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Abstract 

In this paper we consider a piecewise bilinear collocation method for the solution 
of a singular integral equation over a smooth surface. Using a fixed set of pa-
rametrizations, we introduce special wavelet bases for the spaces of test and trial 
functions. The trial wavelets have two vanishing moments only if their supports 
do not intersect the lines belonging to the common boundary of two subsurfaces 
defined by different parameter representations. Nevertheless, analogously to well-
known results on wavelet algorithms, the stiffness matrices with respect to these 
bases can be compressed to sparse matrices such that the iterative solution of the 
matrix equations becomes fast. Finally, we present a fast quadrature algorithm for 
the computation of the compressed stiffness matrix. 

1 Introduction 

It is a well-known fact that usual finite element discretizations of linear integral equa-
tions (e.g. of boundary integral equations) lead to systems of linear equations with fully 
populated matrices. Thus, even an iterative solution method requires a huge number 
of arithmetic operations and a large storage capacity. In order to improve these finite 
element approaches, several new algorithms have been developed. For a relatively wide 
class of boundary integral equations, Rokhlin and Greengard (37, 20] have introduced their 
methods of multipole expansion, Hackbusch and Nowak [21] ( cf. also [38]) have considered 
panel clustering algorithms, and Brandt and Lubrecht [3] have set up multilevel schemes. 
Another approach for saving storage and cpmputation time consists in employing wavelet 
bases of the finite element spaces. This idea goes back to Beylkin, Coifman, and Rokhlin 
[2], and has been thoroughly investigated by Dahmen, v.Petersdorff, Proi3dorf, Schneider, 
and Schwab [13, 14, 12, 15, 32, 31, 30, 39] ( cf. also the contributions by Alpert, Harten, 
Yad-Shalom, Dorobantu, Kleemann, and the author (1, 22, 19, 9, 10, 36]). Note that all 
the different algorithms from multipole expansion to wavelets seem to have a common 
multilevel background. 

The subject of the present paper is to apply the wavelet technique from [2] to the colloca-
tion solution of two-dimensional singular integral equations. The two-dimensional singular 
integral equations and the bilinear collocation methods will be introduced in Section 2. 
In particular, the collocation for the singular boundary integral equation corresponding 
to the oblique derivative problem for Laplace's equation ( cf. Miranda [27], Section 23, 
Klees, Engels [25, 24] or the similar equation for the Molodensky problem in Moritz [28], 
Section 43) is included. 

If the underlying surface is smooth (continuously differentiable up to a certain ord~r) and 
diffeomorphic to the torus, then it is clear that the wavelet algorithms ( cf. [12, 31]) admit 
high order compressions. For general smooth surfaces represented by a set of parame-
trizations, similar results hold if the wavelet functions are suitably chosen. Supposing 
that the parameter domains are squares, one can define the wavelets of the trial space as 
tensor products of the orthogonal wavelets and scaling functions over the interval ([7, 5]). 
However, due to the orthogonality, these wavelets are not optimal. Indeed, to reduce 
the amount of work for the quadratures applied during the computation of the stiffness 
matrix, wavelets with smaller supports but with the same moment conditions seem to be 
preferable. Thus, in Section 3.1 we consider the piecewise linear univariate biorthogonal 
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wavelets used by v.Petersdorff, Schwab, and Rathsfeld [32, 36]. These wavelets have the 
smallest support among all the piecewise linear wavelets with two vanishing moments. 
By reflection techniques we define boundary wavelets and get a stable wavelet system 
(Riesz basis) over the interval. Applying well known tensor product techniques in Section 
3.2, we introduce a wavelet basis over the square, and, by using the parameterization 
mappings, we end up with continuous wavelet functions over the boundary manifold. 
For these wavelets, we will prove the Riesz basis property and the usual decay property 
for the coefficients of a smooth bilinear function. If the support of the wavelet does 
not intersect the lines belonging to the common boundary of two subsurfaces defined by 
different parameter representations, then the wavelets have two vanishing moments. Note 
that the techniques for the proof of these properties are well known from the works of 
e.g. Cohen, Daubechies, Feauveau, Dahmen, Kunoth, Schneider [6; 16, 11, 39]. Therefore, 
some parts of the proof are only sketched. 

Following the ideas of Harten and Yad-Shalom [22], we define a wavelet basis for the space 
of test functionals in Section 3.3. In Section 3.4 we describe the wavelet algorithm which is 
based on the just introduced bases in the test and trial spaces. Analogously to the results 
by Dahmen, Pro:Bdorf, Schneider, v.Petersdorff, and Schwab [14, 39, 31] we will show 
that the n x n stiffness matrix corresponding to the wavelet bases admits a compression 
up to a matrix with no more than O(n[log n] 4 ) non-zero entries and that, replacing the 
full stiffness -matrix by the compressed matrix, we get the same asymptotic convergence 
rate O(n-1 ) as for the conventional collocation solution." For this estimate,_the second 
order moment condition for the wavelets along the common boundary of two subsurfaces 
defined by different parameter representations is not necessary. Note that the logarithmic 
factor [log n] 4 could be slightly improved if the factor j in the compression criterion 
(3.66) of Theorem 3.1 is replaced by a power of j with exponent less than one. Essential 
improvements are possible if wavelets with more vanishing moments are used and if the 
compression is extended to matrix entries corresponding to wavelets with overlapping 
supports ( cf. the compression of the Galerkin matrix due to Schneider [39]). However, 
the complete removal of this factor similar to the compression of the G~lerkin matrix 
seems not to be possible since the basis transform corresponding to the test wavelets is 
not bounded ( cf. Lemma 3.4). 

Clearly, using the compressed matrix, the iterative solution (e.g. by a cascadic GMRes 
algorithm) of the collocation system requires no more than O(n[log n] 4 ) arithmetic op-
erations. In Section 4 we will introduce a quadrature algorith;m. for the computation of 
the compressed stiffness matrix with no more than O(n413 [log n] 413 ) operations. The cor-
responding error of the discretized collocation solution is less than O(n-1 log n). Note 
that this quadrature algorithm is more or less an adaption of the Johnson-Scott algorithm 
[23] ( cf. also. the references in [23]) for the computation of conventional stiffness matrices 
to the case of wavelet transformed stiffness matrices. The complexity result is true if 
each of the parametrization mappings is analytic in a neighbourhood of the· parameter 
domain and if the kernel function of the singular integral operator admits a representation 
( cf. ( 4.3)) which is typically fulfilled for boundary integral operators. Moreover, in con-
trast to the estimates for the Galerkin method by v.Petersdorff, Schwab, and Schneider 
[31, 39], we even do not need the global ~nalyticity of the parametrizations. Local ana-
lyticity is sufficient. More exactly,_ if the thrice continuously differentiable surface is given 
by certain grid points and if this surface is replaced by a suitable interpolation, then we 
may suppose that the parametrizations are twice continuously differentiable and piecewise 
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polynomial. For this situation, the complexity estimate O(n413 (log n]413 ) remains true. 
Finally, we indicate how an algorithm of complexity O(n) times a certain power of log n 
can be obtained. 

For a numerical experiment with the method of the present paper, we refer to the pa-
per [35]. In that article we considered a singular integral equation corresponding to 
an oblique derivative boundary value problem of Laplace's equation with application in 
geodesy ( cf. Moritz [28], Klees and Engels [24]). To this we applied a slightly modified 
version of the wavelet and quadrature algorithm defined in Sections 3.4 and 4.2. The 
underlying manifold was a part of the earth's surface which is not smooth and which 
was approximated by Overhauser interpolation over the uniform grid of a square shaped 
parameter domain. Thus a global parametrization mapping was applied for the numerical 
computations. Using this, we could replace the singularity subtraction technique of Sec-
tion 4.2 by a global singularity technique. Furthermore, to reduce the computing time, 
we used test functionals with one vanishing moment, only. Though these test wavelets 
lead to asymptotically slower methods, we expect them to be faster for linear systems 
of size less than 10 OOO. Due to the lower compression rates the refinement step from 
{r{} to {rf} for the quadrature p~rtition ( cf. Section 4.2) turns out to be redundant. 
Implementing our wavelet algorithm including the three modifications mentioned above, 
we observed that the stiffness matrix of dimension n == 9 025 can be· corn pressed to 5 .13 
such that the additional relative compression error is still less than 10-5 • The wavelet 
algorithm reduces the computing time on a DEC 3000 AXP 400 a- processor work station 
from 10 500s for a cconventional algorithm to 890s. For more details and results, see (35]. 

2 The Collocation Method for the Singular Integral 
Equation 

2.1 The Singular Integral Equation 

Now we consider a smooth two-dimensional surface r in the three-dimensional Euclidean 
space JR3 • This· surface is supposed to be the union of the closed bounded surface pieces 
r m, m == 1, ... 'mr such that, for every m, there exists an infinitely differentiable co-
ordinate mapping "'m from the reference domain S := [O, 1] x [O, 1] to r m· Moreover, 
we suppose that this mapping extends to a mapping over a small neighbourhood of S 
and that the intersection of two subsurfaces r m and r m' is either empty or consists of a 
common corner point or is equal to a common side of r m and r m', respectively. In case 
the intersection r m n r m' is a side, we suppose that the parametrizations "1m and /'\,ml 

restricted to this common side coincide. The singular integral equation over r takes the 
form 

Au(x) := a(x)u(x) +fr KA(x,y)u(y)dyI' = v(x), x Er, (2.1) 

where a is a smooth function and KA(x, y) is the singular kernel function of operator A. 
We suppose that KA is infinitely differentiable over r x r \ {(x, x) : x E r} and that the 
derivatives satisfy the Calder6n-Zygmund estimate 

(2.2) 
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for any multiindices a and {3. The integral on the left-hand side of (2.1) is to be understood 
in the sense of a principle value ( cf. [26)). Operator A is supposed to be a classical pseudo-
differential operator of order zero and maps the Sobolev space Hs (r) of orders into Hs (r). 
In local coordinates, (2.1) takes the form 

mr 
a(K,k(t))u(K,k(t)) + L L KA(K.k(t), K,m(s))u(K.m(s))IK,~(s)jds = v(K,k(t)), 

m=l S 

t ES, k =l, ... ,mr, (2.3) 

where IK,~(s)I denotes the density of the surface integral, i.e., the norm of the vector 
product 8s1 K,m(s) x Bs2 K,m(s). 
For the stability of the numerical methods, the concept of strong ellipticity plays a crucial 
role. We call A strongly elliptic if A satisfies the so called Garding inequality, i.e., 

Re(Au, u)L2(r) 2:: rllull£2(r)- l(Tu, u)L2(r) I (2.4) 

for any u E L 2 (r). In (2.4) the operator T E £(L2 (r)) is supposed to be compact and 1' 
stands for a positive constant independent of u. Note that the classical pseudodifferential 
operator A is strongly elliptic if and only if the real part of its main symbol is greater 
than a positive constant. 

Finally, remark that the smoothness assumptions can be relaxed. This will be indicated 
in Section 4.1. 

2.2 The Bilinear Trial Functions and the Collocation 

We will seek an approximate solution for u of (2.1) in the space of bilinear functions 
over r. To define these functions, we first introduce functions over the square S. We set 
N :=Ni := 3 · 2i and h := hj := 1/ N and consider the grid 6j := { Ti,k : i, k = 0, ... , N}, · 
where Ti,k := (ih, kh). The space of piecewise bilinear functions Sf:= span{cp~: r E 6j} 
over the grid 6j is defined by the basis functions cp~(t) := NcpT(N · [t - r]), where 
cpT ( ( t1 , t 2 )) := cp( t1 )cp( t 2 ) is the tensor product of the univariate hat function 

( s) : = { 1 - Is I if Is I ~ 1 
cp 0 else. (2.5) 

Using the parametrizations K,m, we define the grid '6.j := {efk : m = 1, ... , mr, i, k = 
o, ... 'N} over r by eu := K,m( Ti,k) and the space of trial functions Sj := span{ 'Pe : 
e E ~i} by 'Per,iJK,m(t)) := 'Pi,1k("'m(t)) := cp~11Jt). Note that, if e E ~i belongs to 
more than one subsurface r m, then it admits several representations ofthe form e =en. 

I 

Nevertheless, we consider e as one point. The corresponding basis function 'Pe is the sum 
of the functions "'m(t) r-+ 'Pik(K,m(t)) := cp~. (t) defined over the different r m· Clearly, the 

I \ 1Jc 

functions of Si are bilinear with respect to the parametrization and 'Pe( e') = N 8e,e holds 
for any e, e' E ~i· 

With the collocation method we seek an approximate solution Uj E Si to u by solving the 
collocation equations 

(2.6) 
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We introduce the interpolation projection Pi onto Si by 

(2.7) 

Clearly, the collocation system (2.6) is equivalent to PjAUj = Piv. The collocation is 
called 'stable if, for sufficiently large j, the collocation operators Ai := PjAls; E £(Si) q.re 
invertible and the L 2- norms of the inverse operators are uniformly bounded. 

