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" Abstract

In this paper we consider a piecewise bilinear collocation method for the solution
of a singular integral equation over a smooth surface. Using a fixed set of pa-
rametrizations, we introduce special wavelet bases for the spaces of test and trial

- functions. The trial wavelets have two vamshmg moments only if their supports
do not intersect the lines belonging to the common boundary of two subsurfaces
defined by different parameter representations. Nevertheless, analogously to well-
known results on wavelet algorithms, the stiffness matrices with respect to these
bases can be compressed to sparse matrices such that the iterative solution of the
matrix equations becomes fast. Finally, we present a fast quadrature algorithm for’
the computation of the compressed stiffness matrix.

1 Ihtroduction

It is a well-known fact that usual finite element discretizations of linear integral equa-
tions (e.g. of boundary integral equations) lead to systems of linear equations with fully
populated matrices. Thus, even an iterative solution method requires a huge number
of arithmetic operations and a large storage capacity. In order to improve these finite
element approaches, several new algorithms have been developed. For a relatively wide
class of boundary integral equations, Rokhlin and Greengard [37, 20] have introduced their
methods of multipole expansion, Hackbusch and Nowak [21] (cf. also [38]) have considered
panel clustering algorithms, and Brandt and Lubrecht [3] have set up multilevel schemes.
Another approach for saving storage and computation time consists in employing wavelet
bases of the finite element spaces. This idea goes back to Beylkin, Coifman, and Rokhlin
[2], and has been thoroughly investigated by Dahmen, v.Petersdorff, Profdorf, Schneider,
and Schwab [13, 14, 12, 15, 32, 31, 30, 39] (cf. also the contributions by Alpert, Harten,
Yad-Shalom, Dorobantu, Kleemann, and the author 1, 22, 19, 9, 10, 36]). Note that all
the different algorithms from multipole expansion to wavelets seem to have a common
multilevel background. '

The subject of the present paper is to apply the wavelet technique from [2] to the colloca-
* tion solution of two-dimensional singular integral equations. The two-dimensional singular
integral equations and the bilinear collocation methods will be introduced in Section 2.
In particular, the collocation for the singular boundary integral equation corresponding
to the oblique derivative problem for Laplace’s equation (cf. Miranda {27}, Section 23,
Klees, Engels [25, 24] or the similar equation for the Molodensky problem in Moritz [28],
Section 43) is included.

If the underlying surface is smooth (continuously differentiable up to a certain order) and
diffeornorphic to the torus, then it is clear that the wavelet algorithms (cf. [12, 31]) admit
high order compressions. For general smooth surfaces represented by a set of parame-
trizations, similar results hold if the wavelet functions are suitably chosen. Supposing
that the parameter domains are squares, one can define the wavelets of the trial space as
tensor products of the orthogonal wavelets and scaling functions over the interval ([7, 5]).
'However, due to the orthogonality, these wavelets are not optimal. Indeed, to reduce
the amount of work for the quadratures applied during the computation of the stiffness
matrix, wavelets with smaller supports but with the same moment conditions seem to be
prefera.ble Thus, in Section 3.1 we consider the piecewise linear univariate biorthogonal



wavelets used by v.Petersdorff, Schwab, and Rathsfeld [32, 36]. These wavelets have the
smallest support among all the piecewise linear wavelets with two vanishing moments.
By reflection techniques we define boundary wavelets and get a stable wavelet system
(Riesz basis) over the interval. Applying well known tensor product techniques in Section
3.2, we introduce a wavelet basis over the square, and, by using the parameterization
mappings, we end up with continuous wavelet functions over the boundary manifold.
For these wavelets, we will prove the Riesz basis property and the usual decay property
for the coefficients of a smooth bilinear function. If the support of the wavelet does
not intersect the lines belonging to the common boundary of two subsurfaces defined by
different parameter representations, then the wavelets have two vanishing moments. Note
that the techniques for the proof of these properties are well known from the works of
e.g. Cohen, Daubechies, Feauveau, Dahmen, Kunoth, Schneider [6, 16, 11, 39]. Therefore,
some parts of the proof are only sketched.

Following the ideas of Harten and Yad-Shalom [22], we define a wavelet basis for the space
of test functionals in Section 3.3. In Section 3.4 we describe the wavelet algorithm which is
based on the just introduced bases in the test and trial spaces. Analogously to the results
by Dahmen, Préfdorf, Schneider, v.Petersdorff, and Schwab [14, 39, 31] we will show
that the n x n stiffness matrix corresponding to the wavelet bases admits a compression
up to a matrix with no more than O(n[log n|*) non-zero entries and that, replacing the
full stiffness matrix by the compressed matrix, we get the same asymptotic convergence
rate O(n™!) as for the conventional collocation solution. For this estimate, the second
order moment condition for the wavelets along the common boundary of two subsurfaces
defined by different parameter representations is not necessary. Note that the logarithmic
factor [log n]* could be slightly improved if the factor 7 in the compression criterion
(3.66) of Theorem 3.1 is replaced by a power of j with exponent less than one. Essential
improvements are possible if wavelets with more vanishing moments are used and if the
compression is extended to matrix entries corresponding to wavelets with overlapping
supports (cf. the compression of the Galerkin matrix due to Schneider [39]). However,
the complete removal of this factor similar to the compression of the Galerkin matrix
seems not to be possible since the basis transform correspondmg to the test wavelets is -
not bounded (cf. Lemma 3.4).

Clearly, using the compressed matrix, the iterative solution (e.g. by a cascadic GMRes
‘algorithm) of the collocation system requires no more than O(n[log n]*) arithmetic op-
erations. In Section 4 we will introduce a quadrature algorithm for the computation of
the compressed stiffness matrix with no more than O(n**[log n]*/®) operations. The cor-
responding error of the discretized collocation solution is less than O(n~!log n). Note
that this quadrature algorithm is more or less an adaption of the Johnson-Scott algorithm
[23] (cf. also. the references in [23]) for the computation of conventional stiffness matrices
to the case of wavelet transformed stiffness matrices. The complexity result is true if
each of the parametrization mappings is analytic in a neighbourhood of the parameter
domain and if the kernel function of the singular integral operator admits a representation
(cf. (4.3)) which is typically fulfilled for boundary integral operators. Moreover, in con-
trast to the estimates for the Galerkin method by v.Petersdorff, Schwab, and Schneider
[31, 39], we even do not need the global analyticity of the parametrizations. Local ana-
lyticity is sufficient. More exactly, if the thrice continuously differentiable surface is given
by certain grid points and if this surface is replaced by a suitable interpolation, then we
may suppose that the parametrizations are twice continuously differentiable and piecewise



polynomial. For this situation, the complexity estimate O(n*/*[log n]*/?) remains true.
Finally, we indicate how an algorithm of complexity O(n) times a certain power of log n
can be obtained.

For a numerical experiment with the method of the present paper, we refer to the pa-
~ per [35]. In that article we considered a singular integral equation corresponding to
an oblique derivative boundary value problem of Laplace’s equation with application in
geodesy (cf. Moritz [28], Klees and Engels [24]). To this we applied a slightly modified
version of the wavelet and quadrature algorithm defined in Sections 3.4 and 4.2. The
underlying manifold was a part of the earth’s surface which is not smooth and which
was approximated by Overhauser interpolation over the uniform grid of a square shaped
parameter domain. Thus a global parametrization mapping was applied for the numerical
computations. Using this, we could replace the singularity subtraction technique of Sec-
tion 4.2 by a global singularity technique. Furthermore, to reduce the computing time,
we used test functionals with one vanishing moment, only. Though these test wavelets
~ lead to asymptotically slower methods, we expect them to be faster for linear systems
of size less than 10000. Due to the lower compression rates the refinement step from
{T7} to {T%} for the quadrature partition (cf. Section 4.2) turns out to be redundant.
Implementing our wavelet algorithm including the three modifications mentioned above,
we observed that the stiffness matrix of dimension n = 9025 can be compressed to 5.1%
such that the additional relative compression error is still less than 10~5. The wavelet
algorithm reduces the computing time on a DEC 3000 AXP 400 o- processor work station
from 10500s for a conventional algorithm to 890s. For more details and results, see [35].

2 The Collocation Method for the Singular Integral
Equation |

2.1 The Singular Integral Equation

Now we consider a smooth two-dimensional surface I' in the three-dimensional Euclidean
space IR3. This surface is supposed to be the union of the closed bounded surface pieces
['m, m = 1,...,mp such that, for every m, there exists an infinitely differentiable co-
ordinate mapping K, from the reference domain § := [0,1] x [0,1] to I'. Moreover,
we suppose that this mapping extends to a mapping over a small neighbourhood of &
and that the intersection of two subsurfaces I';, and I',,/ is either empty or consists of a
common corner point or is equal to a common side of I[',, and I'yy, respectively. In case
the intersection I';, N I is a side, we suppose that the parametrizations k,, and K
restricted to this common side coincide. The singular integral equation over I' takes the
form

Au(m) = a(:z:)u(:n)+‘/I‘KA(m,y)u(y)dyI‘ = v(z), z € T, (2.1)

where a is a smooth function and K4(z,y) is the singular kernel function of operator A.
We suppose that K4 is infinitely differentiable over I' x I' \ {(z,z) : = € I'} and that the
derivatives satisfy the Calderén-Zygmund estimate :

16208 K 4(z,9)| < Cla, B, 4,T) o — y|~CHI=HED (2.2)



for any multiindices o and 3. The integral on the left-hand side of (2.1) is to be understood
~ in the sense of a principle value (cf. [26]). Operator A is supposed to be a classical pseudo-
differential operator of order zero and maps the Sobolev space H*(T') of order s into H*(T").
In local coordinates, (2.1) takes the form

alss(()ula(8) + 52 [ Kt omeD (s} = o),
teS, k=1,...,mr, (23)

where || (s)| denotes the density of the surface integral, i.e., the norm of the vector
product O, Km(5) X Oy om(s).

For the stability of the numerical methods, the concept of strong ellipticity plays a crucial
role. We call A strongly elliptic if A satisfies the so called Garding inequality, i.e.,

Re(Au, u)r2ry > v||ullzzy — (Tu, w)r2(m)| . (2.4)

for any u € L*(T). In (2.4) the operator T' € £L(L*(T')) is supposed to be compact and
stands for a positive constant independent of u. Note that the classical pseudodifferential
operator A is strongly elliptic if and only if the real part of its main symbol is greater
than a positive constant.

Finally, remark that the smoothness assumptlons can be relaxed This will be 1ndlcated
in Section 4.1. :

2.2 The Bilinear Trial Functions and the Collocation

We will seek an approximate solution for u of (2.1) in the space of bilinear functions
over I'. To define these functions, we first introduce functions over the square S. We set
N:=N;:=3-2 and h:= h; := 1/N and consider the grid AS := {r;x: 1,k =0,...,N},"
where 7; ;, := (th, kh). The space of piecewise bilinear functlons 53 = span{ga,_ : T e Af}
over the grid A% is defined by the basis functions ¢3(t) := N ©T(N - [t — 7]), where
0T ((t1,t2)) := <p(t1)<p(t2) is the tensor product of the univariate hat function

1—s| if|s|<1
#(s) :={ 0 . elsle.! B (2.5)
Using the pa.rainetrizations Km, we define thegrid A; = {5 : m=1,...,mpr, 0,k =
., N} over T by €% := km(7ix) and the space of trial functions S; := span{ee :

E E A it by eer, (/sm(t)) = ¢li(km(t)) := ¢35 (t). Note that, if { € A; belongs to
more than one subsurface T, then it admits several representations of the form £ =&
Nevertheless, we consider ¢ as one point. The corresponding basis function ¢ is the sum
of the functions km(t) = O (km(t)) == cpv_ (t) defined over the different I',,. Clearly, the

functions of S; are bilinear with respect to the parametnzatmn and @¢(¢') = Nég e holds
for any &,¢' € A;.

