows
to exploit the regularity and decay behavior of the density. To generate a tensor train representation
(coupled with a function basis which is then also called extended or functional TT format [28]), the
Variational Monte Carlo (VMC) method [21] is employed. It basically is a tensor regression approach
based on function samples for which a convergence analysis is available. Notably, depending on the
chosen loss functional, it leads to the best approximation in the respective model space. It has previ-
ously been examined in the context of random PDEs in [21] as an alternative nonintrusive numerical
approach to Stochastic Galerkin FEM in the TT format [20, 17]. The approximation of [17] is used in
one of the presented examples for Bayesian inversion with the random Darcy equation with lognormal
coefficient. We note that surrogate models of the forward model have been used in the context of
MCMC e.g. in [34] and tensor representations (obtained by cross approximation) were used in [14] to
improve the efficiency of MCMC sampling.

The derivation of our method is supported by an a priori convergence analysis with respect to the
Hellinger distance and the Kullback-Leibler divergence. In the analysis, different error sources have to
be considered, in particular a layer truncation error depending on decay properties of the density, a
low-rank truncation error and model space approximations are introduced. Moreover, the VMC error
analysis [21] comprising statistical estimation and numerical approximation errors is adjusted to be
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applicable to the devised approach. While not usable for an a posterior error control in its current initial
form, the derived analysis leads the way to more elaborate results for this promising method in future
research.

With the constructed functional density surrogate, sampling-free computations of statistical quantities
of interest such as moments or marginals become feasible by fast tensor contractions, even for highly
concentrated or (depending on the available transport map) nonlinearly transformed high-dimensional
densities.

While several assumptions have to be satisfied for this method to work most efficiently, the approach is
rather general and can be further adapted to the considered problem. Moreover, it should be empha-
sized that by constructing a functional representation, structural properties of the density at hand (in
particular smoothness, sparsity, low-rank approximability and decay behavior in different parameters)
can be exploited in a much more extensive way than what is possible with sampling based methods
such as MCMC, leading to more accurate statistical computations and better convergence rates. We
note that the perturbed posterior surrogate can be used to efficiently generate samples by rejection
sampling or within a MCMC scheme. Since the perturbed transport can be seen as a preconditioner,
the sample generation can be based on the perturbed prior. These samples can then be pushed for-
ward to the posterior. As a prospective extension, the constructed posterior density could directly be
used in a Stochastic Galerkin FEM based on the integral structure, closing the loop of forward and
inverse problem, resulting in the inferred forward problem with model data determined by Bayesian
inversion from the observed data.

The structure of the paper is as follows. Section 2 is concerned with the representation of probability
densities and introduces a relation between a target and a reference density. Such a transport map
can be determined numerically by approximation in a chosen class of functions and with an assumed
structure, leading to the concept of perturbed reference densities. To counteract the perturbation, a
layered truncated discretization is introduced. An efficient low-rank representation of the mappings is
described in Section 3 where the tensor train format is discussed. In order to obtain this nonintrusively,
the Variational Monte Carlo (VMC) tensor reconstruction is reviewed. A priori convergence results
with respect to the Hellinger distance and Kullback-Leibler divergence are derived in Section 4. For
practical purposes, the proposed method is described in terms of an algorithm in Section 5. Possible
applications we have in mind are examined in Section 6. In particular, the setting of Bayesian inverse
problems is recalled. Moreover, the computation of moments and marginals is scrutinized. Section 7
illustrates the performance of the proposed method. In addition to an examination of the numerical
sensitivity of the accuracy with respect to the perturbation of the transport maps, a typical model prob-
lem from Uncertainty Quantification (UQ) is depicted, namely the identification of a parametrization for
the random Darcy equation with lognormal coefficient given as solution of a stochastic Galerkin FEM.

2. DENSITY REPRESENTATION

The aim of this section is to introduce the central ideas of the proposed approximation of densities.
For this task, two established concepts are reviewed, namely transport maps [22, 6], which are closely
related to the notion of optimal transport [56, 49], and hierarchical low-rank tensor representations [41,
30, 3]. By the combination of these techniques, assuming the access to a suitable transformation, the
developed approach yields a functional representation of the density in a format which is suited to
computations with high-dimensional functions. In particular, we are able to handle highly concentrated
posterior densities, e.g. appearing in the context of Bayesian inverse problems. While transport maps
on their own in principle enable the generation of samples of some target distribution, the combination
with a functional low-rank representation allows for integral quantities such as (centered) moments to
become computable. Given an approximate transport map, the low-rank representation can be seen
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as a further approximation step (improving the inaccuracy of the used transport) to gain direct access
to the target density.

Consider a target measure π with Radon-Nikodym derivative with respect to the Lebesgue measure
λ denoted as f with support in Rd, d <∞, i.e.

(1) f(y) :=
dπ

dλ
(y), y ∈ Y := Rd.

In the following we assume that point evaluations of f are available up to a multiplicative constant,
motivated by the framework of Bayesian posterior density representation with unknown normalization
constant. Furthermore, let π0 be some reference measure exhibiting a Radon-Nikodym derivative with
respect to to the Lebesgue measure denoted as f0. This is motivated by the prior measure and density
in the context of Bayesian inference.

2.1. Transport Maps. The notion of density transport is classical and with optimal transport has
become a popular field recently, see e.g. [56, 49]. It has been employed to improve numerical ap-
proaches for Bayesian inverse problems for instance in [22, 6, 14]. Similar approaches are discussed
in terms of sample transport e.g. for Stein’s method [35, 11] or multi-layer maps [6]. We review the
properties required for our approach in what follows. Note that since our target application is Bayesian
inversion, we usually use the terms “prior” and “posterior” instead of the more general “reference” and
“target” densities.

Let X := Rd and assume that there exists an exact transport map

(2) T : X → Y,

which is a diffeomorphism1 that relates π and π0 via pullback, i.e.

f0(x) = f(T (x))| detJT (x)|, x ∈ X.(3)

Then, computations might be carried out in terms of the measure π0, which is commonly assumed to
be of a simpler structure. For instance the moment computation with respect to some multiindex α
reads as follows, ∫

Y

yαdπ(y) =

∫
X

T (x)αdπ0(x)

∫
X

T (x)αf0(x)dλ(x).(4)

Note that the computation of the right-hand side in (4) may still be a challenging task depending on
the actual structure of T . In [22] T is expanded in chaos polynomials with respect to π0. From a prac-
tical point of view, this provides access to lower-order moments using orthogonality of the underlying
polynomial system.

Here we follow an alternative strategy with the aim to efficiently compute moments of some target
density based on a functional representation. Notably we assume a convenient (simple) structures of
T with the potential drawback of reduced accuracy, i.e. an inexact (pull-back) transport from the tar-
get to an auxiliary density (instead of the exact reference). Motivated by the Bayesian context, we call
such a pull-back of some posterior density the perturbed prior density, see Section 2.2. Given a simple
transport structure, the possibly demanding computational task is shifted to the accurate approxima-
tion of the perturbed prior. For this, there is justified hope of feasibility in some appropriate (alternative)
coordinate system. In order to tackle moment computations, other posterior statistics or to generate
posterior samples, we hence devise a numerical approach that enables a workload balancing between
the reconstruction of some problem-dependent transport structure and the accurate evaluation of the
perturbed prior. In the following we list some examples of transport maps.

1note that the requirements on T can be weakened, e.g. to local Lipschitz
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T (x)

f0f

FIGURE 1. Illustration of affine transport: translation, rotation and rescaling.

T (x)
f0f

FIGURE 2. Illustration of quadratic transport: affine properties and bending.

2.1.1. Affine transport. In [50, 51] the authors employ an affine linear preconditioning for acceleration
of MCMC or sparse-grid integration in the context of highly informative and concentrated Bayesian
posterior densities, using a s.p.d. matrix H ∈ Rd,d and M ∈ Rd. In the mentioned articles, up to a
multiplicative constant, H corresponds to the inverse square root of the Hessian at the MAP (maxi-
mum a posteriori probability) M , i.e. the location of the local optimum of an Laplace approximation of
the posterior density. This rather simple construction, under the assumption of an unimodal density,
leads to stable numerical algorithms for the computation of quantities of interest as the posterior mass
concentrates. When considering the push-forward of a reference density f0 to a target density f this
concept coincides with an affine transport

(5) y = T (x) = Hx+M, x ∈ X.

In the transport settingH andM may be computed for instance via some minimization of the Kullback-
Leibler divergence as in [22]. Note that H and M do not necessarily have to be the inverse square
root of the Hessian or the MAP. Figure 1 illustrates the concept of an affine transport.

2.1.2. Quadratic transport. A more general class of polynomial transport exhibits the form

(6) T (x) =
1

2
x : A : x+Hx+M, x ∈ X,

with A ∈ Rd,d,d, H ∈ Rd,d,M ∈ Rd. Such a quadratic transport may be used for simple nonlinear
transformations as depicted in Figure 2.

2.1.3. More general transport maps. The parametrization of transport maps can be chosen quite
liberally as long as certain criteria are satisfied, which are either directly imposed in the ansatz space T
of the maps or added as constraints during optimization. In particular, the approximate transport map
has to be invertible, which can be ensured by requiring a positive Jacobian. A commonly used measure
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for transport optimization is the Kullback-Leibler divergence2 leading to the optimization problem

(7) min
T∈T

dKL(Y ;Tπ0, π) such that det∇T > 0 π-a.e.

Several suggestions regarding simplifications and special choices of function spaces T such as
smooth triangular maps based on higher-order polynomials or radial basis functions can for instance
be found in the review article [22]. An interesting idea is to subdivide the task into the iterative compu-
tation of simple correction maps which are then composed as proposed in [6]. We again emphasize
that while an accurate transport map is desirable, any approximation of such a map can in principle
be used with the proposed method. In fact one can decide whether it is beneficial to spend more effort
on the approximation of the perturbed density or on a better representation of the transport.