Theorem 2.1 i) [34] Suppose that r is homeomorphic to the two-dimensional torus and 
that mr := 1, i.e., K, := K,1 : S ---+ r is a global parametrization. Moreover, we assume 
A to be strongly elliptic. Then the collocation method is stable in Ha for 0 ::; s < ~. The 
collocation solution Uj defined by {2. 6) converges in Hs to the exact solution u of Au = v 
for any v E Hs with s > 1, and the collocation error satisfies 

for 0 ::; s ::; t ::; 2, s < ~, 1 < t. 
ii) [33] Suppose that r = S, that Si and !:ii are modified such that !:ii contains only the 
interior grid points and that Si is spanned by the basis functions vanishing, at the boundary 
of r = S. Moreover, we assume A to be strongly elliptic. Then the collocation method 
is stable in L2 • The collocation solution Uj defined by {2. 6) converges in L2 to the exact 
solution u of Au =, v for any v E L2 such that llPiv - vllL2 ---+ 0. If u is in H 2 and 
vanishes over the boundary of S, then 

Unfortunately, we do not know stability results for the collocation method in the general 
case. Nevertheless, we suppose in the following that the collocation method is stable. 
Then the error estimates of the last theorem remain valid. 

Choosing the conventional finite element basis { 'Pehe.ci.;, the collocation equation (2.6) is 
equivalent to the system 

L h(Acpe)(e')we = hv(e'), e E l:ij (2.8) 
ee.ci.; 

for the coefficients we of Uj := Eee.6.; we'Pe· Thus, the stiffness matrix of the collocation 
is Ai:= (h(Acpe)(e')k.ee.ci.;· 

3 The Wavelet Algorithms 

3.1 Univariate Wavelet Functions 

Using the parametrizations, it will be sufficient to define the wavelet basis functions over 
the square S. Since these wavelets can be defined by tensor product techniques, we begin 
with the definition of univariate wavelets. To introduce wavelets over the real axis IR, we 
consider the uniform grids !:if :7= {ihj: i E ~}and the difference grids \7{1:=6{!1 \!:if 
for l ~ 0 and \7~.\ := !:if(. Clearly, !:if = u{~~ 1 \lf and the space of piecewise linear 
functions Sf over the grid !:if is spanned by the finite element basis { cpfu : a E !:if} 
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given by 'Pfu(s) :== jii;cp(Nj · [s - a]). It is easy to see that the finite element functions 
satisfy the refinement equations 

(3.1) 

Following the techniques for the constructions of.orthogonal wavelets, it is natural to 
define the wavelet shape function 

1 1 
'lf;( s) :== 2cp(2s - 1) - cp(2s) + 2"cp(2s + 1) (3.2) 

and to introduce the wavelet basis functions by shifting the dilated shape function s f--7 

'lf;( Nz · s) to the points of the reference grid "Vf. More exactly, we set 'lj;:-( s) :== 'P~u( s) 
for a E "V~1 as well as 'lf;:(s) :== v'Ni'l/J(Nz · [s - a]) for a E "Vf with l 2:: 0. We arrive 
at the hierarchical basis {'lf;:: a E "Vf, l = -1, ... ,j-1} of the finite element space 
Sf and at the multiscale decomposition Sf = E~~1 WLR, where the. wavelet space WLR is 
spanned by {'lj;:: a E "Vf}. 
We remark that these basis functions are not wavelets in the sense of [16, 4]. The 'Z/J:- are 
biorthogonal wavelets in the sense of [6], where the dual scaling function has not a finite 
support but decays exponentially. From Proposition 4.8 of [6] with L = 2 and k == 2, 
we infer that the dual scaling function belongs even to the Sobolev space H 112 +~ ( IR) for 
a certain small positive e. For a few more details, we refer the reader to the proof of 
Lemma 3.5 in [36]. The wavelet functions 'lj;:, a E "V.f of level l 2:: 0 have two vanishing 
moments, i.e. they are orthogonal to constant and linear functions. Moreover, among all 
the basis function with two vanishing moments the 'l/Jt!' have the smallest support. 

Now we define wavelet functions over the interval I :== [O, 1]. We consider the uniform 
grids .6.f := { ihj : i == 0, ... , Nj} and the difference grids "Vf := .6.f+1 \ .6.f for l 2:: 0 
and "V.::_ 1 := .6.f Clearly, the space of piecewise linear functions Sf over the grid .6.} is 
spanned by the finite element basis { 'Piu : a E .6.}} given by 'Piu :== 'Pfu Ix. Similarly, the 
wavelet functions could be defined as the restrictions to I of the corresponding functions 
ov~r JR. However, we will change those basis functions which do not vanish at the end 
points of the interval. To this end we consider the space of "even" functions over IR, 
i.e. the functions satisfying f(s) == f(-s) = /(2 - s) for s E [0,1]. The correct basis 
functions for this space are the functions 

If we restrict these to I, we arrive at the wavelet basis { 'lf;;ven : a E .6.}} defined by 

if a E "V-:1 
if a E "Vf, l 2:: 0, and 0, 1 t/:. supp 'l/Jt!' 
if a E "Vf, l 2:: 0, and a== hz+1 
if a E "Vf, l 2:: 0, and a== 1 - hz+1· 

(3.3) 

We denote the corresponding wavelet spaces span{ 'lj;~ven : a E "Vf} by Wf and obtain 
I . 1 Wz == wr II and Sf == E~-;. Wf. Clearly, only those wavelets of level l 2:: 0 have two 

vanishing moments for which the support is contained in the interior of I. The wavelets 
of level l 2:: 0 with support intersecting the boundary {O, 1} have one vanishing moment, 
only. Instead of the orthogonality of the wavelet basis we get: 
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Lemma 3.1 i) There exists a constant G > 0 such that, for any j and any sequence 
( Uu )uE.6.~ 1 we get 

3 

(3.4) 

ii) There exist constants G > 0 and 0 < q < 1 such that, for any·· z < l', ul E Sf and 
ul' E Wlf, we get 

(3.5) 

Proof. Now and in the following we denote by G a generic constant the value of which 
varies from instant to instant. We note that the corresponding assertions hold for the 
wavelets over the real axis. Indeed, the analogue of i) is proved in Theorem 3.8 ~f [6]. For 
the proof of ii), we consider the projection Qf onto Sf parallel to the closure of U~jWlR· 
This .projection Qf E £(l 2(JR)) is uniformly bounded with respect to j (cf. (3.4)). We 
observe that the vanishing moment condition for 'I/; implies that the constant function is 
contained in the span of the dual scaling function, i.e. in im [Qf]*. From this fact and 
the exponential decay of the dual scaling functions, it is not hard to derive the usual 1 2 

convergence order 0( jh;) for the approximation of an H 112 functions f by [Qf]* f. By 
duality arguments, we can approximate an L2 function f by Qf f with an H-1/ 2 error of 
0( jh;). This and the well-known inverse property for piecew.ise linear functions yields 
( cf. e.g. the proof of Lemma 6.3 in [39]) 

I l l' I (u, U )L2(R) < llu111Hl/2(R) llu1
' llH-lf2 (R) (3.6) 

l . R l' < llu llH1 /2(R) II (I - Ql1-1)u llH-1/2(R) 
l/2 l l'/21 l'll ( 1 )l'-l I zl l' < C2 llu llL2 (R)Gr lu L2(R) < G v'2 I u IL2(R) llu llP(R), 

and ii) for the case of the real axis is proved. 

Now we consider I. The second inequality in (3.4) follows easily from the corresponding 
estimate over the axis. To see the first, we choose a sufficiently large integer Mand extend 

· Uj == :EuE.6.~ uu'l/;;ven to the real axis by setting 
3 

{ 

Uu-2m if 2m :::; a :::; 2m + 1 and m == - M, ... , M 
Uj :== I: uu'l/;~, Uq. :== U-u+2m if 2m - 1 :::; a:::; 2m and m = -M, ... , M 

uE.6.f 0 else. 
(3.7) 

This function satisfies Uj(s) == ui(s - 2m) for 0 < s < 1 and m = -M, ... , M - 1, 
ui(s) == u(-s-2m) for 0 < s < 1 and m = -M +1, ... , M, and Uj(s) = 0 if Is! 2:: 2M +l. 
The assertion i) for the real axis leads to 

4MlluillL2(1) + 2C L luul 2 1 L luul 2 (3.8) > lluillL2(R) 2:: C2M 
uE.6.J uE.6.J 

lluillL2(I) > L~ -2~} 2:: luul 2, 
uE.6.J 
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which proves the first inequality of (3.4), i.e. the assertion i). Assertion ii) follows by 
similar arguments from the corresponding result over the axis. 

<> 

Similarly, we can define a wavelet basis in the subspace S~i of those functions of Sf which 
vanish at the end points 0 and 1. To this end we consider the space of "odd" functions 
over IR, i.e. the functions satisfying f ( s) = -f ( -s) = - f (2 - s) for s E [O, 1]. The 
correct basis functions for this space are the functions s i-+ 'l/Ju ( s) - 'l/J-u ( s) - 'l/J2-u ( s). If 
we restrict these to I, we arrive at the wavelet basis { 'lj;~dd : a E 6} \ {O, 1}} defined by 

'lj;odd ·- 'l/J:II if a E \lf, l ~ 0, and 0, 1 rt supp ,,p: (3.9) l 'P~ulI if a E v-:1 \ {0, l} 

"" .- { 'l/Jf;+1 - 'l/J~hW }lz if a E \lf, l ~ 0, and a = hl+i 
{'lj;f_hi+i -'lj;l+hz+i}lz if a E Vf, l 2:: 0, and a= 1- hl+l· 

We denote the corresponding wavelet spaces span { 'lj;~dd : a E Vf} by Wl,z and obtain 
SL = 2:~~1 Wl,z. Again, only those wavelets of level l 2:: 0 have two vanishing moments 
for which the support is contained in the interior of I. The wavelets of level l 2:: 0 with 
support intersecting the boundary {O, 1} have no vanishing moment. The assertions of 
Lemma 3.1 hold also for the basis { 'lj;~dd} and for the spaces Wlz· 

' 
We conclude this section with some results on the dual wavelet functions. For definiteness, 
we restrict our consideration to the dual wavelets of the wavelets f;. := ,,p;ven. From [6] 
( cf. also [36], Lemma 3.5) we infer the existence of a dual scaling function cj; and and a dual 
mother wavelet {;. These functions {; and cj; belong to H112 +e: for a certain c > 0 and decay 
exponentially. Setting cj;i(s) := JNicj;(NL:[s-a]), a E 6f, {;:(s) := cj;~""' a E V~1' and 
{;!'(s) := JNi{;(Nl· [s-a]), a E Vf, l ~ 0, we get the duality relations ('l/J!',{;!J) = fiu,u' 
and (cpf"", cpf,""') = fiu,u' for any a, a' E 6f. Clearly, the projection Qf onto Sf parallel 
to the closure of L:~i Wz.R can be represented as 

(3.10) 

These projections are uniformly bounded in L2(JR) since {,,P:} is a Riesz basis. For 
the construction of dual wavelets over I, we introduce the restriction operator R : 
Lf0 c(JR) ----+ L2(I) by Rf := flz, the prolongation operator K : L2(I) ----+ Lf0 c(JR) 
and the L2 adjoint operators R*, K* by 

{ 
J(s - 2m) if 2m ~ s ~ 2m + 1 and m E ~ 

Kf(s) .- f(-s+2m) if2m-l~s~2mandmE~ (3.11) 

{ 
f(s) ifs EI 

K*g(s) := m~zr {g(2m - s) + g(s + 2m)}, R*g(s) := O · else. 

Now we define the dual elements over I by cj;J,"" .- K*cj;f"" and the dual wavelets by 
~; := K*~!'. It is not hard to obtain that (~;,'lj;;,) = (~:,K'lj;;,) = fiu,u' and that 
(cjJf,"", cp},"",) = fiu,u' for any a, a' E 6}. Moreover, the projection Q} onto Sf parallel to 
the closure of L:~j W{ can be represented as 

Q1jJ(s) = L (~1;, f),,Plj(s), Q1j = RQf K. (3.12) 
-rEb.f 

Analogously to Lemma 3.1 we get: 
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Lemma 3.2 i) There exists a constant C > 0 such that, for any j and any sequence 
( Uu )ue.6.+, we get 

3 

(3.13) 

ii) There exist constants C > 0 and 0 < q < 1 such that, for any l < l', ul E span { <Pf.r : 
r E 6f} and ul' E span { ,(fi;, : r E Vf,}, we get 

(3.14) 

Proof. Assertion i) is a simple consequence of a duality argument, of the duality relations 
between the basis { ,(fi;} and {-zfa;} and of Lemma 3.1 i). For assertion ii), we remark 
that it suffices to prove the inverse property and the approximation property for the 
space span{<PJ:r: r E .6.f} = im[Qf]* (compare (3.6)). However, the estimate for the 
approximation error f -[Qf]* fin H-t:(I), 0 < e < 1/2 with f from L2 (I) is equivalent to 
the well-known L2 (I) estimate for f - Qf f with f from Ht: (I). Thus the approximation 
property is dear. 

