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On a half-space radiation condition
Andreas Rathsfeld

Abstract

For the Dirichlet problem of the Helmholtz equation over the half space or above rough sur-
faces, a radiation condition is needed to guarantee a unique solution, which is physically mean-
ingful. If the Dirichlet data is a general bounded continuous function, then the well-established
Sommerfeld radiation condition, the angular spectrum representation, and the upward propagat-
ing radiation condition do not apply or require restrictions on the data, in order to define the
involved integrals. In this paper a new condition based on a representation of the second deriva-
tive of the solution is proposed. The thrice differentiated half-space Green’s function is integrable
and the corresponding radiation condition applies to general bounded functions. The condition is
checked for special functions like plane waves and point source solution. Moreover, the Dirichlet
problem for the half plane is discussed. Note that such a “continuous” radiation condition is helpful
e.g. if finite sections of the rough-surface problem are analyzed.

1 Introduction
〈s0〉

Throughout this paper we denote the points of the three-dimensional Euclidean space R3 by ~x and
~y with ~x :=(x1, x2, x3)>=(x′, x3)> and ~y :=(y′, y3)>, where x′ :=(x1, x2)>∈R2. For fixed num-
bers xf,3, we define the half spaces R3

xf,3,+
:={~x∈ R3 : x3>xf,3} and R3

+ :=R3
0,+ and the bound-

ary planes R3
xf,3

:={(x′, xf,3)>: x′∈R2}. We shall consider functions u defined on a perturbed half

space Ω of R3
+, which are solutions of the Helmholtz equation (∆+k2I)u= 0 for a fixed wavenum-

ber k > 0. We suppose that Ω=ΩF :={~x ∈ R3 : x3>F (x′)} with a Lipschitz continuous function
F : R2→R s.t.−hF ≤F (x′)<0 holds for all x′∈R2 (cf. Fig. 1). The number hF >0 is fixed.

The goal is to find a general radiation condition for Helmholtz solutions on Ω which are uniformly
bounded on the planes R3

xf,3
, but, eventually, do not decay in the lateral directions, i.e. the directions

of R3
xf,3

. If Φ(~x, ~y ) is the Green’s function for the Dirichlet problem of the Helmholtz equation over

the upper three-dimensional half space R3
+, then, analogously to the upward propagating radiation
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Figure 1: The geometry settings.
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A. Rathsfeld 2

condition (UPRC) in the two-dimensional case (cf. [7]), a possible choice for the radiation condition
would be to fix xf,3≥0 and to require the condition (cf. [3], Chapt. 5.1.1 and [4,5])

u(~x ) =

∫
R2

∂y3Φ
(
~x, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′ (1.1) 1try

for all ~x∈R3
xf,3,+

. Note that this condition is equivalent to a representation as a superposition of
outgoing generalized plane waves (cf. the angular spectrum representation in [2, 5, 7, 10]) and, in two
dimensions, to the pole condition (cf. [2]). In three dimensions, the integral exists for functions from
weighted L2 or from more complicated spaces. Since we are interested in a class of solutions u
containing plane-wave functions, we only know that the functions u restricted to the boundary plane
R3
xf,3

are smooth and uniformly bounded, and the existence of the integral in (1.1) is not guaranteed.
Therefore, we formally differentiate twice to get

∂2
x3
u(~x ) =

∫
R2

∂3
y3

Φ
(
~x, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′, ~x ∈ R3

xf,3,+
. (1.2) HSRC

This will be the main part of our radiation condition. We shall see that the kernel in (1.2) satisfies
∂3
y3

Φ(~x, ~y )=O(|~y |−3) for |~y |→∞ and ~y∈R3
xf,3

. Hence, the integral in (1.2) is well defined for any

function u bounded and measurable over R3
xf,3

.

The first question is whether it is sufficient to require the equality in (1.2) over a subset of R3
xf,3,+

.

Suppose that Op⊆R3
xf,3,+

is a fixed open subset and that u is a solution of the Helmholtz equation.
Then (1.2) is satisfied if and only if the equation in (1.2) holds for any ~x∈Op. Indeed, on both sides
of the equation we have solutions of the Helmholtz equation, and such analytic function coincide on
R3
xf,3,+

if and only if they do on Op. On the other hand, it is not sufficient to require the equation for

one or more planes R3
x3

with x3>xf,3. Indeed, the two sides of the equation might differ by the func-
tion (x′, x3)> 7→ sin(k(x3−xf,3)) if they coincide only over R3

x3
with x3 =xf,3+lπ/k, l=1, 2, · · · .

However, it would be sufficient to require the equation in (1.2) over R3
xl,3

with xl,3>xf,3, l=1, 2 if the

homogeneous Dirichlet problem of the Helmholtz equation over the layer enclosed by R3
x1,3

and R3
x2,3

has the trivial solution only. In particular, this is the case for |x1,3−x2,3|<π/k (cf. Sect. 9).

Now suppose function u is bounded and sufficiently smooth over R3
xf,3

. Note that, differentiating w.r.t.
x3 and taking the limit for x3→xf,3, the condition (1.2) implies

∂3
x3
u(~x ) =

∫
R2

∂x3∂
3
y3

Φ
(
~x, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′, ~x ∈ R3

xf,3
. (1.3) HSRCB

For Helmholtz solutions u, this condition (1.3) is even equivalent to (1.2). Indeed, condition (1.3) means
that the Helmholtz solutions on the left- and right-hand side of (1.2) have the same Neumann data on
the face R3

xf,3
. The Dirichlet data is the same due to the Helmholtz equation ∂2

x3
u=−∆x′u− k2u

and due to the limit relation (6.9) shown in the subsequent Sect. 6.2.2. Hence, the two sides of (1.2)
coincide.

Next we look for additional requirements besides (1.2). For l′∈Z2 and xh,3>0, we introduce the
finite cylindrical subdomains Ωl′,xh,3 :={~x∈Ω: |x′−l′|<4 , x3<xh,3} of Ω adjacent to the lower
boundary. Clearly, for any l′∈Z2 and xh,3>0, we have to assume that u is in the Sobolev space
H1(Ωl′,xh,3). Since we analyze domains above rough surfaces, the condition should be invariant w.r.t.
shifts in horizontal directions. So it is natural to require Sobolev norms independent of l′. Consequently,
this uniform regularity condition enforces a uniform boundedness of the solutions in the horizontal
directions, and we consider it as a radiation condition. However, it is not a condition of the kind, which
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Radiation condition 3

selects “outgoing” modes from the set of “outgoing” and “incoming” plane-wave modes radiating into
horizontal directions.

Unfortunately, this Sobolev regularity together with condition (1.2) still allows to add to u an unphys-
ical solution of the form uadd(~x ) :=u2D(x′)(x3−xf,3) with u2D a solution of the two-dimensional
Helmholtz equation (∆x′ +k

2I)u2D =0 (e.g. u2D(x′)=ei(αx1+βx2) with α, β∈R and α2+β2 =k2).
Adding such a function to u corresponds to adding the function u2D(x′) to the derivative ∂x3u(·, x3,f ).
In order to exclude such addends, we augment our radiation condition by the weak boundedness con-
dition∣∣∣∣∣ 1

x3−xf,3

∫ x3

xf,3

x3−t
x3−xf,3

u
(
(x′, t)>

)
dt

∣∣∣∣∣ ≤ cu(x3−xf,3)1−εu , ∀x3>xf,3, ∀x′∈R2. (1.4) HSRC2

This condition (1.4) is nothing else than a restriction to an O((x3 − xf,3)3−εu) growth of the two-
fold integral function w(x′, x3) :=

∫ x3
xf,3

(x3−t)u((x′, t)>) dt, which is defined by the second order

derivative ∂2
x3
w=u and by w(x′, xf,3)=∂x3w(x′, xf,3)=0. If u is uniformly bounded or if it satisfies

|u(~x )|=O(x1−εu
3 ) for x3→∞, then (1.4) is fulfilled.

Instead of requiring the weak boundedness in (1.4) for all x′∈R2, it is sufficient to require weak
boundedness for all x′∈S2D, where S2D⊂R2 is a set with the property that, for any smooth 2D
Helmholtz solution u2D over R2, the vanishing u2D(x′) = 0, x′ ∈S2D implies u2D≡ 0. In particular,
S2D can be a closed curve s.t. the Dirichlet problem for the Helmholtz equation in the interior of the
curve admits a unique solution.

Altogether, we suggest the following outgoing radiation condition

Definition 1.1. A solution u of (∆+k2I)u=0 over Ω is said to satisfy the half-space radiation con-
dition (HSRC) if there exist real numbers cu, εu, xh,3, and xf,3 with cu>0, εu>0, and 0<xf,3<xh,3
such that

i) For any l′∈Z2, the restriction u|Ωl′,xh,3
of u to the subdomain Ωl′,xh,3 is in the Sobolev space

H1(Ωl′,xh,3) and has a bounded norm ‖u|Ωl′,xh,3
‖H1(Ωl′,xh,3

)≤cu.

ii) The second order derivative ∂2
x3
u admits the representation (1.2) (or, equivalently, the relation

(1.3) is satisfied).

iii) The function u satisfies the weak boundedness estimate (1.4).

Alternatively to the weak boundedness (1.4), we can fix the derivative ∂x3u over the plane R3
xf,3

by
∂x3u|R3

xf,3
=DtNu|Rxf,3

with a fixed linear Dirichlet-to-Neumann mapping DtN , which might depend

on a function class containing u|Rxf,3
. In general, this would lead to unique solutions, which are not

necessarily bounded. For example, we can require

∂x3u
(
(x′, xf,3)>

)
= −

∫
R2

∂2
x3

Φ
(
(x′, xf,3)>, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′, x′∈R2. (1.5) HSRC2b

The existence of the integral in (1.5) can be shown under additional conditions on the behaviour of
u|R3

xf,3
for x′→∞ (cf. e.g. the class AVκ in (1.8)). To avoid hypersingular kernels (cf. the subsequent

representation (2.10)), we can fix ∂x3u|R3
xf,3

by

∂x3u
(
(x′, xf,3)>

)
= −

∫
R2

∂2
x3

Φ
(
(x′, xf,3)>, (y′, xh,3)>

)
u
(
(y′, xh,3)>

)
dy′, x′∈R2. (1.6) HSRC2c
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A. Rathsfeld 4

In comparison to (1.5), in (1.6) there is no singularity in the kernel since |(x′,xf,3)>−(y′,xh,3)>|→0
is excluded. However, the more serious problem in (1.5) and (1.6) is that of the integrability at infinity.

For the equivalence of (1.4) and (1.5) and for the existence of a solution to the Dirichlet problem for the
Helmholtz equation over R3

+, we have to restrict the functions u and the Dirichlet data, respectively.
Here we use three special classes. For this, we introduce the space C(R2) of continuous functions,
the spaceCb(R2) of uniformly bounded and continuous functions. Furthermore, byC l

b(R2) we denote
the space of all functions v, which together with all their derivatives upto order l≥0 are continuous
and uniformly bounded. If 0<κ≤1, then C l,κ

b (R2) is the space of all functions in C l
b(R2), for which

the lth order derivatives are Hölder continuous with Hölder exponent κ. For v∈C(R2), the average
function is defined by

av(v, x′, r) :=

∫ 2π

0

v
(
x′ − r(cosφ, sinφ)>

)
dφ. (1.7) DefAve0

In other words, the value av(v, x′, r) is the average of v over the circle {x′′∈R2 : |x′−x′′|=r}. Now
we introduce the first class. For κ>0, we define the class AVκ of functions with circular averages
decaying as

AVκ :=
{
v∈C1

b (R2) : ∃cv>0 s.t. |av(v, x′, r)|<cvr−κ, ∀r≥1, ∀x′∈R2
}
. (1.8) AVkappa

The second class is the Dirichlet data set DDτ with 0≤τ <1 including all the sums v=vs+vi of
Helmholtz solutions vs plus Helmholtz images vi, i.e.,

DDτ :=
{
v∈Cb(R2) : ∃cv>0, ∃vs∈C2

b (R2), ∃v0∈C2(R2) s.t.

v = vs + vi, (∆x′ +k
2I)vs = 0, vi := (∆x′ +k

2I)v0, and

|v0(x′)| ≤ cv(1 + |x′|)τ ,∀x′∈ R2
}
. (1.9) DD

Finally, we introduce the third class of functions v characterized by the Fourier transforms [Fv]. For
k the wave number and ε>0, we introduce annular domains Rk,ε :={ξ′∈R2 : k−ε< |ξ′|<k+ε}
and set

FCk :=
{
v∈C 6

b (R2) : ∃εv>0 s.t. [Fv]|Rk,εv
∈L2(Rk,εv)

}
. (1.10) DefFC

Unfortunately, the condition, characterizing functions as class members, will not be easy to check. For
functions u with restrictions v(x′) :=u((x′, xf,3)>) in one of the three classes, we get

〈p0〉
Proposition 1.2. Suppose there is an xf,3 with 0<xf,3<xh,3 such that v :=u|R3

xf,3
is either in

AVκ, κ>0, or in DDτ , 0≤τ <1, or in FCk. Then, the integral in (1.5) is meaningful and, in the
radiation condition (HSRC), we can replace item iii) by the equivalent requirement

iii’) The derivative ∂x3u restricted to the plane R3
xf,3

fulfills (1.5).