2.2. Inexact transport and the perturbed prior. In general, the transport map T is unknown or
difficult to determine and hence has to be approximated by some T̃ : X → Y , e.g. using a polynomial
chaos representation with respect to π0 [22] or with a more advanced composition of simple maps in
a reduced space such as in [6]. As a consequence, it holds

(8)

∫
Y

yαdπ(y) ≈
∫
X

T̃ (x)αdπ0(x)

subject to the accuracy of the involved approximation of T . One can also view T̃ as the push-forward
of some measure π̃0 with density f̃0 to π given by

(9) f̃0(x) = f(T̃ (x))| detJT̃ (x)|.
We henceforth refer to (9) as the auxiliary reference or perturbed prior density. Using this construction,
the moment computation reads

(10)

∫
Y

yαdπ(y) =

∫
X

T̃ (x)αdπ̃0 =

∫
X

T̃ (x)αf̃0(x)dλ(x).

If one would know f̃0, by (9) and (10) one would also have access to the exact posterior.

Equation (10) is the starting point of the proposed method by approximating f̃0 in another coordinate
system which is better adapted to the structure of the approximate (perturbed) prior. Consider a (fixed)
diffeomorphism

(11) Φ : X̂ ⊂ Rd → X, x̂ 7→ x = Φ(x̂)

with Jacobian x̂ 7→ | detJΦ(x̂)| and define the perturbed transformed prior

(12) f̂0 : X̂ 7→ R+, x̂ 7→ f̂0(x̂) := f̃0(Φ(x̂)).

In case (12) can be approximated accurately by some function f̃h0 then

(13)

∫
Y

yαdπ(y) ≈
∫
X̂

T̃ (Φ(x̂))αf̃h0 (x̂)| detJΦ(x̂)|dλ(x̂)

with accuracy determined only by the approximation quality of f̃h0 . Thus, (12) and (13) enable a balanc-
ing between the construction of the transport map approximation T̃ of T to shift its complexity given
the underlying diffeomorphism Φ to the approximation of (12) in a new coordinate system intrinsic to
X̂ .

The construction of T̃ and a suitable map in (11) may be used to obtain a convenient transformed aux-
iliary reference density given in (12). An approximation thereof can be significantly simpler compared

2although in machine learning Wasserstein or Sinkhorn distances have become very popular when so-called normaliz-
ing flows are computed
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to a possibly complicated and concentrated target density f or the computation of the exact transport
T . This e.g. is satisfied if

� f0 is a Gaussian density and T̃ maps f to f̃0 which is in some sense near to a Gaussian
density. In this case, Φ from (11) may be chosen as the d-dimensional spherical transformation
and extended low-rank tensor formats are employed for the approximation, see Section 3. In this
setting, the introduction of an adapted coordinate system allows to shift the exponential decay to
the one dimensional radial parameter. The accuracy of an approximation can then be improved
easily by additional h-refinements as described in Section 2.3.

� The reference density f0 has a complicated form and might be replaced by f̃0 to become com-
putationally accessible.

In the following we state an important property that needs to be fulfilled by the perturbed prior f̃0 in
order to lead to a convergent method with the employed approximations.

Definition 2.1. (outer polynomial exponential decay) A function f̃0 : X → R+ has outer polyno-
mial exponential decay if there exists a simply connected compact K ⊂ X with a polynomial π+

being positive on X \K and some C > 0 such that

(14) f̃0(x) ≤ C exp (−π+(x)), x ∈ X \K.

2.3. Layer based representation. To further refine and motivate the notion of an adapted coordinate
system, let L ∈ N and (X`)L`=1 be pairwise disjoint domains in X s.t.

(15) K :=
L⋃
`=1

X`

is simply connected and compact and define XL+1 := X \ K . Then, for given L ∈ N we may
decompose the perturbed prior f̃0 as

(16) f̃0(x) =
L+1∑
`=1

f̃ `0(x) with f̃ `0 := χ`f̃0,

where χ` denotes the indicator function on X`. Moreover, for any tensor set X̂` :=×d

i=1
X̂`
i and

diffeomorphism Φ` : X̂` 7→ X`, 1 ≤ ` ≤ L + 1, we may represent the localized perturbed prior f̃0
`

as a pull-back function

(17) f̃ `0 = f̂ `0 ◦ Φ`
−1
,

where f̂ `0 is a map defined on X̂` as in (12). We consider the following example.

Example 2.2. (multivariate polar transformation)
The d-dimensional spherical coordinate system allows for simple layer layouts in terms of hyperspher-
ical shells. In particular, for ` = 1, . . . , L+ 1 <∞, with 0 = ρ1 < ρ2 < . . . < ρL+1 < ρL+2 =∞,
let

X̂` := [ρ`, ρ`+1]× [0, 2π]×
d−2×
i=2

[0, π],

X` := Bρ`+1
(0) \Bρ`(0) ⊂ X,

i.e. X̂` and X` denote the corresponding adopted (transformed) and the original parameter space,
respectively. Then, for x̂ = (ρ, θ0,θ) ∈ X̂ , θ = (θ1, . . . , θd−2), the polar transformation Φ` : X̂` →
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X` reads

(18) Φ`(x̂) = Φ`(ρ, θ0,θ) = ρ



cos θ0 sin θ1 sin θ2 · · · sin θd−3 sin θd−2
sin θ0 sin θ1 sin θ2 · · · sin θd−3 sin θd−2

cos θ1 sin θ2 · · · sin θd−3 sin θd−2
cos θ2 · · · sin θd−3 sin θd−2

...
cos θd−3 sin θd−2

cos θd−2


.

Moreover, the Jacobian is given by

detJΦ`(ρ, θ0,θ) = ρd−1
d−2∏
i=1

sini θi.(19)

This layer based coordinate change enables a representation of the density on bounded domains.
Even though the remainder layer is unbounded, we assume that K is sufficiently large to cover all
probability mass of f̃0 except for a negligible higher-order error.

Up to this point, the choice of transformation Φ`, ` = 1, . . . , L+ 1, is fairly general. However, for the
further development of the method we assume the following property.

Definition 2.3. (rank 1 stability)
Let X , X̂ =×d

i=1
X̂i ⊂ Rd be open and bounded sets. A diffeomorphism Φ : X̂ 7→ X is called rank

1 stable if Φ and the absolute value of its Jacobian detJΦ have rank 1, i.e. there exists univariate
functions Φi : X̂i → X , hi : X̂ → R, i = 1, . . . , d, such that for x̂ ∈ X̂

(20) Φ(x̂) =
d∏
i=1

Φi(x̂i), |detJΦ(x̂)| =
d∏
i=1

hi(x̂i).

Proposition 2.4. The multivariate polar coordinate transformation from Example 2.2 is rank 1 stable.

Due to the notion of rank 1 stable transformations, the map x̂ 7→ T (Φ(x̂)) in (13) inherits the rank
structure of T , see Section 3. Furthermore, since the Jacobian x̂ 7→ | detJΦ(x̂)| is rank 1, we can
construct tensorized orthonormal basis functions which may be used to approximate the perturbed
transformed prior in (12).

Remark 2.5. The described concept can be extended to any rank r ∈ N Jacobians of Φ, i.e.

(21) | detJΦ(x̂)| =
r∑

k=1

d∏
i=1

hi,k(x̂i).

Motivated by the right-hand side in (13), one may use different approximations of the perturbed trans-

formed prior f̃0 ◦ Φ in r distinct tensorized spaces, each associated to the rank 1 weight
d∏
i=1

hi,k.

2.4. Layer truncation. This paragraph is devoted to the treatment of the last (remainder or truncation)
layer introduced in (16) with the aim to suggest some approximation choices.

If f̃0 is represented in the layer format (16), it is convenient to simply extend the function to zero after
layer L ∈ N. By this, the remaining (possibly small) probability mass is neglected. Such a procedure
is typically employed in numerical applications and does not impose any computational issues since
events on the outer truncated domain are usually exponentially unlikely for truncation value chosen
sufficiently large. Nevertheless, in order to present a rigorous treatment, we require properties like
absolute continuity, which would be lost by using a cut-off function. Inspired by [51] regarding the
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information limit of unimodal posterior densities3, we suggest a Gaussian approximation for the last
layer L + 1 on the unbounded domain XL+1, i.e. for some s.p.d. Σ ∈ Rd,d and µ ∈ Rd we define
the hybrid representation of the perturbed prior by

(22) f̃Trun
0 (x) := CL

{
f̃ `0(x), x ∈ X`, ` = 1, . . . , L,
fΣ,µ(x), x ∈ XL+1,

with CL = (C<
L + C>

L )
−1, where

C<
L :=

∫
X\K

fΣ,µ(x) dλ(x),(23)

C>
L :=

L∑
`=1

∫
X`

f̃ `0(x) dλ(x),(24)

and fΣ,µ denotes the Gaussian probability density function with mean µ and covariance matrix Σ.

Remark 2.6. A good choice for µ and Σ would be the mean and covariance of the exact perturbed
prior f̃0, which however is not accessible a priori. Thus, in numerical simulations one may choose µ
and Σ as (centralized) moments of the normalized truncated perturbed prior density ˜fTrun

0 |K or as
the MAP point and the corresponding square root of the numerically computed Hessian as a result of
an optimization algorithm on f̃0.

Lemma 2.7. (truncation error) For µ ∈ Rd and Σ ∈ Rd,d let f̃0 have outer polynomial exponential
decay with positive polynomial π̃+ and C̃ > 0 with K = BR(µ) for some R > 0. Then, for CΣ =
1/2λmin(Σ

−1) there exists C = C(C̃, Σ, d, CΣ) > 0 such that

‖f̃0 − f̃Trun
0 ‖L1(X\K) . ‖exp (−π̃+)‖L1(X\K) + Γ

(
d/2, CΣR

2
)

and ∣∣∣∣∣∣∣
∫

X\K

log

(
f̃0
fΣ,µ

)
f̃0 dx

∣∣∣∣∣∣∣ ≤
∫

X\K

(
1

2
‖x‖2Σ−1 + π̃+(x)

)
e−π̃

+(x) dλ(x)

with the incomplete Gamma function Γ .

Proof. The proof follows immediately from the definition of f̃Trun
0 . �

In the case that the perturbed prior is close to a Gaussian standard normal distribution, it holds c ≈ 1.

Note that the constantC<
L in (23) may exhibit an analytic form whereas computingC>

L suffers from the
curse of dimensionality and is in general not available. To circumvent this issue and render further use
of the representation (22) feasible, we introduce a suitable low-rank approximation in the next section.