For the_ inverse property estimating the He: (I) norm of Uj E im [ Qf]* by C hje: times the 
L2 norm of Uj, we consider Uj = Ecre.6.+ ea-'11,CT and set e-0" :== ecr as well as .6.)-l,l] := 

. 3 

6} U -6}. We obtain 

L ea- L { <Pfo-(2m - s) + <Pfo-( s + 2m n, 
crE.6.J mE~ 

11 I: eo-<Pia-llHt:(I) 
crE.6.J 

< II L ea- L <Pfo-(2m - s) llH'(I) +II L ea- L <Pfu(s + 2m) llH'(I) 
o-E.6.J mE~ o-E.6.J mE~ 

< II L ea- L <Pf-o-(2m + s) llHt:([-1,0]) +II L ea- L <Pfo-(s + 2m) llH'([0,1]) 
o-E.6.I

3
• mE~ o-E.6.+ mE~ 

3. 

(3.15) 

The last norm can be estimated by standard techniques. Indeed, the Ht: norm of a 
function f over the periodic interval [-1, 1] is equivalent to {Eke~max[lkl, 1] 2t:lfkl 2}1l2

, 

where the k-th Fourier coefficient fk of a function f is given by fk :== ~ f~ 1 f ( s )e-i?rskds. 
Using this norm equivalence, the formula 

(3.16) [ L: <PfA2m - ·)] 
mE~ k 

[Fcp](s) := 

and the estimate (which follows from [6], Proposition 4.8 by choosing L = 2 and k = 2) 

IF<P(s )I _:::; C min { 1, lsl-1
}, (3.17) 
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it is not hard to obtain 

II I: eucpio-llHt(I) < CNj 
uE.6.f uE.6. [_-1,1] 

1 

< c Nj II I: eucpio- llL2(I)' 
o-E.6.f 

(3.18) 

where the last inequality follows analogously to (3.13). Thus the inverse property is 
proved, too. 

0 

3.2 Wavelet Funct,ions over the Square S and over r 
Our aim is to introduce wavelets over the surface r. These wavelets will be tensor products 
of the wavelets and scaling functions in the space Sf and SL, respectively. In the first 
step, we define wavelets as tensor products of functions from Sf and then, using the pa-
rametrization x;1 , we define functions over r1 . These functions are extended by a simple 
extension procedure to piecewise bilinear functions on r vanishing 'at the grid points of 
the other subdomains. For the basis over the neighbour r2 of r1 , however, the linear 
functions on the common edge belong already to the span of basis functions of the first 
step. Thus we need a basis of functions vanishing at the common edge. In general, for 
any r m to be considered in the further steps, we are given a certain set of edges on which 
the linear Junctions belong already to the span of wavelets of the previous steps, and we 
have to define basis functions vanishing over these edges. This will be realized by taking 
appropriate tensor products of functions from Sf and SL, respectively. 

Now we turn to. S and seek a basis of bilinear functions vanishing at the set of edges £. 
Here£ is an af>bitrary but fixed subset of {ej: j = 1, ... ,4} with e1 [0,1] x {O}, 
e2 := [O, 1] x {1}, e3 := {O} x [O, 1], and e4 := {1} x [O, l]. We set 

! ,,/,even if (]" < l and e d £ . ! ,,/,even if (]" < l and e d £ 'f/o- - 2 1 'F 'f/o- - 2 3 'F 
Y ·- ?/;;dd if O" ::;· ~ and e1 E £ x ·- ?/;;dd if O" ::; ¥ and e3 E E 

7/Jo- .- ?/;;ven if O" > ~ and e2 ~ £ ' 7/Jo- .- ?/;;ven if O" > ~ and e4 ~ £ 
?/;~dd if O" > ~ and e2 E £ ?/;~dd if O" > ~ and e4 E E 

. (3.19) 

S tt . /\ S /\I /\I /\ S,f. /\ S \ LJ c nS,f. /\ S,f. 11 nS,f. /\ S,f. \ /\ S,f. e 1ng u.l := u.l x u.l, u.l := u.l "' v _ 1 := u.0 as we as v l := u.l+l u.l 

if l 2:: 0, we get 

\lf'e. - u3 \ls ,e \ls ,e. 
t=l t,l ' 1,l .-

\ls,e. 
2,l .- t:::.f X \lf \ U£, \l~f .-

\lf x t:::.f \ U£, 

\lf x \lf \ U£, 

for l 2:: 0. The basis functions over S are defined as 

if T = (r1, r2) E \!~{ 
if l;::: 0 and T = (r1, 72) E vf{ 
if l ;::: 0 and T= ( T1, T2) E \!~{ 
if l ;::: 0 and T = ( T1' T2) E \!~{ 
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(3.20) 

(3.21) 



Clearly, the functions { 'lj;~ : T E 6f'e} span the space sf'e of all bilinear functions of 
Sf which vanish over the edge points of UE. We get Sf 'e = ~{;~ 1 wt,e where Wzs,e := 
span{ 'lj;~ : r E \7f'e}. 

Beside these basis functions we also need the simple extension procedure mentioned in 
the beginning of the section. We retain the definition of the finite element functions 
cp~ from Section 2.2. For a moment, however, we write cpj,r := cp~ in order to indicate 
the dependence on the level j. The trace of a bilinear function of Sf on the edge is a 
linear function. If the bilinear function belongs to wt,e) then the trace on the edge is a 
piecewise linear function over the restriction of 6f+l to the edge. Thus suppose we are 
given a function f over the union of the edges in E which is piecewise linear over the 
uniform grid 6f+ilu&· Then we denote by Pd the function 

Pzf(t) := L (3.22) 
r E t:i.f+i n ue 

i.e., the unique piecewise bilinear prolongation of f to a function in Sft1 which vanishes 
over the. grid points of 6f +;. 
Now we turn to r. We suppose that therm, m = 1, ... , mr are given in such an order, 
that, for any 2 :::; m:::; mr, each vertex of the subdomain r m belongs to an edge common 
with u:~1 r m' or does not belong to u:;:\ r m'. To each m with 1 :::; m :::; mr the.fr belongs 
a possibly empty set Em~ {ej: j = 1, ... ,4} such that {Km(e): e E Em} are just the 
edges which are contained in u:;-:;1rm'· Obviously, we have 6j = u:~1Km(6f1em.). To 
define the wavelet basis over r we first set 

. ~ ( X) : == { 'l/J~ ( t) if e == Km ( T) . E Km ( 6 f ,em) and if X == Km ( t) 
e 0 else . (3.23) 

Form'> m and e E Km(6f'Em.) n Km1(UEm1), however, the function ~e vanishes over the 
interior of r m' and does not vanish over the common edge r m n r m'. The same kind of 
disconti~uity along an edge occurs also for wavelet functions ~e with e in the interior of 
rm but close to the common edge, i.e., if e == Km(r) E "'m(\7f'em), if Km(e) = rm n rm,, 
and if the distance of r to e is equal to hz+i · To get a continuous function from Sj, we 
extend the traces from the edge to a bilinear function over r m'· Finally we arrive at 

,,/; e ( x) if ~ E Km ( 6 f ,Em.) and if x E r m 

'l/Je(x) :== [Pz (~e o Km'luem.1)] (t) if e = Km(r) E Km(\7f'&m.), x Erm,, (3.24) 
and rm n rm' == J'i,m(e), dist(r,e):::; hz+i 

0 else . 

Clearly, the functions { 'l/Je : e E 6j} span the space of all bilinear functions of Sj. The 
functions 'l/Je have two vanishing moments whenever e E 6i \ 60 and the support supp 'l/Je 
is contained in the interior of r m· Note that two vanishing moments mean that the 'l/Je 
are orthogonal to "polynomials" of degree less than two, i.e., ('1/Je, !) == 0 for any bilinear 
polynomial f o "'m over S. The scalar product ( ·, ·-) is defined by 

(f,g) := ~ls f(1<m(t))g(1<m(t))dt. 
m=l 

Furthermore, the 'l/Je satisfy the following properties: 
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Lemma 3.3 i) There exists a constant· G > 0 such that, for any j and any sequence 
(ue)ee6;, we get 

(3.25) 

ii) There exists a constant G > 0 such that the coefficients fe of the piecewise bilinear 
interpolant P;f = Eee6 i fe'1f;e to an arbitrary function f from the Sobolev space H2 (I') 
satisfy 

L 24llfel 2 ~ c/j11fllH2 (r), (3.26) 
ee6; 

where l = l(e) denotes the level of e, i.e., e E \i'z := .6z+i \ .6z. 

Proof. i) First we consider the square S and the space Sf'E. For these, we will show 

(3.27) 

l l' . ll' ll l l' l(u, u )L2 (S) I ~ Oq- - llu llL2(S) llu llL2(S), (3.28) 

where q is a fixed positive constant less than one. To simplify the formulae, we assume 
that l < l', that ul := E E"s,e ur'lj;:, and that ul' := E E"s,e u..,.'lj;:. From Lemma 3.1 ii) 

T VIL T Y3L 
and i) we conclude ' ' 

(3.29) 

(u1,u1
'} lEi ,p;,_(t1)1/J~;(t1) l [~:U(n,,,,)\<{,.,(t2)] [~>(r{,r~)1/l~~(t2)] dt2dt1 

I (ul, ul') I < G ql-l' [1 L II L U(r1,T:!)'Pf,7"2 II l'.l/J~1 ( i1) 111 L U(r{,r~)'1f;~21 II l'1f;~{ ( i1) ldt1 Jo ' ' 7°1 ,rl 7°2 T2 

< Gql-l' {
1 L L lu(ri,T:!)l 2 1'1f;~1 (t1)l L lu(r{,r~)l 2 1'1f;~{(t1)ldt1. Jo I 7°2 I 

7°1 ,Tl T2 

. We observe that (3.4) holds also if the '1f;!ven are replaced by 1'1f;;I, by 1'1f;;I, or by lcpf,ul if 
the summation runs over functions of a fixed level. Using this, we arrive at 

L lu{r1,7"2) 1
2 

(ri,7"2) 
(3.30) 

On the other hand, Lemma 3.1 i) and the well-known analogue for the finite element 
functions imply 

2 ff I: U(n,,,,)1/J~ ( ti)cpf,,,, ( t2) dt1 dt2 
h 17"2) 
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(3.31) 



f
1 

f
1 

L [I: U(r1,1"2)'P[1"2 ( t2)] Vi;, ( ti) 
2 

dt1 dt2 lo lo ,.1 7"2 

~ t ~ 1~ u('1.,,)~t,, ( t2) 12 

dt2 

1 2 

Lia LU(ri,1"2)'Pf,1"2(t2) dt2 rv L lu(ri,1"2)1
2

. 
7°1 ° 7°2 ( 7°1 I 7°2 ) 

Here the symbol rv means that the left-hand side is less than constant times the right-
hand side and vice versa. Relation (3.31 ), the analogues result for ul', and (3.30) prove 
(3.28). The estimates (3.28) and (3.31), however, imply 

(3.32) 

l,l'=-1 l=-1 

which proves the upper estimate in (3.27). 

To get the lower estimate, we consider the dual wavelets 

l <Po,,.1 (t1)%,7"2(t2) if r = (r1,r2) E V~·~ 
-j;S( ) ·- {;~1 (t1)cPf,7"2(t2) if l 2: 0 and r = (r1,r2) E Vf{ 

r t1,t2 .- cpf,,.
1
(ti);fY7"2(t2) ifl2:0andr=(r1,r2)EV7~{' 

- - Se 
'l/;~1 (t1)'l/;';..Jt2) if l 2: 0 and r = (r1,r2) E V73 ,'i 

(3.33) 

where the #.er, {;;, and the {;~ are the univariate dual functions to the functions cpf.cr, 
'lj;x, and 'l/;;, 

1

respectively (cf. the end of Section 3.1). The univariate duality relatio~s 
~ -

('l/;;,'lf;;,) = bcr,cr', ('l/;;,'lf;!,) = bcr,cr', and (cpf,cr,<PJ,cr') = bcr,cr' imply the duality relations 
(-[;~, 'lj;~) = 8,.,,., over S. Applying the arguments leading to the upper estimate of (3.27) 
to the dual system, we get 

(3.34) 

Consequently, 

II L u,.'lj;~ llP(S) > (3.35) 
rEL:::..J 

> sup L u,.v,. > 0-1 L lu,.12' 
J~-ret::..f lv-r 12 ~c-1 rEL:::..f rEL:::..f 

and (3.27) is proved. 