Now suppose the integrals in (1.1) and (1.5) are well defined for the function u. Since (1.1) implies
(1.2) and (1.5), (UPRC) implies (HSRC) with iii) replaced by iii’). Prop. 1.2 and its proof (cf. (7.11) or
interprete the representation [Vkv0] in part iii) of the proof to Lemma 7.2 as (1.1) evaluated by partial
integration for the differential operator ∂2

x3
=−(∆x′ +k

2I)) means that, for v :=u|R3
xf,3

in DDτ , AVκ
or FCk, the condition (HSRC) is equivalent to the (UPRC).

In Sect. 7 we shall prove Prop. 1.2 and show that the (HSRC) is independent of the choice of xh,3 and
xf,3. For the plausibility of the (HSRC), we remark:

DOI 10.20347/WIAS.PREPRINT.2669 Berlin, December 20, 2019/rev. June 10, 2022



Radiation condition 5

i) Formula (1.2) can be considered to be a representation of ∂2
x3
u as a superposition of gen-

eralized outgoing plan-wave solutions (cf. the right-hand side of (6.7)). Outgoing for the up-
per half plane means that the plane wave u(~x ) :=ei(αx1+βx2+γx3) with α, β∈R, γ∈C, and
α2+β2+γ2 =k2, is either a true plane-wave (i.e.α2+β2≤k2) radiating into the upper half
plane (i.e. γ≥0) or a generalized plane-wave (i.e.α2+β2>k2) decaying in the x3 direction
(i.e.=mγ>0).

ii) For any solution u2D∈C2
b (R2) of the two-dimensional equation (∆x′ +k

2I)u2D =0, the func-
tion u(~x ) :=u2D(x′) satisfies the (HSRC), and u(~x ) :=u2D(x′)x3 does not (cf. Subsection
6.1). In particular, u(~x ) :=J0(k|x′|) fulfills the (HSRC) and cylindrical wave functions like

u(~x ) := i
4
H

(1)
0 (k|x′|) satisfy at least (1.2) (cf. Subsect. 6.1).

iii) Any generalized plane-wave solution u(~x ) :=ei(αx1+βx2+γx3) with parameters α, β∈R,γ∈C,
and α2+β2+γ2 =k2 satisfies the (HSRC) if and only if either γ>0 or <e γ≥0 together with
=mγ>0 (cf. Subsect. 6.2). In other words, the (HSRC) is equivalent to the well-known radia-
tion condition for quasiperiodic functions in the theory of gratings (cf. Corollary 6.1).

iv) Any solution, satisfying the classical Sommerfeld radiation condition, fulfills the (HSRC) (cf.
Subsect. 6.3 and cf. [8] for Sommerfeld’s condition on the half space). In other words, for ~y 6∈Ω,
functions u(~x ) :=G(~y, ~x ) (cf. the subsequent (2.1)) and all their derivatives satisfy (HSRC),
but “incoming” waves like u(~x ) :=G(~y, ~x ) do not.

v) For any solution u2D of the two-dimensional Helmholtz equation in R2 satisfying the two-
dimensional Sommerfeld radiation condition, the wave function u(~x ) :=u2D((x1, x3)>) sat-
isfies the radiation condition (HSRC). Moreover, for a source point (y1, y3)> with y3<0, the
function ~x 7→G2D((y1, y3)>, (x1, x3)>), defined with the two-dimensional fundamental solu-
tion G2D (cf. (2.2)), satisfies the radiation condition (HSRC) (cf. item iv) at the end of Sect. 8).

vi) Using the radiation condition (HSRC), uniqueness (cf. Prop. 8.1) and existence of the solution
to the Dirichlet problem of the Helmholtz equation over the half plane R3

+ can be shown. How-
ever, special conditions are needed for the existence. For example, it is sufficient that the
Dirichlet data is in DDτ , AVκ, or FCk (cf. Prop. 8.3 and compare [6] for the two-dimensional
case with continuous data over rough surfaces and [3], Sect. 5.1.1.1 for Dirichlet data from
L2(R2), H1/2(R2)⊂H1/2

k (R2), and a special subspace X ′⊂Cb(R2)+L2(R2)).

In many cases part iii) of the radiation condition (HSRC) is redundant in the sense that boundary
conditions for the solution exclude additive terms uadd(~x ) :=u2D(x′)(x3−xf,3) and imply unique
extension of u|R3

xf,3
to R3

xf,3,+
under the condition (1.2). E.g. for Dirichlet solutions, Prop. 4.2 claims

the redundancy. Props. 4.3 and 4.3 present the redundancy for the Neumann and Robin condition, if
the boundary ∂Ω is polyhedral. Restricting our consideration to Helmholtz solutions of the just men-
tioned boundary conditions, we expect a unique solution of the boundary value problem. However, the
solution might not be bounded or weakly bounded. Then the solution of, e.g. the Dirichlet problem, is
bounded if and only if the prescribed Dirichlet data is “physically meaningful”. The additional condition
part iii) of (HSRC) would automatically hold for “physically meaningful” Dirichlet data. Requiring part
iii) of (HSRC) for “non-physical” Dirichlet data would lead to no solutions.

The plan of this paper is as follows. In Sect. 2 we present the formulas for the fundamental solution and
its derivatives, show the asymptotics, and, using Green’s formula, we derive a representation formula
for the second order derivative of Helmholtz solutions. The weak boundedness of the potential based
on the third order derivative of the fundamental solution is analyzed in Sect. 3. Using this potential and
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A. Rathsfeld 6

a second-order Taylor series expansion, we obtain a representation for the Helmholtz solution in Sect.
4 and the uniqueness of this representation either for Dirichlet problems over general domains Ω or
for solutions with Neumann or Robin boundary condition over domains with polyhedral boundary. The
representation requires the solution of a two-dimensional inhomogeneous Helmholtz equation over
the full plane R2. So in Sect. 5 we give a series expansion for such solutions. For special important
Helmholtz solutions over the perturbed half-space Ω, we show that the radiation condition (HSRC) is
fulfilled in Sect. 6. In Sect. 7 we prove that condition (HSRC) is independent of the choice of the x3

coordinates xf,3 and xh,3 and that the conditions iii) and iii’) of the (HSRC) are equivalent. The solution
of the Dirichlet problem for the Helmholtz equation over R3

+ is discussed in Sect. 8. Finally, in Sect. 9
we derive the uniqueness of the Dirichlet problem over a thin layer, which implies that it is sufficient to
require condition ii) of (HSRC) over two planes with sufficiently small distance.

2 Fundamental solution, Green’s function, and formula for ∂2
x3
u

〈s2〉
2.1 Fundamental solution and half-space Green’s function

〈s2.1〉
Denote the points in R3 by ~x and ~y as in Sect. 1. For our positive real valued wave number k (even for
complex valued k with <e k> 0 and =mk≥ 0), the fundamental solution of the Helmholtz equation
∆u+k2u=0 is given by

G(~x, ~y ) = G(~x− ~y ) :=
1

4π

eik|~x−~y |

|~x− ~y |
. (2.1) FS

Note that the corresponding two-dimensional function is given by

G2D(x′, y′) = G2D(x′ − y′) :=
i

4
H

(1)
0 (k|x′ − y′|) , (2.2) 2DFS

where H(1)
0 is the Hankel function of first kind and order zero.

Clearly, for j=1, 2, the first and second order derivatives of the three-dimensional function are

∂y3G(~x, ~y ) =
eik|~x−~y |

4π

{
(ik)(y3 − x3)

|~x− ~y |2
− y3 − x3

|~x− ~y |3

}
, (2.3) DFS

∂y3∂yjG(~x, ~y ), =
eik|~x−~y |(y3 − x3)(yj − xj)

4π|~x− ~y |3

{
(ik)2 − 2(ik)

|~x− ~y |
− 3

|~x− ~y |2

}
, (2.4) DDJFS

∂2
y3
G(~x, ~y ) =

eik|~x−~y |

4π

{
(ik)

|~x− ~y |2
− 1

|~x− ~y |3
+

(ik)2(y3 − x3)2

|~x− ~y |3
(2.5) DDFS

−3(ik)(y3 − x3)2

|~x− ~y |4
+

3(y3 − x3)2

|~x− ~y |5

}
.
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Radiation condition 7

The third order derivative is of the formOx3−y3(|~x−~y |−3) for |~x−~y |→∞. Indeed,

∂3
y3
G(~x, ~y ) =

eik|~x−~y |

4π

{
3(ik)2(y3 − x3)

|~x− ~y |3
− 9(ik)(y3 − x3)

|~x− ~y |4
+

(ik)3(y3 − x3)3

|~x− ~y |4
(2.6) DDDFS

−6(ik)2(y3 − x3)3

|~x− ~y |5
+

9(y3 − x3)

|~x− ~y |5
+

15(ik)(y3 − x3)3

|~x− ~y |6

−15(y3 − x3)3

|~x− ~y |7

}
=

(y3 − x3)

4π|~x− ~y |3

{
eik|~x−~y |(ik)3 (y3 − x3)2

|~x− ~y |
+O(1)

}
(2.7) DDDFS2

for |~x−~y |→∞. Note that the factor (y3−x3)|~x−~y |−3/4π is the double layer kernel for the Laplace
equation. This kernel defines a uniformly bounded operator in the L∞ space (cf. e.g. [9]).

For the fourth order derivative, we obtain

∂4
y3
G(~x, ~y ) =

eik|~x−~y |

4π

{
3(ik)2

|~x− ~y |3
− 9(ik)

|~x− ~y |4
+

6(ik)3(y3 − x3)2

|~x− ~y |4
+

9

|~x− ~y |5

−36(ik)2(y3 − x3)2

|~x− ~y |5
+

(ik)4(y3 − x3)4

|~x− ~y |5
+

90(ik)(y3 − x3)2

|~x− ~y |6

−10(ik)3(y3 − x3)4

|~x− ~y |6
− 90(y3 − x3)2

|~x− ~y |7
+

45(ik)2(y3 − x3)4

|~x− ~y |7

−105(ik)(y3 − x3)4

|~x− ~y |8
+

105(y3 − x3)4

|~x− ~y |9

}
. (2.8) DDDDFS2

In order to enable the computation of finite-part integrals, we shortly look at the kernel behaviour for
|~x−~y | → 0. By the Taylor-series expansion of eik|~x−~y | we get

G(~x, ~y ) =
1

4π

1

|~x− ~y |
+O(1),

∂y3G(~x, ~y ) = − 1

4π

(y3 − x3)

|~x− ~y |3
+O(1) , (2.9) doubll

∂2
y3
G(~x, ~y ) = − 1

4π

1

|~x− ~y |3
+

1

4π

3(y3 − x3)2

|~x− ~y |5
+O

(
1

|~x− ~y |

)
, (2.10) hypersing

∂3
y3
G(~x, ~y ) =

1

4π

9(y3 − x3)

|~x− ~y |5
− 1

4π

15(y3 − x3)3

|~x− ~y |7
+O

(
(y3 − x3)

|~x− ~y |3
+

1

|~x− ~y |

)
,

∂4
y3
G(~x, ~y ) =

1

4π

3

|~x− ~y |5

{
3− 30

(y3 − x3)2

|~x− ~y |2
+ 35

(y3 − x3)4

|~x− ~y |4

}
(2.11) hyperhypersing

+
1

4π

3/2 (ik)2

|~x− ~y |3

{
−1 + 6

(y3 − x3)2

|~x− ~y |2
− 5

(y3 − x3)4

|~x− ~y |4

}
+O

(
1

|~x− ~y |

)
,

which proves that the potential operators with kernels equal to ∂ly3G((x′, xf,3)>, (y′, xf,3)>) for
l=0, 2, with computation points ~x=(x′, xf,3)>, and with integration over the ~y= (y′, xf,3)> s.t.
|x′−y′|<c are locally compact perturbations of the operators for the Laplace equation. Note that
∂ly3G((x′, xf,3)>, (y′, xf,3)>)=0 for l=1, 3. Altogether, the corresponding potentials of smooth and
finitely supported layer functions u|R3

xf,3
computed at ~x∈R3

xf,3,+
have well-defined limits for x3→xf,3.

These limits can be computed by the well-known jump relation including the values of the potential

DOI 10.20347/WIAS.PREPRINT.2669 Berlin, December 20, 2019/rev. June 10, 2022



A. Rathsfeld 8

x’
0

x3

IR
0,R
3

R

BR

S
R

x’
0

x3

2R

R
1/4CR

TR,u

TR,l

IR3
0,R

Figure 2: Half ball and cylinder.

integral at (x′, xxf,3)
>. In case of the kernel ∂2

y3
G(~x, ~y ), the potential integral is to be understood as

a finite-part integral. For its definition, due to the Helmholtz equation, ∂2
y3
G(~x, ~y ) can be replaced by

−(∆y′ +k
2I)G(~x, ~y ), and, by partial integration, the tangential operator (∆y′ +k

2I) can be moved
to the layer function u|R3

xf,3
of the potential. In other words, we have to suppose that the layer function

is twice continuously differentiable.

The Green’s function for the Dirichlet problem over R3
xf,3,+

is given as

Φ(~x, ~y ) = G(~x, ~y )−G
(
(x′, 2xxf,3−x3)>, ~y

)
= G(~x, ~y )−G

(
~x, (y′, 2xxf,3−y3)>

)
. (2.12) GF

We get vanishing boundary values Φ(~x, (y′, xxf,3)
>)=0 and

∂3
y3

Φ(~x, ~y ) = ∂3
y3
G(~x, ~y ) + ∂3

y3
G
(
~x, (y′, 2xxf,3 − y3)>

)
,

∂3
y3

Φ
(
~x, (y′, xxf,3)

>) = 2∂3
y3
G
(
~x, (y′, xxf,3)

>) , (2.13) DGF

such that ∂3
y3

Φ(~x, ~y )=Ox3−y3(|~x−~y |−3) for |~x−~y |→∞ with ~y ∈R3
xf,3

, ~x ∈R3
x3

follows from
(2.7).