3. LOW-RANK TENSOR TRAIN FORMAT

The computation of high-dimensional integrals and the efficient construction of surrogates is a chal-
lenging task with a multitude of approaches. Some of these techniques are sparse grid methods [7, 26],
collocation [23, 39, 25] or modern sampling techniques [27, 48, 38]. As motivated by C>

L in (24), we
aim for a model to adequately approximate the localized perturbed prior maps f̃ `0 . The introduction of
an adapted coordinate system enables the use of low-rank representations such as the tensor train

3A result of [51] is that under suitable conditions the posterior distribution converges to a Gaussian in the limit of zero
noise and infinite measurements.
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(TT) format [41, 31, 30] described in this section. We highlight a “non-intrusive” sample-based tech-
nique to obtain such a representation of arbitrary maps, namely the Variational Monte Carlo (VMC)
method [21].

Let X̂ =
⊗d

i=1 X̂i be a tensor space of separable Banach spaces X̂i, i ∈ [d] := {1, . . . , d}, and

consider a map g : X̂ → R. The function g can be represented in the TT format if there exists a rank
vector r = (r1, . . . , rd−1) ∈ Nd−1 and univariate functions gi[ki−1, ki] : X̂i → R for ki ∈ [ri],
i ∈ [d], such that for all x̂ ∈ X̂

(25) g(x̂) =
r∑
k=1

d∏
i=1

gi[ki−1, ki](x̂i), k := (k1, . . . , kd−1).

For ease of notation it is convenient to set k0 = kd = 1. In the forthcoming sections we consider
weighted tensorized Lebesgue spaces. In particular, for a non-negative weight function w : X̂ → R
with w =

⊗d
i=1wi, w ∈ L1(X̂), define the tensorization of L2(X̂, w) =

⊗d
i=1 L

2(X̂i, wi) by

V(X̂) := L2(X̂, w) =

{
v : X̂ → R | ‖v‖2V :=

∫
X̂

v(x̂)2w(x̂) dλ(x̂) <∞
}
.(26)

We assume that there exists an complete orthonormal basis {P i
k : k ∈ N} in L2(X̂i, wi) for every

i ∈ [d] which is known a priori. For discretization purposes, we introduce the finite dimensional
subspaces

(27) Vi,ni := span
{
P i
1, . . . , P

i
ni

}
⊆ L2(X̂i, wi)

for i = 1, . . . , d, and ni ∈ N. On these we formulate the extended tensor train format in terms of the
coefficient tensors

Gi : [ri−1]× [ni]× [ri]→ R, (ki−1, j, ki) 7→ Gi[ki−1, j, ki], i ∈ [d] ,(28)

such that every univariate function gi ∈ Vi,ni can be written as

(29) gi[ki−1, ki](x̂i) =

ni∑
j=1

Gi[ki−1, j, ki]P
i
j (x̂i) for x̂ ∈ X̂i.

For the full tensor format the function

(30) g ∈ VΛ :=
d⊗
i=1

Vi,ni ⊆ V(X̂)

can be expressed by a high dimensional algebraic tensor G : Λ :=×d

i=1
[ni] → R and tensorized

functions Pα :=
⊗d

i=1 Pαi for α = (α1, . . . , αd) ∈ Λ such that

(31) g(x̂) =
∑
α∈Λ

G[α1, . . . , αd]
d∏
i=1

Pαi(x̂i).

In contrast to this, the format given by (25) and (29) admits a linear structure in the dimension. More
precisely, the memory complexity ofO(max{n1, . . . , nd}d) in (31) reduces to

(32) O(max{r1, . . . , rd−1}2 · d ·max{n1, . . . , nd}).
This observation raises the question of expressibility for certain classes of functions and the existence
of a low-rank vector r where max{r1, . . . , rd−1} is sufficiently small for practical computations. This
issue is e.g. addressed in [52, 2, 29] under certain assumptions on the regularity and in [24, 41, 4, 21]
explicit (algorithmic) constructions of the format are discussed even in case that g has no analytic
representation.
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For later reference we define the finite dimensional low-rank manifold of rank r tensor trains by

(33) Mr := {g ∈ V(X̂) | g as in (25) with gi as in (29)}.
This is an embedded manifold in the finite full tensor space VΛ from (30) admitting the cone property.
We also require the concept of the algebraic (full) tensor space

(34) T :=
{
G : Nd → R

}
and the corresponding low-rank form for given r ∈ Nd−1 defined by

(35) TTr :=

{
G : Λ→ R | G[α] =

r∑
k=1

d∏
i=1

G[ki−1, αi, ki]

}
.

Without going into detail, we mention the higher order singular value decomposition (HOSVD), which
is used to decompose a full algebraic tensor into a low-rank tensor train. The algorithm is based on
successive unfoldings of the full tensor into matrices, which are orthogonalized and possibly truncated
by a singular value decomposition, see [40] for details. This algorithm enables us to state the following
Lemma.

Lemma 3.1 ([40, Theorem 2.2]). For any g ∈ VΛ and r ∈ Rd−1 there exists an extended low-rank
tensor train gr ∈Mr with

(36) ‖g − gr‖2V(X̂)
≤

d−1∑
i=1

σ2
i ,

where σi is the distance of the i-th unfolding matrix of the coefficient tensor of g in the HOSVD to its
best rank ri approximation in the Frobenius norm.

Proof. The proof follows from the best approximation result of the usual matrix SVD with respect to
the Frobenius norm and the orthonormality of the chosen basis. �

Remark 3.2. Estimate (36) is rather unspecific as the σi cannot be quantified a priori. In the special
case of Gaussian densities we refer to [47] for an examination of the low-rank representation depend-
ing on the covariance structure. By considering a transport T̃ that maps the considered density only
“close” to a standard Gaussian, the results can be applied immediately to our setting and more precise
estimates are possible.

3.1. Tensor train regression by Variational Monte Carlo. We review the sampling-based VMC
method presented in [21] which is employed to construct TT representations of the local maps Φ`

as in (17). The approach generalizes the concept of randomized tensor completion [19] and its anal-
ysis relies on the theory of statistical learning, leading to a priori convergence results. It can also be
seen as a generalized tensor least squares technique. An alternative cross-interpolation method for
probability densities is presented in [14].

For the VMC framework, consider the model class Mr(c, c) ⊂ Mr of truncated rank r ∈ Rd−1

tensor trains which is given for 0 ≤ c < c ≤ ∞ by

(37) Mr(c, c) :=
{
g ∈Mr | c ≤ g(x̂) ≤ c a.e. in X̂

}
.

The model classMr(c, c) is a finite subset of the truncated nonlinear space V(X̂, c, c) ⊆ V(X̂)
defined as

(38) V(X̂, c, c) := {v ∈ L2(X̂, w) | c ≤ v(x̂) ≤ c a.e. in X̂},
which we equip with the metric dV(X̂,c,c)(v, w) := ‖v − w‖V .
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Alternatively, for numerical purposes we may characterizeMr(c, c) and V(X̂, c, c) in terms of con-
straints on the coefficients of the underlying representation with respect to {Pα}. For `2(T) := {G ∈
T |

∑
α∈Nd G[α]

2 <∞} we have

V(X̂, c, c) = {v(x̂) =
∑
α∈Nd

G[α] · Pα(x̂) | G ∈ `2(T), F (G) ≥ 0, F (G) ≤ 0},(39)

M(c, c) = {v(x̂) =
∑
α∈Λ

G[α] · Pα(x̂) | G ∈ TTr, F r(G) ≥ 0, F
r
(G) ≤ 0},(40)

for constraint functions F , F : `2(T)→ R and
F r, F

r
: `2(TTr)→ R implicitly bounding the coefficient tensors. Note that due to the orthonormality

of {Pα}α∈Nd in V(X̂) for every v ∈ V(X̂) it holds

(41) ‖v‖V = ‖G‖`2(T) with v =
∑
α

G[α]Pα ∈ V .

Additionally, we define a loss function ι : V(X̂, c, c) × X̂ → R such that ι(·, x̂) is continuous for
almost all x̂ ∈ X̂ and ι(v, ·) is integrable with respect to the weight function w of V(X̂) for every
v ∈ V(X̂, c, c). Then, we consider the cost functional J : V(X̂, c, c)→ R given by

(42) J (v) :=

∫
X̂

ι(v, x̂)w(x̂)dλ(x̂).

To further analyze the approximability in the given TT format using sampling techniques, we define
two common discrepancy measures for probability density functions.

Lemma 3.3. (KL loss compatibility) Let h∗ ∈ V(X̂, 0, c∗) for c∗ <∞ and 0 < c < c <∞. Then

V(X̂, c, c) 3 g 7→ ι(g, x̂) = ι(g, x̂, h∗) := − log(g(x))h∗(x)(43)

is uniformly bounded and Lipschitz continuous on
Mr(c, c) if Pα ∈ L∞(X̂) for every α ∈ Λ. Furthermore, J is globally Lipschitz continuous on the
metric space (V(X̂, c, c), dV(X̂,c,c)).

Proof. The loss ι is bounded onMr(c, c) since 0 < c < c < ∞. Let g1, g2 ∈ Vr(X̂, c, c) with
coefficient tensors G1 and G2 ∈ TTr, then

(44) |ι(g1, x̂)− ι(g2, x̂)| ≤
1

c
sup
x̂∈X̂
{h∗(x̂)}︸ ︷︷ ︸

:=C∗<∞

|g1(x̂)− g2(x̂)|.

The global Lipschitz continuity of J follows by using (44) and

|J (g1)−J (g2)| ≤ C∗‖g1 − g2‖L1(X̂,w) ≤ CC∗dV(X̂,c,c)(g1, g2),(45)

with a constantC related to the embedding ofL2(X̂, w) intoL1(X̂, w). If g1, g2 are inMr(c, c) then

by Parseval’s identity and the finite dimensionality ofMr(c, c) there exists c = c
(
supα∈Λ ‖Pα‖L∞(X̂)

)
>

0 such that

|g1(x)− g2(x)| ≤ c‖G1 −G2‖`2(T) = c‖g1 − g2‖V = c dV(X̂,c,c)(g1, g2),(46)

which yields the Lipschitz continuity onMr(c, c). Now let g1, g2 ∈ V(X̂, c, c). The global Lipschitz
continuity of J follows by using (44) and

|J (g1)−J (g2)| ≤ C∗‖g1 − g2‖L1(X̂,w) ≤ CC∗dV(X̂,c,c)(g1, g2),(47)

with a constant C related to the embedding of L2(X̂, w) into L1(X̂, w). �
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Lemma 3.4. (L2-loss compatibility) Let h∗ ∈ V(X̂, 0, c) for c <∞. Then

(48) V(X̂, 0, c) 3 g 7→ ι(g, x̂) = ι(g, x̂, h∗) := |g(x̂)− h∗(x̂)|2

is uniformly bounded and Lipschitz continuous on
Mr(0, c) provided Pα ∈ L∞(X̂) for every α ∈ Λ.