With the collocatlon method we seek an approximate solution u; € S; to u by solvmg the
collocation equations

(Au;)(§) = v(£), £ € A, - (26)



We introduce the interpolation projection P; onto S; by
ij € SJ') PJf(E) = f(f)a f € AJ" (27)

Clea.riy, the collocation system (2.6) is equivalent to P;Au; = P;u. The collocation is
called stable if, for sufficiently large 7, the collocation operators A; := P;Als; € ,C(.S' ) are
invertible and the L?- norms of the inverse operators are un1formly bounded

Theorem 2.1 i) [34] Suppose that T' is homeomorphic to the two-dimensional torus and
that mp := 1, te.,, kK 1=Ky : § —> [ is a global parametrization. Moreover, we aSsume
A to be strongly elliptic. Then the collocation method is stable in H* for 0 < s < 2. The
collocation solution u; defined by (2.6) converges in H* to the ezact solution u of Au =v
for any v € H® with s > 1, and the collocation error satisfies

e < 027707 | e

- luy —

for0<s<t<2, s< 1<t

i) [33] Suppose that I‘ S that S; and A; are modified such that A; contains only the
intertor grid points and tha.t S; is spanned by the basis functions vamsh'mg, at the boundary
of ' = 8. Moreover, we assume A to be strongly elliptic. Then the collocation method
is stable in L?. The collocation solution u; defined by (2.6) converges in L? to the exact
solution u of Au = v for any v € L? such that |[Pjy — v|z — 0. Ifu is in H? and
vanishes over the boundary of S, then '

g = wllz2 < €27 2’ll?ﬁllm

Unfortunately, we do not know stability results for the collocation method in the general
case. Nevertheless, we suppose in the following that the collocation method is stable.
Then the error estimates of the last theorem remain valid.

Choosing the conventional finite element basis {(pg}geAj, the collocation equation (2.6) is
equivalent to the system '

S h(Age)(E)we = ho(¢), € €Dy (28

EEA;

for the coeficients wg of uj := Yeen; wepe. Thus, the stiffness matrix of the collocation

is Aj = (h(Ape)(€))e en;-

3 The Wavelet Algorithms

3.1 Univariate Wavelet Functions

Using the parametrizations, it will be sufficient to define the wavelet basis functions over
the square S. Since these wavelets can be defined by tensor product techniques, we begin
with the definition of univariate wavelets. To introduce wavelets over the real axis IR, we
consider the uniform grids AF := {th;: 1 € Z } and the difference grids V{F := A +1\AR
for [ > 0 and VE := AE. Clearly, AR = Ul——l VE and the space of piecewise linear
functions Sf* over the grid AR is spanned by the finite element basis {¢f : o € AF}



given by cpJ,(s = \/Njp(N; - [s — o]). It is easy to see that the finite element functions
satisfy the reﬁnement equations

1 1
(pil:hl = 5@&1,[22‘—1]}1;.{.1 _I_ @ﬁl,[zth.}.l + _2—(1011-}-1,[21:4-1]’11.*.1' (3'1)

Following the techniques for the constructions of .orthogonal wavelets, it is natural to
‘define the wavelet shape function

W)= sol2s -1 —pl2s) + Spl2s 1) (3

and to introduce the wavelet basis functions by shifting the dilated shape function s —
¥(N; - s) to the points of the reference grid V. More exactly, we set pF(s) := ©f o (s)
for o € VE as well as ¥ F(s) := \/Fn,b(Nz [s — o]) for o € VE with [ > 0. We arrive
at the hierarchical basis {¢F: 0 € VE, I = -1,...,7 -1} of the finite element space
S; E and at the multiscale decomposition S R_y7 VV, , where the wavelet space Wik
spa.nned by {vE: o0 € VE}.

We remark that these basis functions are not wavelets in the sense of [16, 4]. The ¥ E are
biorthogonal wavelets in the sense of [6], where the dual scaling function has not a finite
support but decays exponentially. From Proposition 4.8 of [6] with L = 2 and k& = 2,
we infer that the dual scaling function belongs even to the Sobolev space H'/2*+¢(IR) for
a certain small positive e. For a few more details, we refer the reader to the proof of
Lemma 3.5 in [36]. The wavelet functions ¥E, o € VR of level [ > 0 have two vanishing

moments, i.e. they are orthogonal to constant and linear functions. Moreover, among all
the basis functlon with two vanishing moments the ¥E have the smallest support.

Now we define wavelet functions over the interval Z := [0,1]. We consider the uniform
grids A := {th; : < =0,...,N;} and the difference grids V§ := Af; \ A for [ >0
and VI = AL Clearly, the space of piecewise linear functions SJI over the grid AI is

spa.nned by the finite element basis {goI 0 € Az} given by gaI = (,oﬂ|z Similarly, the
wavelet functions could be defined as the restrictions to Z of the corresponding functions
over JR. However, we will change those basis functions which do not vanish at the end
points of the interval. To this end we consider the space of “even” functions over IR,
i.e. the functions satisfying f(s) = f(—s) = f(2 — s) for s € [0,1]. The correct basis
functions for this space are the functions

S = ¢o'(3) + 'Qba'(“s) + 'l)bo‘(z - 3) = ¢a(5) + 'L'b—cr(s) + ¢2-—-a’(3)~
If we restrict these to Z, we arrive at the wavelet basis {tgeen . o € AT} defined by

‘P(ﬁ,lz if o € VI,
,l/Jeven e ¢RII ifoe V l > 0 and 0 1 ¢ supp ’I,ZJR (3 3)
z {¢h¢+1 +9F, e ifo € VF, 1 >0, and o = hiyq g

{"/’1 —hipy +¢1+h,+1}|1 ifoe V , 12> O, and 0 =1 — hyy;.

We denote the corresponding wavelet spaces span{y®™" : o € Vf} by W and obtain
Wit = W',RII and ST = Y9 ' WE. Clearly, only those wavelets of level I > 0 have two
vamshlng moments for which the support is contained in the interior of Z. The wavelets
of level [ > 0 with support intersecting the boundary {0,1} have one vanishing moment,
only. Instead of the orthogonality of the wavelet basis we get:



Lemma 3.1 i) There e:msts a constant C > 0 such that, for any j and any sequence
(u,),eAz we get

Y el <l S et lom <0 [ X ol (3.4)
O'EA:-E . a'EA? . a'EA“.r

i) There exist constants C > 0 and 0 < q < 1 such that, for cmyl <, v e St and
u'' € WE, we get ,
(" Y r | < Cq- ||UIHL2(I)|IU lle(z)- (3.5)

Proof. Now and in the following we denote by C a generic constant the value of which
varies from instant to instant. We note that the corresponding assertions hold for the
wavelets over the real axis. Indeed, the analogue of i) is proved in Theorem 3.8 of [6]. For
the proof of ii), we consider the projection QR onto 5j E parallel to the closure of U2, WiE.
This projection QF € L(I*(IR)) is unlformly bounded with respect to j (cf. (3. )) We
observe that the vamshmg moment condition for ¢ implies that the constant function is
contained in the span of the dual scaling function, i.e. in im [QJR]* From this fact and
the exponential decay of the dual scaling functions, it is not hard to derive the usual L?
convergence order O(\/h_J) for the approximation of an H'/? functions f by [QF)*f. By
duality a.fguments, we can approximate an L? function f by QJR f with an H~1/2 error of

O(4/h;). This and the well-known inverse property for piecewise linear functions yields

(cf. e.g. the proof of Lemma 6.3 in [39])

et mm| < W lmaml e | | (3.6)
< gl - Qﬁq)uy“H—l/z(R)
-1 ‘
1 ! . 1 !
< 0P O oy < € (J5) sl e

and 11) for the case of the real axis is proved.

Now we consider Z. The second inequality in (3.4) follows eas11y from the correspondmg
estimate over the axis. To see the first, we choose a sufficiently large integer M and extend
Cu; =Y Az U Y™ to the real axis by setting

U—giom H2m—1<o<2mandm=-M,....M (3.7)
0 else.

u; = Z u,z/}f, Ugp 1=

Us_gm H2m<oc<2m+landm=-M,....M
o'EAf'

This function satisfies u;(s) = uj(s —2m) for 0 < s < land m = -M,..., M -1,
u;(s) =u(—s—2m)for0 < s<landm=-M+1,..., M, and uj(s) = 0if |s| > 2M +1.

The assertion i) for the real axis leads to

4M||uj|| L2y + 2C ] > Jul? > H‘%HL?(R —2M l > |u,|2 (3.8)
a'EA_,,z o’EAI
o 1
. > - 2 .
oo > {35~ 5} [E .

Q



- which proves the first inequa,lity of (3.4), i.e. the assertion i). Assertion ii) follows by
similar arguments from the corresponding result over the axis.

o

Similarly, we can define a wavelet basis in the subspace Séf of those functions of S’I which
vanish at the end points 0 and 1. To this end we consider the space of “odd” functlons
over IR, i.e. the functions satisfying f(s) = —f(—s) = —f(2 — s) for s € [0,1]. The
correct basis functions for this space are the functions s = P,(s) — PY_o(8) — Pa—o(s). If

we restrict these to Z, we arrive at the wavelet basis {2 : o € AT\ {0,1}} defined by

<P§,2¢|I if o € VI \ {0,1}
'l,bOdd . — ¢ II ' if g e v-lzi l 2 0’ a‘n‘d 07 1 ¢ Supp Qpal‘z (3 9)
c {¢hz+1"‘¢ Bz o€V 1>0, ando=hy, 8

(WF,, —vF, Mo ifoeVE 120, and o =1 — huy.

We denote the correspondmg wavelet spaces span{y°®: o € V¥} by Wé[, and obtain

SI. = g Z" 'WZ,. Again, only those wavelets of level I > 0 have two vanishing moments
for which the support is contained in the interior of Z. The wavelets of level [ > 0 with
support intersecting the boundary {0,1} have no vanishing moment. The assertions of
Lemma 3.1 hold also for the basis {12} and for the spaces ngl.

We conclude this section with some results on the dual wavelet functions. For definiteness,
we restrict our consideration to the dual wavelets of the wavelets ¥Z := yg***. From [6]
(cf. also [36], Lemma 3.5) we infer the existence of a dual scaling function ¢ and and a dual
mother wavelet 1. These functions + and @ belong to H/2+¢ for a cer’ca.ln € > 0 and decay
exponentially. Setting @/%.(s) := VNG(Ni:[s—0]), 0 € AF , DEB(s) := ¢t, o € VE and
DEB(s) == /Nh(N;-[s—c]), o0 € VE, | 30, we get the duality relations (&, 4 F) = &, .
' and (R, @f1) = 8gqr for any 0,0’ E AFE. Clearly, the projection QR onto .S'R parallel
to the closure of 352 W/F can be represented as

QFf(s)= 3 (3R, el (s)= 3 (BF, FHoF(s). (3.10)

R R
o'EAj aEAj

These projections are uniformly bounded in L%(RR) since {¢)F} is a Riesz basis. For
the construction of dual wavelets over Z, we introduce the restriction operator R :
L} (R) — L*ZI) by Rf := f|z, the prolongation operator K : L}(I) — L2 (R)
and the L? adjoint operators R*, K* by ,

fls—=2m) i2m<s<2m+landmeZ
Kf(s) { f(=s+2m) f2m-1<s<2mandme€ Z (3'1})
. | ‘ if s €1
K*g(s) = ) {g(@m—s)+g(s+2m)}, R'g(s) := { g(s) 1els,se :
meZ :

Now we define the dual elements over T by <pI = K*¢F, and the dual Wa,velets’by
JT := K*)B. Tt is not hard to obtain that (DX, L) = (DB, KpL) = 8,4 and that

gai,,gar = d,, for any 0,0’ € AI Moreover the prOJect1on QI onto SI parallel to
the closure of ¥2: W can be represented as ,
Qif(s) = X (Wi fr(s), QF = RQJK. (3.12)
TEAT

Analogously to Lemma 3.1 we get:



Lemma 3.2 i) There exists a constant C > 0 such that, for any j and any sequence

(u,),eAz we get
>oluP < Y ua¢I||L2(z) <c > Iucrl2 (3.13)
ueAI ’ aeAI aeAI

zz) There exist constants C>0and0<g<1 such that, for any l < l', u' € span{@], :
T € AT} and w¥ € span{yZ : T € VE}, we get

[(u, u" Y ey < C [ | ey 1w || 2 2 (3.14)

Proof. Assertion i) is a simple consequence of a duality argument, of the duality relations
between the basis {{)Z} and {¢Z} and of Lemma 3.1 i). For assertion ii), we remark
that it suffices to prove the inverse property and the approximation property for the
~space span{@., : 7 € At} = im[Q%]* (compare (3.6)). However, the estimate for the
- approximation error f— [QI] fin H “( ), 0 < & < 1/2 with f from L?(Z) is equivalent to
the well-known L?(Z) estimate for f — QI f with f from H¢(Z). Thus the approximation

property is clear.