2.2 Representation formula (1.2) for the second order derivative
〈ss2.2〉

Next we recall the representation formula for the second order derivative ∂2
x3
u of the solution u

to the Helmholtz equation ∆u+k2u=0 over R3
+ (cf. the subsequent (2.14)). To slightly simplify

the subsequent formulas, we set xf,3 =0 and consider the half space R3
+ instead of the general

R3
xf,3,+

. For large R>0, we introduce the disc R3
0,R :={(x′, 0)>∈R3 : |x′|≤R} of radius R, the

half ball BR :={(x′, x3)>∈ R3 : x3>0, |~x |<R} and SR :={(x′, x3)>∈ R3 : x3≥0, |~x |=R} its
upper spherical boundary. Further, we introduce the cylinder CR of radius R and height R1/4 given
by CR :={(x′, x3)>∈R3 : 0<x3<R

1/4 and |x′|<R} together with its lateral and upper boundary
(cf. Fig. 2)

TR := TR,l ∪ TR,u, TR,l :=
{

(x′, x3)> ∈ R3 : 0 ≤ x3 ≤ R1/4 and |x′| = R)
}
,

TR,u :=
{

(x′, x3)> ∈ R3 : x3 = R1/4 and |x′| ≤ R
}
.

We consider either ΩR :=BR and ΣR :=SR or ΩR :=CR and ΣR :=TR. By ν we denote the normal
at the boundary R3

0,R∪ΣR of ΩR pointing into outward direction. We assume that condition i) in
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(HSRC) is fulfilled. The symmetric Green’s formula applied to u and ~y 7→∂2
y3

Φ(~x, ~y ) with fixed ~x∈ΩR

leads to ∫
R3
0,R∪ΣR

{∂νu∂2
y3

Φ(~x, ·)−u∂ν∂2
y3

Φ(~x, ·)}

=

∫
ΩR

{
(∆ + k2I)u∂2

y3
Φ(~x, ·)−u(∆ + k2I)∂2

y3
Φ(~x, ·)

}
.

Using Φ(~x, ·)≡0 over R3
0 and the Helmholtz equation, we get that the second order derivative

∂2
y3

Φ(~x, ·)=−∂2
y1

Φ(~x, ·)−∂2
y2

Φ(~x, ·)−k2Φ(~x, ·) is zero over R3
0. From the Green’s function property

we obtain (∆+k2I)∂2
y3

Φ(~x, ·)=∂2
y3

(∆+k2I)Φ(~x, ·)=∂2
y3
δ~x. Thus, for a solution u of the Helmholtz

equation (∆+k2I)u=0, we arrive at

∂2
x3
u(~x ) =

∫
R3
0,R

∂3
y3

Φ(~x, ·)u−
∫

ΣR

{∂νu∂2
y3

Φ(~x, ·)−u∂ν∂2
y3

Φ(~x, ·)},

∂2
x3
u(~x ) = [Vku](~x )− I∞, (2.14) RF

[Vku](~x ) :=

∫
R2

∂3
y3

Φ
(
~x, (y′, 0)>

)
u
(
(y′, 0)>

)
dy′, (2.15) DDLP

I∞ := lim
R→∞

∫
ΣR

{
∂νu∂

2
y3

Φ(~x, ·)−u∂ν∂2
y3

Φ(~x, ·)
}
.

Here [Vku] is the twice differentiated double layer potential on the right-hand side of (1.2). Note that
any Helmholtz solution u satisfying i) of (HSRC) is uniformly bounded over R3

0 such that Vku is well
defined. Altogether, to get the representation in the radiation condition (1.2) for a solution u of the
Helmholtz equation over R3

+, we only have to suppose condition i) of (HSRC) and to show that the
limit I∞ is zero.

3 Weak boundedness of the potential in (1.2)

〈s3〉
Consider a measurable function u bounded over R3

0 and consider the twice differentiated double layer
potential [Vku](~x ) defined by (2.15), where Φ is defined in (2.12). In other words, [Vku](~x ) is given
by the subsequent (3.1) with xf,3 =0. Without loss of generality, we fix x′=(0, 0)> and consider the
behaviour of [Vku](~x ) for ~x=(x′, x3)> with x3→∞. Due to (2.13) we have to estimate

[Vku](~x ) = Ix3 := 2

∫
R2

∂3
y3
G
(
~x, (y′, xf,3)>

)
f(y′)dy′, f(y′) := u

(
(y′, xf,3)>

)
, (3.1) IX30

Ix3 = 2

∫
R2

∂3
y3
G
(
~x, (y′, 0)>

)
f(y′)dy′, f(y′) := u

(
(y′, 0)>

)
. (3.2) IX3

Taking into account (2.7) and the boundedness of the integral of the double layer kernel (cf. [9]), we
get Ix3 = (ik)3

2π
Jx3 +O(1) with

Jx3 :=

∫
R2

eik|~x−~y |
(0− x3)3

|~x− ~y |4
f(y′)dy′ = −

∫
R2

eik
√
x23+|y′|2 x3

3

{x2
3 + |y′|2}2

f(y′)dy′

= − x3

∫
R2

eikx3
√

1+|z′|2

{1 + |z′|2}2
f(x3z

′)dz′.
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We substitute z′=
√
r2−1 (cosφ, sinφ)> and dz′=rdφ dr to get

Jx3 = −x3

∫ ∞
1

eikx3r

r3

∫ 2π

0

f

(
x3

√
r2 − 1

(
cosφ
sinφ

))
dφ dr.

The last integral is difficult to estimate. For bounded f , we get |[Vku](~x )|≤c|x3|. Here and in the
following c stands for a generic positive constant, the value of which varies from instance to instance.

Next we go back to consider a general x′ and prove that Ix3 of (3.2) fulfills at least the weak bound-
edness condition used in (1.4). We start with a weak estimate (cf. (1.4)) for Ix3 with f replaced by the
Dirac delta δ~y at ~y=(y′, 0)>. For x′ 6=y′, partial integration leads us to∫ x3

0

(x3−t)∂3
y3
G
(
(x′, t)>, (y′, 0)>

)
dt=x3 ∂

2
y3
G
(
(x′, 0)>, (y′, 0)>

)
(3.3) intDDDPHI

+∂y3G
(
(x′, x3)>, (y′, 0)>

)
− ∂y3G

(
(x′, 0)>, (y′, 0)>

)
,

where we have used ∂y3∂
l
y3
G(~x, ~y )=−∂x3∂ly3G(~x, ~y ). The formulas in (2.3) and (2.5) together with

eik|(x′,x3)>−(y′,0)>| = eik|x
′−y′|eikx

2
3/{|(x′,x3)>−(y′,0)>|+|x′−y′|}

= eik|x
′−y′| +O

(
x2

3

|(x′, x3)> − (y′, 0)>|

)
, (3.4) cih1

1

|(x′, x3)> − (y′, 0)>|l
=

1

|x′ − y′|l
(3.5) cih2

+O

(
x2

3

|x′ − y′|l+1 |(x′, x3)> − (y′, 0)>|

)
, l = 2, 3,

imply ∫ x3

0

(x3 − t)∂3
y3
G
(
(x′, t)>, (y′, 0)>

)
dt

=
eik|x

′−y′|

4π

{
(ik)x3

|x′ − y′|2
− x3

|x′ − y′|3

}
+
eik
√
x23+|x′−y′|2

4π

{
(ik)(−x3)√
x2

3 + |x′ − y′|2
2 −

−x3√
x2

3 + |x′ − y′|2
3

}

= O

(
x3

3

|x′ − y′|2
√
x2

3 + |x′ − y′|2

)
= O

(
x3−εu

3

|x′ − y′|2
√
x2

3 + |x′ − y′|2
1−εu

)
(3.6) newF1

for |x′−y′| → ∞.

Now we come back to a general f ∈C2
b (R2) and estimate∫ x3

0

(x3 − t)Itdt = 2

∫ x3

0

(x3 − t)
∫
R3
0

∂3
y3
G
(
(x′, t)>, (y′, 0)>

)
f(y′)dy′dt

= 2

∫
R3
0

∫ x3

0

(x3 − t)∂3
y3
G
(
(x′, t)>, (y′, 0)>

)
f(y′)dtdy′.

We fix ε>0 and consider the case of ~x and ~y with x3≥ε. Surely, y3 =xf,3 =0 s.t. |~x−~y |≥ε. Then
the part of It for integration over y′ with |x′−y′ |≤ε is bounded (cf. (2.6)), and the part It for integra-
tion over y′ with |x′−y′ |≥ε is the critical part. Due to (3.6), the corresponding part of the integral
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∫ x3
0

(x3−t)Itdt is a convolution integral of f and an absolutely integrable convolution kernel bounded
byO(x3−εu

3 [ε+|x′−y′|]3−εu). The result is uniformly bounded by x3−εu
3 .

Now we switch to the case x3<ε. By the boundedness of Ix3 shown next, we even get a bound
O(x3) for

∫ x3
0

(x3−t)Itdt , and Ix3 is weakly bounded in the case x3<ε as well.

For the uniform boundedness in the strip with 0≤x3≤ε, we need the assumption f ∈C2
b (R2). We

choose a smooth cut-off function χ over R2 s.t.χ(z′)=1 for |z′|≤1 and χ(z′)=0 for |z′|≥2. With
this we split Ix3 =Ix3 [f ] into the sum of Iax3 :=Ix3 [f(1−χ(· −x′))] and Ibx3 :=Ix3 [fχ(· −x′)]. Then
the arguments for the case x3≥ε prove that (2.7) implies the uniform boundedness of Iax3 . For Ibx3 ,
we observe the equality ∂3

y3
G(~x, ~y )=−(∆y′ +k

2I)∂y3G(~x, ~y ). Applying integration by parts we
can move the operator (∆y′ +k

2I) from the potential kernel to the layer function fχ(·−x′), and (2.9)
implies the uniform boundedness of Ibx3 . We even get

〈BoundPot〉
Proposition 3.1. Suppose that f is continuous over R2 =R2

0 and that there are constants cf>0 and
0≤τf<1 such that |f(x′)|<cf (1+|x′|)τf holds for any x′∈R2. Fix ε>0. Then there exist posi-
tive constants cu and εu depending on f such that [Vkf ] satisfies the weak boundedness condition
1/(x3 − ε) |

∫ x3
ε

(x3 − t)/(x3 − ε)[Vkf ]((x′, t)>)dt| ≤ cu(x3 − ε)1−εu . Additionally, if f is twice
continuously differentiable with uniformly bounded derivatives, then the potential [Vkf ] satisfies the
weak boundedness condition, i.e., (1.4) with u replaced by [Vkf ].

For special functions u, i.e., for special f we can get more. Suppose f ∈AVκ with κ>1 (cf. (1.8)) and
assume x3>ε for a fixed positive ε. Then, by (1.7) and (2.7)

Vk[f ](~x ) =

∫
R2

∂3
y3

Φ
(
~x, (y′, 0)>

)
f(y′)dy′

=

∫ ∞
0

∫ 2π

0

∂3
y3

Φ
(
(r cosφ, r sinφ, x3)>,(0, 0, 0)>

)
f (x′−r(cosφ, sinφ)

>
)rdφdr

=

∫ ∞
0

∂3
y3

Φ
(
(r, 0, x3)>, (0, 0, 0)>

)
av(f, x′, r)rdr,

|Vk[f ](~x )| ≤ c+

∫ ∞
1

c
1

r
cvr

1−κdr ≤ c.

4 Representation of the solution by the potential operator in (1.2)
〈s3.5〉

Suppose that u is a solution of the Helmholtz equation ∆u+k2u = 0 over R3
+, that u as well as

all derivatives upto order two are continuous on the closure of R3
+, and that the second derivative of

u w.r.t.x3 is given as ∂2
x3
u = [Vku] by the right-hand side of (1.2). Then, due to the second order

Taylor-series expansion, we get

u(~x ) = f1(x′) + f2(x′) (x3 − xf,3) +

∫ x3

xf,3

(x3 − t)[Vku]
(
(x′, t)>

)
dt, (4.1) uR

where the functions f1(x′) :=u((x′, xf,3)>) and f2(x′) :=∂x3u((x′, xf,3)>) are solutions of the two-
dimensional inhomogeneous Helmholtz equations

∆x′f1(x′) + k2f1(x′) = −[Vku]
(
(x′, xf,3)>

)
, (4.2) 2DHa

∆x′f2(x′) + k2f2(x′) = −∂x3 [Vku]
(
(x′, xf,3)>

)
(4.3) 2DHb

=

∫
R2

2∂4
y3
G
(
(x′, xf,3)>, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′.
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Indeed, from ∆=∆x′ +∂
2
x3

we conclude, for the Helmholtz solution u, that (∆x′ +k
2I)u=−∂2

x3
u

and (∆x′ +k
2I)∂x3u=−∂x3∂2

x3
u. For the Fourier series expansion of the general solution to equa-

tions (4.2) and (4.3), we refer to Lemma 5.1 and Remark 5.2. The last integral in (4.3) is defined as a
finite-part integral.