Proof. Let g1, g2 ∈ V(X̂, 0, c). Then

|ι(g1, x̂)− ι(g2, x̂)| ≤ |g1(x̂)− g2(x̂)| · |g2(x̂) + g2(x̂)|+ 2|g1(x̂)− g2(x̂)|h∗(x̂).(49)

Due to c <∞ the Lipschitz property follows as in the proof of Lemma 3.3 if g1, g2 inMr(c, c). �

To examine the VMC convergence in our setting, we recall the analysis of [21] in a slightly more general
manner. The target objective of the method is to find a minimizer

(50) v∗ ∈ argminv∈V(X̂,c,c) J (v).

Due to the infinite dimensional setting we confine the minimization problem in (50) to our model class
M =Mr(c, c). This yields the minimization problem

(51) find v∗M ∈ argminv∈MJ (v).

A crucial step is then to consider the empirical functional instead of the integral in J , namely

(52) JN(v) :=
1

N

N∑
k=1

ι(v; x̂k),

with independent samples {x̂k}k≤N distributed according to the measurewλwith a (possibly rescaled)
weight function w with respect to the Lebesgue measure λ. The corresponding empirical optimization
problem then takes the form

(53) find v∗M,N ∈ argminv∈MJN(v).

The analysis examines different errors with respect to h∗ ∈ V(X̂, 0, c) defined by

E :=
∣∣J (h∗)−J

(
v∗M,N

)∣∣ ,(54)

, Eapp := |J (h∗)−J (v∗M)| ,(55)

Egen :=
∣∣J (v∗M)−J

(
v∗M,N

)∣∣ ,(56)

denoting the VMC-, approximation- and generalization error respectively. By a simple splitting, the
VMC error can be bounded by the approximation and the generalization error, namely

(57) E ≤ Eapp + Egen.

Due to the global Lipschitz property on V(X̂, c, c) with c > 0 in the setting of (43) or c ≥ 0 as in (48),
the approximation error can be bounded by the best approximation inM. In particular there exists
C > 0 such that

(58) Eapp ≤ C inf
v∈M
‖h∗ − v‖2V(X̂)

.

We note that such an estimation by the best approximation inM with respect to the V(X̂)-norm may
not be required when using the Kullback-Leibler divergence if one is interested directly in the best
approximation in this divergence. Then the assumption c > 0 can be relaxed in the construction of
V(X̂, c, c) since no global Lipschitz continuity of J in Lemma 3.3 is required. Thus the more natural
subspace of V(X̂, 0, c) of absolutely continuous functions with respect to h∗ may be considered
instead.
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It remains to bound the statistical generalization error Egen. For this the notion of covering numbers is
required. Let (Ω,F ,P) be an abstract probability space.

Definition 3.5. (covering number) Let ε > 0. The covering number ν(M, ε) denotes the minimal
number of open balls of radius ε with respect to the metric dV(X̂,c,c) needed to coverM.

Lemma 3.6. Let ι be defined as in (43) or (48). Then there exist C1, C2 > 0 only depending on the
uniform bound and the Lipschitz constant ofM given in Lemma 3.3 and 3.4, respectively, such that
for ε > 0 and N ∈ N denoting the number of samples in the empirical cost functional in (52) it holds

(59) P[Egen > ε] ≤ 2ν(M, C−12 ε)δ(1/4ε,N),

with δ(ε,N) ≤ 2 exp(−2ε2N/C2
1).

Proof. The claim follows immediately from Lemmas 3.3 and 3.4, respectively, and [21, Thm. 4.12, Cor.
4.19]. �

Remark 3.7 (choice of c, c and X̂). Due to the layer based representation in (16) and (22) on each
layer X̂` = Φ−1(X`) we have the freedom to choose c separately. In particular, assuming that the
perturbed prior f̃0 decays per layer, we can choose c according to the decay and with this control the
constant in (44).

4. ERROR ESTIMATES

This section is devoted to the derivation of a priori error estimates for the previously introduced con-
struction in terms of the Hellinger distance and Kullback-Leibler divergence. We employ the VMC
approach from Section 3.1 to the density layer approximation which leads to a convergence result.

Recall that our goal is to approximate the perturbed prior f̃0 given some transport T̃ represented by a
function f̃Trun,TT

0 defined by

(60) f̃Trun,TT
0 (x) := CTT

L

{
f̃ `,TT
0 (x), x ∈ X`, ` = 1, . . . , L,
fΣ,µ(x), x ∈ XL+1.

Here, CTT
L := (C<

L + C>,TT
L )−1 with C<

L from (23) and

(61) C>,TT
L :=

L∑
`=1

∫
X`

f̃ `,TT
0 (x) dλ(x).

Furthermore, f̃ `,TT
0 = f̂ `,TT,N`

0 ◦
(
Φ`
)−1

is the pullback of a function f̂ `,TT,N`
0 inM` =M(c`, c`)

over X̂`. Analog to the empirical minimization problem (52) with w` = | detJΦ` |, we choose f̂ `,TT,N`
0

as

(62) f̂ `,TT,N`
0 ∈ argminv∈M`

1

N`

N∑̀
k=1

ι(v, x̂k, f̂0),

with samples {x̂k}N`k=1 drawn from the (possibly rescaled) finite measure w`λ. The connection to the
actual approximation of the target density f given by

(63) f̃TT := f̃Trun,TT
0 ◦ T̃−1 ⊗ |JT̃−1|

is reviewed in the following. We refer to Figure 3 for a visual presentation of the involved objects,
approximations and transformations.
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(approximation domain) (reference domain) (target domain)
X̂` ⊂ X̂ X` ⊂ X Y

Φ`

Φ`

Φ`

T

T̃

V
M

C
(S

ec
tio

n
3.

1)

f̂
`,TT,N`
0 from (60)

f̂0 = f̂ `0 from (17)

f0 ◦ Φ` f0 from (3)

f̃0 from (9)

f̃Trun,TT
0 from (60)

f from (1)

f̃TT from (63)

FIGURE 3. Overview of the presented method sketching the different involved trans-
formations and approximations with references to the respective equations.

We first consider the relation of a target density f and its perturbed prior f̃0. Since the transport T̃
maps X to Y , an error functional d(Y ; ·, ·) has to satisfy

(64) d
(
Y ; f, f̃TT

)
= d

(
X; f̃0, f̃

Trun,TT
0

)
.

This property ensures that control of the error of the approximation in terms of the perturbed prior with
respect to d(X; ·, ·) transfers directly to f . Note that this criterion is canonical as passing to the image
space of some measurable function is fundamental in probability theory.

Prominent measures of discrepancy for two absolutely continuous Lebesgue probability density func-
tions h1 and h2 on some measurable space Z are the Hellinger distance

(65) dHell(Z, h1, h2) =

∫
Z

(√
h1(z)−

√
h2(z)

)2
dλ(z),

and the Kullback-Leibler divergence

(66) dKL(Z, h1, h2) =

∫
Z

log

(
h1(z)

h2(z)

)
h1(z) dλ(z).

For the Hellinger distance, the absolute continuity assumption can be dropped from an analytical point
of view. Observe that both dHell and dKL both satisfy (64).

Lemma 4.1. Let ] ∈ {Hell,KL}, then it holds

(67) d](Y ; f, f̃TT ) = d](X; f̃0, f̃
Trun,TT
0 ).

Proof. We only show (67) for ] = KL since ] = Hell follows by similar arguments. By definition

(68) dKL(Y ; f, f̃TT) =

∫
Y

log

(
f(y)

f̃TT(y)

)
f(y) dλ(y),
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and the introduction of the transport map T̃ yields the claim∫
X

log

(
f ◦ T̃ (x)
f̃TT ◦ T̃ (x)

· | detJT̃ (x)|
| detJT̃ (x)|

)
f̃0(x) dλ(x) = dKL(X; f̃0, f̃

Trun,TT
0 ).(69)

�

With the previous results and notations, the following assumption turns out to be required for the
convergence result.

Assumption 4.2. For a target density f : Y → R+ and a transport map T̃ : X → Y , there exists
a simply connected compact domain K such that f̃0 = (f ◦ T ) ⊗ | detJT | ∈ L2(K) has outer
polynomial exponential decay with polynomial π+ on X \K . Consider the symmetric positive definite
matrix Σ ∈ Rd,d and µ ∈ Rd as the covariance and mean for the outer approximation fΣ,µ. Further-

more, let K =
⋃L
`=1X

` with X` being the image of a rank-1 stable diffeomorphism Φ` : X̂` → X`

for every ` = 1, . . . , L.

We can now formulate the main theorem of this section regarding the convergence of the developed
approximation with respect to the Hellinger distance and the KL divergence.

Theorem 4.3. (A priori convergence) Let Assumption 4.2 hold and let a sequence of sample sizes
(N `)L`=1 ⊂ N be given. For every ` = 1, . . . , L, consider bounds 0 < c` < c` < ∞ and let f̃TT

be defined as in (63). Then there exist constants C,CΣ, C`, C`
ι > 0, ` = 1, . . . , L, such that for

] ∈ {KL,Hell}

d](Y, f, f̃
TT) ≤ C

(
L∑
`=1

(
E `best + E `sing + E `gen

)
+ E ]trun

)
.(70)

Here, E `best denotes the error of the best approximation v`Λ to f̂ `0 in the full truncated polynomial space
V`Λ(c`, c`) = V`Λ ∩ V(X̂`, c`, c`) given by

E `best := ‖f̂ `0 − v`Λ‖V(X̂`) = inf
v`∈V`Λ(c`,c

`)
‖f̂ `0 − v`‖V(X̂`),

E `sing is the low-rank approximation error of the algebraic tensor associated to v`Λ and the truncation
error Etrun is given by(

EHell
trun

)2
:= ‖exp (−π+)‖L1(X\K) + Γ

(
d/2, CΣR

2
)
,

EKL
trun :=

∫
X\K

(
1

2
‖x‖2Σ−1 + π̃+(x)

)
e−π̃

+(x) dλ(x).