For the inverse property estlma,tmg the H ‘(I) norm of u; € im [QI] by Ch;® times the
L? norm of u;, we consider u; = 2,64}; €57, and set €_, := & as well as AE -

‘Af U '—AJI-,. We obtain
Z 60"10], = Z €s Z {gbﬁ,(Qm —5)+ (ﬁfcr(s T 2’m)}7

U'EAI O'GAJz meZ

1> &l

O'GAJI
< I Y &Y ernm—9)lam+l X & Y éio(s+2m) lum
veAI meZ aeAI mezZ
S X &Y e mt sl + X0 & X Bhe(s +2m) [aeom)
o-eAI meZ . o‘EAI meZ

< | Y &Y R(s+2m))

O_EAE"I»II mGZ

He([-1,1)- | (3.15)

The last norm can be estimated by standard techniques. Indeed, the H® norm of a
function f over the periodic interval [—1,1] is equivalent to {3 ez max[|k| 1]%| £ |23/2,
where the k-th Fourier coefficient fi of a function f is given by fx 1= 3 f_ f(s)e™™*kds.
Using this norm equivalence, the formula

ng @1 (2m — ')L = %me"”k[f@] (2%) : (3.16)

CFAs) = [ e,
and the estimate (which follows from [6], Proposition 4.8 by choosing L = 2 and k = 2)
|[F@(s)| < Cmin{1,]s|7}, l (3.17)



it is not hard to obtain

“ Z E‘T(?Ej,o‘l

ielm@m < CN; l > &l < ong ' > &P
a'GAJl-' UEAE_I'll aEA?

< CONj| Z 07 llza, (3.18)
G'EAJZ"

where the last inequality follows analogously to (3.13). Thus the inverse property is
proved, too. ‘

<

3.2 Wavelet Functions over the Square S and over T'

Our aim is to introduce wavelets over the surface I'. These wavelets will be tensor products
of the wavelets and scaling functions in the space ST and Sg respectively. In the first
step, we define wavelets as tensor products of func’clons from SI and then, using the pa-
rametrization k;, we define functions over I';. These functions are extended by a simple
extension procedure to piecewise bilinear functions on I' vanishing at the grid points of
the other subdomains. For the basis over the neighbour I'; of I';, however, the linear
functions on the common edge belong already to the span of basis functions of the first
step. Thus we need a basis of functions vanishing at the common edge. In general, for
any I',, to be considered in the further steps, we are given a certain set of edges on which
the linear functions belong already to the span of wavelets of the previous steps, and we
have to define basis functions vanishing over these edges. This will be realized by takmg
approprlate tensor products of functions from SI and ST, » Tespectively.

Now we turn to S and seek a basis of bilinear functions vanishing at the set of edges £.
Here £ is an arbitrary but fixed subset of {e; : 7 = 1,...,4} with e; := [0, 1] x {0},
ez :=[0,1] x {1}, e5 := {0} x [0, 1], and eq := {1} x [0, l] We set

P& fo< lande ¢& - peet fo<landes ¢ &£
o = o fo<lande €€ 7 = o fo<landesef (3.19)
) Y fo>iande ¢ € T T e fo>zandes¢ & T T
o fo>iande € ¥ fo>iande €8

Setting AF 1= AF x AF, AP := AT\ UE, V‘Ef 1= A5 as well as V{*© i= ATT\ A
if 1> 0, we get ‘
V- LU, - vExsF\G, G
Vor = AT xVF\ UE, Vif := VI x VI \ UE,

for | > 0. The basis functions over S are defined as

O3 (1) 1y (t2) i 7= (r1,m2) € VY SE |
ifl >0and 7= (11,72) € V)
S(4, 1) = 4 ¥m (b)piir (2) 172 . 3.21
¥r(tto) (,o,’,_l(tl)zp%(tz) ~ifl>0and 7= (11, 72) € sz : ( )
n(t)y4(t2) ifl>0and 7= (11,72) € Va"f

10



Clearly, the functions {¢5 : 7 € AS *1 span the space Sss of all bilinear functions of
SS which vanish over the edge points of UE. We get Ssg = El——l ¢ where I/’[/'[("’£ =
span{v,bf. e Vith

Beside these basis functions we also need the simple extension procedure mentioned in
the beginning of the section. We retain the definition of the ﬁnite element functions

S from Section 2.2. For a moment, however, we write <p . := > in order to indicate
the dependence on the level 5. The trace of a b111near functlon of S¥ on the edge is a

linear function. If the bilinear function belongs to W%, then the trace on the edge is a
piecewise linear function over the restriction of AJ .1 to the edge. Thus suppose we are
given a function f over the union of the edges in £ which is piecewise linear over the
uniform grid A¢;|us. Then we denote by Pf the function

NOP —ﬁ%¢f+1,f(t) @)

TEAS nUE (PH-I,T(T

i.e., the unique piecewise blhnear prolongation of f to a function in S?, 1 Which vanishes
over the grid points of AP e

Now we turn to I'. We suppose that the I'y,, m = 1,...,mp are given in such an order,
that, for any 2 < m < mp, each vertex of the subdomain T',,, belongs to an edge common
with Um,_lI‘ mt or does not belong to Um,_lI‘ To each m with 1 < m < mr their belongs
a possibly empty set £, C {e;: 7 =1,. 4} such that {km(e) : e € En} are just the
edges which are contained in U7} [y Obv1ously, we have A; = Um_lnm(Af"Em). To

define the wavelet basis over I' we first set

[ gE() €= km(r)€ km(D35) and if & = K (t)

Form' > m and { € /ﬁm(AS EmY N Kt (UE ), however, the function ¢ vanishes over the
interior of I,y and does not vanish over the common edge I'y, N T'y. The same kind of
discontinuity along an edge occurs also for wavelet functions ¢v5 with £ in the interior of
I',, but close to the common edge, i.e., if § = k,(7) € K,m(V;gg )y if km(e) = T N Dy
and if the distance of 7 to e is equal to hyy;. To get a continuous function from S;, we
extend the traces from the edge to a bilinear function over [',,;. Finally we arrive at

(3.23)

([ fe(z) if € € fcm(Af’g’“) and if z € I'yn
Ye(z) = [P (e 0 bmlue, )| (8) i € = km(7) € Km(VE¥™), @ € T, (3.24)
and ' N Tt = km(e), dlst('r e) < hiy
| 0 else .

Clearly, the functions {¢¢ : £ € A;} span the space of all bilinear functions of S,-. The
functions v have two vanishing moments whenever { € A; \ A and the support supp ¢
is contained in the interior of I';,. Note that two vanishing moments mean that the v,
are orthogonal to “polynomials” of degree less than two, i.e., (¢, f) = 0 for any bilinear
polynomial f o k,, over S. The scalar product (-,-) is defined by

(F,9) z Y R{CROIFCOLE

Furthermore, the 9, satisfy the following properties:

11



Lemma 3.3 i) There e:msts a constant-C > 0 such that, for any j and any sequence
(ug)een;, we get

1 _
: 51/ 3 luel? <Y uetbellrmy < CL D el (3.25)
‘ Eeh; - gen; EEA; ‘ ‘ )

it) There ezists a constant C > 0 such that the ‘coeﬁicients fe of the piecewise bilinear
interpolant P if = ZeeA febe to an arbitrary functzon f from the Sobolev space H*(T)
satzsfy

T AP < Cillfllmy, )

e

where | = [(€) denotes the level of €, i.e., £ € Vi := Dyr \ A

Proof. i) First we consider the square S and the space Sf’g. For these, we will show

1 ;
ol Yo Pl Y wtiles <C | Y et (3.27)
TEA;-S'E TGAf‘s ~1'€A;.s'£ ;

We set u! := XorevSE u,S and prove
3 .

o] < Cq ¥ o) o loosyy (3.28)

where g is a fixed pos1t1ve constant less than one To simplify the formulae, we assume
that [ < I/, that vl := % revSE u,93, and that u" := YorevsE u,1p2. From Lemma 3.1 ii)

and i) we conclude

(3.29)

Whuty = / IIEACYZACY / [ZU(,,.!,,,Z)%@ tz] [Zu(., ]dtzdtl

1,71

W) < od [ znzum)mu 5 61 ) o

1 :7'1

¢ [ Z,/Zluml 192, (60) /Zlu(,-;,fm [ () ldts.
T1,1' 'r2

We observe that (3.4) holds also if the ¥"*® are replaced by [Z|, by [4¥|, or by |<,01 | if

the summation runs over functions of a fixed level. Using this, we arrive at

|<u’l7ull>l < qu—ll Z |u 7'17'2' Z 'U(T{,Tz’)! (330)

(m1,m2) (m{:m3)

A

. On.the other hand, Lemma 3.1 i) and the well-known analogue for the finite element'
functions imply

Lera = / JED>

2

Ury ) U5, (81) Py ()| A1t ‘ - (3.31)

(T1,7m2)
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2

dt,dt,

= /01 / Dy [;u(ﬁ,,,)cpf,,(tz)} A (8)

T
1 |
~ _/0 Z Zu(ﬁﬂz)('ofn(t?)
T | T :
. 1 o
= 2 [ St mpefnlt2)
T1 T2

- Here the symbol ~ means that the left-hand side is less than constant times the ‘righf-
hand side and vice versa. Relation (3.31), the analogues result for ", and (3.30) prove
(3.28). The estimates (3.28) and (3.31), however, imply

' j—-1 7—1 j-1
|5 P = (ST ) = () (3.32)

2
dt,

2 .
dia ~ Z lu(n,‘r:)lz'

(m1,m2)

TEA;»;'S l=-1 U=—1 Lll=-1
S, = -1 l ' =
I3 w?®? < ¢ 3 "R s C X WP <C Y fuf
TEA}S'E Lll=-1 l=-1 TEA'?’E
. 2

which p‘roves the upper estimate in (3.27).

To get the lower estimate, we consider the dual wavelets

(ég’ﬁ (tl)%’” (tz) if 7= (7-1772)' € Vf’f
2 (1)@tn(t)  ifl>0and r=(rn,m)€ V;;

b3 (¢, t) i= .
¥ (b1, t2) @I’ﬁ (tl)}py,}(tz) ifl>0and 7= (m1,72) € Vg’f ’
2 (b)Y (t2)  f1>0and 7= (r,7m) € Vir

~ (3.33)

where the <f:;‘r,¢, zZ:, and the 1/33 are the univariate dual functions to the functions ¢y,
Y3, and ¥, respectively (cf. the end of Section 3.1). The univariate duality relations
(}’, ) = boory (B2, V%) = 6501, and (@L,,¢7,) = 860 imply the duality relations
($2,2) = 8, over S. Applying the arguments leading to the upper estimate of (3.27)
to the dual system, we get

” Z vTJJflle(s) < c Z ['v'rlz- (334)
respe reae |
Cohsequently, :

Y2 wr? sy 2 sup <Z us, Y vfzﬁf> (3.35)

‘ TEA}-S ’ “E,—EA;?”T"/;;S”SI TEA;? TEA;’?

sup Z | > CTH Y (u?,
/ETGA“’? fur|2<C-1 TGA;? read
and (3.27) is proved.