〈proRS〉
Proposition 4.1. For any function u|R3

xf,3
and the corresponding [Vku], the right-hand side of (4.1)

satisfies the three-dimensional Helmholtz equation if and only if f1 and f2 are solutions of (4.2) and
(4.3), respectively.

Proof. Indeed, using the Taylor-series expansion for [Vku] and the inhomogeneous Helmholtz equa-
tion for the potential [Vku] in the form (∆x′ +k

2I)[Vku]=−∂2
x3

[Vku], we get

(∆ + k2I)

(
f1(x′) + f2(x′)(x3 − xf3) +

∫ x3

xf3

(x3 − t)[Vku]
(
(x′, t)>

)
dt

)
= (∆′x + k2I)f1(x′) + (x3 − xf3)(∆′x + k2I)f2(x′)

+

∫ x3

xf3

(x3 − t)(∆′x + k2I)[Vku]
(
(x′, t)>

)
dt+ [Vku]

(
(x′, x3)>

)
.

= (∆′x + k2I)f1(x′) + [Vku]
(
(x′, 0)>

)
+(x3 − xf,3)

[
(∆′x + k2I)f2(x′) + ∂x3 [Vku]

(
(x′, 0)>

)]
+ [Vku]

(
(x′, x3)>

)
−{

[Vku]
(
(x′, 0)>

)
+∂x3 [Vku]

(
(x′, 0)>

)
(x3−xf,3)+

∫ x3

xf,3

(x3−t)∂2
x3

[Vku]
(
(x′, t)>

)
dt

}
= (∆′x + k2I)f1(x′) + [Vku]

(
(x′, 0)>

)
+(x3 − xf,3)

[
(∆′x + k2I)f2(x′) + ∂x3 [Vku]

(
(x′, 0)>

)]
.

If a solution u is given over the plane R3
xf,3

, then the radiation condition should be formulated as
an expression of f1 =u|R3

xf,3
, which in this sense is assumed to be known. If the function u is given

over R3
xf,3

and over R3
xd,3

with, e.g., xd,3>xf,3, then f2 is given by the Dirichlet-to-Neumann map

f2(x′) := (DtNf1)(x′) := −2

∫
R2

∂2
y3
G
(
(x′, xf,3)>, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′ (4.4) DDtN

= − 1

(xd,3 − xf,3)
u
(
(x′, xd,3)>

)
+

∫
R2

KDtN(x′, y′)u
(
(y′, xf,3)>

)
dy′, (4.5) DTN

KDtN(x′, y′) := − 2∂2
y3
G
(
(x′, xd,3)>, (y′, xd,3)>

)
+

2

(xd,3−xf,3)
∂y3G

(
(x′, xd,3)>, (y′, xf,3)>

)
.

The integral in (4.4) does not exist for general functions u over R3
xf,3

. The integral in (4.5) does ex-

ist for u|R3
xf,3
∈C2

b (R2). Namely, using the formulas (2.3), (2.5), (3.4), and (3.5), we get the kernel

estimate KDtN(x′, y′)=O(|x′−y′|−3) for |x′−y′|→∞. Clearly, KDtN(x′, y′) is locally a hypersin-
gular kernel, and the integral in (4.5) exists as a finite-part integral for sufficiently smooth functions
x′ 7→u((x′, xf,3)>).

Unfortunately, the solutions of (4.2) and (4.3) are not unique. Even more, (1.2) and the representation
with the right-hand side in (4.5) is fulfilled for u(~x ) replaced by the sum u(~x )+u2D(x′)(x3−xf,3) as
well if only (∆x′ +k

2I)u2D =0. For instance, the functions u2D(x′) :=ei(αx1+βx2) with α, β∈R and
α2+β2 =k2 or u2D(x′) :=J0(k

√
x2

1+x2
2) are solutions of the homogeneous Helmholtz equation
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(∆x′ +k
2I)u2D =0. Whereas f1 for u in (4.1) might be uniquely determined as the argument for

the radiation condition, the function f2 is unique due to (1.4). Indeed, if f2 leads to a solution in (4.1)
bounded as in (1.4), then any different f̃2 leads to a perturbation ~x 7→ u(~x )+[f̃2−f2](x′)(x3−xf,3)
violating (1.4).

For Dirichlet solutions over Ω above general rough surfaces (cf. Sect. 1) satisfying the conditions i) and
ii) of (HSRC), the representation (4.1) is unique without condition (1.4). In fact, the Dirichlet condition
u((x′, F (x′))>)=v(x′), ∀x′∈R2 with continuous Dirichlet data v enforces uniqueness:

〈uni1〉
Proposition 4.2. If u0 is a solution of the Dirichlet problem over Ω such that conditions i) and ii) of
(HSRC) hold, then the second order derivative ∂2

x3
u0 is fixed by condition (1.2). The general Helmholtz

solution u with ∂2
x3
u = ∂2

x3
u0 is given by (4.1) with f1 = u|Ωxf,3

and general solution f2 ∈ C l
b(R2)

of (4.3). However, among these Helmholtz solutions, there is a unique solution satisfying the Dirichlet
condition over the boundary of Ω, i.e., u=u0.

Proof. For two solutions ua and ub with the same restriction ua|Ωxf,3
=ub|Ωxf,3

and the corresponding
condition (HSRC) ii), we get the representation (4.1) with the function f2 replaced by fa,2 and fb,2,
respectively. The difference u=ua−ub is u(~x )=(fa,2(x′)−fb,2(x′))(x3−xf,3) and satisfies the
homogeneous Dirichlet condition. In other words, u is a Helmholtz solution over R3 and

0 = (fa,2(x′)− fb,2(x′)) (F (x′)− xf,3) , (∆x′ + k2I)
(
fa,2(x′)− fb,2(x′)

)
= 0,

where the real valued (F (x′)−xf,3) is uniformly bounded from above and below. Switching to real and
imaginary parts, we get that (F−xf,3) multiplied by a real valued Helmholtz solution is zero. If either
the real or the imaginary parts of fa,1−fb,1 does not vanish identically, then (F (x′)−xf,3) is zero
at least outside of a manifold of dimension one. In other words, the Lipschitz function (F (x′)−xf,3)
vanishes, which contradicts to the uniform boundedness from below. We get fa,2 =fb,2 and, by (4.1),
ua=ub.

Next we have a look at domains ΩF with polyhedral boundary and Neumann’s boundary condi-
tion. Over the boundary ∂ΩF we introduce the normal field ν(x′) :=(∇x′F (x′),−1)> and the nor-
mal derivative ∂νu(x′)=1/|ν(x′)| ν(x′)·∇u(~x ). The boundary conditions ∂νua=g and ∂νub=g
over ∂ΩF lead us to ν(x′)·∇u=0 over ∂ΩF for the difference function u :=ua−ub. Introducing
f2(x′)=fa,2(x′)−fb,2(x′), we equivalently have u(~x )=f2(x′)(x3−xf,3) and

(F (x′)−xf,3)∇x′F (x′)·∇x′f2(x′) = f2(x′).

If U⊂R2 is a bounded domain such that the graph function F restricted to U is linear, then we denote
the linear extension of F |U to the whole R2 by FU . Since FU and f2 are analytic functions over R2,
we arrive at

(FU(x′)−xf,3)∇x′FU ·∇x′f2(x′) = f2(x′). (4.6) ela1

Moreover, the scalar product on the left-hand side of (4.6) and its product by the first linear factor are
both Helmholtz solutions. So either FU is constant and f2≡0 or ∇x′FU ·∇x′f2(x′) differentiated in
the direction of ∇x′FU is zero. Hence, f2 is linear in the direction of ∇x′FU . Since f2 is bounded, f2

is a constant solution of the Helmholtz equation, and f2≡0 holds in any case. We obtain
〈uni0000〉

Proposition 4.3. Suppose the boundary ∂ΩF ={(x′, F (x′))>: x′∈R2} contains a planar face. The
general Helmholtz solution u with ∂2

x3
u satisfying (1.2) is given by (4.1) with f1 =u|Ωxf,3

and general

solution f2∈C l
b(R2) of (4.3). However, among these Helmholtz solutions, there is at most one solu-

tion satisfying the Neumann condition over the boundary of ΩF . Condition iii) is not needed for the
Neumann problem.
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Next we choose a constant aR 6=0 and look at Robin’s boundary condition. Again, for special cases,
we can show f2≡0 implying the redundancy of (HSRC) iii). Indeed, the conditions ∂νua+aRua=g
and ∂νub+aRub=g lead us to ν(x′)·∇u+aR|ν(x′)|u =0 for the difference u :=ua−ub. We equiv-
alently have

(F (x′)−xf,3)
(
∇x′F (x′)·∇x′f2(x′)+aR

√
1+|∇x′F (x′)|2f2(x′)

)
= f2(x′).

Suppose F |U =FU |U for a domain U and a linear function FU(x′)=FU((0, 0)>)+x′ ·∇x′FU . Then
we get

(FU(x′)−xf,3)
(
∇x′FU ·∇x′f2(x′)+aR

√
1+|∇x′FU |2f2(x′)

)
= f2(x′). (4.7) ela2

If ∇x′FU vanishes, then we get that f2 is zero. If not, then, similarly to the Neumann case, the left
hand side of (4.7) is a solution of the Helmholtz equation if and only if

∇x′FU ·∇x′
(
∇x′FU ·∇x′f2(x′)+aR

√
1+|∇x′FU |2f2(x′)

)
= 0.

Solving this ordinary differential equation over the line parallel to ∇x′FU containing the fixed point
y′∈R2, we arrive at

∇x′FU ·∇x′f2

(
y′ + t∇x′FU

)
= ∇x′FU ·∇x′f2(y′) exp

(
−aR

√
1+|∇x′FU |2 t

)
.

The left-hand side is bounded such that∇x′FU ·∇x′f2(y′)=0. Hence, (4.7) turns in[
(FU(x′)−xf,3)aR

√
1+|∇x′FU |2 − 1

]
f2(x′) = 0.

The Helmholtz solution f2(x′) is zero for any x′, at which the linear function (FU(x′)−xf,3) is not
zero. Thus the analytic function f2 vanishes if the linear function FU is not constant or if FU is constant
and (FU−xf,3)aR 6=1.

Proposition 4.4. Suppose the boundary ∂ΩF ={(x′, F (x′))>: x′∈R2} contains a planar face. Sup-
pose either that this face is not parallel to the plane R3

0 or that (F−xf,3)aR 6=1 over this plane. The
general Helmholtz solution u with ∂2

x3
u satisfying (1.2) is given by (4.1) with f1 =u|Ωxf,3

and general

solution f2∈C l
b(R2) of (4.3). However, among these Helmholtz solutions, there is at most one solu-

tion satisfying the Robin condition over the boundary of ΩF . Condition iii) is not needed for the Robin
boundary value problem.

5 Solution of the inhomogeneous Helmholtz equation over R2

〈ssol〉
In this section, motivated by (4.2) and (4.3), we consider the solution of the two-dimensional Helmholtz
equation (∆x′ +k

2I)v = f over the plane R2. Assuming the existence of a continuous v, we shall
present the solution by a special Fourier series expansion (cf. the subsequent (5.2)). Analogously to
(1.7), we introduce the modulated averages

avm(v, x′, r) :=

∫ 2π

0

e−imφv
(
x′ − r(cosφ, sinφ)>

)
dφ, (5.1) DefMAve0

DOI 10.20347/WIAS.PREPRINT.2669 Berlin, December 20, 2019/rev. June 10, 2022



Radiation condition 15

and use Jm and Ym to denote the Bessel functions of the first and second kind, respectively. From the
orthogonality of the functions φ 7→eimφ and from the Taylor series expansion of v at x′, we conclude

avm(v, x′, r) =
1

2π

∫ 2π

0

e−imφ
|m|∑
α=0

∂αx1∂
|m|−α
x2 v(x′) cosα(φ) sin|m|−α(φ)

α!(|m| − α)!
dφ r|m| + o

(
r|m|
)

=
[
(∂x1 ∓ i∂x2)|m|v

]
(x′)r|m| + o

(
r|m|
)

for r→0. From Sects. 9.1.10-11 of [1], we infer

J|m|(t) ∼
∞∑
k=0

c|m|,|m|+2k t
|m|+2k, c|m|,|m| = 2|m||m|! ,

Y|m|(t) ∼
∞∑
k=0

d|m|,−|m|+2k t
−|m|+2k + log t

2

π
J|m|(t).

〈l2Dsol〉
Lemma 5.1. We assume that f ∈C l

b(R2) for any nonnegative integer l. Moreover, assume there is a
twice continuously differentiable solution v of (∆x′ +k

2I)v= f in C l
b(R2) for l≥ 0. Fixing x′ ∈R2,

the solution v admits the Fourier series expansion

v
(
x′ − r(cosφ, sinφ)>

)
=

1

2π

∑
m∈Z

vm(x′, kr)e−imφ, (5.2) FouExp

vm(x′, s) := cm(x′)J|m|(s) (5.3) FouCoe

+
π

2

∫ s

0

t
[
J|m|(t)Y|m|(s)−Y|m|(t)J|m|(s)

]
k−2avm

(
f, x′,

t

k

)
dt,

c±|m|(x
′) :=

1

k|m|
[
(∂x1∓i∂x2)|m|v

]
(x′),

where, substituting (5.3) into (5.2), the unknown derivatives [(∂x1∓i∂x2)|m|v](x′), m∈Z of the solu-
tion v only contribute to the part 1/(2π)

∑
m∈Z cm(x′)J|m|(s)e

−imφ of the expansion (5.2). The latter
part is a solution of the homogeneous Helmholtz equation.