For the proof of (3.25), we observe that the piecewise bilinear prolongation Pzf of a 
univariate function f of level l defined over an edge is the tensor product of this f times 
the finite element cpf!1,0 lx or cp{!1,1lx· Using 

I( R 1 R 1 )I < cr1i-i 1 112 'P1+1,o I' 'Pl1+1,o I - (3.36) 

13 



and (3.4) and repeating the arguments leading to (3.32), we arrive at 

II (3.37) 

From this and (3.27), the upper estimate in (3.25) follows easily. To get the lower estimate, 
we conclude from (3.27) that 

L luel 2 < Cll L ue1faellL2(r=) (3.38) 
eEK-=(L::i.J•e=) eEK-=(L::i.J•e=) 

m-1 

< Gii L ue1faellL2(r=) + C L II L ue1faellv(r=)· 
eeL::i.; m'=l eEK-=1(L::i.:'e=') 

Using the just proved upper bound (3.37), we continue 

m-1 

2.: luel 2 < c11 :E ue7/Je.llL2(r=) + c L: 2.: luel 2
• (3.39) 

eEK-=(L::i.J·e=) eeL::i.; m'=l eEK-=1(L::i.:'e=') 

Now we substitute (3.39) with m = 1 into the right-hand side of (3.39) with m = 2, 
substitute the resulting inequality into the right-hand side of (3.39) with m = 3, substitute 
the obtained inequality into the right-hand side of (3.39) with m = 4, and so on. For 
m = 1, ... , mr, we arrive at 

m 

luel 2 < C L II L ue1faellv(r=,)· 

Summing up over all m, we obtain the lower estimate of (3.25). 
ii) First we recall the well known estimate 

(3.40) 

(3.41) 

for the interpolation projection Pi unto the piecewise bilinear functions. Here the norm 
· 11 · llH2(r) is the sum of the H 2 Sobolev norms over the subsurfaces r m, m = 1, ... , mr. 

Now we consider the complementary space Sjornpl :=cl span{7/le : e E 6.i' \ 6.;, j1 > j} 
of Si and denote the projection of L 2(r) onto S; with null space Sjornpl by Qi. From i) 
we conclude that Qi is uniformly bounded with respect to j. In view of (3.41), we get 

llf - QJllL2(r) < Ch~llJllH2 (r)' 
ll(Ql - Ql-1)fllL2(r) < Ch7ll!llH2(r)· 

We set Qif = :E fe7/le· Together with (3.25) we arrive at 

L liel 2 ::; c2-2lll!llH2(r), 
eeL::i.;:l(e)=l 

2.: 24t(e) lfel 2 ::; C Jill!llH2(r)· 
eeL::i.; 
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(3.42) 

(3.43) 



In order to derive (3.26), with the help of (3.25), (3.41), and (3.42) we conclude that 

L lie - fel 2 ::; llQif - PifllL2(r) ::; Oh~ll!llH2 (r) ::; 02-2illfl1H2(r)· 
eE6; 

Together with Inequality (3.43) we arrive at 

<> 

L 24z(e)ifel2 < 
eE6; 

L 24z(e) lie ~ fel2 + 
eE6; 

L 24z(e) lie 12 
eE6; 

< 22i L lie - fel 2 + C {ill!llH2 (r) ::; C /ill!llH2(r)· 
eE6; 

(3.44) 

(3.45) 

Note that, if 'Pi,e :== 'Pe denotes the finite element function of Section 2.2, then there holds 

(3.46) 

By Ej we denote the wavelet transform, i.e., the basis transform mapping the vector 
( ve)eE6; of coefficients ve of a function Uj E Si with respect to the basis { cp;,e} to the 
vector ( ue)eE6; of coefficients ue with respect to the basis { 'ljle}. Then Lemma 3.3 i) 
implies that Ei is invertible and that the l2 operator norms of Ei and Ej1 are uniformly 
bounded with respect to j. Finally, _we remark that the application of E; and Ej1 can 
be realized by fast pyramid algorithms ( cf. [16, 4]). For one application of Ej or Ej1 , no 
more than 0( N;) arithmetic operations are required. 

3.3 The Wavelet Test Functionals 

Similarly to the new wavelet basis 'l/Je in the trial space Si, we can introduce a "wave-
let" basis for the space of test functionals. Note that, in view of (2.6), the space of test 
functionals is spanned by the Dirac delta functionals <Se, e E 63, where <Se(!) := J(e). The 
wavelet functionals will be linear combinations of the delta functionals. To introduce wave-
let functionals, we first consider the square S. Analogously to (3.20), we set V~1 := i6.g 
and 

nS 3 nS nS . nI A I nS . A I nI nS . nI nI 
v l = Ut=l v t,z, v 1,Z .= v l X Llz ' v 2,l ·= Llz X v l ' v 3,l ·= v l X v l ' (3.47) 

for l ~ 0. The basis functionals {}~, T = (r1 , r2 ) E i6.j over Sare defined by 

{}~(!) := if T E Vf,1 and l ~ 0 (3.48) 

if r E v~ 1 u vf 1 I I 

and l ~ 0. 

Since the points ( r 1 ± hz+i, r 2) belong to ,6.f for T E Vf,z, we easily get that the span 
of { {}~ : T E Vf,z} U {<Sr : T E ,6.f} is equal to the span of { 8r : T E ,6.f U Vf,1}. 
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Similarly, for T E vg l u Vf l> the points ( T1' T2 ± hz+i) belong to 6f u Vf z, and the span of 
{'!9~: TE vgl u Vf l'} u {5~: TE 6f u Vf z} is equal to the span of {5r': TE 6f u Vf}. 
Thus, the sp~n of{~~: TE Vf} U {5r: T 

1

E '6.f} is equal to the span of {8r: TE 6f+l} 
and we have span{b"r: TE 6j} = span{'!9~: TE 6j}. Now the functionals '!9e, e E 6j 
over r are defined by '!9 e (!) : = '!9~ (f 0 Kr:n), where e = Km ( T) and T E 6 j. Clearly, 
span{8e: e E 6j} = span{'!9e: e E '6.j}. 
To prepare the analysis of the corresponding wavelet transform, we introduce the dual 
wavelet basis which is some sort of hierarchical basis. We write t = (t1 , t2) and T = (T1, T2 ), 

retain the notation of cpf,"" from Section 3.1 and set 

(3.49) 

These functions satisfy '!9~(X~,) = 5r,r'· Now the dual functions xe, e E 6i over r are 
defined by xe(Km(t)) := x~(t), where e = Km(T), T E 6j, and t E s. Clearly, we get 
'!9e(xe) = 5e,e for any e, e' E '6.j, and the interpolation projection Pi of (2.7) admits the 
representation 

Pjf = I: hjf(e)'Pi,e = I: '!9e(f)xe· (3.50) 
eell; eell; 

Now we introduce the "wavelet" transform Ri mapping a vector of functional values 
( '!9e(f) )eell; into the vector of function values (hif ( e) )ee6 r This is nothing else than the 
basis transform mapping the vector ( ue)eELl of coefficients ue of a function Uj E Sj with 
respect to the basis {xe} to the vector ( ve)eE6 of coefficients ve with respect to the basis 
{ 'Pi,d· Though we have the norm equivalence (3.46) for the functions 'Pi,e, the estimate 
(3.25) with ,,Pe replaced by xe is not true and the l2 operator norms of Ri and Rj1

, 

respectively, are not uniformly bounded anymore. Instead of (3.25) we have the following 
result. 

Lemma 3.4 There exists a constant C > 0 such that, for any j, we get 

0-1/j < llRill.cw(ll;)) ~ cfj, 
o-12i < llRJ1 ll.c(z2(fl;)) ~ c2i. 

(3.51) 

Proof. Setting Uj = Eeell; ve'Pi,e = Eeell; uexe as well as u := ( ue)eell;, v := ( ve)eell;, 
we get Rju = v. From (3.50) we infer 

ve == hu;(e) = L ue,hxe(e). (3.52) 
e'Ell; 

The last sum contains no more than C · j terms different from zero and each term can be 
estimated .by 

luel · h ·sup lxdx)I ~ Cluel21(e')-i. (3.53) 
x 
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By the Cauchy-Schwarz inequality, we conclude 

lvel 2 < Cj I: 22(l(e')-j) I 12 ue1 ' 
e'E6;: xe(e)~o 

I: lvel 2 < C j L 22(l(e')-i) lue 12 I: 1. (3.54) 
eE6; e'E6; eE6;: xe(e)#o 

Taking into account that the support of Xe' contains no more than G22(i-l(e')) grid points e, we continue 

L lvel 2
::; Cj L luel 2

• (3.55) 
eE6; e'E6; 

This proves II Rh II ::; G ...ff. For the converse estimate, we choose ue := 2-l(e'). A simple 
calculation yields llull ::; C...fi and llvll ,...., llu1llv 2:: lluillL1 2:: Cj. Hence, we conclude 
llR1ll 2:: CV). 
Now we turn to Rj1

. Analogously to (3.52), we arrive at 

ue' = L ve1Jd'P1.e)· 
eE6; 

(3.56) 

In this sum the number of terms different from 0 is bounded by a constant. Each term 
can be estimated by lvel2(i-l(e')), and the Cauchy-Schwarz inequality yields 

lue 12 < c22(j-l(e')) I: lve 12; 
eE6;:i9 e ( 'P;,e)~o 

L luel 2 < C L lvel 2 L 22U-L(e')). (3.57) 
e'E6; eE6; e'E6;:19e('P;,e)~o 

For fixed~ E 61 and fixed l, -1::; l ~ j -1, the number of e' E V'l with 1Je(r.p1,e) =f. 0 is 
bounded by a constant. Consequently, we obtain 

j-1 

· L lue1l2 < C L lvel 2 L 22U-l), 
e'E6; eE6; l=-1 

llulll2 < C2illvlll2 (3.58) 

and II R"j 1 II ::; C2i. On the other hand, choosing ve := 2-i for one point e = e'' E V' -1 

and ve := 0 else, we arrive at llvll ::; 02-i and lue"I ~ C. In other words, llull ~ C and 
. llRj1 ll ~ 02-i. 

<> 

Remark 3.1 Suppose that s is a fixed number between 1 and 3/2, Then there exists a 
constant C > 0 such that, for any j and any sequence ( ue )eE6;, we get 

1 c L 225 luel 2 
::; II L uexellHs(r) ::; c 

eE6; eE6; 
(3.59) 

This result can be proved analogously to [39]. 

Finally, we remark that the application of R1 can be realized by fast pyramid algorithms, 
too. The matrix Rj1 contains no more than three non-zero entries in each row. Conse-
quently; for one application of R1 or R"'j 1

, no more than 0( Ni) arithmetic operations are 
required. 

17 



3.4 The Wavelet Algorithm 

Using the new wavelet bases from Sections 3.2 and 3.3, the collocation equation (2.6) is 
equivalent to 

'19e(Auj) = 19e'(v), e E .6j, Uj = L ue'l/Je. (3.60) 
eE.6.; 

The matrix equation Ai(we)eE.6.; = (hv(e'))e'E.6.; can be replaced by the equivalent equa-
tion Bi(ue)eE.6.J = (19e(v))eE.6.J' where the matrix Bi is defined as ('19e1(A'l/Je))e,eE.6.J· This 
Bj is called the wavelet transform of A;, and we get Aj = RjBjE;. Note that we will 
identify the operators in £(Si) with their matrices corresponding to the basis { 'Pi,e}. In 
particular, we get Ai= Ai E £(Si)· 

Now the wavelet algorithm looks as follows. We solve the matrix equation Ai(we)eE.6.J = 
(hv(e'))eE.6.; iteratively (e.g. by GMRes). The main part of the computation is spent for 
the multiplication of iterative solutions z := (ze)eE.6.J or residual vectors z by the matrix 
Ai· In the wavelet algorithm, this step is done by first multiplying z by Ej, then by 
Bj, and finally by Rj. As has been mentioned in the ends of Sections 3.2 and 3.3, the 
basis transforms z r-t Eiz and [BiEiz] r-t Ri[BiEiz] can be realized via fast pyramid 
type algorithms. For the multiplication by B;, we will prove that, due to the moment 
conditions and the smallness of the supports of the bases {19e, e' E .6j} and {l/7e, e E .6j}, 
the majority of entries in Bj is very small ( cf. Lemma 3.5). Thus, setting these entries 
equal to zero, we end up with a compressed matrix Cj and the multiplication by Bj can 
be replaced by the multiplication with Ci. The additional error due to the compression 
will be less than the discretization error of the conventional collocation ( cf. Theorem 3.1). 
Since the matrix Ci is sparse, the multiplication by Cj is fast. In fact ( cf. Theorem 3.1), no 
more than O(NJ[log Nj] 4 ) ari~hmetic operations are necessary for th~ multiplication by 
the O(NJ) x O(NJ) matrix Cj. Hence, if the matrix Ci is already given and if the equation 
[RiCiEi](we)eE.6.J = (hv(e'))eE.6.J is solved by an iterative algorithm (e.g. by a cascadic 
GMRes algorithm), then an approximate solution Uj = E;E.6.J wecp,;,e with an error less 
than Ch] can be computed with no more than Chj2 [log hj1 ] 4 arithmetic operations. 