For the proof of (3.25), we observe that the piecewise bilinear prolongation P;f of a
univariate function f of level [ defined over an edge is the tensor product of this f times
the finite element oft; o|z or ¢ff, ,|z. Using

|(90ﬁ-1,oll’9052+1,611>1 < ¢TI (3.36)

v
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and (3.4) and repeating the arguments leading to (3.32), we arrive at

> ue@benm@m)sc’J* > el - (aa1)

S.E S.€
£€nm,(Aj m') EE"'m/(AJ‘ ml)

From this and (3.27), the upper estimate in (3.25) follows easily. To get the lower estimate,
we conclude from (3.27) that

\J S el o< ol Y ubeloen - (339)

EEnm(ATEm) ¢enm (AT E™)

< C 3 ugel|z2(r) +C Z I > wetellemn

S,
e mi=1 gern(A;™)

Using the just proved upper bound (3.37), we continue

EGNm( 5 5m) Een; m/=1 EEnm/(Aflsml)

\J > el < Cl Zug¢e.|1Lz(rm)+oi\j > P (3.39)

Now we substitute (3.39) with m = 1 into the right;hand side of (3.39) with m = 2,
substitute the resulting inequality into the right-hand side of (3.39) with m = 3, substitute

the obtained inequality into the right-hand side of (3. 39) with m = 4, and so on. For

=1,...,mp, we arrive at
> P < C Z I3 vedellzer,)- (340
germ(DTE™) m/=1 ¢€h; ‘

Summing up over all m, we obtain the lower estimate of (3.25).

ii) First we recall the well known estimate

If = Pifllzeqry £ CRE| fllaz(ry (3.41)

for the interpolation projection P; unto the piecewise bilinear functions. Here the norm
“ || - lzr2(ry is the sum of the H? Sobolev norms over the subsurfaces I',, m = 1,...,mp.

Now we consider the complementary space S;ompl :=clspan{ype : £ € DNy \ D, 7 > 5}
of S; and denote the projection of L3(T") onto S; with null space S ' by Q;. From i)
we conclude that @; is uniformly bounded with respect to 7. In view of (3.41), we get

If = Qiflxry < CR|fllem), (3.42)
1@t — Qui-1)fllzey < CR||fllzrz(ry-

We set Q;F = ¥ febe. Together with (3.25) we arrive at

NI i
¢en;:l(e)=l |
2 24017 < 0\l fllaey- 3
EEA; i . ’ ‘ »

14



In order to derive (3.26), with the help of (3.25), (3.41), and (3.42) we conclude that

S Ufe = fel? < 1Qif — Piflleam < Chi I fllzey < C27%||fllazry.  (3.44)

EEA;

Together with Inequality (3.43) we arrive at

3 28O fe2 < 22415)]]65 fel2+ |30 240 £l (3.45)

§EA; £€h; , EEA;

< 2 [ e £+ CVill fllamney < Ol
¢en;
Note that, if ¢;¢ := ¢, denotes the finite element function of Section 2.2, then there holds

1 . '
o/ Dol <Y vewiglzer < 0‘ > lvel?. (3.46)
(EL; £ED; ¢EA; |

By E; we denote the wavelet transform, i.e., the basis transform mapping the vector
(ve)een; of coeflicients v; of a function u; € S; with respect to the basis {(p;¢} to the
vector (ug)een; of coefficients ug with respect to the basis {3¢}. Then Lemma 3.3 1)
implies that E; is invertible and that the {* operator norms of E; and E;*' are unlformly
bounded with respect to j. Finally, we remark that the a.pphcatmn of E and E

be realized by fast pyramid algorithms (cf. [16, 4]). For one application of E; or E“ ,
more than O(N;) arithmetic operations are required.

o

’3.3 The Wavelet Test Functionals

Similarly to the new wavelet basis ¢ in the trial space S;, we can introduce a “wave-
let” basis for the space of test functionals. Note that, in view of (2.6), the space of test
functionals is spanned by the Dirac delta functionals &, ¢ € A;, where §¢(f) := f(£). The
wavelet functionals will be linear combinations of the delta functionals. To introduce wave-
let functionals, we first consider the square S. Analogously to (3.20), we set V5, := A§
and

VP =UL Ve, Vir=Vi x AF, Vi, := A x Vi, V,-—szv (3.47)

for [>0. The basis functlona.ls 9, = (71,7'2) € AS over S are defined by

T?

'—&l if’rGVfl

£7) = U = uga,m) + £+ hia )

ﬁs(f) =9 1 Nz

flr) - E{f(Tl,Tz — hiy1) + f(r1, 72 + i)}
L N

if € V3, UV3,
and [ > 0.

\

Smce the pomts (7'1 + hyy1,72) belong to Af for 7 € Vl 1, we easily get that the span
of {95 : 7€ V§}U{s, : 7 € A} is equal to the span of {§, : 7 € A7 U VS }.
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Similarly, for 7 E \%4 U V3, the points (71, 75 £ hu41) belong to AFUVS 1, and the span of
{9¢: re V3, ,}U{c? : 7 € AJUVS,} is equal to the spanof{5 T e AJUVEY
Thus, the span of {95: 7€ VJ}U{s,: 7 € Af}isequal to the span of {6, : 7€ AF;}
and we have span{4, : 7 € A} =span{¥: 7 € Af}. Now the functionals J¢, £ € A,

over T' are defined by 9¢(f) := 95(f o Km), where { = kp(7) and 7 € AGH Clea.rly,
span{de : £ € A;} =span{ds: £ € A\;}.

To prepare the analysis of the corresponding wavelet tfansform, we introduce the dual
wavelet basis which is some sort of hierarchical basis. We write t = (¢1,%2) and 7 = (m, Tg),
retain the notation of o7, from Section 3.1 and set

90%-1'1 (tl)(pl (tZ) if r e V‘El B
( ) (,DI+1 - (tl)(;afﬁ(tZ) if r € Vf’l and [ 2 0 (349)
4,014_1,71 (1)@t 1 m(t2) 7€ V5, UVS,and 1> 0.

These functions satisfy 95(x5) = ... Now the dual functions x¢, & € A; over I are
~defined by x¢(km(t )) = x3(t), where ¢ = km(7), 7 € A, and ¢t € S. Clearly, we get
Be(xer) = d¢er for any €,& € A;, and the interpolation pro_]ectlon P; of (2.7) admits the
representation ‘

Pif =Y Rhif(E)eie = Y Be(F)xe. . | (3-50‘)

EEN; ‘ EEA;

Now we introduce the “wavelet” transform R; mapping a vector of functional values
(¥¢(f))eea; into the vector of function values (h;f(€))eca,. This is nothing else than the
basis transform mapping the vector (ug)gea of coefficients ug of a function u; € S; with
respect to the basis {x¢} to the vector (v¢)eea of coefficients v with respect to the basis
{pj¢}. Though we have the norm equivalence (3.46) for the functions ¢,¢, the estimate
(3.25) with ¢ replaced by x; is not true and the * operator norms of R; and Rj*,

respectively, are not uniformly bounded anymore. Instead of (3.25) we have the followmg
result. : '

Lemma 3.4 There ezists a constant C > 0 such that, for any 3, we get

ci < Rille@as < CVi, (3.51)

<
c1Y < ”RJIHL:(IZ(AJ-))'S co.

Proof. Setting u; = Yeen; VePie = Leen,; uexe as well as u = (UE)EEA,:U = ('Uf)seAJ,
we get Rju = v. From (3. 50) we infer

ve = hu;(§) = > ughxe(§). (3.52)

geh;

The last sum contains no more than C - j terms different from zero and each term can be
estimated by '

lugr| - h- sup [xe(z)] < Clug|2€)7. (3.53)
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By the Cauchy-Schwarz inequality, we conclude
el < ¢ 3 220 p,
€A xpr(€)#0

el < i 3 2@ A S (3.54)

EEA; §'en; fGAJ Xf'(f)#o

Taking into account that the support of xg contains no more than C 22(7 e gnd points
¢, we continue

S e <Ci Y uglt | (3.55)

¢en; - EeN; ; :
This proves ||Rp|| < C+/7. For the converse estimate, we choose ug := 274¢), A simple
calculation yields |ju|| < C\/:j— and ||v|| ~ [lusllzz > |lujll;r > Cj. Hence, we conclude
I1R;]l = Cv/3. |
Now we turn to R;'. Analogously to (3.52), we arrive at
Ug! = Z '1)5'1951((,0]',5). : ' : (356)
(ED;

- In this sum the number of terms different from 0 is bounded by a constant. Each term
can be estimated by |vg|20~"¢")| and the Cauchy-Schwarz inequality yields

lugl® < €22GHED S
. EED;: D (pj,¢)#0
> el < 0 el Y 2207 (3.57)

E'edD; £€L; E’EAj:'ﬁel(lpj £)#0

For fixed ¢ € Aj and fixed [, —1 <1 < j — 1, the number of ¢ € V; with d¢(p;¢) # 0 is
bounded by a constant Consequently, we obtam

-1
> Jugl < C Y 1Ue|2 Y 2260,

{'EA; EEA; I=-1
lulle < C2|vl|e ; (3.58)
and ||R;!|| < C2°. On the other hand, choosing v¢ := 277 for one point { = ¢" € V_;

and vg := 0 else, we arrive at ||v]| < C2 7 and |ugn| > C. In other words, |jul| =2 C and
' ||R = c2

<

Remark 3.1 Suppose that s is a fized number between 1 and 3/2, Then there ezists a
constant C > 0 such that, for any j and any sequence (ug)een;, we get

1 | |
e\ D 2% ug < || Y uexellrery S C [ Y0 2% |ugl? (3.59)
(ed; ¢eD; tea;

Tﬁis result can be proved analogously to [39].

Finally, we remark that the application of R; can be realized by fast pyramid algorithms,
too. The matrix R contains no more tha.n three non-zero entries in each row. Conse-
quently, for one apphcatlon of R; or Rj*, no more than O(N;) arithmetic operations are
required. :

17



3.4 The Wavelet Algorithm

Using the new wavelet bases from Sections 3.2 and 3.3, the collocation equatlon (2.6) is
equivalent to

Fer(Au;) = g (v), £ € A,-, uj =y ugte. (3.60)

EEA;

The matrix equation A;j(we)eea; = (hv(€'))eren; can be replaced by the equivalent equa-
tion Bj(ug)eea; = (F¢(v))eren;, where the matrix B; is defined as (9¢/(Ave))ereen;. This
~ Bj is called the wavelet transform of A;, and we get A; = R;B;E;. Note that we will
identify the operators in £(S;) with their matrices corresponding to the basis {p;¢}. In
particular, we get 4; = A; € L(S;).