Furthermore, for any (ε`)L`=1 ⊂ R+ the generalization errors E `gen can be bounded in probability

P(E `gen > ε`) ≤ 2ν(M`, C`ε`)δ`(1/4ε`, N `)

with ν denoting the covering number from Definition 3.5 and δ`(ε,N) ≤ 2 exp(−2ε2N/C`
ι ).

Proof. We first prove (70) for ] = Hell and point out that the Hellinger distance can be bounded by
the L2 norm. Note that |

√
a−
√
b| ≤

√
|a− b| for a, b ≥ 0 and with Lemma 4.1 it holds

dHell(Y ; f, f̃TT) = dHell(X; f̃0, f̃
Trun,TT
0 ) ≤ ‖f̃0 − f̃Trun,TT

0 ‖L1(K) + ‖f̃0 − f̃Trun,TT
0 ‖L1(X\K).
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Since K = ∪L`=1X
` and X` are bounded, there exist constants C(X`) > 0, ` = 1, . . . , L, such

that

‖f̃0 − f̃Trun,TT
0 ‖L1(K) =

L∑
`=1

‖f̃0 − f̃Trun,TT
0 ‖L1(X`) ≤

L∑
`=1

C(X`)‖f̃0 − f̃Trun,TT
0 ‖L2(X`).

Moreover, by construction

(71) ‖f̃0 − f̃Trun,TT
0 ‖L2(X`) = ‖f̂ `0 − f̂

`,TT,N`
0 ‖V(X̂`).

The claim follows by application of Lemmas 2.7, 3.1 and 3.6 together with (57).

To show (70) for ] = Hell, note that by Lemma 4.1 and the construction (60) it holds

dKL(Y ; f, f̃TT) =
L∑
`=1

∫
X`

log
f̃0

f̃ `,TT
0

f̃0dλ(x) +

∫
X\K

log
f̃0
fΣ,µ

f̃0dλ(x).(72)

Using Lemma 2.7 we can bound the integral over X \K by the truncation error Etrun. Employing the
loss function and cost functional of Lemma 3.3 yields

(73)

∫
X`

log
f̃0

f̃ `,TT
0

f̃0dλ(x) ≤ E `app + E `gen.

The claim follows by application of Lemmas 3.1 and 3.6 together with (57). �

4.1. Polynomial approximation in weighted L2 spaces. In order to make the error bound (70) in
Theorem 4.3 more explicit with respect to Ebest, we consider the case of a smooth density function with
analytic extension. The analysis follows the presentation in [1] and leads to exponential convergence
rates by an iterative interpolation argument based on univariate best approximation bounds by inter-
polation. An analogous analysis for more general regularity classes is possible but not in the scope of
this article.

Let X̂ =
⊗d

i=1 X̂i ⊂ Rd be bounded and w = ⊗di=1wi ∈ L∞(X̂) a non-negative weight such that

C(X̂) ⊂ V := L2(X̂, w) =
⊗d

i=1 L
2(X̂i, wi).

For a Hilbert spaceH , a bounded set I ⊂ R and a function f ∈ C(I;H) ⊂ L2(I, w;H) with weight
w : I → R, let In : C(I;H)→ L2(I, w;H) defined as

Inf(·) =
n+1∑
k=1

f(x̂k)`k(·),

denote the continuous Lagrange interpolation operator. The `k are polynomials of degree k orthogonal
in L2(I, w) and (x̂k)

n
k=1 are the roots, respectively.

Assume that f ∈ C(I;H) admits an analytic extension in the region of the complex planeΣ(I; τ) :=
{z ∈ C| dist(z, I) ≤ τ} for some τ > 0. Then, referring to [1],

(74) ‖f − Inf‖L2(I,w;H) . σ(n, τ) max
z∈Σ(I;τ)

‖f(z)‖H ,

with σ(n, τ) := 2(ρ− 1)−1 exp (−n log(ρ)) and ρ := 2τ/|I|+
√

1 + 4τ 2/|I|2 > 1. By using an

iterative argument over d dimensions, a convergence rate for the interpolation of f ∈ C(X̂;R) ⊂
L2(X̂, w;R) can be derived from the one dimensional convergence. More specifically, let IΛ :

C(X̂) 7→ L2(X̂, w) denote the continuous interpolation operator written as composition of a 1-
dimensional and a d−1-dimensional interpolation IΛ := I1n1

◦I2:dn2:nd
with continuous I1n1

: C(X̂1)→
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L2(×d

i=2
X̂i,⊗di=2wi) and I2,...,dn2,...,nd

: C(×d

i=2
X̂i) → H with H = L2(×d

i=2
X̂i,⊗di=2wi). Then,

for f ∈ C(X̂) and some C > 0 it follows

‖f − IΛf‖ ≤ ‖f − I1n1
f‖+ ‖I1n1

(f − I2,...,dn2,...,nd
f)‖

. ‖f − I1n1
f‖+ sup

x̂1∈X̂1

‖f(x1)− I2,...,dn2,...,nd
f(x1)‖H .

The second term of the last bound is a d − 1-dimensional interpolation and can hence be bounded
uniformly over x̂1 by a similar iterative argument. We summarize the convergence result for E `best in
the spirit of [1, Theorem 4.1].

Lemma 4.4. Let f̂ ∈ C(X̂`) ⊂ L2(X̂`, w) admit an analytic extension in the region

Σ(X̂`, (τ `i )
d
i=1) =

d×
i=1

Σ(X̂`
i , τ

`
i )

for some τ `i > 0, ` = 1, . . . , L, i = 1, . . . , d. Then, with σ from (74),

inf
v∈VΛ
‖f̂ − v‖L2(X̂`,w) .

d∑
i=1

σ(ni, τi).

In case that c ≤ f(x̂), v∗(x̂) ≤ c is satisfied for v∗ := argminv∈VΛ ‖f − v‖L2(X̂`,w), the decay rate

carries over onto the space V`Λ(c`, c`). If only c ≤ f(x̂) ≤ c holds, the image of v∗ can be restricted
to [c, c], see e.g. [8]. This approximation in fact admits a smaller error than v∗.

Remark 4.5. The interpolation argument on polynomial discrete spaces could be expanded to other
orthonormal systems such as trigonometric polynomial, admitting well-known Lebesque constants as
in [9].

Remark 4.6. Explicit best approximation bounds for appropriate smooth weights w, as in the case
of spherical coordinates, can be obtained using partial integration techniques as in [37]. There the
regularity class of f is based on high-order weighted Sobolev spaces based on derivatives of w as in
the case of classical polynomials.

5. ALGORITHM

Since a variety of techniques are employed in the density discretization, this section provides an ex-
emplary algorithmic workflow to illustrate the required steps in practical applications (see also Figure 1
for a sketch of the components of the method). The general method to obtain a representation of the
density (1) by its auxiliary reference (9) is summarized in Algorithm 1. Based on this, the computation
of possible quantities of interest such as moments (10) or marginals are considered in Sections 6.3
and 6.4, respectively. In the following we briefly describe the involved algorithmic procedures.

Computing the transformation. Obtaining a suitable transport map is a current research topic and
examined e.g. in [42, 44, 55, 36]. In Section 2.1, two naive options are introduced. In the numerical
applications, we employ an affine transport and also illustrate the capabilities of a quadratic transport
in a two-dimensional example. For the affine linear transport we utilize a semi-Newton optimizer to
obtain the maximum value of f and an approximation of the Hessian at the optimal value, see Sec-
tion 2.1.1. For the construction of a quadratic transport we rely on the library TransportMaps [5].
We summarize the task to provide the (possibly inexact) transport map in the function

(75) T̃ ← ComputeTransport[f ].
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In the following paragraphs we assume Φ` to be the multivariate polar transformation as in Exam-
ple 2.2, defined on the corresponding hyperspherical shells X̂`. We refer to X̂`

1 as the radial dimension
and X̂`

i as the angular dimensions for 1 < i ≤ d. The computations on each shell X̂`, ` = 1, . . . , L
are fully decoupled and suitable for parallelization. Note that the proposed method is easily adapted
to other transformations Φ`.

Generating an orthonormal basis. To obtain suitable finite dimensional subspaces, one has to intro-
duce spanning sets that allow for an efficient computation of e.g. moments (4) and the optimization of
the functional (42). Given a fixed dimension vector n` ∈ Nd for the current X̂`, ` = 1, . . . , L, and by
the chosen parametrization via Φ` introducing the weight w`, the function

(76) P` = {P`i }di=1 ← GenerateONB[X̂`,n`, w`, τGS]

can be split into three distinct algorithmic parts as follows.

� 1st coordinate x̂1: The computation of an orthonormal polynomial basis {P `
1,α}α with respect

to the weight w`1(x̂1) = x̂d−11 in the radial dimension by a stabilized Gram-Schmidt method.
This is numerically unstable since the involved summations cause cancellation. As a remedy,
we define arbitrary precision polynomials with a significant digit length τmant to represent poly-
nomial coefficients. By this, point evaluations of the orthonormal polynomials and computations
of integrals of the form

(77)

∫
X̂`

1

x̂m1 P
`
1,α(x̂1)x̂

d−1
1 dλ(x̂1), m ∈ N,

e.g. required for computing moments with polynomial transport, can be realized with high pre-
cision. The length τmant is set to 100 in the numerical examples and the additional run-time is
negligible as the respective calculations can be precomputed.

� 2nd coordinate x̂2: Since X̂`
2 = [0, 2π] and to preserve periodicity, we employ trigonometric

polynomials given by

(78) P `
2,j(x̂2) =


1√
2π
, j = 1

sin( j
2
x̂2)√
π

, j even
cos( j−1

2
x̂2)√

π
, j > 1 odd.

Note that here the weight function is constant, i.e.
w`2(x̂2) ≡ 1, and the defined trigonometric polynomials are orthonormal in L2(X̂`

2).
� coordinate x̂3, . . . , x̂d: On the remaining angular dimensions i = 3, . . . , d, we employ the usual

Gram-Schmidt orthogonalization algorithm on [0, π] with weight function w`i (x̂i) = sini(x̂i),
based on polynomials.