In any case, the main part of the computing time for boundary element methods is spent 
for the calculation of the stiffness matrix. For the wavelet algorithm, we do not need 
the whole matrices Ai or Bj but ~nly the compressed matrix Cj .which saves a lot of 
computing time. However, this reduction in computing time is not so easy to achieve as 
it might seem at first glance. In fact, a sophisticated algorithm of quadrature is needed 
to guarantee small quadrature errors and to reduce the amount of work. We will discuss 
this issue in Section 4. 

Remark 3.2 It is possible to solve B;( ue)eE.6.J = ( 19e( v) )e'E.6.J directly. For details we 
refer to the papers by Dahmen, Kunoth, Projldorf, and Schneider {11, 14}. In the situation 
considered in the present paper, however, the condition number of the original matrix Aj is 
uniformly bounded, and we expect the actual value of the condition number of the wavelet 
transform Bi to be much worse even if it is uniformly bounded. 

Now we describe the compression algorithm. The results and proofs are analogous to 
those given by Dahmen, Profidorf, Schneider,, v.Petersdorff, and Schwab [14, 31]. Hence, 
we present the results and only those parts of the proofs which are new. We begin with 
the estimate for the entries of Bi. 
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Lemma 3.5 Suppose e E 6.; is equal toe= K,m(r) for 1::; m::; mr and TE D..1'lm such 
that the support of 'l/Je is contained in the interior of r m· Then, for this e and fore' E 6.j, 
the entry be,e := iJe(A'l/;e) of the wavelet transform Bi can be estimated as 

lbe,e I ::.; 2-3z(e)-3l(e') [<list ( supp 'l/Je, conv iJe, )r6 , (3.61) 

where supp 'l/Je denotes the support of the function 'l/Je and conv iJe stands for the convex hull 
(in the parameter domain) of the support of the functional {)e. By <list( supp 'l/Je, conv {) e) 
we have denoted the distance between the sets supp 'l/Je and conv iJe. The integer l( e) 
denotes the level of e, i.e., e E 'Vim := 6.i(e)+i \ 6.i(e)· For arbitrary e, e' E 6;, the entry 
be ,e can be estimated as 

(3.62) 

Proof. Instead of repeating the rigorous proof of [14, 31, 39], let us only explain, where 
the different factors in (3.61) and (3.62) come from. For analogy reasons, it is sufficient 
to consider (3.61). One factor 2-L(e') is from the scaling factor Nz(}) in the definition of 
(3.48). The second. factor 2-2Z(e') is due to the third term in the Taylor series expansion 

·of the kernel function at a point x = K,m(t) of conviJe'· Indeed, applying iJe to f := A'l/Je 
and using that iJe vanishes over linear functions, we get 

1 . 
f(K,m(s)) f(Km(t)) + \7 f(Km(t)) · (s - t) + 2\72 f(K,m(t')) · (s - t) 2

, (3.63) 

INz(e')iJe(f)I < C sup l\72 f(Km(t'))I sup IY - xl 2
::; C sup l\72 f(x 1)12-21(e'). (3.64) 

yEconv{)e' 

Similarly, writing iJe'(A'l/Je) = (A'l/Je, iJei) = ('l/Je, A*iJe) = f f'l/Je with f := A*iJe, using 
the moment conditions of order two for the trial wavelet, and choosing x E supp 'l/Je, we 
conclude ( cf. (3.63)) 

j ~\72 f(x:m(t1)) • (s - t)2 1/le(x:m(s))ds, 

< Csup IV2f(x')I J. IY- xl 2 l'l/Je(Y)ldy 
supp'l/Je 

(3.65) 

< C sup l\72 f(x')lr 21 (e) J. l'l/Je(Y)ldy. 
supp'l/Je 

Thus, a factor 2-2i(e) in (3.61) is due to the second order moment condit'ions of the wavelet 
in the trial space and an additional 2-z(e) arises from the scaling factor Nz(e) ,......, 2z(e) in 
the definitions of Sections 3.1 and 3.2 ( cf. the factor y'Ni for the univariate wavelet 'lj;:: 
and observe that the bivariate wavelets are tensor products of univariate wavelets) and 
from the measure meas( supp 'l/Je) ,......, 2-2l(e). Applying these Taylor series arguments to the 

· integrand in (A'l/le, iJe ), it remains to estimate the fourth order derivatives of the kernel 
function KA(x,y) of the operator A for x E conviJe, and y E supp'l/Je. Applying (2.2), the 
estimate of the kernel function leads to the factor [dist(supp 'l/Je, conviJe, )]-6 in (3.61). 

Theorem 3.1 Suppose that the right-hand side v of (2.1) belongs to the Sobolev space 
H 2 (r) and define the compressed matrix C; = ( ce',ek,ee.ti.; by 

c ·- { be,e if dist ( supp 'l/Je, conv iJe) ::; (a 2i j)2-z(e')-z(e) (3.66) 
e,e .- 0 else 
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with a suitable constant a ~ 1. If a is large enough and if the collocation method {2. 6) is 
stable {cf. Theorem 2.1), then the operator A; := [R;C;E;] E £(S;) is stable, i.e., there 
is .an h > 0 such that, for any h; < h, the operator A; is invertible and its inverse Aj 1 is 
uniformly bounded. Additionally, if u; E S; denotes the solution of A;u; = P;v, then 

(3.67) 

and the number of non-zero entries in the matrix Cj is less than C a2 NJ [log N;J4 = 
Ca2hj2 [log hj1]4 • 

Proof. For some details of the proof we again refer to [14, 31, 39]. We only present those 
parts which are new. In particular, the bound for the number of non-zero entries can be 
derived analogously to [14, 31]. For the stability and for the convergence estimate, we 
have to prove 

II (A . _A-·.)- ·II < c -2h~-s { llullH2(r) ifs = 2 
J J uJ L2(r) - a J 11- ·II "f - 0 U3 L2(r) 1 S - , 

where u; is the interpolation P;u of the exact solution u to Equation (2.1). 

(3.68) 

To prove (3.68), we set D; := B; - C; = ( de,ek,eell; and get A; -A;= R;D;E;. In view 
of the Lemmas 3.3 and 3.4 we have to estimate the matrix Dj := (de,,ek,eell; E £(l2(.6;)) 
with de',e := de,e2-sz(e). By Schur's lemma the norm can be bounded as follows. 

(3.69) 

Since the entries de,,e with supp 7/1e contained in the interior of some r m can be treated as 
in [14, 31, 39], we only estimate those parts af of G"i, i = 1, 2 where a e is involved such 
that supp 7/1e intersects the boundary of some r m· We denote the set of these e by 6~ 
and set a* := (a 2i j)2-z(e')-l(e) as well as dist := dist( supp 7/1e, conv -Oe' ). Using (3.62) and 
(3.66), we get 

a~ < C sup [i(e') L 2-Z(e)-3z(e')dist-42-sl(e)2-l(e)] 
e'Ell; eell~: dist>a,.. 

3 

(3.70) 

< C ~ug_ [r21<e') ~ 2-t(i+s) L dist-42-1ceJ] 
e E J l=-1 eellj:dist>a,..,l(e)=l 

Applying 

(3.71) 
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we arrive at 

O"~ < c sup [r21Wl I: rl(r+s) a:-3] (3. 72) 
e'El::.1 l=-1 

< C sup [r2l(e') I: rl(Hs) ( (a 2i j)2-l(e')-lr3] 
e1El::.1 l=-1 

< c sup .[a-3r32-3i2l(e') I: 21(2-s)] < ca-Jj-22-si. 
e'Et::.1 l=O 

On the other hand, similarly to (3. 71), we get 

and, analogously to (3. 72), we conclude 

a~ < C sup [2z(e) L . 2-t(e)-3Z(e')dist-42-st(e)2-t(e')] (3. 7 4) 
eet::.1 e'Et::.1: dist>a. 

< c sup [r·1w I: r 21 L. dist-4r 21(ei] 
eet::.; l=-1 e'E.6.1:dist>a.,l(e')=l 

< C sup [r•l(C) I: r21 ( (a 2i j)2-l-l(C) r2] 
eet::.1 l=-1 . 

~ 0 sup [~-2r2r2;2(2-s)1(e) I: 1] ~ a-2j-1 2-s;. 
eet::.1 l=O 

The estimates (3.72) and (3.74), the analogous estimates for the entries be',e, e E 6; \ 6~, 
and (3.69) yield that llDjll.c(t2(t::.;)) is less than Ca-2j- 1hj. This together with the Lemmas 
3.3 and 3.4 implies (3.68). 

<> 

Remark 3.3 From the Lemmas 3.3 and 3.4 we get llC;ll = llRj1A;Ej1 1l rv 2i and 
llR;ll rv ..Ji. Thus, the multiplication of a certain vector z by R;C;E; can lead to an 
additional· error of 0 ( 2i ..Ji) times the numerical error of z. 
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4 The Error and Complexity of the Quadrature Al-
gorithm 

4.1 Assumptions on the Parametrization and the Kernel func-
tion 

Clearly, the assumptions on the parametrization and the kernel function in Section 2.1 are 
not necessary for the results of the previous sections. Indeed, for the kernel KA ( x, y) and 
x =J. y, the existence of continuous derivatives up to the order four (two derivatives with 
respect to each variable x and y) is sufficient. For the parametrization, a differentiability 
up to order three is sufficient. If differentiability is guaranteed only up to orders less 
than four and three, then .a different wavelet algorithm is possible. More precisely, for 
appropriate real numbers a 2:: 1, (3 2:: 1, and I > 0 the compressed matrix C; can be 
defined by 

·- { be',e if dist ( supp 7/Je, conv '!9e) ::; max{2-l(e), 2-l(e'), (a 2i j'Y)2-al(e')-,Bl(e)} 
ce,e .- 0 else. (4.1) 

The error jju - u;llL2(r) for the solµtion of the corresponding discretized equation A;ui = 
P;v will be of order O(h8), 0 < 5 :::; 2, which should be the best possible under the 
weaker differentiability assumptions. The number of non-zero entries will be of order 
Nj', 2 < 81 

::; 4. Thus, this wavelet method is suboptimal since it reduces the number of 
arithmetic operations from NJ for a conventional finite element algorithm to Nj' > NJ. 

Now we will define our quadrature algorithm for the following situation: 

i) Suppose the surface is three times continuously differentiable. 

ii) Suppose that the surface is given by a finite number of grid points, only, i.e., that 
the K-m are given over the grid 6f. 

iii) We replace the true surface by a piecewise polynomial interpolant. This is given by 
the parametrizations Km which interpolate the given values {Km(e) : e E 6f }. 

iv) Suppose that K-m is twice continuously differentiable over S and polynomial over 
each patch {(ti, t 2 ) : (k - l)h; ::; t 1 ::; kh;, (i - l)h; ::; t2 ::; ih;, }. Furthermore, 
suppose that there exists a constant independent of m and the patch such that 

(4.2) 

for any non-negative multiindex a = ( a 1 , a 2 ) with la! := a 1 + a 2 :::; 3. 

v) To ensure the existence of the singular integrals in the principal value sense, we 
suppose that the approximating manifold is continuously differentiable also over the· 
common boundary of two subsurfaces defined by different parameter representations. 

vi) For the kernel function KA(x,y), we require the representation (cf. e.g. [31]) 

KA(x, y) = L sa(x, y, ny)(x - Ytlx - yj- 2
-\ 

k~lrxl 
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where k is an odd. integer, ny is the unit normal to r at y, and the sum is taken 
over a finite number of multiindices a. 

vii) Suppose that, for any m = 1, ... 'mr, the functions Sa: r m x r m x S2 ---+ IR admit 
continuous extensions to the sets 

r m X {t E (f3
: dist(t, r m):::; cA} X 82

, 

r m x r m x {t E (f3 : dist(t, S2) :::; CA} ( 4.4) 

such that sa. is a complex analytic function with respect to the second and third 
variable, respectively. 