Now the wavelet algorithm looks as follows. We solve the matrix equation Aj(we)eca; =
(hv(€'))eren; iteratively (e.g. by GMRes). The main part of the computation is spent for
the multiplication of iterative solutions z := (z¢)¢ea; or residual vectors z by the matrix
A;. In the wavelet algorithm, this step is done by first multiplying z by E;, then by
B;, and finally by R;. As has been mentioned in the ends of Sections 3.2 and 3.3, the
basis transforms z ~ E;z and [B;E;z] — R;[B;E;z] can be realized via fast pyramid
type algorithms. For the multiplication by Bj, we will prove that, due to the moment
~ conditions and the smallness of the supports of the bases {¥¢, £ € A,} and {1, £ € A},
the majority of entries in B; is very small (cf. Lemma 3.5). Thus, setting these entries
equal to zero, we end up with a compressed matrix C; and the multiplication by B; can
be replaced by the multiplication with C;. The additional error due to the compression
will be less than the discretization error of the conventional collocation (cf. Theorem 3.1).
Since the matrix C; is sparse, the multiplication by C; is fast. In fact (cf. Theorem 3.1), no
. more than O(N? [Iog N;]*) arithmetic operations are necessary for the multiplication by
the O(N?) x O(N ?) matrix C;. Hence, if the matrix C} is already given and if the equation
[R;C,E; ](wf)eeAJ = (hv(¢ ))geAJ is solved by an iterative algorithm (e.g. by a cascadic
GMRes algorithm), then an approximate solution u; = ;¢ a; Weps,e with an error less
than C h? can be computed with no more than C h;z[log h;l]"‘ arithmetic operations.

In any case, the main part of the computing time for boundary element methods is spent
for the ca,lcula,tlon of the stiffness matrix. For the wavelet algorithm, we do not need
the whole matrices A; or B; but only the compressed matrix C; which saves a lot of
computing time. However thls reduction in computing time is not so easy to achieve as
it might seem at first glance. In fact, a sophisticated algorithm of quadrature is needed
to guarantee small quadrature errors and to reduce the amount of work. We will discuss
this issue in Section 4. ‘

Remark 3.2 It is possible to solve Bj(ug)een; = (Fer(v))eren; directly. For details we
refer to the papers by Dahmen, Kunoth, Profidorf, and Schneider [11, 14]. In the situation
considered in the present paper, however, the condition number of the original matriz A; is
uniformly bounded, and we ezpect the actual value of the condition number of the wavelet
transform B; to be much worse even if it is umformly bounded.

Now we describe the compression algorithm. The results and proofs are analogous to
those given by Dahmen, Pré8dorf, Schneider, v.Petersdorff, and Schwab [14, 31]. Hence,
we present the results and only those parts of the proofs which are new. We begin with
the estimate for the entries of B;.
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Lemma 3.5 Suppose { € A; is equal to € = k(T )forl <m<mp and € A m such
that the support of 1 1s contamed in the interior of I'y,. Then, for this ¢ and fo'r ¢ e A,
the entry by := Ve Agde) of the wavelet transform B; can be estimated as

|bgr¢| < 276=3E) [dist (supp 4, conv 9¢)]° (3.61)

where supp v denotes the support of the function 1¢ and conv d¢ stands for the conver hull
(in the parameter domain) of the support of the functional ¥¢. By dist(supp 4b¢, conv d¢r)
we have denoted the distance between the sets suppt; and convdy. The integer [(£)
denotes the level of €, i.e., £ € Vi) 1= D)1 \ D). For arbitrary €,&' € A\;, the entry
bere can be estimated as

Jberel < 27O [dist (supp g, conv Be)] . (3.62)

Proof. Instead of repeating the rigorous proof of [14, 31, 39], let us only explain, where
the different factors in (3.61) and (3.62) come from. For analogy reasons, it is sufficient
to consider (3.61). One factor 274¢) is from the scaling factor NI(E) in the definition of
(3.48). The second factor 2~ 2(¢) is due to the third term in the Taylor series expansion
‘of the kernel function at a point z = £,(t) of convde. Indeed, applying d¢ to f := At
and using that ¥4 vanishes over linear functions, we get

Hons) = Jen()+ VS am(e) (5= )+ 3V Hwm(®) (s — 4, (363)
|Nl(£l)'t9£l(f)| < Csup ]sz(nm(t'))] sup |y — (I:|2 < Csup ]sz( ')I 2-2¢), (3.64)

yEconv ‘96'

Slmllarly, wntlng ﬁél(Ang) (Atﬁg,’ﬁf) <¢£,A*’L9£I> = ff’(,bf with f = A* 195' using
the moment conditions of order two for the trial wavelet, and choosing z € supp e, We

conclude (cf. (3.63)) o
L G O REED AT O
l/ M’“ < C’sup|V2 2| fsupp %ly—wlzlwe(y)ldy (3.65)

< Csup |V f(a')|27%@ [e(y)ldy.
supp ¥,
Thus, a factor 272¢) in (3.61) is due to the second order moment conditions of the wavelet
in the trial space and an additional 27%¢) arises from the scaling factor Nygy ~ 24€) in
the definitions of Sections 3.1 and 3.2 (cf. the factor \/Nj for the univariate wavelet /F
and observe that the bivariate wavelets are tensor products of univariate wavelets) and
from the measure meas(supp ¥¢) ~ 2~2H&). Applying these Taylor series arguments to the
" integrand in (A, J¢), it remains to estimate the fourth order derivatives of the kernel
function K4(z,y) of the operator A for z € conv e and y € supptpe. Applying (2.2), the -
- estimate of the kernel function leads to the factor [dist(supp ¢, convde )]~ in (3.61).

<

Theorem 3.1 Suppose that the right-hand side v of (2.1) belongs to the Sobolev space
H?(T') and define the compressed matriz C; = (cgr¢)ereen; by

, / 7)) -1(€)
corg = { 85 & zfl'sdelst (supp ¢, conv ) < (a277)2 (3.66)
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with a suitable constant a > 1. If a is large enough and if the collocation method (2.6) is
stable (cf. Theorem 2.1), then the operator A; := [R,C;E;] € L(S;) is stable, i.e., there
is.an b >0 such that, for any h; < h, the operator A; is invertible and its inverse A s

uniformly bounded. Additionally, if u; € S; denotes the solution ofA iu; = P, then
[ = wjl|z2ry < Ch3 (3.67)

and the number of non-zero entries in the matric C; is less than Ca’N}[log N;]* =

Ca?hj?(log h7']%.

Proof. For some details of the proof we again refer to [14, 31, 39]. We only present those
parts which are new. In particular, the bound for the number of non-zero entries can be
derived analogously to [14, 31] For the stability and for the convergence estimate, we
have to prove o o

“’u,HHz(p) ifs=2

i]|z2qy ifs =0, (3.68)

1(4; = A;)i5]|z2ry < Ca™?h3™ {

where 1; is the interpolation Pju of the exact solution u to Equation (2.1).

To prove (3.68), we set D; := B; — C; = (dgr¢ )¢ een; and get A;—A; = R;D;E;. In view
of the Lemmas 3.3 and 3. 4 we have to estimate the matrix D§ := (d3 ;)¢ ¢en; € ﬁ(l (A;))
with dg, . 1= dg, 27518, By Schur’s lemma the norm can be bounded as follows.

1 D5l c@za)) < V0102, (3.69)
g1 := sup |2—l(£) ) 02 .= 8Sup 21(6) Z ld;r’fl 2—1(61):| .
gel; LEA; feéj ¢

Since the entries dg . with supp 1¢ contained in the interior of some I';, can be treated as
in [14, 31, 39], we only estimate those parts o? of o;, 1 = 1,2 where a ¢ is involved such
that suppt, intersects the boundary of some I',,. We denote the set of these ¢ by Ab
and set a, 1= (a275)2” HEN-HE) a5 well as dist = dlst(supp e, convde). Using (3.62) and
(3.66), we get

ot < Csup [2€) 3 97HO-3EN g2 sHE) - 1E) (3.70)
: veai | geAl: dist>a. - : -
[ j-1 » } ‘
< O sup |27%E) Y o-l(+) 3 dist™2~4@) | .
EEN; i 1=—1 feA;z;disba,,z(g):z
Applying
Yoo dist™27@ < |t|=*dt < Ca®, (3.71)

geAt:dist>an, I(¢)=1 {teR:[t|>a.}
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we arrive at

- i
o < C sup [27%E) > g H1+s) g3 ’ (3.72)
ged; | 2 | :

§'eh; I=—1

. j'—l
< C sup |27%¢) Yo 2ot ((anj)g—l(E’)—z> -3}

< C sup a"sj"32“352[(5')22’(2‘»5) < Ca~3j7%227%,
¢'eD; i =0 : .

On the other hand, similarly to (3.71), we get

Z distr—42—2[(f) S C |m|—4dm S‘Oa’:z’ (3.73)
g'en:dist>an,l(£)=l {z€R?: |z|>a.} : ~

and, analogously to (3.72), we conclude

i
ob < Csup |20 Y 27HO-3E)gigp—tpslE) - NE) (3.74)
. §ED; L ¢eh ;i dist>a. ' -

- i1
< Csup |27%0 3~ o2 > dist‘42‘2‘(5')}
- LE4; I=—1 ¢'€N; dist>an, I(¢)=l

EEA; I=-—1 .

ke

, . j=1 . ~ -
< Csup |27%H8) > 2~ % ((a,ZJj)TI—I(f)) 2]

j-1
< Csup |a7%j7227%C-9MO Y
£ED; 1=0

S G—Zj—12—5j.

The estimates (3.72) and (3.74), the analogous estimates for the entries bgrg, £ € A\ AL,
and (3.69) yield that || D$||zu2(a;)) is less than Ca~?57'h%. This together with the Lemmas
3.3 and 3.4 implies (3.68). ,

<

Remark 3.3 From the Lemmas 8.8 and 3.4 we get ||C;|| = |R;* 4B ~ 27 and
|R;ll ~ V3. Thus, the multiplication of a certain vector z by R;C;E; can lead to an
additional error of O(27\/7) times the numerical error of z.
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4 The Error and Complexity of the Quadrature Al-
gorithm

4.1 Assumptions on the Parametrization and the Kernel func-
tion '

Clearly, the assumptions on the parametrization and the kernel function in Section 2.1 are
not necessary for the results of the previous sections. Indeed, for the kernel K4(z,y) and
z # vy, the existence of continuous derivatives up to the order four (two derivatives with
respect to each variable z and y) is sufficient. For the parametrization, a differentiability
up to order three is sufficient. If differentiability is guaranteed only up to orders less
than four and three, then a different wavelet algorithm is possible. More precisely, for

appropriate real numbers @ > 1, 8 > 1, and v > 0 the compressed matrix C; can be
defined by

bere if dist (supp tbe, convdy) < ma,x{2“l(E 27HE) | (@ 2757)2-HE)-AUEY
@e=N 07 else. (4

‘The error |lu — uj||z2(r) for the solution of the corresponding discretized equation Aju; =
P;v will be of order O(h%), 0 < & < 2, which should be the best possible under the
weaker differentiability assumptions. The number of non-zero entries will be of order
N § 2 < ¢" < 4. Thus, this wavelet method is suboptimal since it reduces the number of

arlthmetlc operations from N} for a conventional finite element algorithm to N j > N}

Now we will define our quadrature algorithm for the following situation:

i) Suppose the surface is three times continuously differentiable.

ii) Suppose that the surface is given by a finite number of gnd points, only, i.e., that
the % are given over the grid A, .

iii) We replace the true surface by a piecewise polynomial interpolant. This is given by
the parametrizations k., which interpolate the given values {xm(£) : € € AT}

iv) Suppose that ., is twice continuously differentiable over S and polynomial over
each patch {(¢1,¢2) : (k —1)h; < t1 < khj, (1 —1)h; < t2 < thj, }. Furthermore,
suppose that there exists a constant independent of m and the patch such that

sup |0%km(t)| < C (4.2)
tes

for any non-negative multiindex a = (au, az) with [a[ =y + ay < 3.

v) To ensure the existence of the singular integrals in the principal value sense, we
suppose that the approximating manifold is continuously differentiable also over the
common boundary of two subsurfaces defined by different parameter representations.

vi) For the kernel function K4(z,y), we require the representation (cf. e.g. [31])

Ka(z,y) = Y sa(z,y,ny)(z —y)%z —y|727, O (43)

k<|a|
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- where k is an odd integer, n, is s the unit normal to I' at y, and the sum is taken
over a finite number of multiindices a.

vii) Suppose that, for any m = 1,...,mr, the functions sq : I'yy X 'y X S — R admit
continuous extensions to the sets

I'm x {t €@ dist(¢,Tn) <ea} x S?,
Im X Tm x {t€C®: dlst(t 5% < ea} (4.4)

such that s, is a complex analytic function with respect to the second and third
variable, respectively.