Fortunately, the basis for dimensions 1 < i ≤ d coincides on every layer ` = 1, . . . , L. It hence
can be computed just once and passed to the individual process handling the current layer. Only the
basis in the radial dimension needs to be adjusted to X̂`. The parameter τGS collects all tolerance
parameters for the applied numerical quadrature and the significant digit length τmant.

Generation of Samples. To generate samples on X̂` with respect to the weight function w`, we em-
ploy inverse transform sampling. For this the weight function is rescaled to have unit norm in L1(X̂`).
Then, the involved inverse cumulative distribution functions can be computed analytically. We denote
the generation process of N ∈ N samples as the function

S` :=
{(
x̂s, f̂ `0(x̂

s)
)}N

s=1
← GenerateSamples[f̂ `0 , X̂

`, w`, N ].(79)
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Reconstruction of a Tensor Train surrogate. The VMC reconstruction approach of Section 3 is
summarized in the function

(80)
{
F̂ `,TT
0,i

}d
i=1
← ReconstructTT[S`,P`, r`, τRecon].

The tensor components F̂ `,TT
0,i are associated with the corresponding basis P`i to form a rank r` ex-

tended tensor train as defined in (25) and (29). The additional parameter τRecon collects all parameters
that determine the VMC algorithm.

The method basically involves the optimization of a loss functional over the set of tensor trains with
rank (at most) r`. In the presented numerical computations we consider a mean-square loss and
the respective empirical approximation based on a current sample set S`. The tensor optimization,
based on a rank adaptive, alternating direction fitting (ADF) algorithm, is implemented in the xerus
library [32] and wrapped in the ALEA framework [16]. Additionally, the machine learning framework
PyTorch [45] can be utilized in ALEA to minimize the empirical cost functional from (52) by a
wide class of state-of-the-art stochastic optimizers. The latter enables stochastic gradient methods to
compute the tensor coefficients as known from machine learning applications. Having this setting in
mind, the actual meaning of the parameter τRecon depends on the chosen optimizer. In this article we
focus on the ADF implementation and initialize e.g. the starting rank, the number of iteration of the
ADF and a target residual norm.

6. APPLICATIONS

In the preceding sections the creation of surrogate models of quite generic probability density functions
were developed. Using this, in the following we focus on actual applications where such a represen-
tation is beneficial. We start with the framework of Bayesian inverse problems with target density (1)
corresponding to the Lebesgue posterior density. Subsequently, we cover the computation of moments
and marginals.

6.1. Bayesian inversion. This section is devoted to a brief review of the Bayesian paradigm. We
recall the general formalism and highlight the notation with the setup of Section 2 in mind. We closely
follow the presentation in [18] and refer to [54, 10, 33] for a comprehensive overview.

Let Y , V and Y denote separable Hilbert spaces equipped with norms ‖·‖H and inner products
〈·, ·〉H for H ∈ {Y, V,Y}. The uncertain quantity y ∈ Y is tied to the model output q ∈ V by the
forward map

(81) G : Y → V, θ 7→ q(y) := G(y).

The usual forward problem reads

(82) Given y ∈ Y, find q ∈ V.

In contrast to this, the inverse problem is defined by

(83) Given observations of q, find y ∈ Y.

The term observations is determined by a bounded linear operator O : V → Y that describes the
measurement process of the quantity q. In practical applications this could be direct observations at
sensor points or averaged values from monitoring devices, e.g. with Y = RJ for some J ∈ N.

Classically, the (deterministic) quantification problem (83) is not well-posed. To overcome this, a prob-
lem regularization of some kind is required. The chosen probabilistic approache introduces a random
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Algorithm 1 Tensor train surrogate creation of perturbed prior

Input: Lebesgue target density f : Rd → R+ (1)

tensor spaces
{
X̂`
}L
`=1

, with X̂` =×d

i=1
X̂`
i (17)

coordinate transformations Φ` : X̂` → X` ⊂ Rd (20)
with rank-1 Jacobians w` := |det [JΦ` ]| : X̂` → R

basis dimensions (n1, . . . ,nL), n` ∈ Nd for ` = 1, . . . , L (29)
sample size N` ∈ N, ` = 1, . . . , L for level-wise reconstruction
tensor train ranks (r1, . . . , rL), r` ∈ Nd−1, for ` = 1, . . . , L (25)
Gram-Schmidt tolerance parameter τGS

tensor reconstruction parameter τRecon

Output: Level-wise low-rank approximation of perturbed prior

Diffeomorphism T̃ ← ComputeTransport[f ]

for ` = 1, . . . , L, (in parallel) do

• Set transformed perturbed prior f̂ `0(x̂) :=
(
f ◦ T̃ ⊗ | detJT̃ |

)
◦ Φ`(x̂), x̂ ∈ X̂`

• Build one-dimensional ONB P`i of Vi,n`i ⊆ L2(X̂`
i , w

`
i ) for i = 1, . . . , d

P` = {P`i }di=1 ← GenerateONB[X̂`,n`, w`, τGS]

• Generate samples with respect to the weight w`

S` :=
{(
x̂s, f̂ `0(x̂

s)
)}N

s=1
← GenerateSamples[f̂ `0 , X̂

`, w`, N ]

• Reconstruct TT surrogate f̃ `,TT
0 : X̂` → R{

F̃ `,TT
0,i

}d
i=1

← ReconstructTT[S`,P`, r`, τRecon]

• Equip tensor components with basis

f̂ `,TT
0 (x̂) :=

∑r`

k

∏d
i=1 f̂

`,TT
0,i [ki−1, ki](x̂i)

where f̂ `,TT
0,i [ki−1, ki](x̂i) :=

∑n`j
j=1 F̂

`,TT
0,i [ki−1, µi, ki]P

`
i,j(x̂i)

end for

return
{
f̃`

}L
l=1

measurable additive noise η : (Ω,U ,P) → (Y ,B(Y)) with law N (0, C0) for some symmetric posi-
tive definite covariance operator C0 on Y to define the noisy measurements

(84) δ = (O ◦G)(y) + η =: G(y) + η where G : Y → Y .

As a consequence, the quantities y, q and δ become random variables over a probability space
(Ω,F ,P) with values in Y , V and Y , respectively. In [54] mild conditions on the forward operator
are derived to show a continuous version of Bayes formula which yields the existence and uniqueness
of the Radon-Nikodym derivative of the (posterior) measure πδ of the conditional random variable y|δ
with respect to a prior measure π0 of y. More precisely, by assuming Gaussian η and independence
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with respect to y, both measures π0 and πδ on Y are related by the Bayesian potential

(85) Ψ(y, δ) :=
1

2
〈C−10 (δ − G(y)), δ − G(y)〉Y

in the sense that

(86)
dπδ
dπ0

(y) = Z−1 exp (−Ψ(y, δ)) ,

with normalization constant Z := Eπ0 [exp (−Ψ(y, δ))] . Note that we interchangeably write y as an
element of Y and the corresponding random variable with values in Y .

6.2. Bayesian inversion for parametric PDEs. Random partial differential equations (PDEs), i.e.
PDEs with correlated random data, play an important role in the popular field of Uncertainty Quan-
tification (UQ). As a prominent benchmark example, we consider the ground water flow model, also
called the Darcy problem, as e.g. examined in [15, 20, 17]. In this linear second order PDE model,
the forward operator G in (81) on some domain D ⊂ Rd, d = 1, 2, 3 is determined by a forcing
term g ∈ L2(D) and the random quantity a(y) ∈ L∞(D), which for almost every y ∈ Y models a
conductivity or permeability coefficient. The physical system is described by

(87) − div (a(y)∇q(y)) = g in D, q(y)|∂D = 0,

and the solution q(y) ∈ V := H1
0 (D) corresponds to the system response G(y) = q(y). Pointwise

solvability of (87) for almost every y ∈ Y is guaranteed by a Lax-Milgram argument. For details we
refer to [53].

For the applications in this article we employ a truncated log-normal coefficient field

(88) a(y) = exp

(
d∑

k=1

akyk

)

for some fixed (ak)
d
k=1 with ak ∈ L2(D) and the image of some random variable with law N (0, I)

denoted by y = (yk)
d
k=1 ∈ Y . Assume point observations (84) of q at nodes δ = (δ1, . . . , δJ) in D

corresponding to some unknown q(y∗), y∗ ∈ Y . We consider the Bayesian posterior density (86) and
set

(89) f(y) = Z−1dπδ(y)dπ0(y)

as the Lebesgue density of the target measure π on Y according to (1).

6.3. Moment computation. In this section we discuss the computation of moments for the presented
layer-based format with low-rank tensor train approximations. In particular we are interested in an
efficient generation of the moment map

(90) α 7→
∫
Y

yαf(y)dλ(y), α = (αk)k ∈ Nd
0.

Given some transport T̃ : X → Y with an associated perturbed prior f̃0 = (f ◦ T̃ ) ⊗ |detJT̃ |, by
an integral transformation it holds

(91)

∫
Y

yαf(y)dλ(y) =

∫
X

T̃ (x)αf̃0(x)dλ(x).
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We fix 1 ≤ ` ≤ L and assume tensor spaces X̂`, X` such that a layer based splitting can be
employed to obtain integrals over X` of the form

(92)

∫
Y

yαf(y)dλ(y) =
L∑
`=1

∫
X`

T̃ (x)αf̃0(x)dx.

Note that we neglect the remaining unbounded layerXL+1 since for moderate |α| and vol(
⋃L
`=1X

`)
sufficiently large, the contribution to the considered moment does not have a significant influence on
the overall approximation. Additionally, a rank-1 stable diffeomorphism Φ` : X̂` 7→ X` is assumed for
which there exist univariate functions Φ`,j : X̂

`
j → X` with Φ`,j = (Φ`i,j)

d
i=1 and hj : X̂`

j → R for
every j = 1, . . . , d, such that

(93) Φ`(x̂) =
d∏
j=1

Φ`,j(x̂j) and | det[JΦ` ](x̂)| =
d∏
j=1

hj(x̂j).