Clearly, the replacement of the true surface by the approximating piecewise polynomial 
surface leads to additional errors. Though these effects require an extra analysis, we will 
not discuss this issue. If the interpolation of the thrice differentiable surface is defined 
e.g. by tensor product Overhauser interpolation ( cf. [29]) and by straightforward mod-
ifications at the lines r m n r m'' then the global continuous differentiability of the new 
surface can be guaranteed. Moreover, the piecewise second derivatives of the approxi-
mating surface are close to those of the true surface. Therefore, we. conjecture that the 
compre·ssion results of Section 3 and the results of the present chapter remain true for the 
Overhauser interpolation of a three times continuously differentiable surface. 

4.2 The Quadrature Algorithm 

In this section we define the quadrature rules for the computation of the matrix entries 
ce,e of the compressed wavelet transform Ci. From (3.48) we conclude that,· for each 
e' E V 1, there exist three points e,, of .61+i and three real coefficients ,\,, such that {} e' (!) = 
I:~=l ,\J(e,,). Clearly, for e' E V -1, we have A2 = )3 = 0. If the entry ce,e is not zero, 
then it is equal to 

3 3 . 

ce•.e = L A,Aifie(e,) = LA, { a(e,}•Pe(e,) +fr KA(e,, Y)1fle(y)dyr}. ( 4.5) 
1.=1 1.=1 r 

Depending on 1Je, we will split r into the union of subdomains rf, i' E N. Over this 
partition we will define a composite quadrature rule 

fr If (y )dyr rv r;, 
fr f (y )dyr rv 

(4.6) 

L L J(xµ)wµ, =: L f(xµ)wµ, M := ui'eNMi' 
i' eN µEMi' µEM 

which depends also on e,, E supp 1Je. However, before we apply such a quadrature rule 
to the computation of the integrals .in ( 4.5), we have to perform a singularity subtraction 
step over some of the domains rf' i.e., for i' in a certain subset N' = N'(e', eL) ~ N. 
Singularity subtraction means the following. We will introduce a main part KM( x, y) of 
the kernel function KA(x,y) which has the same singularity behaviour for y ---+ x. In 
other words, KA ( x, y) - KM ( x, y) will have a weak singularity only. Moreover, the function 
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KM ( x, y) will be chosen such that its integration can be performed by an analytic formula. 
Using this, we write 

ce.e ~ >., {a( e,)'t/le( e.) + i'~' [fr;: [KA (e .. y )1/le(Y) - KM( e., y )1/le( et'·«) l dyr ( 4. 7) 

+ fre KM(e,,,y)dyr'l/;e(ef,'·e')] + I: fre KA(e,,,y)'l/;e(y)dyr}, 
ri, i'EN\N' ri, 

where the point ef,',e, is chosen to be equal to e,, if e,, E r~: and where ef,',e, is an ar-
bitrary but fixed point ef E rf: not depending on e,, if e,, tf. rf. The integrands 
y i-+ [KA(e,,,y)'l/;e(Y) - KM(e,,,y)'l/;e(ef,'·e')] in (4.7) have milder singularities at y = e,, 
than the corresponding integrands y i-+ KA ( e,,, y )'l/;e(Y) in ( 4.5). Applying the rules ( 4.6) 
to ( 4. 7), we arrive at the final formula 

ce,e rv Ce'.e := t .:\,, {a(e,,)'l/;e(e,,) + I: KA(e,,, Xµ)'l/;e(xµ)wµ (4.8) 
t=l µEM 

+ .~ [fr,: KM(e.,y)dyr - L KM(e.,x,,)w,,] 'l/;e(ef,'·e')) .. 
i'EN': rf, n supp.,Po~0 ' µEMi' 

It remains to introduce the rf;, the rule ( 4.6), the set N', and the main part KM of the 
kernel. 

First, we fix a e' E ~i and we introduce the underlying partition for the quadrature. 
Since the quadrature rules are accurate for polynomial integrands but not for piecewise 
polynomials, we have to choose the partition such that all the functions 7./Je are polynomials 
over the subdomains. We consider the uniform partitions 

r = u:~l uf.~'=1 nm,l,k,k', nm,l,k,k' := ~m ([(k - l)hz, khz] x [(k' - l)hz, k'hzJ) ( 4.9) 

of step size hz with l = 0, 1, ... , j. For the su bdomains of these partitions, we call a 
function f "polynomial" over nm,l,k,k'' if f 0 ~m is a polynomial over [(k - l)hz, khz] x 
[(k' - l)hz, k'hz]. By r = uf!~rt we denote the coarsest partition into subdomains from 

· the partitions ( 4.9) such that the restriction to these subdomains of the functions 'l/;e, 
for which ce,e # 0, is a "bilinear polynomial". More exactly, we define r = uf;;~ rt 
recursively. First we set r = uf!~ r? equal to the partition ( 4.9) with l = 0. We define 
r = LJf!~ rt as the refinement of r = LJf!~ r?, where a r? = flm,O,k,k' remains unchanged 
if the functions 'l/;e, for which ce,e # 0, are "polynomials" over q and where all the 
other r<? = flm,O,k,k' are divided into the four subdomains flm,l, 2k-l,2k'-l flm,l, 2k,2k'-l 

t ' ' 
nm,i,2k-i,2k', and nm,i,2k,2k'. Next, r = U~~rl is the refinement of r = U~~rI, where 
every subdomain remains unchanged except those ff = nm,l,k,k', for which there exists a 
e such that ce,e # 0 and 7/Je is not "polynomial" over rt. These rt are divided into the 
four subdomains nm,2,2k-1,2k'-1, nm,2,2k,2k'-1, Dm,2,2k-1,2k', and nm,2,2k,2k'. Proceeding in 
the same manner, we, finally, get the partition r = uf!i rt. 
Unfortunately, this partitio~ is still not sufficiently fine. Indeed, applying the one point 
quadrature rule over each n, i = 1, ... , Mi, leads to large quadrature errors due to the 
singularity of the kernel KA ( e,,, y) for y close to e,,. These errors can not be improved 
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by employing quadrature rules which are exact for higher order ·polynomials since the 
assumptions iii) and iv) of Section 4.1 admit low oi-der estimates only. The only way 
to improve the quadrature errors is to work with smaller step size. Thus, to refine the 
partition r == U~~ r{ we consider a r{ == Dm,z,k,k'. Obviously, there exists an l" such that 

2-2I" ::; dist{conv'l?e, r{} < r 2(l"-l)_ ( 4.10) 

If l" < j - l, then we replace rt == nm,l,k,k' by the union of the 221" subdomains nm,l+l",k,k' 
which are contained in r{. For l" ~ j - l, we replace r{ = Dm,z,k,k' by the union of the 
22(i-l) subdomains Dm,j,ic,ic' which are contained in r{. We denote the final partition by 
r = Ui'ENrf. 
Now we define the quad~ature rule ( 4.6) for r;: = Dm,l',ic,ic' such that e,, t/:. rf. We write 

( 4.11) 

where the last quadrature rule is the tensor product of the univariate nG- point Gaufi rule. 
If l' < j, then the distance of r;: = nm,l,k,k' to the singularity point e,, of yr-+ KA(e,,, y) 
is sufficiently large and the step size hl' sufficiently small such that the one point rule is 
sufficiently accurate. Hence, we set na == 1 for l' < j. If l' = j, then K,m is polynomial 
over r;; and higher order quadrature. rules can be employed. Hence, for l' == j, we choose 
na to be the smallest illteger such that ( cf. [23], Section 2.3) 

( 4.12) 

where b is a fixed positive integer. 

Next, we turn to the definition of the set N of indices i' E N for which the singularity 
subtraction. step (cf. (4.5)-(4.8)) is necessary for the quadrature over rf:. If e,, E rf, then 
the integrand y r-+ KA ( e,,, y) is strongly singular and the quadratures do not converge 
without singularity subtraction. For rf = Dm,z',ic,ic' with l' < j, we employ the low order 
one point rule. In this case the singularity subtraction is also necessary in order to improve 
the bounds of the derivatives of the integrand. Only if r;; = nm,z',ic,ic' with l' = j, then the 
higher order quadrature rules are so strong that the singularity subtraction is redundant. 
Thus, we introduce N' as the set of all i' E N such that rf = nm,l',k,k' with l' < j or 
such that e,, E rf. . 
For the definition of the main part kernel KM, we observe that the transformed kernel 
function takes the form ( cf. ( 4.3)) 

KA(K,m(t), K,m(t'))IK,~(t')I = (4.13) 
I: So: ( K,m( t)' K,m( t'), nKm(t')) [K,m( t) - K,m( t')]o: IK,m( t) - K,m( t') 1-2

-k IK,~ ( t') 1. 
k~lo:l 

Hence, we define KM(x, y) by 

KM(K,m(t), K,m(t'))IK,~(t')j = (4.14) 

I: sa(K,m(t),K,m(t),nKm(t)) [DK,m(t) · (t-t')t jDK,m(t) · (t-t')j-2
-k IK,~(t)j, 

k=lo:l 
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where the surface density Ix:,~ ( t) I is I 8t1 K,m ( t) x 8t2 K,m ( t) I and the Frech et derivative D ~m ( t) 
is the matrix (8t1 K-m(t), 8t2 K-m(t)) E IR3 x2. 

Now it remains to introduce the quadrature over the rf with e,, E rf. For definiteness·, 
we suppose e,, - K,m((k - l)hi, (k' - l)hi) and consider rf = nm,j,ic,ic'. Cutting along the 
diagonal through e,,, we divide Dm,j,k,k' into the two triangles Dr:::,i,k.,ic' and D1;'i,ic,ic' given 
by . 

D1;'i,ic,ic' :== x:.m({(t1,t2): 0:::; [t2 - (k' - l)hi]:::; [t1 -(k- l)hi]:::; hi}), (4.15) 

nr:::,j,k,k' :== K-m({(ti,t2): 0:::; [t1 - (k- l)hj]:::; [t2 -(k' - l)hj]:::; hi}). 

Over D1;'j,k,k' the integrand function takes the form ( cf. ( 4. 7)) 

g(i) .- G(K,m(t))lx:.~(t)j, (4.16) 
G(y) .- KA(e,,,y)1/Je(Y) - KM(e,,,y)1/Je(e,,) 

and is known to ha~e a weak singularity of the type 

( 
- , . - / ) i2 1 g (k - l)hj + t1, (k - l)hj + i2 == <I>(t1, -)- + ... ' 

t1 t1 
( 4.17) 

where 0 :::; t2 :::; t 1 :::; hj, where the function <I> is smooth, and where the dots stand 
for smoother terms. By Duffy's transformation (t1 , t2) == (t~, t~t;) such a singularity is 
transformed into a smooth function and we get · 

( 4.18) 

Consequently, we set 

where the last quadrature rule is the tensor product of thenG- point· Gau:B rule applied 
to the rectangle [O, hj] x [O, l]. The. order nG of the univariate Gaufi rules is chosen to be 
greater or equal to bj with b the constant from ( 4.12). If we define the knots Xµ. and the 

• - - I ' - - I • k k1 

weights Wµ. in the same fashion for any nm,3,k,k with e,, E nm,3,k,k and for any D';'3' ' and 
Dr:::,j,k,ic', then we arrive at the quadrature rule ( 4.6) for the remaining subdomains and 
the approximate values ce,,e for the non-zero values ce',e in ( 4.8) are completely defined. 

Finally, for the computation of Ire KM( e,,, y )dyI' ( cf. ( 4.8)) in case of la! == 1 and k == 1 
. i' 

( cf. ( 4.3)}, we mention the formulae 

I.a' lb' , ex + dy d d 2gc - f d { h 2gb' +fa' 
I y x == - ars 

a b { ex2 + f xy + gy2 }3 2 y'g[4eg - f2] a'[4eg - f2] 
2gb' +fa 2gb +fa' 2gb +fa } 

-arsh a[4eg _ f2] - arsh a'[4eg _ J2] + arsh a[4eg _ J2] 

26 



- ars - arsh----2ed- Jc { h 2ea' + fb' 2ea' + fb 
y'e[4eg - J2] b'[4eg - J2] b[4eg - J2] 

h 2ea + f b' 2ea + f b } 
-ars b'[4eg _ J2] + arsh b[4eg _ !2] , 

0 < a < a', 0 < b < b', J2 < 4eg, 

laa' lb' . ex + dy d d 2gc - f d { h 2gb' + fa' 
I y x = - ars 

o b { ex2 + f xy + gy2 }3 2 y'9[4eg - J2] a'[4eg - J2] 
2gb +fa' b'} 

-arsh a'[4eg _ !2] - l~g b 

- ars - arsh----2ed - f c { h 2ea' + fb' 2ea' + fb } 
fi[4eg - !2] b'[4eg - f2] b[4eg - J2] 

0 =a< a', 0 < b < b', J2 < 4eg, 

!oh !oh ex + dy . j ;; 
{ 

2 f 2}3/2 dydx = p.f. hm ... = 
0 0 ex + xy + gy t:~O {(x,y)E[O,h]2: ex2+Jxy+gy2~e2} 

2gc-jd {i l h[e+f+g] h 2g+f h f } - - og - ars + ars 
y'9[4eg - !2] y'9 [4eg - J2] [4eg - J2] 
2ed-fc { h[e+f+g] 2e+f f } 

- y'e[4eg _ !2] 1 - log y'e. - arsh [4eg _ !2] + arsh [4eg _ !2] , 

f 2 < 4eg. 