Clearly, the replacement of the true surface by the approximating piecewise polynomial
surface leads to additional errors. Though these effects require an extra analysis, we will
not discuss this issue. If the interpolation of the thrice differentiable surface is defined
e.g. by tensor product Overhauser interpolation (cf. [29]) and by straightforward mod-
ifications at the lines I';, N [/, then the global continuous differentiability of the new
surface can be guaranteed. Moreover, the piecewise second derivatives of the approxi-
mating surface are close to those of the true surface. Therefore, we. conjecture that the
compression results of Section 3 and the results of the present chapter remain true for the
Overhauser interpolation of a three times continuously differentiable surface.

4.2 The Quadrature Algorithm

In this section we define the quadrature rules for the computation of the matrix entries
cere of the compressed wavelet transform C;. From (3.48) we conclude that, for each
'3 6 V,, there exist three points £, of Ar,; and three real coefficients A, such that d¢(f) =

1 Lf(fb) Clearly, for ¢’ € V_y, we have Ay = A3 = 0. If the entry cg¢ is not zero,
then it is equal to

e = 3N (6 = 30 {elet) + [ KultoueIar}. (45)

Depending on ¥, we will split T' into the union of subdomains Ff,l, i/ € N. Over this
partition we will define a composite quadrature rule

l,glyf(y)dyl‘ ~ Y Faen, | | 46)

IJ'EM;I

: Af(y)dyr ~ Z Z f(m# wu’ = Z f :D“ wm M = U:’"EA/Mz"

iTEN peM; HEM

which depends also on ¢, € suppdy. However, before we apply such a quadrature rule
to the computation of the integrals in (4.5), we have to perform a singularity subtraction
step over some of the domains I'¢, i.e., for i/ in a certain subset NV = N'(¢,€) C V.
Singularity subtraction means the followmg We will introduce a main part K, Mm(z,y) of
the kernel function K4(z,y) which has the same singularity behaviour for y — z. In
other words, K4(z,y)— Ku(z,y) will have a weak singularity only. Moreover, the function
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K (z,y) will be chosen such that its integration can be performed by an analytic formula.
Using this, we write

cop = ZA{ el + 3 [/Fi, [Kaloy)belv) — Kna( uibe(€5)] 4,0 (4.7)

leN!

+ /r y KM(&,y)dyws(fﬁ"&)}wL 3 /P y KA(EL,,y)%be(y)dyF},

YEN\N!
where the point ff,"s‘ is chosen to be equal to & if € € F and where Ef 4 is an ar-
bitrary but fixed point EE' € F not depending on ¢, if & & ]f‘e The mtegrands
y = [Ka(é,y)¥e(y) — KM(&,y)1/Je(f£ %] in (4.7) have milder singularities at y = &
than the corresponding integrands y — Ka(&,,y)¢e(y) in (4.5). Applying the rules (4.6)
to (4.7), we arrive at the final formula

Cerg ™~ CE'E = Z’\ { fb 1/)6({:1. + Z KA fumll- 'Qbf(ml-l) (48)

HEM

+ Z : [/1", Ku(é.,y)d ;F— E Ku fr.;m#)“’u "vbf(ff ’EL)

#EN": T N supp e £0 pEM;

It remains to introduce the Ff,l, the rule (4.6), the set A/, and the main part K of the
kernel. ‘ ‘

First, we fix a ¢’ € A; and we introduce the underlying partition for the quadrature.
‘Since the quadrature rules are accurate for polynomial integrands but not for piecewise
polynomials, we have to choose the partition such that all the functions ¢ are polynomials
over the subdomains. We consider the uniform partitions

['=UZD, Uphoy D™HRF Dt o o ([(k = 1)he, kR X [(K — Dk, K'R]) - (49)

of step size by with [ = 0,1,...,7. For the subdomains of these partitions, we call a
function f “polynomial” over D™ ¥ if f o k,, is a polynomial over [(k — 1)hq, khi] x
(k' — 1)hy, k'hy). By T' = UMIT? we denote the coarsest partition into subdomains from
" the partitions (4.9) such that the restriction to these subdornains of the functions Ye,
for which cg¢ # 0, is a “bilinear polynomial”. More exactly, we define T' = Uf‘fll"f
recurswely First we set I' = UM T equal to the partition (4.9) with { = 0. We define
I' = UM T as the refinement of F = UMT? where a I'? = D™%** remains unchanged
if the functions ¢, for which ¢ # 0, are polynomla.ls” over I'} a.nd where all the
other T = D™0%* are divided into the four subdomains D™1:2k=1:2k'~1 = pym,1,2k,2k'~1
Dm12k=12K" and Dml2k2K - Next, I' = UMIT? is the refinement of T' = UM r! Where
every subdomain remains uncha.nged except those [} = D™bk ¥ for which there exxsts a
¢ such that cere # 0 and 9 is not “polynomial” over I'}. These I} are divided into the
four subdomains D™22k=12K~1 pm2,2k2k'~1  [ym,2,2k-1, 2k , and D™ 12,2k, 2K Proceedmg in
the same manner, we, finally, get the pa.rtltlon I'= MJ FJ

Unfortunately, this partition is still not sufﬁmently fine. Indeed, applying the one point
quadrature rule over each I}, 1 = 1,..., M?, leads to large quadrature errors due to the
singularity of the kernel K4(¢,,y) for y close to {,. These errors can not be improved
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by employing quadrature rules whlch are exact for hlgher order polynomials since the
assumptions iii) and iv) of Section 4.1 admit low order estimates only. The only way
to improve the quadrature errors is to work with smaller step size. Thus, to refine the
partition I' = uMl I‘J we consider a F’ D™hER - Obviously, there exists an i such that

272" < dist{conv P, T} < 2'2(1"‘1)‘.'; - (4.10)

If I” < j—1, then we replace Y = D™"%* by the union of the 22" subdomains D™+ F#
which are contamed in T, For I” > j — 1, we replace FJ D™4%F by the union of the

22(-1) subdomams D™ikk which are contained in I?. We denote the final partition by
'=u leN’F '

Now we define the quadrature rule (46) for Ff,l = D"‘""’;’f" such that & ¢ T%. We write
! hy
BT = [ [ el )t ) dtadt
l)hll hl/

N > flzu)wp, | (4.11)

HEM,;

khl/

!
ré,

where the last quadrature rule i 1s the tensor product of the univariate ng- point Gau8 rule.
If I’ < 7, then the distance of I‘,, = D™HEF t6 the singularity point § of y — Ka(&,,y)
is sufficiently large and the step size hy suﬁimently small such that the one point rule is
sufﬁc1ently accurate. Hence, we set ng = 1 for I’ < j. If I’ = j, then &,, is polynomial
over Fﬁ, and higher order quadrature rules can be employed. Hence, for I’ = j, we choose
ng to be the smallest integer such that (cf. [23], Section 2.3)

J
max (1, log,[dist{¢,, Ff,l}/th

where b is a fixed positive integer.

Next, we turn to the definition of the set AV of indices ¢’ € N for which the smgulanty
subtractlon step (cf. (4 5)-(4. 8)) is necessary for the quadrature over F£ If¢, €T o, then
the integrand y ~ Ka(§,,y) is strongly singular and the quadratures do not converge
without singularity subtraction. For I' ,’ = D™I'"*F with I’ < j, we employ the low order
one point rule. In this case the s1ngu1ar1ty subtraction is also necessary in order to improve
the bounds of the derivatives of the integrand. Only if I‘5 DmlkE with I' = 7, then the
higher order quadrature rules are so strong that the s1ngular1ty subtraction is redundant.
Thus, we introduce N as the set of all +/ € M such tha.t I‘ = Dm'RE with I < j or

such that £, € 1““e

For the definition of the main part kernel Kjr, we observe that the transformed kernel
function takes the form (cf. (4.3)) ' ‘ '

Ka(fom (1), (1 ))In ()] = | | (4.13)
> a(5m(t), Km(); (o)) [m (2) = (1)) () = s (£)] 7> 1 (2.
k<ol |
Hence, we define Kpr(z,y) by |
| Kpt(Km(t), 6 (') 6 (t)] = | | (4.14)
5 se () (8 ) D8 ¢ =€) D) 2= £ )
k=|a| ' :

25



where the surface density |&;,(2)| is |0, £m(t) X Or, km (t)| and the Fréchet derivative Dmm( )
is the matrix (8, km(t), O, om(t)) € R3*2, 2

Now it remains to introduce the quadrature over the F with £ € Ff,'. For definiteness,
we suppose &, = fm((k — 1)h;, (k' — 1)h;) and consider ré Dm'j'k K Cutting along the

diagonal through ¢,, we divide D™#F* into the two triangles D™ and D""”’c ¥ given

by ,
D”‘””"‘ = K ({(t1,t2) © 0 < [ta— (K = 1)h] < ‘[tl“‘(l;"l)hj]shj})i (4.15)
DPF e ({1, t2) = 0 [ty — (B = D)hs] < [ta — (K = 1)hy] < h;}).

Over D’:’j’ic’icl the integrand function takes the form (cf. (4.7))

g(t) = G(rm(t))lkm ()], (4.16)
G(y) = Kal&,y)be(y) — Knm(&,y)be(é)

‘and is known to have a weak singularity of the type

tz].

.. 4.1
tl)tl + ’ ( 7)

g((k = 1)h; +t1, (F = 1)h; +t2) = B(ts,

where 0 < ¢, < t; < hj, where the function @ is smooth, and where the dots stand
for smoother terms. By Duffy’s transformation (11,2) = (t1,1t3) such a singularity is
transformed into a smooth function and we get '

t . ’ ‘ .
/ / 1 tl, ) L dtydt, = / / (¢, t1)dtldt,. (4.18)
1

- Consequently, we set

fD i © / / F—L)hy + 1, (F — 1), + tyt,)thdthdts  (4.19)
+
G(zy)wy /

BEMy: :c,,GD'"" !

where the last quadrature rule is the tensor product of the ng- point GauB rule applied
to the rectangle [0, h;] % [0,1]. The order ng of the univariate GauB rules is chosen to be
greater or equal to bj with b the constant from (4.12). If we define the knots z, and the

weights w,, in the same fashion for any DmikE with ¢ € D’"”'k k' and for any DT mIkk and
g u

Dk, . , then we arrive at the quadrature rule (4.6) for the remaining subdomains and

the approxunate values ¢}, . for the non-zero values Cerg in (4.8) are completely defined.

Finally, for the computation of [, ¢ KM(fb,y)d I (cf. (4.8)) in case of @] =1 and k =1

(cf. (4.3)), we mention the formulae

/a’ /5' | cz + dy dudg = — 2gc — fd {arsh 25’ + fa
{ea® + fay + g B 0 /glheg - 1] T4eg — 7]
2gb + fa 2gb + fa' 2gb+ fa
T teg— 7] alaeg— 7] T afteg — 77
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sh—o2 TJO e h&fr_fb-
b'[4eg — f?] bl4eg — f?]
2ea + fY 2ea + fb
Blacg— 7] " baeg - f”]} ’
0<a<d, 0<bzd, f2<deg,
{ez? a'[4eg — f?]

_2ed—fc { b 2ea’ + fb'
Veldeg — f?]