Proof. In view of the Fourier series expansions

f
(
x′ − r(cosφ, sinφ)>

)
=

1

2π

∑
m∈Z

avm(f, x′, r)e−imφ,

v
(
x′ − r(cosφ, sinφ)>

)
=

1

2π

∑
m∈Z

avm(v, x′, r)e−imφ,

and the Fourier coefficient in (5.1), it is easy to see that v is an inhomogeneous Helmholtz solution if
and only if (5.2) holds with[

∂2
r +

1

r
∂r + [k2 −m2/r2]I

]
avm(v, x′, r) = avm(f, x′, r), m∈Z

(cf. the representation of the Laplacian ∆x′ in the spherical coordinates x′=r(cosφ, sinφ)>). Setting
s :=r/k, the last condition is equivalent to[

∂2
s +

1

s
∂s + [1−m2/s2]I

]
avm(v, x′, s/k) = k−2avm(f, x′, s/k), m∈Z.
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In other words, s 7→ avm(v, x′, s/k) is the solution of an inhomogeneous Bessel equation. Since
J|m| and Y|m| are two independent solutions of the homogeneous Bessel equation, since J|m| is
smooth, since the Bessel function Y|m| is slightly singular at 0, and since the Wronskian determinant
W (t) := J|m|(t)Y

′
|m|(t)−Y|m|(t)J ′|m|(t) satisfies W (t) = 2/πt (cf. [1], Sect. 9.1.16), the method of

the variation of constants implies (5.3). Note that a possible term d|m|(x
′)Y|m|(s) must be set to zero

in order to avoid unboundedness for s→0.

So in view of Lemma 5.1, the big question is the following: For which functions f does there exist a
solution 1/(2π)

∑
m∈Z cm(x′)J|m|(s)e

−imφ of the homogeneous Helmholtz equation such that the
sum of this and the particular solution of (5.2) and (5.3), defined with cm(x′)=0, is in the space
C l
b(R2) for l>2.

〈rFE〉
Remark 5.2. The asymptotics of the two functions Jm and Ym (cf. [1], Sects. 9.2.1 and 9.2.2), the
uniform boundedness of the averages avm(f, x′, s/k), and further simple estimates imply the asymp-
totics vm(x′, kr)=Om(r3/2) for r→∞. The proof of convergence for (5.2) without presuming the
existence of a continuous solution v to (∆x′ +k

2I)v=f is difficult. Though, due to f ∈C l
b, the mod-

ulated average functions avm(f, x′, t/k) decay as O(m−l) for |m|→0, the unboundedness w.r.t.m
of the Bessel functions Ym might lead to unbounded coefficients vm(x′, s). Clearly, requiring conver-
gence and C l

b(R2) boundedness for the series in (5.2) restricts the choice of the constants cm(x′).
For general f ∈C l

b(R2), the C l
b(R2) boundedness of the series in (5.2) with suitable cm(x′) is not

guaranteed either.

6 Radiation condition for special solutions

〈s4?〉
6.1 Radiation condition for tensor-product solutions

〈ss4c〉
Suppose u(~x )=u2D(x′)u3(x3) with a linear function u3 and a solution u2D of the two-dimension-
al Helmholtz equation ∆x′u2D+k2u2D =0 over R2. Moreover suppose that u2D and all first- and
second-order derivatives are uniformly bounded. Clearly, u is a solution of the three-dimensional
Helmholtz equation.

Without loss of generality, we may suppose u3(0)=1 such that u|R3
0
=u2D. We fix ~x. For j=1, 2, we

obtain from the boundedness of u2D and its derivatives and from the decay properties of the kernel
functions in (2.3) and (2.4)

∫ R

−R
∂yj
{
∂yj∂y3G

(
~x−(y′, 0)>

)
u2D(y′)− ∂y3G

(
~x−(y′, 0)>

)
∂yju2D(y′)

}
dyj = O

(
R−2

)
,∫ R

−R

{
∂2
yj
∂y3G

(
~x−(y′, 0)>

)
u2D(y′)− ∂y3G

(
~x−(y′, 0)>

)
∂2
yj
u2D(y′)

}
dyj = O

(
R−2

)
,
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Radiation condition 17

if R→∞. Consequently,∫ R

−R

∫ R

−R
∂3
y3
G
(
~x, (y′, 0)>

)
u2D(y′) dy1 dy2

= −
∫ R

−R

∫ R

−R
(∆y′ + k2I)∂y3G

(
~x, (y′, 0)>

)
u2D(y′) dy1 dy2 (6.1) PartInte

= −
∫ R

−R

∫ R

−R
∂y3G

(
~x, (y′, 0)>

)
(∆y′ + k2I)u2D(y′) dy1 dy2 +

2∑
j=1

∫ R

−R
O
(
R−2

)
dyj

= O
(
R−1

)
.

In other words, [Vku](~x )=0. Condition (1.2) is always fulfilled. However, the pair of radiation condi-
tions (1.2)-(1.4) hold if and only if the linear function u3 is a constant function.

6.2 Radiation condition for plane-wave functions,
Fourier transform of the potential kernels

〈ss4〉
6.2.1 Radiation condition for plane waves

〈sss4.1.1〉
Now consider a plane-wave function u(~y )=ei(αy1+βy2+γy3) with α, β∈R and α2+β2+γ2 =k2. For
the case α2+β2 =k2, we get γ=0 and the results of Subsect. 6.1 apply. Thus we may suppose
α2+β2 6=k2 and γ 6=0. We observe that G(~x, ~y )=G(~x−~y ) and ∂3

y3
Φ(~x, ~y )=Φx3,y3(x

′−y′) are

convolution kernels. The exponential functions y′ 7→ ei(αy1+βy2) are eigenfunctions of the convolution
and the eigenvalue is the value of the Fourier transform at ξ′ :=(α, β)∈R2. Consequently, we have
[Vku](~x ) = ei(αx1+βx2)g(x3) with a special function g(x3) independent of x′. However, since Vku is
a solution of the Helmholtz equation, we conclude

[Vku](~x ) =

{
ei(αx1+βx2)

(
c1e

iγx3 + c2e
−iγx3

)
if γ 6= 0

ei(αx1+βx2) (c1 + c2x3) else
(6.2) DLPPW

with special constants c1 and c2. The radiation condition (1.2) is fulfilled if and only if c1 =−γ2

and c2 =0. If =mγ>0, then e−iγx3 increases exponentially for x3→∞, and c2 =0 due to the
weak boundedness estimates in Sect. 3. The explicit values of c1 and c2 can be computed by the
Fourier transform of the convolution kernels. However, we prefer to argue using (2.14) with the choice
ΩR=CR, ΣR=TR.

If α2+β2>k2 and if =mγ>0, then eiγx3 decreases exponentially for x3→∞. We get the es-
timate |u(~x )|, |∂νu(~x )|≤ce−=mγR1/4

on TR,u. The two involved kernel functions can be estimated
by |∂2

y3
G(~x, ~y )|, |∂ν∂2

y3
G(~x, ~y )|≤c|~x− ~y |−1 such that |∂2

y3
Φ(~x, ~y )|, |∂2

y3
∂νΦ(~x, ~y )|≤c[R1/4]−1.

The area of TR,u isO(R2). We arrive at∫
TR,u

{∂νu∂2
y3

Φ(~x, ·)− u∂ν∂2
y3

Φ(~x, ·)} = O
(
e−=mγR1/4

R7/4
)
. (6.3) Es1

Now look at TR,l. According to the formula (2.3), the Green’s function differentiated w.r.t. y3 can be esti-
mated by the sum of the main termsO(|x3 ± y3| |~x−(y′,±y3)>|−2). Estimating the derivatives anal-
ogously, the two involved kernel functions satisfy |∂2

y3
Φ(~x, ~y )|, |∂y′∂2

y3
Φ(~x, ~y )|≤cR1/4R−2. The

functions u and ∂νu are bounded and the area of TR,l isO(R1/4R). We conclude∫
TR,l

{∂νu∂2
y3

Φ(~x, ·)− u∂ν∂2
y3

Φ(~x, ·)} = O(R−1/2). (6.4) Es2
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The estimates (6.3) and (6.4) together with TR=TR,l∪TR,u yield I∞=0. Consequently, the radiation
condition (1.2) is satisfied and we get c1 =−γ2, c2 =0 in (6.2).

If α2+β2>k2 and =mγ<0, then we get the same u|R3
0

as for the choice γ̃=−γ. From the just
proved case for =m γ̃>0, the formulas c1 =−γ2, c2 =0 in (6.2) for γ= γ̃ imply c1 =0, c2 =−γ2 in
(6.2) for γ. Therefore, for =mγ<0, the radiation condition (1.2) is not satisfied.

To compute the c1 and c2 for k2>α2+β2, i.e. for real γ, we employ the principle of limited absorp-
tion. Choose a small ε>0 and replace k by kε :=k+iε. The corresponding fundamental solution
Gkε(~x−~y )=1/(4π) eik|~x−~y |−ε|~x−~y |/|~x−~y | is, in contrast to the case with real k, exponentially de-
caying. Then choosing γε :=

√
k2
ε−α2−β2 with <e γε>0 and =mγε>0 and following exactly the

proof for the case α2+β2>k2, we obtain the representation ∂2
y3
uε(~x )=[Vkεuε](~x ) for the function

uε(~x )=ei(αx1+βx2+γεx3). In this representation we consider the limit for the parameter ε→0. Due to
the O(|~x−~y |−3) estimate for the kernel function in Vkε , Lebesgue’s theorem on dominated conver-
gence applies. We arrive at ∂2

y3
u(~x )=[Vku](~x ), where u(~x )=ei(αx1+βx2+γ0x3) with γ0 :=lim γε

the solution of γ2
0 =k2−α2− β2, for which γ0>0. Thus c1 =−γ2

0 and c2 =0 holds in (6.2), and the
radiation condition (1.2) holds for the plane wave with γ>0. Furthermore, the equations c1 =0 and
c2 =−γ2 hold in (6.2) if γ=−γ0<0, and the radiation condition (1.2) does not hold for the plane
wave with γ<0.

〈grating〉
Corollary 6.1. Any quasiperiodic solution of the Helmholtz equation in R3

+ satisfies the radiation
condition (1.2)-(1.4) if and only if it satisfies the classical radiation condition, i.e., if it admits a Rayleigh
series expansion into a sum of outgoing plane-wave modes (i.e. modes such that either α2+β2>k2

and =mγ>0 or α2+β2≤k2 and γ≥0).

6.2.2 Fourier transform of the potential kernel x′ 7→∂3
x3

Φ(~x, 0) and the limit of the potential
for x3→0

〈s6.2.2〉
As a consequence of Subsect. 6.2.1 we can fix formulas for the Fourier transform of the convolution

kernel in Vk. Setting u(~x ) :=ei(ξ
′·x′+
√
k2−|ξ|2x3) and introducing the Fourier transform as

[Ff ](ξ′) :=

∫
R2

e−ix
′·ξ′f(x′)dξ′, [F−1g](x′) =

1

4π2

∫
R2

eix
′·ξ′g(ξ′)dx′, (6.5) FouTr

formula (6.2) and the computed values for the constants c1 and c2 lead us to

−
(
k2−|ξ′|2

)
ei(ξ

′·x′+
√
k2−|ξ|2x3) = [Vku](~x )

=

∫
R2

∂3
y3

Φ
(
~x, (y′, 0)>

)
eiξ

′·y′dy′,

√
k2 − |ξ′|2 :=

{ √
k2 − |ξ′|2 if |ξ′| ≤ k

i
√
|ξ′|2 − k2 if |ξ′| > k

.

We introduce the function G(~x, ~y ) :=G(~x−~y ) and observe G(~x, ~y )=G(x′−y′, x3−y3) as well
as ∂3

y3
Φ(~x, (y′, 0))=−2∂3

x3
G(x′ − y′, x3). Setting x′=(0, 0)>, we arrive at

(k2−|ξ′|2)ei
√
k2−|ξ′|2 x3 =

∫
R2

2∂3
x3
G(y′, x3)e−iξ

′·y′dy′,[
F
(
∂3
y3

Φ
(
(·, x3)>, (0, 0, 0)>

))]
(ξ′) = −

[
F
(
2∂3

x3
G(·, x3)

)]
(ξ′)

= −(k2−|ξ′|2)ei
√
k2−|ξ′|2 x3 .

DOI 10.20347/WIAS.PREPRINT.2669 Berlin, December 20, 2019/rev. June 10, 2022



Radiation condition 19

Now we derive a presentation of [Vku] by general plane-wave functions. Clearly, [Vku]((x′, x3)>)
is the convolution of u|R3

0
by the function x′ 7→−2∂3

x3
G(x′, x3). The just proved results imply

[Vku]
(
(x′, x3)>

)
=

[
F−1

{
mx3

[
F(u|R3

0
)
]}]

(x′), (6.6) NRF

mx3(ξ
′) :=

[
F
{
− 2∂3

x3
G(·, x3)

}]
(ξ′) = −

(
k2 − |ξ′|2

)
ei
√
k2−|ξ′|2 x3 .