Note that the kernel of the singular integral equation corresponding to the oblique deriva-
tive boundary value problem ( cf. [27, 25, · 28]) admits a representation ( 4.3) with lal = 
k = 1. Further details of the algorithm for the assembling of the matrix are discussed in 
[35]. 

Remark 4.1 To reduce the number of quadrature knots for the computation of the sin-
gular integrals, i. e., for (4.19 }, it is possible to choose different GaujJ orders n~a, 1 for the 
t~ direction and na,2 for the t~ direction. It is sufficient to take na,1 2::: b and na,2 2::: bj. 

4.3 The Error of the Quadrature 

We introduce the compressed and discretized matrix Cj := ( ce',ek,ee~;, where the non-
zero entries ce',e are given in (4.8). By Aj we denote the operator in £(S;) whose matrix 
with respect to the basis {cp;,e: e E 6;} is R;CjE;. Thus, the quadrature algorithm for 
the stiffness matrix A; leads to the fully discretized equation Aju; = P;v. 

Theorem 4.1 Suppose that the right-hand side v of {2.1} belongs to the Sobolev space 
H 2 (r) and that the compressed collocation method including the approximate operator A; 
is stable (cf. Theorem 3.1). If the compression parameter a {cf. {3.66}} and the quadrature 
parameter b (cf. (4.12}} are sufficiently large, then the operators Aj E £(S;) are stable. 
Additionally, if the second order estimate of Theorem 3.1 is valid and if u; E S; denotes 
the solution of Aju; = P;v, then 

( 4.20) 
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The number of non-zero entries for the matrix Cj is the same as that for C;, i. e., it is 
less than C NJ[log N;] 4 • 

For the proof, we need the following two estimates of the quadrature error. 

Lemma 4.1 i) [18] Consider the square [a, b] x [c, d] of the size h = b-a = d-c. Suppose 
that f is twice continuously differentiable over [a, b] x [c, d] and tha_t GR(!) stands for 
the tensor product of the one point Gaufl rule (i.e. the midpoint rule) applied to f over 
[a, b] x [c, d]. Then it is not hard to see that 

( 4.21) 

where the constant C is independent of [a, b] x [ c, d] and f. 
ii) [17, 31] Now consider a rectangle [a, b] x [c, d], set h := b - a and h' := d - c, and 
suppose that f is analytic over [a, b] x [c, d]. Moreover, suppose that f admits complex 
analytic extensions to the sets 

{(t1, t2) E IR x (C : a ::; ti ::; b, lt2 - cl+ lt2 - di ::; (e + e-1 )h' /2}, 
{(t1, t2) E (C x IR: c::; t2 ::; d, lt1 - al+ lt1 - bi ::; (e + e-1 )h/2}, 

where e > 1. We denote the ellipse { t1 E (C : lt1 - al + jt1 - bi = (e + e-1 )h/2} by 
&e( a, b ), define &e( c, d) similarly, and consider the tensor product of the univariate nG-
point Gaufl rule GR(!) applied to f over [a, b] x [c, d]. Then, for a constant C independent 
of [a, b] x [c, d] and f, we get {cf. [17], Eq~ation (4.6.1.11) and [31], Proposition 4.3) 

I rb rd f(t1, i2)dt2di1 - GR(f)I::::; Chh'e-2
nG { max lf(t1, t2)I + max lf(t1, t2)I}. la le t2El'g(c,d) tiEl'e(a,b) 

a91 :5b c:5f2 :5d 

( 4.22) 

Proof of Theorem 4.1. i) First we suppose that the integrals over the subdomains 
rf = Dm,l',k,k' with l' = j are computed exactly and consider the quadrature errors over 
the domains r;: = nm,l' ,k,k' with l' < j. For any function Uj = Eee6; U(l/;e E S;' we 
introduce the functions Uz := Eee6i Ue'l/Je = E~;-~-1 Eee'V,, ue'l/Je and their coefficients Wz,e 
defined by uz = L:ee6 , wz,e'Pz,e· We will represent Ai - Aj = Ri(Ci - Cj)Ei E .C(Si) as 

( 4.23) 

This representation will have similar properties as the matrix of the compression error, 
i.e., it permits the application of a Schur lemma argument. We will show the sparsity 
pattern of this representation and, later, we will derive a bound for A; - Aj by estimating 
ee',(l,e) and ee,e· To get (4.23), we suppose that e' is fixed. Then the coefficient of Xe' in 
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( 4.23) is the sum of the quadrature errors over the domains rf = nm,l',ic,ic' ~ r1 = nm,l,k,k' 
corresponding to the integrand functions 

( 4.24) 

where 
uf := L ue'l/Je· 

eEL:i;: ce,(;fO 

We consider a fixed subdomain r1 = Dm,z~,k,k' containing sets of the form rf: = nm,z',ic,ic' 
with l' < j. From the definition of the rt. we observe that there exists a '1/Je" such that 
ce~ ,e" =f. 0' l ( e') = l D - 1, and SU pp 'ljJ e" n ri =f. 0 (Otherwise the partition step leading to 
rt would be redundant.). In view of (3.66) we get 

dist{ conv 1Je,, supp '1/Je"} < aj2i-l(e')-(lD-1), ( 4.25) 
dist{ COnV 1Je, r{} < cr(lD-l) + aj2j-l(e')-(lD-l) 

'Consequently, if j is sufficiently large, then, for any '1/Je with l( e) < ln-1 and supp _'1/Jenr1 f= 
0, we arrive at 

This means ce,e =f. 0. In other words, the restriction uf lr~ is equal to the uzD-l plus some 
t 

of the terms ue'l/Je with e E VzD-1· The quadrature error corresponding to ( 4.24) over r{ 
is equal to the quadrature error corresponding to the function 

Y i-+ L wzD-1,e1Je (KA(·, y)cpzD-1,e(Y) - KM(·, y)cpzD-1,e(ef)) ( 4.27) 
eE.6.iD-1 

+ I: ue-ae (KA(-, y)'l/Je(Y) - KM(·, y)'l/Je(ef)). 
eE'V iD-1: ce' ,(;fO 

The entry ee',(l,e) is now the sum over all quadrature errors for the integrand functions 

taken over all subdomains r{ = nm,lD,k,k' with ln -1 = l and supp cpz,e n r{ =f. 0. Similarly, 
for ce,e =f. 0, the entry ee,e is defined as the sum over all quadrature errors of the functions 

taken over all subdomains r{ = nm,lD,k,k' with ln - 1 = l(e) and supp '1/Je n r{ =f. 0. For 
ce,e = 0, we set ee,e = 0. 
Note that, ee,(z,e) = 0 and ee,e = 0 is possible also if there is no r{ with ln - 1 = l, 
supp cpz,e n r{ =f. 0 and ln - 1 _= l(e), supp '1/Je n r{ f= 0, respectively. More precis<?ly, 
ee',(l,e) f= 0 implies the existence of rt = nm,lD,k,k' SUCh that ln -1 = land SUpp 'Pl,e n r: # 
0. From the definition of r{' we infer ce.e"' = 0 for all the '1/Je111 such that '1/Jem Id is not 

\ 
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polynomial. Hence, for supp 7/Je"' n r{ =J 0 and l(e'") = ln, we get ce,e"' = 0. This implies 
( cf. (3.66)) 

dist ( conv iJe,, r1) ~ min dist ( conv iJe, supp 7/Je"') > a j 2i-l(e')-lD. 

Consequently, ee,(I,e) =J 0 implies 

dist ( conviJe, supp 'P(l,e)) > G aj 2i-l(e')-l. ( 4.28) 

Similarly, we get that ee',e =J 0 implies 

dist ( conv iJe,, supp 'f e) > Ga j 2i-l(e')-z(e). ( 4.29) 

Having derived the sparsity pattern of representation ( 4.23), we turn to the' estimate of 
its entries. From the definition of iJe we infer the existence of an x' E conv {}e' such that 
( cf. (3.64)) 

iJe1 (KA(·,y)cpz,e(Y) - KM(·,y)cpz,e(ef,')) = ( 4.30) 

2-3z(na;[KA(x',y)cpz,e(y)- KM(x',y)cpz,e(ef)], 

where a; denotes a certain second order derivative (directional derivative) with respect to 
x. Applying the composite tensor product one point Gaufi rule GR to this integrand over 
the square r{ = nm,l+i,k,k' of side length 2-(l+i) and using the second order convergence 

. estimate (4.21), we conclude 

( 4.31) 

la~a;[KA(x',y)cpz,e(Y) - KM(x',y)cpz,e(ef,')] I· 

The scaling fac~or Nz rv 2z in the definition of cpz,e, an additional"factor Nz rv 2z for each 
derivative of cpz,e, the estimate (2.2), and a similar estimate for the kernel KM lead to 

2 
lee,(z,e) I ::; L c2-3Z(e')-3l+kldist{conv iJe,, supp cpz,e}-6+k. ( 4.32) 

k=O 

Analogously, we obtain 

2 
lee,el ~ ·L: 02-3Z(e')-3Z(e)+kl(e)dist{conviJe,, supp'fe}-6+k. ( 4.33) 

k=O 

The sparsity patterns ( 4.28) and ( 4.29) as well as the estimates ( 4.32) and (4.33) together 
with a Schur lemma argument similar to (3.69) imply that the l2 (U6z U 6i) --t l2(6i) 
norm of the matrix with the entries ee,(z,e) and ee,e is less than Ca-2j-3/2• Using Lemmas 
3.3 and 3.4, we get 

j 

L L lwz,el 2 + L luel 2 < L (j + 1 - l(e))luel 2 < cJ.j11uillL2 (r), (4.34) 
l=l ee.6.i ee.6.; ee.6.; 
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and llAi - Ajll ::; Ca-2j- 1l 2 • Hence, for sufficiently large a or j, the operator A'. is a 
- . - J 

small perturbation of Aj. Together with Ai, also Aj has a uniformly bounded inverse. 