—ars sh——

dydz =
+ fzy + gy?}3/? \/5[469 Vid

2ed — fc { b 2ea’ + fb b 2ea’ +.fb }

T Velteg — T bldeg — 21 TV bldeg — 7]

0=a<a, 0<b<?d, f%<deg,
h rh cz + dy
dydz =pf. 1 cee=
/o /o {ez? + fzy + gy?}3/2 yaz =p. ELI'{IO//zy)EOh s ex? + fry+gy? De?}

2gc — fd { hle+f+g 29+ f f }

Ll LA NG P B M ] P N ' ST N

Jaldeg — 7] SV [eg — /7] [deg — /7]

2ed — fc hle + f + g] 2e+f f
" Jeldeg — f7] {1 ~log T e mamhy ey ek [4eg—f?]}
f? < 4deg.

Note that the kernel of the singular integral equation corresponding to the oblique deriva-
tive boundary value problem (cf. [27, 25, 28]) admits a representation (4.3) with |a| =
k = 1. Further details of the algorithm for the assembling of the matrix are discussed in

[35].

Remark 4.1 To reduce the numberkof ‘quadrature knots for the computation of the sin-
gular integrals, i.e., for (4.19), it is possible to choose different Gaufy orders ng 1 for the
; t direction and ng s for the t), direction. It is sufficient to take ngy1 > b and ng s > bj.

4.3 The Error of the Quadrature

We introduce the compressed and discretized matrix C} := (¢ir¢)ergen;, Where the non-
zero entries ¢ . are given in (4.8). By A’ we denote the operator in £(S;) whose matrix
with respect to the basis {p;¢: € € A;} is R;C]E;. Thus, the quadrature algorithm for
the stiffness matrix A; leads to the fully discretized equation Aju; = Pjv.

Theorem 4.1 Suppose that the right-hand side v of (2.1) belongs to the Sobolev space

. H?(T') and that the compressed collocation method including the approzimate operator A,

is stable (cf. Theorem 8.1). If the compression parameter a (cf. (3.66)) and the quadrature
parameter b (cf. (4.12)) are sufficiently large, then the operators A; € L(S;) are stable.
Additionally, if the second order estimate of Theorem 3 1 is valid and if u; € S; denotes
the solutwn ofA u; = Pjv, then

Hu — ’u,j”Lz(p) < Oh? 1og hj. (4.20)
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The number of non-zero entries for the matriz C} is the same as that for Cj;, i.e., it is
less than C NZ[log Nj]*.

For the proof, we need the following two estimates of the quadrature error.

Lemma 4.1 i) [18] Consider the square [a,b] X [c, d] of the size h = b—a = d—c. Suppose
that f is twice continuously differentiable over [a,b] X [c,d] and that GR(f) stands for
the tensor product of the one point Gaufl rule (i.e. the midpoint rule) applied to f over
[a,b] X [c,d]. Then it is not hard to see that

Be{(2,0),(0,2)}
alt1 <b,c<Lt2<d

lfb /d f(tl,tz)dtzdh — GR(f)| < Ch* sup Iaff(tl,tg)l, - (4.21)

where the constant C is independent of [a,b] x [c,d] and f.

i) [17, 31] Now consider a rectangle [a,b] X [c,d], set h := b—a and h' :=d — ¢, and
suppose that f is analytic over [a,b] X [c d). Moreover, suppose that f admits complez
analytic extensions to the sets :

{(tl,tg) ERXCT: a S t<b [ta—cl+ta—d[ < (e+ o ' /2},
{(#1,t:) EC x R: c<t; < d, [ti—a| + |t — b < (e + o 1)h/2},

where ¢ > 1. We denote the ellipse {t;, € @ : |t; —a| + |t1 — b = (o + 07 ')h/2} by
Eo(a,b), define E,(c,d) similarly, and consider the tensor product of the univariate ng-
point Gauf rule GR(f) applied to f over [a,b] X [c,d]. Then, for a constant C independent
of [a,b] X [c,d] and f, we get (cf. [17], Equation (4.6.1.11) and [31], Proposition 4.3)

[ [ $t,ta)dtades — GRP)| < Chie™e {mx | (b1, )| + max If(tntﬂl}

a<t; <b C<t2 <d

(4.22)

Proof of Theorem 4.1. i) First we suppose that the integrals over the subdomains
1"‘, = D™ERE with [ = j are computed exactly and consider the quadrature errors over
the domains 'Y = D™!"#F with I! < j. For any function @; = Y¢ea, Ut € Sj, we
introduce the functions @ 1= Y gen, Uete = it Y¢ev, Uge and their coeflicients e
defined by i = Ygen, Wrepre. We will represent A; — A = R;(C; — C})E; € L(S;) as

(A AI Z {Z Z egr, lf)'wlg -+ Z egl,g'u,f}xel (423)

E'EA; zoseal geh;

This representation will have similar properties as the matrix of the compression error,
l.e., it permits the application of a Schur lemma argument. We will show the sparsity
pattern of this representation and, later, we will derive a bound for fij — A’ by estimating
e¢r,1,¢) and egre. To get (4.23), we suppose that ¢’ is fixed. Then the coefficient of x¢ in
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(4.23) is the sum of the quadrature errors over the domains [ = D™"FF C [ = pmbk
corresponding to the integrand functions

y ﬁeI(KA(- y)E (v) — K-, 9)is (&) (4.24)

—ZA (Kl v)E (v) = Kaelbo )3 (£)),

where
-E' i -
uj; = Z Ugtbe.
§€EA i cpr ¢#0
We consider a fixed subdomain [} = D™o k¥ containing sets of the form F = Dmd' Rk

with I’ < j. From the definition of the I/ we observe that there exists a z,bgu such that
cgren # 0, 1(€") =1p — 1, and supp e N T £ (Otherwise the partltlon step leading to
I'! would be redundant. ) In view of (3. 66) we get

dist{conv ¥, S'llpp’l/]eu} < djzj—’(f')—(ln—-l), (4.25)
dist{convde, T} < 02‘(10-1)+a]‘2j-l(6’)-(ln—1)

‘Consequently, if 7 is sufficiently large, then, for any 'gbe with [(§) < Ip—1 and supp ¢EDI‘{ #
0, we arrive at.

dist{conv ¥, supp e} < C27Uo=1) 4 5237 1E)-Up=1) < 593 UEN-1E)  (4.96)

This means cgr ¢ # 0. In other words, the restriction ﬁ_fllrg is equal to the @, plus some

of the terms @g1pe with ¢ € Vi,_;. The quadrature error corresponding to (4.24) over I’
is equal to the quadrature error corresponding to the function

y =Y Gyt (Kalov)eip-re(y) — Kl 0)op-16(&))  (4.27)

eeAlD—l

X e (Kaloyelv) - Kulu)be(€))-

- EEVp 1 Cg' 5#0

The entry ege) is now the sum over all quadrature errors for the integrand functions

y g (Ka( v)ere(y) — Kna (- v)ene(€))

taken over all subdomains [ = Dok with l p—1=1and supp p;¢NT? # 0. Similarly,
for cgr g # 0, the entry eg¢ is defined as the sum over all quadrature errors of the functions

y o> Do (Kl y)bely) — Kna(0)eléd)

taken over all subdomains ['} = D™/ok#' with Ip — 1 = [(¢) and s‘upp Ye T £ 0. For
Cg:€=0‘wesete£/£=0 '
Note that e (ie) = 0 and exe = 0 is poss1b1e also if there is no I‘J with Ip — 1 = I,

supppre N7 # 0 and Ip — 1 = I(£), supppe N 7 + 0, respectively. More precisely,
epre) 70 1mp11es the existence of 7 = D™iokk guch that Ip—1 = I and supp @i NT7 #

§. From the definition of I'Y, we infer cergm = 0 for all the 1gm such that em|; is not
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polynomial. Hence, for supp ¢em N I."’ # 0 and (") = lp, we get cgrem = 0. This implies
(cf. (3.66))

dist (conv Jer, T ) > mindist (conv d¢, supp Pem) > aj2i~HE)-Ip,
Consequently, eg ¢ # 0 implies
dist (conv Per, supp cp(l’f)) > Caj2i -1 (4.28)
Similarly, we get that ey # 0 implies

dist (conv ¢, suppype) > Caj 9i=1(€)=1(6), o (4.29)

Having derived the sparsity pattern of representation (4.23), we turn to the estimate of
its entries. From the definition of ¥, we infer the existence of an z’ € conv ¥ such that

(cf. (3.64))

e (Kal0)eney) — Kn(9)ee(€)) = 4 (4.30)
9-3HE g [KA(:::’, Y)ere(y) — KM(m',y)%e(ff")],

where 02 denotes a certain second order derivative (directional derivative) with respect to
z. Applying the composite tensor product one point Gau rule GR to this integrand over
the square F’ Dm™HLEE of side length 2-(H1) and using the second order convergence
_estimate (4.21), we conclude

lee ey < - " , - (431)
B DY sup 0002 [Ka(a',y)erely) — Kae(' y)eue(€F)]|

8: |8l=2

I}: T} Csuppor¢ yED™ I+ kb

The scaling factor N; ~ 2! in the deﬁniﬂon of ¢1¢, an additional factor N; ~ 2! for each
derivative of ¢ ¢, the estimate (2.2), and a similar estimate for the kernel K lead to

2
lee el <D 02"31(5/)_3l+kldist{conv Ber, supp r e} OHF. (4.32)
k=0

Analogously, we obtain

eere| < 02“31(5') 3UE+RUE) dist {conv Fer suppzp —6+k, 4.33
£.¢ I3 3

k=0
The sparsity patterns (4.28) and (4.29) as well as the estimates (4.32) and (4.33) together
with a Schur lemma argument similar to (3.69) imply that the lz(UAl UA;) — 13(4;)

norm of the matrix with the entries eg i, 5) and e ¢ is less than Ca~2§7%/2. Using Lemmas
3.3 and 3.4, we get

\]Z Do lwelr+ Y0 Mgl < [0 (GH1-UO)E < C’\/J—'Ilﬁjllm(r), (4.34)

I=1 € gen; g€
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and ||4; — ALl < Ca=?j7'/2. Hence, for sufficiently large a or j, the operator A is a
small perturbation of 4. Together with A;, also A’ has a uniformly bounded inverse.

Now we turn to the error estimate (4'20)' First we will show
1(A; — A})a;] 2y < Ch log hj, (4.35)

where @; = P;u = P;A™'v. From Lemma 3.4 we infer

| Y vexelmey < CVi [ S el < CF [ 272 sup [2€0,)
¢en; ¢en; ¢en; g'en;

< C3j sup |2y, , ; (4.36)
tich, , .