6.3.1. Moments under affine transport. Let H = [hki]
d
k,i=1 = [h1, h2, . . . , hd] ∈ Rd,d be a symmet-

ric positive definite matrix and M = (Mi)
d
i=1 ∈ Rd such that the considered transport map takes the

form

(94) T̃ (·) = H ·+M.

With the multinomial coefficient for j ∈ N, β ∈ Nd
0 with j = |β| given by(

j
β

)
:=

j!

β1! · . . . · βd!
,

the computation of moments corresponds to the multinomial theorem as seen in the next lemma.

Lemma 6.1. Let k ∈ N with 1 ≤ k ≤ d and αk ∈ N0. It holds

[HΦ`(x̂) +M)]αkk =

αk∑
jk=0

∑
|βk|=jk

CH
k [jk, αk,βk]

d∏
j=1

Φβkj (x̂j),(95)

where the high-dimensional coefficient CH
k is given by

(96) CH
k [jk, αk,βk] :=

(
αk
jk

)
cαk−jkk

(
jk
βk

)
hβkk ,

with ck :=
d∑
i=1

hkiMi and

(97) Φβkj := [Φ`1,j(x̂j), . . . , Φ
`
d,j(x̂j)]

βk .

Proof. Note that

[HΦ`(x̂) +M)]αkk =

αk∑
jk=0

(
αk
jk

)
cαk−jkk

(
d∑
i=1

hki

d∏
j=1

Φ`ij(x̂j)

)jk

.

The statement follows by the multinomial theorem since(
d∑
i=1

hki

d∏
j=1

Φ`ij(x̂j)

)jk

=
∑
|βk|=jk

(
jk
βk

)( d∏
i=1

h
(βk)i
ki

)(
d∏
j=1

d∏
i=1

Φ`ij(x̂j)
(βk)i

)
.

�
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Generalizing Lemma 6.1 to multiindices α ∈ Nd
0 yields

[HΦ`(x̂) +M)]α =
α∑
j=0

∑
(|βk|)k=j

(
d∏

k=1

CH
k [jk, αk,βk]

)
d∏
j=1

Φ

d∑
k=1

βk

j (x̂j),(98)

where
∑

(|βk|)k=j
:=

∑
|β1|=j1

. . .
∑
|βd|=jd

is used.

Exploiting the layerwise TT representation of f̂` from (60) and using the rank-1 stable map (93), the
high-dimensional integral over X` reduces to∫

X`

T̃ (x)αf̃0(x)dλ(x) =
α∑
j=0

∑
(|βk|)k=j

(
d∏

k=1

CH
k [jk, αk,βk]

)
×

×
r∑̀
k=0

d∏
i=1

∫
X̂i

f̂`,i[ki−1, ki]⊗Φ d∑
k=1

βk

i ⊗ hi

(x̂i) dx̂i.(99)

Note that the right-hand side is composed via decoupled one dimensional integrals only. We point
out that while the structure is simplified, the definition of Φj in (97) a priori results in several integrals

(indexed by
d∑

k=1

βk). These integrals, whose number depends on the cardinality of α, have to be

computed. This simplifies further in several cases, e.g. when Φ` transforms the spherical coordinate
system to Cartesian coordinates.

Moment computation using spherical coordinates. In the special case that Φ` is the multivariate
polar transformation of Example 2.2, the number of distinct computation of integrals from (99) reduces
significantly. Recall that x̂1 = ρ, x̂2:d = θ = (θ0, . . . , θd−2) and let βki := (βk)i be the i-th entry of
βk. We find that

Φ

d∑
k=1

βk

1 (ρ) = ρ|j|,(100)

Φ

d∑
k=1

βk

2 (θ0) = cos

(
d∑
k=1

βk1

)
(θ0) sin

(
d∑
k=1

βk2

)
(θ0),(101)

Φ

d∑
k=1

βk

i+2 (θi) = sin

(
i∑
l=1

d∑
k=1

βkl

)
(θi) cos

(
d∑
k=1

βki+1

)
(θi).(102)

for 1 ≤ i ≤ d− 2.

The exponential complexity due to the indexing by
∑d

k=1 βk reduces to linear complexity in |α|.
More precisely, the amount of exponents in (100) - (102) is linear in the dimensions since the sums
only depend on |α|, leading to O(|α|d) different integrals that may be precomputed for each tuple
(ki−1, ki). This exponential complexity in the rank vanishes in the presence of an approximation basis
associated with each coordinate dimension as defined in Section 3.

6.4. Computation of marginals. In probability theory and statistics, marginal distributions and espe-
cially marginal probability density functions provide insights into an underlying joint density by means
of lower dimensional functions that can be visualized. The computation of marginal densities is a fre-
quent problem encountered e.g. in parameter estimation and when using sampling techniques since
histograms and corner plots provide easy access to (in general high-dimensional) integral quantities.
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In contrast to the Markov chain Monte Carlo algorithm, the previously presented method of a layer
based surrogate for the Lebesgue density function f : Y = Rd → R allows for a functional represen-
tation and approximation of marginal densities without additional evaluations of f .

For simplicity, for y ∈ Y and i = 1, . . . , d define y−i = (y1, . . . , yi−1, yi+1, . . . yd) as the marginal-
ized variable where the i-th component is left out and f(y−i, yi) := f(y). Then, for given i =
1, . . . , d, the i-th marginal density reads

(103) dfi(yi) :=

∫
Rd−1

f(y−i, yi)dλ(y−i).

Computing this high-dimensional integral by quadrature or sampling is usually infeasible and the trans-
port map approach as given by (4) fails since the map T : X → Y cannot be used directly in (103).
Alternatively, we can represent dfi : R→ R in a given orthonormal basis {ϕj}Nϕj=1 and consider

(104) dfi(yi) =

Nϕ∑
j=1

βjϕj(yi),

where βj , j = 1, . . . , Nϕ denotes the L2(R) projection coefficient

(105) βj :=

∫
R
ϕj(yi)dfi(yi)dλ(yi).

With this the marginalisation can be carried out similar to the computations in Section 6.3.

A convenient basis is given by monomials since (105) then simplifies to

(106) βj =

∫
Rd
yji f(y)dλ(y).

This is the moment corresponding to the multiindex α = (αk)
d
k=1 ∈ Nd with αk = δk,j . Alternatively,

indicator functions may be considered in the spirit of histograms.

6.5. More general quantities of interest. One is frequently concerned with efficiently computing the
expectation of some quantity of interest (QoI) Q : Y → R

(107) E [Q] =

∫
Y

Q(y)f(y)dλ(y).

We discussed this issue for moments in Section 6.3 and basis representations of marginals in Sec-
tion 6.4. In those cases the structure of Q allows for direct computations of the integrals via tensor
contractions. For more involved choices of the QoI we suggest a universal sampling approach by
repeated evaluation of the low-rank surrogate. More precisely, by application of the integral transfor-
mation we can approximate

(108) E [Q] ≈
L∑
`=1

∫
X̂`

Q ◦ T̃ ◦ Φ`(x̂)f̃ `,TT
0 (x̂)|det [JΦ` ] (x̂)|dλ(x̂)

and replace the integrals over X̂` by Monte Carlo estimates with samples according to the (normal-
ized) weight |det [JΦ` ]|. Those samples can be obtained by uniform sampling on the tensor spaces
X̂` and the inverse transform approach as mentioned in the paragraph Generating Samples of Sec-
tion 5. Alternatively, efficient MCMC sampling by marginalization can be employed [57].

DOI 10.20347/WIAS.PREPRINT.2672 Berlin, December 20, 2019/rev. August 12, 2020



M. Eigel, R.Gruhlke, M. Marschall 26

7. NUMERICAL VALIDATION AND APPLICATIONS

This section is devoted to a numerical validation of the proposed Algorithm 1 using various types
of transformations T while employing it with practical applications. We focus on three example set-
tings. The first consists of an artificial Gaussian posterior density, which could be translated to a linear
forward model and Gaussian prior assumptions in the Bayesian setting. Second, we study the approx-
imation under non-exact transport and conclude as a third setting with an actual Bayesian inversion
application governed by the log-normal Darcy flow problem of Section 6.2.

7.1. Validation experiment 1: Gaussian density. In this experiment we confirm the theoretical re-
sults from Section 4 and verify the numerical algorithm. Even though the examined approximation of
a Gaussian density is not a challenging task for the proposed algorithm, it can be seen as the most
basic illustration revealing the possible rank-1 structure of the perturbed prior under optimal transport.

We consider the posterior density determined by a Gaussian density with covariance matrixΣ ∈ Rd,d

and mean µ ∈ Rd as

(109)
dπ

dλ
(x) = f(x) = C exp

(
−1

2
‖x− µ‖2Σ−1

)
,

where C = (2π)−d/2 detΣ−1/2 is the normalizing factor of the multivariate Gaussian. We set the
covariance operator such that the Gaussian density belongs to uncorrelated random variables, i.e. Σ
exhibits a diagonal structure, and it holds for some 0 < σ � 1 that Σ = σ2I . This Gaussian setting
has several benefits as a validation setting. On the one hand, we have explicit access to the quantities
that are usually of interest in Bayesian inference like the mean, covariance, normalization constant
and marginals. On the other hand, the optimal transport to a standard normal density

(110) f0(x) = (2π)−
d/2 exp

(
−1

2
‖x‖2

)
is given by an affine linear function, defined via mean µ and covarianceΣ as proposed in Remark 2.6.
We subsequently employ the multivariate polar transformation from Example 2.2 and expect a rank-1
structure in the reconstruction of the local approximations of the (perturbed) prior.