Now we turn to the error estimate ( 4.20). First we will show 

ll(Ai - Aj)uillL2(r)::; Ch] log hj, 

where Uj = Pju = PjA-1v. From Lemma 3.4 we infer 

II L vexe llL2(r) 
e'E.6.j 

< cfj 2:: lvel 2 
::; cfj 

e'E.6.j 

< C j sup l2l(e')ve' 1-
e'E.6.j 

( 4.35) 

( 4.36} 

Hence, it suffices to estimate the quadrature errors of 2L(e')'l9e'(Ajuj) = 2l(e')'l9e'(Ajuf) 
for each e' separately. In order to apply ( 4.21) we have to estimate the second order 
derivatives with respect toy of the integrand function ( cf. ( 4.24) and ( 4.30)) 

y r-+ 2-3l(e')a:[KA(x',y)uf (y) - KM(x',y)uf (et')] (4.37) 

2-3z(e')a:[[KA(x',y)- KM(x',y)]uf (y) + KM(x',y)[uf (y)- uf (e!,')J]. 
The kernel functions KA and KM, however, satisfy (2.2) and 

Moreover, Lemma 3.3 ii) implies 

e' e' '"'"' ui ( x) - ui (y) L.J ue(1f!.e( x) ·- 'l/1e(Y )] 
luf (x) - uf (y)I < CL: luel22z(e)lx -yl 

< 2:: 
e: Vie(:i:)=Fo 

or 1/Je(Y):f:.O 

1 Ix -yl < Cj Ix - YI· 

( 4.38) 

( 4.39) 

Similarly, we get luf (x)I ::; CVJ and l8~uf (x)I ::; Cj where 1/31 = 1. Note that the 
higher derivatives with /3 = (2, 0) or /3 = (0, 2) vanish since uf is bilinear. using these 
estimates and applying ( 4.21) to the quadrature error for the integration of ( 4.37) over 
r~: = nm,l' ,k,k' c r~ = nm,l,k,k'' we arrive at the bound 

i - i 

( 4.40) 

In view of ( 4.10), we have 2-2l' = 2-2(l+l") ::; 2-2zdist{ conv'?9e, rt}. Summing up ( 4.40) 
over all rf: ~ r1' we get the bound 

L c2-2l' 2-2l2-3l(e') j dist{ conv 'l9e' r1}-4 = c2-4l2-3l(e') j dist{ conv '?9e' r1}-4 

e'. e' j ri,. ri, ~ri 
for the quadrature error over r{ Hence, the quadrature error for 2z(e')'l9e'(Ajuj) is less 
than 

j-1 c j 2-2z(e') L: r 2z L: dist{ conv 'l9e, r1}-42-2z. ( 4.41) 
l=O r~: r~ =Dm,L,Jc,Jc' 

\ \ 
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We observe, from the defir_iition of the r{, that ce',e = 0 for all e with supp-zfae n r{ ::/= 0 
and l( e) 2:: l (Otherwise rt would have been divided in further steps.). In view of (3.66) 
this means that 

( 4.42) 

Using (3.73), we estimate (4.41) by 

j-1 
G j 2-2l(e') :2:: 2-2l (a j 2i-l(e')-l)-2 :::; G a-22-2i. ( 4.43) 

l=O 

This together with ( 4.36) proves that the L 2 norm of the quadrature error is less than 
G j2-2i. The estimate ( 4.35) is proved. Now Equation ( 4.20) follows easily from this esti-
mate, the corresponding consistency estimate (3.68), and the boundedness of the inverses 
Aj. 
ii) Next we suppose that the integrals over the subdomains rf = Dm,l' ,ic,ic' with l' < j 
or with the singularity point e,, in rf are computed exactly and consider the quadrature 
errors over the domains rf: = Dm,l',ic,ic' with l' = j and e" (/;. rf:. We fix a '°e', a 'l/Je, and 
a rf = nm,j,k,k'. For these, we estimate the quadrature error de,e = ce,e - Ce',e over rf: 
with the help of ( 4.22). Thus, 

3 

f(t) L ~1.KA(e1., Km(t))IK~(t)l'lfae(Km(t)), ( 4.44) 

From the analyticity assumption on the Sa ( cf. the analiticity domains ( 4.4)) and the 
boundedness of the derivatives of the parametrization ( cf. ( 4.2)) we observe that the 
function f IK.;;;.1 (n=.;,ie.k') extends to a complex analytic function over a neighbourhood { t : 

dist{t, K;;/(Dm,j,ic,ic')} ::::; cB}· Here we have to require cB ::::; cA/C for the analyticity oft r-+ 
sa(e,,, Km(t), .. . ) and cB ::::; dist{e,,, Dm,j,k,k'} /G for the analyticity oft r-+ 1e1. - Km(t) 1-2-k. 

Thus, the assumptions of Lemma 4.1 ii) are satisfied if we choose 

e := 1 + dist{e"' Dm,i,ic,ic'}/[G'hi] ( 4.45) 

with a sufficiently large constant G'. To get a bound for f over [a, b] x £12 ( c, d) and 
£0 (a,b) x [c,d], we observe that IKA(e,,,~m(t))I is less than Cdist{e1.,Dm,j,ic,ic'}-2 , that 
IK~(t)I is bounded by a constant, and that the absolute value of the bilinear extension of 
-zfae(Km(·))IK.;;;.1(n=.;J,ie') is less than c2z(e)[21Wdist{e,,,nm,i,ic,k.'} + 1) 2 • Using these bounds, 
dist{ e1., nm,j,k,k'} 2:: 2-i' and I\. I ::::; c2-1(e') ( cf. (3.48))' we get that the quadrature err<;>r 
for the integration of f over nm,j,k,k' is less than 

3 
LG 2-l(e') 2-2j {!-2nG dist{e,,, nm,j,k,k'}-2 i(e) [2l(e)dist{e,,, nm,j,k,k'} + 1 r < 
1.=l 
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We have to sum up over all rf = Dm,i,k.,k.' ~ supp 'l/Je. The number of subsquares nm,i,k.,k.' 
is less than 22i and we arrive at 

3 

I de .e I ::; L C23i g-2nG. ( 4.4 7) 
t..=1 

We will show that the l2 norm of the matrix ide'.ek.e is less than c2-2i, where C is a 
constant. If this is done, then the norm of Ai - Aj is less than C VJ NT 2 ( cf. (3.51)) 
and the convergence rate ( 4.35) is proved. Moreover, since the operators A'. and [A'.J-1 

- - J J 
are small perturbations of the bounded operators Aj and [Aj]-1 , respectively, they are 
uniformly bounded. The estimate ( 4.20) follows as in point i) of this proof. 

Clearly to show the norm estimate for ( de,ek,e, it suffices to prove that the l2 norm of 
the matrix entries (Frobenius norm) is less than the desired bound. Hence, we only have 
to show Jde,el ::; c2-4i. In view of (4.47) and (4.45) it remains to prove the uniform 
boundedness of 

( 4.48) 

The last expression, however, is bounded if 

4j 
( 4.49) 

log2 { 1 + dist{e1.., Dm,j,k,k'}/[C'hiJ} 

> c J 
max { 1, log2 [ dist{ et.., nm,j,k,k'} / hj]} . 

This is fulfilled if b is sufficiently large ( cf. ( 4.12)). 

iii) Now w~ suppose that the integrals over the subdomains rf: = Dm,l',h:,ic' with l' < j or 
with the singularity point et.. not in rf are computed exactly and consider the quadrature 
errors over the domains rf = Dm,l',ic,ic' with l' = j and e1.. E ri:. We proceed analogously 
to the step ii). For fixed fle, 'l/Je, and ri; = Dm,j,ic,ic', we estimat_e the quadrature error 
de,e = ce,e - Ce1;e over rf with the help of (4.22). Thus (cf. (4.19)), 

f(t) = f(t1, t2) = A1..g((l~ - l)hi + t1, (k' - l)hi + t1t2)ti, t E [O,hi] x [O, 1]. (4.50) 

Due to the subtraction of singularity and due to Duffy's transformation, there is no 
singularity in the integrand anymore. From the analyticity assumption on the Sa ( cf. the 
analiticity domains ( 4.4)) and the boundedness of the derivatives of the parametrization 
( cf. ( 4.2)) we observe that the function f l[o,h;)x[o, 1] extends to a complex analytic function 
over the analyticity sets of Lemma 4.1 ii), if ghi ~ eA/C and e[l - O] ~ eA/C. Thus, 
we choose g := 1/0' with a sufficiently large constant C'. To get a bound for f over 
[O, hj] x Ee(O, 1) and Ee(O, hi) x [O, 1], we observe that lf(t)I is less than constant times 
IA1..I times the supremum norm of the extended polynomials (t1, t2) i--+ 'l/Je(Km(t1, t1t2)) and 
of their first order derivatives. We get lf(t)I ~ 02-l(e')22i as well as the bound 

C 2-j (!-2nG 2-l(e') 22j ~ C2j (!-2nG 

for the quadrature error off over Dm,j,k,k' (cf. (4.22)). We have to sum up over all 
Dm,j,'ic,'ic' ~ supp 'l/Je with e1.. E Dm,j,'ic,ic', i.e., over no more than four sets for each r m· 
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Consequently, we arrive at 

lde,el < c 2j g-2nG ( 4.51) 
24jlde,el < C2sjrF2na < C26j-2log2{1/C'}na. 

The last expression, however, is bounded if 
3j 

( 4.52) 

which is fulfilled for sufficiently large b. 

0 

4.4 The Complexity 

Clearly, the number of arithmetic operations for the computation of the stiffness matrix 
in form of its discretized and compressed wavelet transform is bounded by a constant 
multiple of the number of quadrature knots. 

Theorem 4.2 The number of quadrature knots for the quadrature algorithm in Section 
4.2 is less than C NJl3 [1og Nj] 413 . 

Proof. First we fix a 1Je and count the quadrature knots for the computation of 1Je'(Ajui)· 
To count the points contained in rt= nm,l,k,k', we observe (cf. (4.10), (4.25), and (4.42)) 

2-2t" "" dist{supp1Je,rt}"" aj2i-l(e')-z, ( 4.53) 
l" "" [l + l(() - j - log2 j - C]/2. 

Thus l" < j - l holds if and only if l < j - [l(e') - log2 j - C]/3. For a fixed l with 
l < j - [l(e') - log2 j - C]/3, the subdomains rt = Dm,z,k,k' are contained in a do-
main of size a j 2i-l(e')-l ( cf. ( 4.53)) and are divided into squares r~: of size 2-l-l" "" 
2-Z-[l+l(e')-j-log2 i-CJ/2. In each rf there is exactl~ one quadrature knot. Hence, the num-
ber of quadrature knots contained in all these rt is equal to the number of subdomains 
rf: in the union of the rt' i.e.' less than 

C a1 C. i-z(e')+z ( ) 
[ 

· 2i-L(e')-z ] 2 

2-l-[l+z(e1)-i-log2 j-C]/2 ::; J2 · 4.54 

On the other hand, all the subdomains r{ = nm,l,k,k' with l ~ j - [l(e') - log2 j - C]/3 
are contained in a domain of size a j 2i-l(e')-{i-[l(e')-log2 i-C]/3} ( cf. ( 4.53)) and are divided 
into squares rf of size 2-i. Moreover, for the O(n) subdomains rf = Dm,i,ic,ic' which 
satisfy dist{ei, rf} "" n2-j and which are contained in the set of all these rt = nm,j,k,k' 
with l ~ j - [l(e') - log2 j - C]/3, we get na ""Cj/(1 +log n). The maximal numb.er of 
such n is 

( 4.55) 
Now the number of all quadrature knots in the union of all rt = Dm,i,k,k' with l > 
j - [l(e') - log2 j - C]/3 is bounded by ( cf. [23], Section 6) 

n,,,,a,;c [ Cj l 2 L Cn l ::; Cj2n~ax/[log nmax]2
• 

n=l 1 + og n " 
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Using log nmax r-.J j, we arrive at the bound Cn~ax· Consequently, the number of quadra-
ture points for a fixed {}e' is less than ( cf. ( 4.55) and ( 4.54)) 

i-[z(e')-Iog2 i-C]/3 c j4/322j-4l(e')/a + I: c j 2i-z(e')+z ::; c j4/a22j-4Z(e')/a. ( 4.56) 
l=O 

Now we sum up the quadrature knots over all f/ E 6.i and arrive at the bound 

j....:.1 I: 22l(e') c j41322j-4l(e')/3 ::; c j41a2sj/3. ( 4.57) 
l(e')=-l 

<> 

Remark 4.2 Suppose that, in addition to the assumption iv) of Section 4.1, the parame-
trizations K,m are thrice continuously differentiable over S and four times over the domains 
/'\,-;;,/ ( nm,j,k,k'). Then the second term in the asymptotics of the kernel function KA can be 
included into KM such that {compare (4.38)) 

( 4.58) 

Moreover, suppose that, for these /KM, the integrals J KM(x, ·)'l/Je can be computed by 
analytic formulae. Then we set {rf : i' E N} :== {r1 : i == 1, ... , Mi} (i.e., no further 
partition of the domains rt is required) and define the quadrature rule over this partition 
analogously to Section 4.2. The discretized entries of the compressed stiffness matrix can 
be computed as 

ce•.e ~ ce •. e := t >., {a(e1.)'l/le(e,,) + L KA(e,,, xµ)'l/le(xµ)wµ ( 4.59) 
1,=l µE.Nf. 

+ i'EN': rf"'f'.upp,P(i'
0 

[£;; KM(f,, y)'</Je(y)d,,r - ,,{;,,KM( f., x,.)..Pe(x,.)w,.]). 

This algorithm leads to a stable and fully discretized method such that the assertion of 
Theorem 4.1 remains valid. The number of arithmetic operations is less than NJ times a 
power of log Ni. The proof for this almost optimal algorithm is analogous to those of the 
Theorems 4.1 and 4.2. 

Remark 4.3 Suppose that, in addition to the assumption iv) of Section 4.1, the parame-
trizations K,m are bounded and analytic over small neighbourhoods of S. Then the singu-
larity subtraction step is necessary only for the domains nm,i,k,k' containing the singularity 
points e". Setting {rf : i' EN} :== {r1 : i = 1, ... , Mi} and defining the quadrature rule 
as the tensor product Gauj] rule over this partition with the Gauj] order nG from (4.12), 
we again arrive at an algorithm such that the assertion of Theorem 4.1 remains valid and 
that the number of arithmetic operations is less than NJ times a power of log Ni. 
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