In this generalized sense, (6.6) means

[Vku](~x) =
1

4π2

∫
R2

[
F(u|R3

0
)
]
(ξ′) ∂2

x3

[
e
i
(
ξ′,
√
k2−|ξ′|2

)>
· ~x
]

dξ′. (6.7) PlRes

The Fourier transform can also be used to compute the limit of [Vku](~x ) for x3→0 if x′ is fixed.
Suppose f :=u|R3

0
is a bounded function such that all derivatives upto order five are bounded. Choose

a cut-off function y′ 7→χ(y′) of the same smoothness with χ identical to one in a neighbourhood of x′

and identical to zero outside a larger neighbourhood of x′. Then fχ is in L2 and its Fourier transform
F(fχ)(ξ′) decays at infinity asO(|ξ′|−5). We get

[Vku](~x ) =

∫
R2

∂3
y3

Φ
(
~x, (y′, 0)>

)
(fχ)(y′) dy′+

∫
R2

∂3
y3

Φ
(
~x, (y′, 0)>

)
(f [1−χ])(y′) dy′,

where the second term on the right-hand side tends to zero for x3→0 due to that (2.6) allows the
factors (y3−x3)=−x3 and (y3−x3)3 =−x3

3 to be pulled out of the integrals such that the remaining
integrals are still bounded. By (6.6) we obtain

[Vku](~x ) = − 1

4π2

∫
R2

eix
′·ξ′ (k2 − |ξ′|2

)
ei
√
k2−|ξ′|2 x3F(fχ)(ξ′) dξ′ + o(1).

Again Lebesgue’s theorem together with F(fχ)(ξ′) = O(|ξ′|−5) for |ξ′| → ∞ lead us to

lim
x3→0

[Vku](~x ) = − 1

4π2

∫
R2

eix
′·ξ′ (k2 − |ξ′|2

)
F(fχ)(ξ′) dξ′,

[Vku]
(
(x′, 0)>

)
= −∆x′f(x′)− k2f(x′) = −∆x′u

(
(x′, 0)>

)
− k2u

(
(x′, 0)>

)
. (6.8) LaEq

Of course, by density arguments, (6.8) holds under reduced smoothness assumptions on u. Namely, it
is sufficient to suppose that all the derivatives of u upto order two are bounded and continuous on R3

0.
Due to the estimate ∂3

y3
G(~x, ~y )=O(|~x− ~y |−3) for |~x−~y |→∞, we can fix ~x∈R3

0 and can reduce
the analysis to functions u which have a finite support. Computing classical limits of potential operators
in the form of finite-part integrals, we obtain the same limits as in the smoother case considered before.
Hence, if u|R2

0
∈C2

b (R2), then we get

[Vku]
(
(x′, 0)>

)
= −

(
∂2
x1

+ ∂2
x2

+ k2I
)
u
(
(x′, 0)>

)
= ∂2

x3
u
(
(x′, 0)>

)
. (6.9) BVF

In particular, if the function f :=u|R3
0

is the restriction of a bounded Helmholtz solution in the half
space {~x∈R3 : −ε<x3}, then u is sufficiently smooth and (6.9) holds. By the same arguments we
get even more.

〈limit〉
Proposition 6.2. Suppose the Hölder exponent κ satisfies 0<κ≤1. Then the limit relation (6.9) holds
if u|R2

0
∈C2,κ(R2) and if there are constants c>0 and 0≤τ <1 such that |u((x′, 0)>)|<c(1+|x′|)τ

is true for any x′∈R2.
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Finally, we can derive a representation of the potential Vk[u] based on the double layer integral ap-
plied to the derivative ∂2

x3
u (cf. the subsequent (6.10)). Indeed, under the conditions of Prop. 6.2, from

the Helmholtz equation ∂2
y3
G(~x, ~y )=−(∆y′ +k

2I)G(~x, ~y ) and by the formula of partial integration∫ R
−R[f ′′g−fg′′]=

∫ R
−R[f ′g−fg′]′=[f ′g−fg′](R)−[f ′g−fg′](−R), we get

Vk[u](~x ) =

∫
R3
0

∂3
y3
G
(
~x, (y′, 0)>

)
u
(
(y′, 0)>

)
dy′

= − lim
R→∞

∫ R

−R

∫ R

−R

(
2∑
j=1

∂2
yj

+ k2I

)
∂y3G

(
~x, (y′, 0)>

)
u
(
(y′, 0)>

)
dy1dy2

= − lim
R→∞

{∫ R

−R

∫ R

−R
∂y3G

(
~x, (y′, 0)>

)( 2∑
j=1

∂2
yj

+ k2I

)
u
(
(y′, 0)>

)
dy1dy2 +

∫ R

−R

{
O
(
∂y1∂y3G

(
~x, (R, y2, 0)>

)
u
(
(R, y2, 0)>

))
+O

(
∂y1∂y3G

(
~x, (−R, y2, 0)>

)
u
(
(−R, y2, 0)>

))
+O

(
∂y3G

(
~x, (R, y2, 0)>

)
∂y1u

(
(R, y2, 0)>

))
+O

(
∂y3G

(
~x, (−R, y2, 0)>

)
∂y1u

(
(−R, y2, 0)>

))}
dy2 +∫ R

−R

{
O
(
∂y2∂y3G

(
~x, (y1, R, 0)>

)
u
(
(y1, R, 0)>

))
+O

(
∂y2∂y3G

(
~x, (y1,−R, 0)>

)
u
(
(y1,−R, 0)>

))
+O

(
∂y3G

(
~x, (y1, R, 0)>

)
∂y2u

(
(y1, R, 0)>

))
+O

(
∂y3G

(
~x, (y1,−R, 0)>

)
∂y2u

(
(y1,−R, 0)>

))}
dy1

}
.

Estimating the kernel derivatives by R−2 (cf. (2.3) and (2.4)) and u, ∂ju by a constant, we arrive at

Vk[u](~x ) = lim
R→∞

{∫ R

−R

∫ R

−R
∂y3G

(
~x, (y′, 0)>

)
∂2
y3
u
(
(y′, 0)>

)
dy1dy2 +O

(
1

R

)}
= lim

R→∞

∫ R

−R

∫ R

−R
∂y3G

(
~x, (y′, 0)>

)
∂2
y3
u
(
(y′, 0)>

)
dy1dy2

=:

∫
R2

∂y3G
(
~x, (y′, 0)>

)
∂2
y3
u
(
(y′, 0)>

)
dy′, (6.10) RLIM

which again proves the limit in Prop. 6.2 by the jump relation of the double layer potential over bounded
surfaces.

6.3 Radiation condition for point-source functions
〈ss5〉

Suppose u is a Helmholtz solution on R3
+, which is bounded together with its derivatives upto order

two on the closure of R3
+. Similarly to Sommerfeld’s condition on the full space R3, we define

Definition 6.3. We shall say that a function u on R3
+ satisfies the outgoing Sommerfeld half-space

radiation condition if

sup
~x∈R3

+: |~x |=r
r |∂νu(~x )−iku(~x )| → 0, r →∞, sup

~x∈R3
+: |~x |≥R

|~x | |u(~x )| <∞. (6.11) SHSRC
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It is well known that, for any fixed ~y∈R3 with y3<0, the Green’s function R3
+3~x 7→G(~x, ~y ) and

any of its derivatives w.r.t.~x or ~y satisfy Sommerfeld’s radiation condition. Hence, these point source
functions also satisfies (6.11).

Suppose ~y=(y′, y3)> with y3<0. We shall prove (1.2) for the point-source function u(~x ) :=G(~x, ~y )
using only the properties fixed in (6.11). Choosing ΩR=BR, ΣR=SR (cf. Sect. 2.2), we shall em-
ploy the representation (2.14). It remains to prove I∞=0. The estimates for this, however, are exactly
the same as for the full space Sommerfeld condition. Indeed, the fundamental solution G satisfies
(6.11) w.r.t. both arguments. If, for ~x and ~y, we define the reflection points ~xs :=(x′,−x3)> and
~ys :=(y′,−y3)>, respectively, then we obviously get ∂2

y3
G(~x, ~ys)=∂2

y3
G(~xs, ~y ). Consequently, the

differentiated Green’s function ∂2
y3

Φ(~x, ~y)=∂2
y3
G(~x, ~y )−∂2

y3
G(~xs, ~y ) satisfies (6.11) w.r.t.~y. We

get ∫
ΣR

{
∂νu∂

2
y3

Φ(~x, ·)−u∂ν∂2
y3

Φ(~x, ·)
}

=

∫
ΣR

{
[ik]u∂2

y3
Φ(~x, ·)−u [ik]∂2

y3
Φ(~x, ·)

}
(6.12) GFO

+

∫
ΣR

o
(
R−2

)
=

∫
ΣR

o
(
R−2

)
= o(1) ,

I∞ = 0.

Corollary 6.4. Any solution of the Helmholtz equation over R3
+ satisfying the outgoing Sommerfeld

half-space radiation condition (6.11) satisfies the (HSRC) too.

For the “incoming” point-source u(~x ) :=G(~x, ~y ) with y3<0, we have (6.11) but with the term iku(~x )
replaced by −iku(~x ). Instead of (6.12), we arrive at∫

ΣR

{
∂νu∂

2
y3

Φ(~x, ·)−u∂ν∂2
y3

Φ(~x, ·)
}

= 2(ik)[Ii,R−Ji,R] + o(1) , Ii,R :=

∫
ΣR

∂2
y3
G(~x, ·)u,

Ji,R :=

∫
ΣR

∂2
y3
G(~x, (z′,−z3)>)u(~z )d~z =

∫
ΣR

∂2
y3
G((x′,−x3)>, · )u.

Taking the asymptotically largest term from (2.5), we conclude

Ii,R =

∫
ΣR

(ik)2 e
ik|~x−~z |(z3 − x3)2

4π|~x− ~z |3
e−ik|~y−~z |

4π|~y − ~z |
d~z + o(1)

=
(ik)2

16π2

∫
ΣR

eik(~x−~y )·~z/|~z | z
2
3

|~z |4
d~z + o(1).

Switching to spherical coordinates, we get

Ii,R =
(ik)2

16π2

∫ π/2

0

∫ 2π

0

eik(~x−~y )·(sin θ cosφ,sin θ sinφ,cos θ)> cos2 θ sin θ dφ dθ + o(1)

=
(ik)2

16π2

∫ π/2

0

∫ 2π

0

eik sin θ(x′−y′)·(cosφ,sinφ)>dφ eik(x3−y3) cos θ cos2 θ sin θ dθ + o(1)

=
(ik)2

16π2

∫ π/2

0

∫ 2π

0

ei[k|x
′−y′| sin θ] cosφ dφ eik(x3−y3) cos θ cos2 θ sin θ dθ + o(1)

=
(ik)2

8π

∫ π/2

0

J0(k|x′ − y′| sin θ) eik(x3−y3) cos θ cos2 θ sin θ dθ + o(1)

=
(ik)2

8π

∫ 1

0

eik(x3−y3)tJ0

(
k|x′ − y′|

√
1− t2

)
t2 dt+ o(1).
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A similar formula for Ji,R lead us to

I∞ =
(ik)3

4π

∫ 1

0

[
eik(x3−y3)t − eik(−x3−y3)t

]
J0

(
k|x′ − y′|

√
1− t2

)
t2 dt.

E.g. in the special case x′=y′, by integration by parts we arrive at

I∞=
(ik)3

4π

∫ 1

0

[
eik(x3−y3)t − eik(−x3−y3)t

]
t2 dt

=
(ik)3

4π

{
eik(x3−y3)

[
1

ik(x3−y3)
− 2

[ik(x3−y3)]2
+

2

[ik(x3−y3)]3

]
− 2

[ik(x3−y3)]3

+e−ik(x3+y3)

[
1

ik(x3+y3)
+

2

[ik(x3+y3)]2
+

2

[ik(x3+y3)]3

]
− 2

[ik(x3+y3)]3

}
.

Hence, the limit I∞ is not identically zero. In other words, for the “incoming” point-source, the radiation
condition (1.2) is not fulfilled.

7 Condition (HSRC) independent of xh,3 and xf,3, and
equivalence of the conditions (1.4) and (1.5)

〈s4E〉
7.1 Condition (HSRC) independent of xh,3 and xf,3

〈ss4E.1〉
For the dependence of (HSRC) on xh,3 and xf,3, we notice that the representation (4.1) together
with the decay O(|~x−~y |−3) of the kernel functions easily imply the condition i) for any fixed xh,3.
Therefore, it is sufficient to check the dependence on xf,3.

Note that, assuming the condition i) of (HSRC) we easily get the uniform boundedness of the function
u in the layer {~x : xf,3≤x3≤xh,3}. Using this fact, we easily get that (1.4) and, therewith, iii) is
independent of xf,3.

〈LemHinr〉
Lemma 7.1. Suppose condition i), take xf,3 and x′f,3 with 0<xf,3<x

′
f,3<xh,3. Then condition ii) with

xf,3 implies ii) with x′f,3.