Hence, it suffices to estimate the quadrature errors of 2M¢)9.(A;ii;) = 2’(5')195:(141'125')
for each ¢’ separately. In order to apply (4.21) we have to estimate the second order
derivatives with respect to y of the integrand function (cf. (4.24) and (4.30))

y — 2702 [Ky (2, y)af (v) - Kur(e, )i (€5)] . (4.37)
278002 | [Ka(e',y) — Kna(e',v)Ji5 (v) + Kaa(e',y)lid (y) — i (€5)]].
The kernel functions K4 and Kjs, however, satisfy (2.2) and
0202 (K a(z,y) — Kn(z,y)]| < Cla — y| 1118, (4.38)
Moreover, Lemma 3.3 ii) implies |
if(0) ~ () = Duclele)— belw)] | (439)
i (2) - & ()] < CX luel?@fe —y

Cy/2 2480 el2 | > 1llz—y| < Cjlz—yl
& Y (=)0 )
°r¢e(y)¢0

Similarly, we get lﬂfl(m)| < C+/7 and [6517, ( )N < Cy Where |,3| 1. Note that the
higher derivatives with 8 = (2,0) or 8 = (0,2) vanish since u is bilinear. Using these
estimates and applying (4.21) to the quadrature error for the 1ntegrat10n of (4.37) over
F,, = Dml'kE C F’ = D™hkE  we arrive at the bound

I

IN

2423 dist{conv ¥¢, [ } 5. | (4.40)

In view of (4.10), we have 2% = 2-2(+!") < 2'"2’dist{conv19£/, I}, Summing up (4.40)
over all T C I¥, we get the bound '

> 02_21/ _212_31(5 )j dist{conv ¥, [} ~* = C274273) dist{conv I, T}
ré: ¢ cri ‘ ‘

for the quadrature error over I'. Hence, the quadrature error for 2{¢)9¢ (A ;) is less
than |

-1 . .
Cj27#E S 22 S dist{conv ¥, [I} 4277 (4.41)

=0 r\.’f: I‘:f=Dm,l,k,k’
1 1
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We observe, from the definition of the I‘ , that cgre = 0 for all ¢ with supp ¢ N I" # 0
and I(£) > | (Otherwise I would have been divided in further steps.). In view of (3.66)
this means that

dist{conv ¥, [} > a7 271, (4.42)

Using (3.73), we estimate (4.41) by

=1 , - .
0527 Y 27% (a2 MO < 0o, (4.43)

=0

This together with (4.36) proves that the L? norm of the quadrature error is less than
Cj272%. The estimate (4.35) is proved. Now Equation (4.20) follows easily from this esti-
mate, the correspondmg consistency estimate (3.68), and the boundedness of the inverses

Al

ii) Next we suppose that the mtegrals over the subdomains Fz, = D™VRF with I' < j
or with the singularity point £, in [‘ are computed exactly and consider the quadrature
errors over the domains P£ = D™ 32 with I’ = 7 and &, ¢ F . We fix a d¢, a 1), and

a FE D™3kF  For these, we estimate the quadrature error dgig = cerg — Cgr ¢ OVET I‘
Wlth the help of (4.22). Thus

f#) = zj;ALKA(&,nma»ln;(t)ws(nm(t», (4.49)

B0 (1) X i1 Dl e (]
3 saloonl®) B X Bt & ~ M6 7

k<ol

KA(&.; EM(t‘))

From the analyticity assumption on the s, (cf. the analiticity domains (4.4)) and the
boundedness of the derivatives of the parametrization (cf. (4.2)) we observe that the
function f ]K';;LI (Dmdkkry extends to a complex analytic function over a neighbourhood {t:
dist{t, k;1(D™#*¥)} < ep}. Here we have to require ez < £4/C for the analyticity of ¢ -
Sa(&y Km(t),...) and ep < dist{£,, D™#K'}/C for the analyticity of ¢t — |€, — km(t)] 7275,
Thus, the assumptions of Lemma 4.1 ii) are satisfied if we choose

0:=1+dist{&, D™**1/[C'h;] (4.45)

with a sufficiently large constant C’. To get a bound for f over [a,b] X &(c,d) and
Eo(a,b) X [c,d], we observe that |Ka(é,, km(t))| is less than Cdist{¢,, D™H*¥ =2 that
.. (t)| is bounded by a constant, and that the absolute value of the bilinear extension of
Ye(Km(-))] =t 2 (D is less than C21&)[2MO)dist{¢, D™k} 1 1]2. Using these bounds,
dist{¢,, D""”k K1 > 9277 and || < C271€) (cf. (3.48)), we get that the quadrature error
for the integration of f over D™#*F i less than ‘ : ‘

3 ' . A ‘ ik & z
Z C 2—1(&) 2—219—2ng dviSt{E“ DM,J,k,k }—2 21(6) [2l(€)dlst{&,, Dm’J'k’k } + 1] S

=1

C27p7?"e . (4.46)
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We have to sum up over all I‘f,' = Dmakk C supp ;. The number of subsquares D™’
is less than 2% and we arrive at

3
|derg| < Y C2%p7%, (4.47)

=1

We will show that the (> norm of the matrix (dg¢)e e is less than C27% where Cisa
constant. If this is done, then the norm of A; — A’ is less than CIN;? (cf. (3. 51))
and the convergence rate (4.35) is proved. Moreover since the operators A} and [A]™!
are small perturbations of the bounded operators A and [A ]‘1, respectlvely, they are
uniformly bounded. The estimate (4.20) follows as in point i) of this proof.

Clearly to show the norm estimate for (dg ¢)er ¢, it suffices to prove that the [? norm of
the matrix entries (Frobenius norm) is less than the desired bound. Hence, we only have
to show |dgr¢| < C27%. In view of (4.47) and (4.45) it remains to prove the uniform
boundedness of : ' ~

8j—2logz{1+dist{£L,D""5".‘-’-"}/[C'hj]}ng

02%p=2ne 9% < 097~ < (09 (4.48)
The last expression, however, is bounded if
4
ng — 4.49
log, {1+ dist{&,, D™9**}/[C"h,]} (449
> J

C — .
max{l,log2 [dist{fb, Dmy],k,k'}/hj}}
This is fulfilled if b is sufficiently large (cf. (4.12)).

iii) Now we suppose that the integra,ls over the subdomains I'e' = D™FF with I < j or
with the singularity point fL not in Ff are computed exactly and consider the quadrature
errors over the domains I‘,, = D™ 32 w1th I'=7and ¢ € 1" . We proceed analogously
to the step ii). For ﬁxed Ber, e, and [ = D™ikF | e estimate the quadrature error
dgre = cerg — Cprg OVer % with the help of (4.22). Thus (cf. (4.19)),

CfE) = ftnta) = Mg((k — Dy + b0, (K — Dby + tata)ts, € [0,h5] x [0,1].  (4.50)

Due to the subtraction of singularity and due to Duffy’s transformation, there is no
singularity in the integrand anymore. From the analyticity assumption on the s, (cf. the
analiticity domains (4.4)) and the boundedness of the derivatives of the parametrization
(cf. (4.2)) we observe that the function f ll0,h51x[0,1] extends to a complex analytic function
over the analyticity sets of Lemma 4.1 ii), if ph; < €4/C and [l — 0] < g4/C. Thus,
we choose g := 1/C' with a sufficiently large constant C’. To get a bound for f over
[0, h;] X £,(0,1) and &,(0,h;) x [0,1], we observe that |f(¢)| is less than constant times
|\.| times the supremum norm of the extended polynomials (t1,t2) — Ye(Kkm(t1, t1t2)) and
of their first order derivatives. We get |f(t)| < C27'(¢12% as well as the bound

C 2—jg—2na 9-U(¢") 927 < 023'9—2715

for the quadrature error of f over DmikE (cf (4.22)). We have to sum up over all
Dmdikik C supp e with & € D""J”‘k, i.e., over no more than four sets for each T',,

33



Consequently, we arrive at
|dere] < C 2797 | ‘ (4.51)
94 ]ldé’ EI < 0251'9—2116 < 0261'—21082{1/0'}'10_
The last expression, however, is bounded if
37
>
T (o
which is fulfilled for sufficiently large b.

(4.52)

<

4.4 The Complexity

- Clearly, the number of arithmetic operations for the computation of the stiffness matrix
in form of its discretized and compressed wavelet transform is bounded by a constant
multiple of the number of quadrature knots.

"~ Theorem 4.2 The number of quadrature knots for the quadrature algorithm in Section
4.2 is less than C’Na/a[log N3

Proof. First we fix a ?¢ and count the quadrature knots for the computation of 9 (Aju;).
To count the points contained in 7 = D™* | we observe (cf. (4.10), (4.25), and (4.42))

272"~ dist{supp e, i} ~ aj27HEN (4.53)
"~ [+ 1(¢) ~j—logyj —C]/2.
Thus 1" < 7 — 1 holds if and only if | < j — [I(¢') — log,7 — C]/3. For a fixed | with
I < j—[U¢) ~log,j — C]/3, the subdomains [} = D™ are contained in a do-

main of size aj 297U (. (4. 53)) and are divided into squares I‘ of size 274V

9=I=[+1(¢)~3~108; 3~Cl/2_ p each I‘ there is exactly one quadrature knot. Hence, the num-
ber of quadrature knots contamed in all these F’ is equal to the number of subdomains
Ft in the union of the I‘f, i.e., less than

2

- 9i—1(¢")~1 .
aj2 < 02U (4.54)

C | e om0

On the other hand, all the subdomains 'Y = D™+ with [ > 5 — [I(¢') — log, § — C]/3
are contained in a domain of size a j 277H¢)-{-0(¢)-log2 5=CI/3} (¢f, (4. 53)) and are divided
into squares Ff," of size 277. Moreover, for the O(n) subdomains Ff = D"""’”c which
satisfy dist{¢,, Ff,l} ~ n277 and which are contained in the set of all these [} = D%+
with [ > j — [I(¢') —log, j — C]/3, we get ng ~ C3/(1 + log n). The maximal number of
such n is

: h ——— 2j'fl(f’)—{j—[l(5’)—loz;z i=Cl/3} 19- < Cjz/?gj—ﬂ(&’)/3_ ’ (4.55)
Now the number of all quadrature knots in the union of all I¥ = D™dk* with [ >
7 = [U(¢') —log, 7 — C]/3 is bounded by (cf. [23], Section 6)

Nmazx

) , .
Z Cn [1 +C; ] < Cj*n? . [log Tmaz)°-
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Using log nmaz ~ 7, we arrive at the bound Cn2 .. Consequently, the number of qﬁadra—
ture points for a fixed J¢ is less than (cf. (4.55) and (4.54))

(") ~log; —C1/3 |
O 44/302-4E)/3 | Z 0]21—1 ¢+ < Q43343 (4.56)
=0

Now we sum up the quddrature knots over all ¢’ € A; and arrive at the bound

j.-;l . 7 . B N
l(ﬁ)z 221(5)0j4/322g—4l(e /3 < Cj4/328]/37 | ’(4-57)
N=-1

Remark 4.2 Suppose that, in addition to the assumption i) of Section 4.1, the parame-
trizations K., are thrice continuously differentiable over S and four times over the domains

kL ( D™k, K ). Then the second term in the asymptotics of the kernel functzon K, can be
included into Ky such that (compare (4.38))

1602 Ka(a,4) — Kne(,u)]| < Clo —y| AL (458)

Moreover, suppose that, for these Ky, the integrals [ Ky (z,-)ie can be computed by
analytic formulae. Then we set {I‘E i eNYy={IY:i=1,..., M7} (i.e., no further
partition of the domains TY is required) and define the quadmture rule over thzs partition
analogously to Section 4.2. The discretized entries of the compressed stiffness matriz can
be computed as

Cerg ™~ CE/£ - Z)‘ { 64. d)f f,. + Z KA L)mp)¢f(mp) (459)

pEM

+ Z [/1_:&,, KM(EL)y)'I:bE(y)d‘yF - Z KM(EL) m#)¢€(m#)wp

PeN: l"f,ln supp ¥ £0 NGM;I

This algorithm leads to a stable and fully discretized method such that the assertion of
Theorem 4.1 remains valid. The number of arithmetic operations is less than N? times a
power of log N;. The proof for this almost optimal algorithm is analogous to those of the
Theorems 4.1 and 4.2. v

Remark 4.3 Suppose that, in addition to the assumption ) of Section 4.1, the parame-
trizations k., are bounded and analytic over small neighbourhoods of S. Then the singu-
larity subtraction step 18 necessary only for the domains D™ikE containing the singularity
points &,. Setting {I‘f c i e NYy:={TY: i=1,..., M’} and defining the quadrature rule
as the tensor product Gauf rule over this partztzon with the Gauf order ng from (4.12),
we again arrive at an algorithm such that the assertion of Theorem 4.1 remains valid and
that the number of arithmetic operations is less than N? times a power of log Nj.
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