The remainder of this section considers different
choices of σ ∈ R and d ∈ N and highlights the stability of our method under decreasing variance
(i.e. with higher density concentration) and increasing dimension. The approximations are compared
with their exact counterparts. More specifically, the error of the normalization constant is observed,
namely

(111) errZ := |1− Zh|,
the relative error of the mean and covariance in the Euclidean and Frobenius norms | · |2 and | · |F,

(112) errµ := |µ− µh|2|µ|−12 , errΣ := |Σ −Σh|F|Σ|−1F ,

and the deviation in terms of the Kullback-Leibler divergence (66). Computing the Kullback-Leibler
divergence is accomplished by Monte Carlo samples (xi)

NKL
i=1 of the posterior (i.e. in this case the

multivariate Gaussian posterior) to compute the empirical approximation

dKL(π, πh) =

∫
Rd

log

(
f(x)

fh(x)

)
f(x)dλ(x) ≈ 1

NKL

NKL∑
i=1

log

(
f(xi)

fh(xi)

)
.(113)

The index h generically denotes the employed approximation (60). In the numerical experiments the
convergence of these error measures is depicted with respect to the number of calls to the forward
model (i.e. the Gaussian posterior density), the discretization of the radial component ρ ∈ [0,∞) in
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dimension σ2 = 10−2 σ2 = 10−4 σ2 = 10−6 σ2 = 10−8

2 5.24 · 10−11 1.09 · 10−10 2.8 · 10−11 9.3 · 10−11
4 2.21 · 10−10 4.57 · 10−10 5.48 · 10−10 3.4 · 10−10
6 5.01 · 10−11 9.5 · 10−11 7.49 · 10−11 6.19 · 10−10
8 1.48 · 10−11 8.21 · 10−10 2.99 · 10−10 2.1 · 10−10
10 2.91 · 10−9 9.61 · 10−10 4.43 · 10−11 2.46 · 10−9

TABLE 1. Numerical approximation of Z in the Gaussian example. Error of the nor-
malization constant computed via a TT surrogate to Z = 1.
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FIGURE 4. Gaussian density example with d = 10, mean µ = 1 and noise level
σ = 10−7. Tensor reconstructions are repeated with 50 random sample sets to show
quantile range from 5% − 95% (pastel) to the median (bold). Hellinger distance and
Kullback-Leibler divergence are shown (left) and the relative covariance error together
with MCMC results for mean and covariance are given (right).

the polar coordinate system and the number of samples on each layer X`, ` = 1, . . . , L, for fixed
L ∈ N.

In Table 7.1 errZ is depicted for different choices of σ and d. The experiment comprises radial dis-
cretizations 0 = ρ0 < ρ1 < . . . < ρL = 10 with L = 19 equidistanly chosen layers and 1000
samples of f0 on each resulting subdomain X`. The generated basis (76) contains polynomials of
maximal degree 7 in ρ`, ` = 0, . . . , L, and constant functions in every angular direction. The choice
of constant functions relies on the assumption that the perturbed prior that has to be approximated
corresponds to the polar transformation of (110), which is a function in ρ only. Additional numerical test
show that even much fewer samples and a larger basis lead to the assumed rank-1 structure. It can be
observed that the approximation quality of Z is invariant under the choice of σ and fairly robust with
the dimension d, which is expected since the transformation is exact and the function to reconstruct is
a rank-1 object.

In Figure 4 we compare the number of calls of the posterior density f explicitly. Here, the presented
low-rank surrogate is again constructed on an increasing number of layers, whereas the Monte Carlo
estimates are computed using a Markov Chain Monte Carlo algorithm and subsequent empirical inte-
gration of the error quantity. By taking 100 samples for each added layer, we observe fast convergence
in comparison to the slow MC approach4. To further analyse the reconstruction stability we repeat the

4We emphasize that we just use a baseline MCMC algorithm for comparison. Although more sophisticated MCMC
methods could show a more favorable convergence behavior, the fundamental qualitative difference due to entirely different
approximation approaches would still persist.
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experiment 50 times and show empirical quantiles. The light area represents the 90% quantile of the
distribution and the bold line is the median. We observe a larger variance for the Kullback-Leibler
divergence in contrast to the Hellinger distance.

Note that we do not show the tensor approximation result for errµ since already for the first case of
only 100 evaluations of the posterior (which corresponds to a single layer) we obtain results close to
machine precision. This is due to the choice of an exact transport, already containing the correct mean,
and how the mean is computed in the presented format, see Section 6.3.1. In short, the approximation
cancels due to the normalization and only the correct mean of the transport formula is left. Concerning
the stagnation of errΣ we suspect a precision problem in the computation, which is confirmed by the
small variance. Nevertheless, an approximation of around seven magnitudes smaller than MCMC for
the covariance is achieved.

7.2. Validation experiment 2: Perturbation of exact transport. In the following experiment we con-
sider a so-called “banana example” as posterior density, see e.g. [36]. Let f0 be the density of a
standard normal Gaussian measure and let TΣ be the affine transport of N (0, I) to the Gaussian
measureN (0, Σ). Furthermore, set

(114) T2(x) =

(
x1

x2 − (x21 + 1)

)
.

The exact transport T from N (0, I) to the curved and concentrated banana distribution with density
f is then given by

(115) T (x) = T2 ◦ TΣ(x), Σ =

(
1 0.9
0.9 1

)
.

Note that the employed density can be transformed into a Gaussian using a quadratic transport func-
tion. For this experiment, we employ transport maps T̃ of varying accuracy for the pull-back of the
posterior density to a standard Gaussian. In particular we use an approximation T̃1 (obtained with [5])
of the optimal affine transport T1, and the quadratic transport T to build an approximation T̃ given as
convex combination

(116) T̃ (x) = (1− t) T̃1(x) + t T (x), t ∈ [0, 1].

For t = 1, the transport map is optimal since it generates the desired reference density. For 0 ≤ t < 1
a perturbed prior density is obtained with strength of perturbation determined by t. The impact of the
perturbed transport is visualized in Figure 5. It can be observed that the transformed perturbed prior
is not of rank-1 as long as the transformation is inexact. Furthermore, the difference between the
target prior and the perturbed prior is eminent, which implies that e.g. a Laplace approximation to the
considered banana density would neglect possible important features of the distribution.

In Figure 6 we illustrate the impact of an inexact transport on the approximation results in terms of
errµ and errΣ . For the considered target density, mean and covariance are known analytically and
hence no reference sampling has to be carried out. We additionally employ an MCMC sampling to
show the improvement due to the additional low-rank reconstruction. For the optimal transport map
one observes that the surrogate reconstruction reduces to the approximation of a rank-1 Gaussian
density, which can be done efficiently with few evaluations of f . If the transport is only linear and
inaccurate, results comparable to MCMC are achieved. For a more accurate transport, the low-rank
reconstruction leads to drastically improved estimates.

7.3. Bayesian inversion with log-normal Darcy forward model. Revisiting the example of Sec-
tion 6.2, we consider the elliptic diffusion problem with a log-normal random parametric permeability
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FIGURE 5. Illustration of the effect of different transports in (116) for t =
0, 0.25, 0.5, 1. (top to bottom).

coefficient. The considered field in L2(Y, L∞(D)) takes the form

(117) a(x, y) = exp

(
d∑
i=1

ai(x)yi

)
,

where the yi correspond to random variables with law N (0, 1) and L2(D) orthonormal functions ai
being planar Fourier cosine modes. A detailed description and an adaptive Galerkin approach to solve
the forward problem can be found in [17]. For the inverse problem, the observation operator is modelled
by J = 144 equidistantly distributed observations in D = [0, 1]2 of the solution q(y∗) ∈ H1

0 (D) for
some y∗ ∈ Y = Rd, which is drawn from a standard normal distribution. Additionally, the observations
are perturbed by a centered Gaussian noise with covariance σI with σ = 10−7.

To obtain the desired relative error quantities, we employ reference computations that involve adaptive
quadrature for the two dimensional example in Figure 7 and Markov Chain Monte Carlo integration
with 106 steps of the chain and a burn-in time of 1000 samples for the experiment in Figure 8. For
the reconstruction algorithm an affine linear transport is estimated by Hessian information of the log-
likelihood and on every layer we employ 100 samples. The respective relative errors are displayed in
Figure 8.

The stagnation of the graphs in Figure 7 is on the one hand governed by the observation noise and
on the other hand explicable by a non-optimal reference solutions since the TT approximation yields
results equivalent to an adaptive quadrature when taking L = 5 layers of refinement and thus a total
of 500 samples.

The improvement of the mean and covariance estimate by the low-rank approach can already be ob-
served for a low sample number. We note that the Monte Carlo estimate did not allow for an adequate
computation of the empirical covariance, which therefore is left out of the comparison.
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FIGURE 6. Convex combination of affine and quadratic transport for the banana pos-
terior. Affine linear map (t = 0 top left), transport with t = 0.25 (top right), t = 0.5
(bottom left) and exact quadratic map (t = 1, bottom right). Error quantities errµ and
errΣ for the employed tensor train surrogate and a MCMC approximation in terms of
the number of calls to the posterior function. The surrogate is reconstructed from 100
samples per layer yielding a tensor with radial basis up to polynomial degree 9 and
Fourier modes up to degree 20.

8. CONCLUSION

We developed a novel approach to approximate probability densities with high accuracy, combining
the notion of transport maps and low-rank functional representations of auxiliary (perturbed) reference
densities. Based on a suiteable class of transformations, an approximation with respect to a finite ten-
sorized basis can be carried out in extended hierachical tensor formats. This yields a compressed rep-
resentation for an efficient computation of statistical quantities (e.g. moments or marginals) of interest
in a sampling free manner. In this work the multivariate polar transformation is used as a particular
rank 1 stable transformation. The method requires point evaluations of the perturbed reference den-
sity (up to a multiplicative constant). The approach can hence be applied to not normalized posterior
densities in the context of Bayesian inversion.

We presented the application of the method to an inverse problem with a log-normal Darcy forward
model. A comparison with classical MCMC illustrates the superior convergence in terms of the moment
accuracy relative to the number of posterior evaluations. Future research will be concerned with

� application: usage of the approximated densities for subsequent computations e.g. with SGFEM,
� analysis: Given a function f̃0 it has to be examined which rank 1 stable transformations Φ lead

to a low-rank function f̃0 ◦ Φ.
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normalization constant (errZ ), and (2) mean (errµ). For the Darcy setting with d = 2
we observe 144 nodes in the physical domain. The measurements are perturbed by
Gaussian noise with deviation η = 1e − 7. We employ an adaptive quadrature in
the two dimensional space to obtain the reference quantities. The stagnation of the
graphs are due to non-optimal reference solutions. More precisely, the TT approxima-
tion yields equivalent results to adaptive quadrature when taking 5 nodes of refine-
ment.
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FIGURE 8. Darcy example with d = 2 (left) and d = 10 (right). Comparison of an
MCMC method and the low-rank surrogate for computing the mean error (errµ) with
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