Proof. We only have to prove∫
R2

2∂3
y3
G
(
~x, (y′, xf,3)>

)
u
(
(y′, xf,3)>

)
dy′=

∫
R2

2∂3
y3
G
(
~x, (y′, x′f,3)>

)
u
(
(y′, x′f,3)>

)
dy′. (7.1) EQN1

Substituting

u
(
(y′, x′f,3)>

)
=u
(
(y′, xf,3)>

)
+ (x′f,3 − xf,3)∂x3u

(
(y′, xf,3)>

)
+

∫ x′f,3

xf,3

(x′f,3−z3)

∫
R2

2∂3
y3
G
(
(y′, z3)>, (z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′dz3

on the right-hand side of (7.1), we first compute∫
R2

2∂3
y3
G
(
~x,(y′,x′f,3)>

)∫ x′f,3

xf,3

(x′f,3−z3)

∫
R2

2∂3
y3
G
(
(y′,z3)>,(z′,xf,3)>

)
u
(
(z′,xf,3)>

)
dz′dz3dy′=∫

R2

∫ x′f,3

xf,3

(x′f,3−z3)

∫
R2

2∂3
y3
G
(
~x,(y′,x′f,3)>

)
2∂3

y3
G
(
(y′,z3)>,(z′,xf,3)>

)
dy′dz3u

(
(z′,xf,3)>

)
dz′.
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From the Fourier transform (6.6) we infer∫
R2

2∂3
y3
G
(
~x, (y′, x′f,3)>

)
2∂3

y3
G
(
(y′, z3)>, (z′, xf,3)>

)
dy′

=

∫
R2

2∂3
y3
G
(
(x′, x3−x′f,3)>, (y′,0)>

)
2∂3

y3
G
(
(y′,0)>, (z′, xf,3−z3)>

)
dy′

= 2∂5
y3
G
(
(x′,x3−x′f,3)>, (z′, xf,3−z3)>

)
= 2∂5

y3
G
(
~x, (z′, xf,3+x′f,3−z3)>

)
,∫ x′f,3

xf,3

(x′f,3−z3)

∫
R2

2∂3
y3
G
(
~x, (y′, x′f,3)>

)
2∂3

y3
G
(
(y′, z3)>, (z′, xf,3)>

)
dy′dz3

=

∫ x′f,3

xf,3

(x′f,3−z3)2∂5
y3
G
(
~x, (z′, xf,3 + x′f,3 − z3)>

)
dz3

= 2∂3
y3
G
(
~x, (z′, xf,3)>

)
−2∂3

y3
G
(
~x, (z′, x′f,3)>

)
+(x′f,3−xf,3)2∂4

y3
G
(
~x, (z′, x′f,3)>

)
.

Hence, the substitution for the right-hand side of (7.1), yields that (7.1) is equivalent to the equation∫
R2

2∂3
y3
G
(
~x, (y′, x′f,3)>

)
∂y3u

(
(y′, xf,3)>

)
dy′ (7.2) EQN2

+

∫
R2

2∂4
y3
G
(
~x, (y′, x′f,3)>

)
u
(
(y′, xf,3)>

)
dy′ = 0.

This (7.2) is equivalent to Te(xf,3)=0, where

Te(z3) :=

∫
R2

2∂3
y3
G
(
~x, (y′, xf,3 + x′f,3 − z3)>

)
∂z3
[
u
(
(y′, z3)>

)]
dy′

−
∫
R2

∂z3
[
2∂3

y3
G
(
~x, (y′, xf,3 + x′f,3 − z3)>

)]
u
(
(y′, z3)>

)
dy′.

Choosing z3 and z′3 with xf,3≤z3≤z′3 and applying Green’s identity to the Helmholtz solutions u
and (y′, z3) 7→2∂3

y3
G(~x, (y′, xf,3+x′f,3−z3)>) over the layer enclosed by R3

z3
and R3

z′3
, we ob-

tain Te(z3)=Te(z′3), i.e., the function z3 7→Te(z3) is constant for all z3≥xf,3. Consequently, we
only have to prove Te(xf,3 + ε)=0 for a small but fixed ε>0. Setting y′f,3 :=y′f,3(ε) :=x′f,3−ε and
yf,3 :=yf,3(ε) :=xf,3+ε, we shall prove Te(yf,3)=0, i.e.

(7.3) EQN2b∫
R2

2∂3
y3
G
(
~x,(y′, y′f,3)>

)
∂y3u

(
(y′, yf,3)>

)
dy′+

∫
R2

2∂4
y3
G
(
~x,(y′, y′f,3)>

)
u
(
(y′, yf,3)>

)
dy′= 0.

To treat the first term in (7.3), we introduce the disk Dx′
R :={z′∈R2 : |x′−z′|≤R}. Then, by the

arguments leading to (6.10), we get∫
R2

2∂3
y3
G
(
~x,(y′, y′f,3)>

)
∂y3u

(
(y′, yf,3)>

)
dy′

= −
∫
Dx′
R

2(∆y′ + k2I)∂y3G
(
~x,(y′, y′f,3)>

)
∂y3u

(
(y′, yf,3)>

)
dy′ +O

(
1

R

)
= −

∫
Dx′
R

2∂y3G
(
~x,(y′, y′f,3)>

)
(∆y′ + k2I)∂y3u

(
(y′, yf,3)>

)
dy′ +O

(
1

R

)
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such that (1.2) implies

∫
R2

2∂3
y3
G
(
~x,(y′, y′f,3)>

)
∂y3u

(
(y′, yf,3)>

)
dy′

=−
∫
Dx′
R

2∂y3G
(
~x,(y′, y′f,3)>

)∫
R2

2∂4
y3
G
(
(y′, yf,3)>, (z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′dy′+O

(
1

R

)
=−

∫
R2

∫
Dx′
R

2∂y3G
(
~x,(y′, y′f,3)>

)
2∂4

y3
G
(
(y′, yf,3)>, (z′, xf,3)>

)
dy′u

(
(z′, xf,3)>

)
dz′+O

(
1

R

)
.

We shall show that this expression is equal to
∫
R22∂

4
y3
G
(
(x′, x′′f,3)>,(z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′

with x′′f,3 :=x′′f,3(ε) :=xf,3+(yf,3−xf,3)+(x3−y′f,3)=x3+(xf,3−x′f,3)+2ε. To get this equality, we
even prove the generalized equation Im(ε, x3)=0 for m = 3, 4, 5, where

Im(ε, x3)

:=

∫
R2

2∂my3G
(
~x, (y′, y′f,3)>

)
∂y3u

(
(y′, yf,3)>

)
dy′

+

∫
R2

2∂m+1
y3

G
(
(x′, x′′f,3)>, (z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′

= − lim
R→∞

∫
R2

∫
Dx′
R

2∂m−2
y3

G
(
~x,(y′, y′f,3)>

)
2∂4

y3
G
(
(y′, yf,3)>,(z′, xf,3)>

)
dy′u

(
(z′, xf,3)>

)
dz′

+

∫
R2

2∂m+1
y3

G
(
(x′, x′′f,3)>, (z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′.

Note that ∂x3Im(ε, x3)=−Im+1(ε, x3). Formally, it is clear that Im(ε, x3)≡0. Indeed, interchange
the limit R→∞ and the integration over R2 and use

∫
R2

2∂m−2
y3

G
(
~x, (y′, y′f,3)>

)
2∂4

y3
G
(
(y′, yf,3)>, (z′, xf,3)>

)
dy′ = 2∂m+1

y3
G
(
(x′, x′′f,3)>, (z′, xf,3)>

)
,

which follows from switching to Fourier transforms (compare the Fourier transform in (6.6)) and us-
ing that convolutions turn into products. Unfortunately, the interchange of limit and integration might
be not correct. However, for m=5 the convolution kernels (x′−y′) 7→2∂m−2

y3
G(~x, (y′, y′f,3)>) and

(y′−z′) 7→2∂4
y3
G((y′, yf,3)>, (z′, xf,3)>) are L1(R2) functions (cf. Sect. 2.1) such that a truncation

to Dx′

R with R→∞ even leads to norm convergence of the truncated convolution operators. Hence,
the interchange of limit and integration is correct and I5(ε, x3)≡0. Moreover, we observe the estimate
∂y3G(~x, ~y )−(y3−x3)∂2

y3
G(~x, ~y )=O(|x′−y′|−3) for |x′−y′|→∞ (cf. (2.3) and (2.5)). Therefore,

the convolution kernel (x′−y′) 7→∂y3G(~x, (y′, y′f,3)>)−(y′f,3−x3)∂2
y3
G(~x, (y′, y′f,3)>) is inL1(R2),

and, analogously to I5(ε, x3)≡0, we arrive at I3(ε, x3)−(y′f,3−x3)I4(ε, x3)≡0. So we draw the
first conclusions. By I5 =0, ∂x3I4 =−I5, we see that, w.r.t.x3, the function I4 is constant. We get
I4(ε, x3)=I4(ε) and I3(ε, x3)=(y′f,3(ε)−x3)I4(ε).
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To continue and to treat the second term on the left-hand side of (7.3), we introduce

Jm(ε, x3) (7.4) defJ_m

:=

∫
R2

2∂m+1
y3

G
(
~x, (y′, y′f,3)>

)
u
(
(y′, yf,3)>

)
dy′

−
∫
R2

2∂m+1
y3

G
(
(x′, x′′f,3)>, (z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′

= lim
R→∞

∫
R2

∫
Dx′
R

2∂m−1
y3

G
(
~x, (y′, y′f,3)>

)
2∂3

y3
G
(
(y′, yf,3)>, (z′, xf,3)>

)
dy′u

(
(z′, xf,3)>

)
dz′

−
∫
R2

2∂m+1
y3

G
(
(x′, x′′f,3)>, (z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′, m = 2, 3, 4,

Km+1(ε, x3)

:=

∫
R2

2∂my3G
(
~x, (y′, y′f,3)>

)
∂2
y3
u
(
(y′, yf,3)>

)
dy′

−
∫
R2

2∂m+2
y3

G
(
(x′, x′′f,3)>, (z′, xf,3)>

)
u
(
(z′, xf,3)>

)
dz′ = 0, m = 3, 4.

Similarly to the analogous results for Im(ε, x3), we obtain ∂x3Jm(ε, x3)=−Jm+1(ε, x3), the equal-
ity J4(ε, x3)=0, and the relation J2(ε, x3)−(y′f,3−x3)J3(ε, x3)=0. Again we draw the first con-
clusions. By J4 =0 and ∂x3J3 =−J4, we see that, w.r.t.x3, the function J3 is constant. We get
J3(ε, x3)=J3(ε) and J2(ε, x3)=(y′f,3(ε)−x3)J3(ε). The functions Im, Jm, andKm are connected
by ∂εJm(ε, x3)=Im+1(ε, x3)−Jm+1(ε, x3) and ∂εIm(ε, x3)=Km+1(ε, x3)−Im+1(ε, x3), i.e., by
∂εIm(ε, x3)=−Im+1(ε, x3). In particular, we have

∂εI4(ε, x3) = ∂εI4(ε) = 0,

I4(ε, x3) = I4 = const.,

I3(ε, x3) = (y′f,3(ε)− x3)I4, (7.5) EqUj9

∂εJ3(ε, x3) = I4(ε, x3)− 0 = I4,

J3(ε, x3) = J3(ε) = J3(0) + I4ε = I4ε, (7.6) EqUj2

J2(ε, x3) = (y′f,3(ε)− x3)I4ε, (7.7) EqUj10

where we have used J3(0)=0, which follows from the definition (7.4) and from the kernel identity
∂4
y3
G(~x, (y′, x′f,3)>)=∂4

y3
G((x′, x′′f,3(0))>, (y′, xf,3)>). Now (7.7) shows a linear behaviour of J2

w.r.t.x3. On the other hand, this J2 is weakly bounded by Prop. 3.1. Consequently, the function J2 is at
most constant, and we get I4 =0. Consequently, (7.5) and (7.6) imply I3(ε, x3)≡0 and J3(ε, x3)≡0,
respectively. Finally, we arrive at I3(ε, x3)+J3(ε, x3)≡0, which is equivalent to the equations (7.3)
and (7.2), i.e., the condition ii) of (HSRC) with x′f,3 holds.

Now we look at the reverse direction and show that condition ii) of the (HSRC) with x′f,3 implies ii) with
xf,3. We fix an ε>0 and get

∂2
x3
u(~x ) =

∫
R2

2∂3
y3
G
(
~x, (y′, x3 − ε)>

)
u
(
(y′, x3 − ε)>

)
dy′ (7.8) CoEq

=

∫
R2

2∂3
y3
G
(
(y′, ε)>, (0, 0, 0)>

)
u
(
(x′ − y′, x3 − ε)>

)
dy′,

which is valid for any x3 with x3−ε≥x′f,3 by condition ii) of the (HSRC) with x′f,3 and by Lemma 7.1. It
is not hard to see (use something like (6.1)) that both sides of (7.8) are Helmholtz solutions. However,
these analytic functions coincide over the whole domain of definition. In other words, (7.8) holds for
x3−ε≥xf,3. In particular, choosing x3−ε=xf,3, we get condition ii) of the (HSRC) with xf,3.
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7.2 Equivalence of the conditions (1.4) and (1.5)

Suppose the conditions i) and ii) of (HSRC) are satisfied. For the equivalence of (1.4) and (1.5),
we observe that the restriction v(x′) :=u((x′, xf,3)>) is in the space C l

b(R2), l ≥ 0. This follows
from condition i) of (HSRC) and from xf,3>supx′∈R2 |F (x′)| (cf. Fig. 1). We retain the notation of the
spacesAVκ,DDτ , and FCk(R2) from (1.8), (1.9), and (1.10), respectively. Furthermore, we suppose
DtN is defined by (4.4) for functions in AVκ and, for functions in FCk, use (4.4) and the Fourier
transform to define the integral in (4.4). For functions v∈DDτ we define DtNv :=−∂x3 [Vkv0]|R3

xf,3

(cf. (3.1)).
〈lDtN〉

Lemma 7.2. If v∈FCk or if v∈AVκ with κ>0 or if v=vs+(∆x′ +k
2I)v0∈DDτ with 0≤τ <1

(cf. (1.9)), then DtNv is a well-defined bounded function, which is a partial solution of (4.3) with u
replaced by v. Moreover, the function

up(~x ) := v(x′) + (DtNv)(x′) (x3 − xf,3) +

∫ x3

xf,3

(x3 − t)[Vku]
(
(x′, t)>

)
dt (7.9) uR_p

(cf. (1.4)) satisfies (1.2).

Proof. Again, for simplicity, we may suppose xf,3 =0. The proof will be split into three parts, each
considering one of the three different function classes for v.

i) First we suppose v∈FCk. Due to this we have v∈C6
b (R2). The multiplied and differentiated

functions x′ 7→(1+|x′|2)−1∂lxjv(x′), l=0, 1, · · ·, 6 are in the space L2(R2). Equivalently, the func-

tions x′ 7→∂lxj [(1+|x′|2)−1v(x′)], l=0, 1, · · ·, 6 are in L2(R2) such that there exists a function

vL∈L2(R2) with v(x′)=(1+|x′|2)(I−∆x′)
−3vL(x′) and such that the Fourier transform of v (cf.

(6.5)) is [Fv](ξ′)=(I−∆ξ′)(1+|ξ′|2)−3[FvL](ξ′). From F(−2∂2
x3
G((·, 0)>)=

√
k2−|ξ′|2 (com-

pare (6.6)), we obtain (cf. (4.4))

DtNv(x′) =
1

4π2

∫
R2

(I −∆ξ′)
{
eix

′·ξ′
√
k2 − |ξ′|2

}
(1 + |ξ′|2)−3[FvL](ξ′) dξ′ (7.10) newDTN

=
1

4π2

∫
R2

eix
′·ξ′
{

(1 + |x′|2)
√
k2 − |ξ′|2 +

ix′ · ξ′ + 2√
k2 − |ξ′|2

+
|ξ′|2√

k2 − |ξ′|23

}
(1 + |ξ′|2)−3[FvL](ξ′) dξ′.

Similar formulas hold for the derivatives w.r.t.x′, i.e., for

(∆x′ +k
2I)DtNv(x′) =

1

4π2

∫
R2

(I−∆ξ′)
{
eix

′·ξ′
√
k2−|ξ′|2

3
}

(1+|ξ′|2)−3[FvL](ξ′) dξ′,

which is exactly ∂x3 [Vku]((x′, 0)>) (for the Fourier transform of the kernel ∂4
y3

Φ(·, ~y ) compare (6.6)).
Clearly, there are no troubles with integration for large |ξ′| due to the factor (1 + |ξ′|2)−3.

If we suppose that the Fourier transform of v vanishes over the annular domain Rk,ε, used in the
definition of (1.10), then we get smooth and bounded values DtNv(x′) and (∆x′ +k

2I)DtNv(x′)
for x′ in bounded domains. Shifting the coordinate system, i.e. multiplying the Fourier transforms by
exponentials of modulus one, does not change on the vanishing in Rk,ε. Repeating all the above
arguments, we even get uniform boundedness over R2. In other words, f2 :=DtNv is a well-defined
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bounded function, which is a partial solution of (4.3) with u replaced by v. Now we turn to the estimate
of the function up of (7.9). For the terms in (7.9) and for x′ 6=y′, we take into account the definition of
[Vku] (cf. (3.2)) and apply (3.3). From (2.3) and (2.9) as well as from the jump relation for the double
layer kernel, we have ∂y3Φ((x′, 0)>,(y′, 0)>)=δx′(y

′). Using this together with (3.3), we arrive at

up(~x ) := v(x′) + x3[DtNv](x′) +

∫ x3

0

(x3 − t)[Vkv]
(
(x′, t)>

)
dt, (7.11) Trem

= x3[DtNv](x′)+

∫
R2

{
x3∂

2
y3

Φ
(
(x′, x3)>,(y′, 0)>

)
+∂y3Φ

(
(x′, x3)>,(y′, 0)>

)}
v(y′) dy′

=

∫
R2

∂y3Φ
(
(x′, x3)>,(y′, 0)>

)
v(y′) dy′.

This is the double layer integral with Green’s function from (1.1). Though the integral on the second
line of (7.11) is absolutely integrable, together with the definition of DtNv by Fourier transform (cf.
(7.10)) also the last integral must be defined by switching to Fourier transforms (compare (6.6)). We
get

up(~x ) =
1

4π2

∫
R2

eix
′·ξ′ei
√
k2−|ξ′|2x3 [Fv](ξ′) dξ′.

=
1

4π2

∫
R2

(I −∆ξ′)
{
eix

′·ξ′ei
√
k2−|ξ′|2x3

}
(1 + |ξ′|2)−3[FvL](ξ′) dξ′. (7.12) newRup

Now the Taylor-series expansion at x3 =0 for the function x3 7→ei
√
k2−|ξ′|2x3/[|ξ′|2−k2] takes the

form

ei
√
k2−|ξ′|2 x3

|ξ′|2 − k2
=

1

|ξ′|2 − k2
− i√

k2 − |ξ′|2
x3 +

∫ x3

0

(x3 − t)ei
√
k2−|ξ′|2 t dt,

and leads us to∫ x3

0

(x3 − t)up
(
(x′, t)>

)
dt =

1

4π2

∫
R2

(I −∆ξ′)

{
e−ix

′·ξ′
[
ei
√
k2−|ξ′|2x3

|ξ′|2 − k2

− 1

|ξ′|2 − k2
+

i√
k2 − |ξ′|2

x3

]}

(1 + |ξ′|2)−3[FvL](ξ′) dξ′,

where, again, the assumption [Fv](ξ′)=0, ξ′∈Rk,ε frees us from any trouble with the non-smooth-
ness of

√
k2−|ξ′|2, and the factor (1+|ξ′|2)−3 guarantees integrability for large |ξ′|. Applying the

two-dimensional Laplacian ∆ξ′ to the term in brackets, we get at most a factor x2
3 or a factor |x′|2

such that up satisfies the weak boundedness condition (1.4) for |x′|<c. Shifting the x′ coordinates,
i.e. multiplying the Fourier transforms by exponentials of modulus one, we get the same result for any
x′. Hence the solution up of (7.9) satisfies (1.4).

Splitting a general v into a sum of two functions, one with a Fourier transform vanishing in the annular
domain Rk,ε and one with support contained in the domain Rk,2ε, it remains to proof the lemma for
the latter case. This case, however, is completely analogous to the just finished case. The only differ-
ence is that we apply the assumptions of functions from FCk (cf. (1.10)) on the annular domain. Thus
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[Fv](ξ′) = (I −∆ξ′)(1 + |ξ′|2)−3[FvL](ξ′) turns to [Fv](ξ′) = [Fv](ξ′) theL2 function with sup-
port in Rk,2ε and, e.g., (7.10) and (7.12) into

DtNv(x′) =
1

4π2

∫
Rk,ε

eix
′·ξ′
√
k2 − |ξ′|2[Fv](ξ′) dξ′,

up(~x ) =
1

4π2

∫
Rk,ε

eix
′·ξ′ei
√
k2−|ξ′|2 x3 [Fv](ξ′) dξ′.

We finally get the uniform boundedness of up and all the assertions of Lemma 7.2 for v∈FCk.

ii) Now we assume v∈AVκ. The Dirichlet-to-Neumann map on the right-hand side of (1.5) is a convo-
lution operator with kernel depending only on |x′−y′|. Using (2.5) and (1.7), it takes the form g

[DtNv](x′) := −2

∫
R2

∂2
y3
G
(
(x′, 0)>, (y′, 0)>

)
v(y′) dy′

= −2

∫
R2

∂2
y3
G
(
(y′, 0)>, (0, 0, 0)>

)
v(x′ − y′) dy′

=

∫
y′∈R2: |y′|>1

O
(
|y′|−2

)
v(x′ − y′) dy′ +O(1) ,

|[DtNv](x′)| ≤ c

∫ ∞
1

r−1 |av(v, x′, r)| dr +O(1) ,

where the term O(1) results from an integration of a finite-part integral for a sufficiently smooth func-
tion. The estimate of av(v, x′, r) in the definition (1.8) of AVκ, implies the continuity and uniform
boundedness of DtNv. Analogously, from (7.11) we conclude

|up(~x )| ≤ c

∫ ∞
1

|x3|√
|x3|2 + r2

2 r |av(v, x′, r)| dr +O(1)

≤ c|x3|1−ε
∫ ∞

1

rε−1 |av(v, x′, r)| dr +O(1) , 0 < ε < min{1, κ/2},

such that the estimate of av(v, x′, r) in (1.8), implies the continuity and weak boundedness of the
solution up. If we apply (∆x′ +k2I) to DtNv and (∆+k2I) to up, the convergence of the inte-
grals follows easily since the differentiated kernel functions satisfy the same estimates as the original
kernels. Using the two facts that ~x 7→∂y3Φ(~x, ~y ) is a solution of the Helmholtz equation and that
(∆x′ +k

2I)∂2
y3

Φ(~x, ~y )=−∂4
y3

Φ(~x, ~y ), we get that up is a Helmholtz solution and that v is a solu-
tion of (4.3) with u replaced by v.

iii) Finally, we assume v∈DDτ . Taking vs, vi, and v0 in accordance with (1.9), we define the Helmholtz
solution uDD((x′, x3)>) :=vs(x

′)−[Vkv0]((x′, x3)>). Using Prop. 6.2, we get the boundary value

uDD
(
(x′, 0)>

)
= vs(x

′)− [Vkv0]
(
(x′, 0)>

)
= vs(x

′) +
[
(∆x′ + k2I)v0

]
(x′) = vs(x

′) + vi(x
′) = v(x′).

Furthermore, using [Vkvs] = 0 (cf. Subsect. 6.1) and the fact that differentiation and convolution oper-
ator commute, we conclude

∂2
x3
uDD(~x) = −∂2

x3
[Vkv0](~x) = (∆x′ + k2I)[Vkv0](~x)

= [Vk(∆y′ + k2I)v0](~x) = [Vkvi](~x) = [Vkv](~x)
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such that (1.2) is fulfilled. Together with Prop. 3.1 the radiation condition (HSRC) holds for uDD. In
other words, uDD is a solution to the Dirichlet problem uDD(~x ) = v(~x ), ~x ∈ R3

0 of the Helmholtz
equation satisfying the radiation condition (HSRC).

Setting f2 :=DtNv :=∂x3uDD|R3
0

we get a well-defined solution of (4.3) with u replaced by v. Indeed,

(∆x′ + k2I)f2 = −(∆x′ + k2I)∂x3 [Vkv0] = −∂x3(∆x′ + k2I)[Vkv0]

= −∂x3 [Vk(∆y′ + k2I)v0] = −∂x3 [Vkvi] = −∂x3 [Vkv].

Clearly, by the Taylor-series expansion we get that the function up of (7.9) is equal to uDD. Moreover, it
satisfies the weak boundedness (1.4) due to definition uDD((x′, x3)>) :=vs(x

′)−[Vkv0]((x′, x3)>)
and to Prop. 3.1.

Now the equivalence of the conditions (1.4) and (1.5) is easy to show. The general solution of (4.3)
is f2,g= DtNṽ+f2,h with ṽ :=u|R3

0
and with a solution f2,h of the two-dimensional Helmholtz equa-

tion (∆x′ +k
2I)f2,h=0. The solution ug=u in (4.1), defined with f1 := ṽ and f2 :=f2,g, takes the

form ug(~x)=up(~x)+f2,h(x
′)x3. This, however, fulfills (1.4) if and only if f2,h≡0, i.e., if and only if

∂x3ug=f2,g=DtN(u|R3
0
).

8 Solution of the Dirichlet problem over the half space
〈ss6〉

Now fix a Dirichlet-data function v∈Cb(R2). For a function u continuous on the closure of R3
+ and

twice differentiable on R3
+, we consider the Dirichlet boundary value problem

∆u(~x ) + k2u(~x ) = 0, ∀~x∈R3
+,

u
(
(x′, 0)>

)
= v(x′), ∀x′∈R2, (8.1) DiPr

u satisfies (HSRC).
〈uni〉

Proposition 8.1. The solution of problem (8.1) is unique.

Proof. For two solutions u1 and u2 the difference ud=u1−u2 satisfies the homogeneous problem
(8.1), i.e., the problem with v≡0. However, from the radiation condition we get the representation
(1.2). Using the arguments in Subsect. 7.1, we can even suppose xf,3 =0. We infer that ∂2

x3
ud≡0.

Hence, ud is linear with respect to x3 and ud(~x )=f1(x′)+f2(x′)x3. From the weak boundedness
condition (1.4), we get f2≡0 and, from the homogeneous Dirichlet condition, f1≡0. Hence, ud≡0
and the two solutions u1 and u2 coincide.

It is unclear to us, whether there exist solutions of (8.1) for any Dirichlet data in Cb(R2). Even if only
the items i) and ii) of the radiation condition (HSRC) are satisfied, then we get a necessary condition.
Namely, there must exist solutions of (4.3) with xf,3>0. More precisely, we define Vk,0 as Vk replacing
xf,3 by zero, choose an xf,3>0 and consider (4.3) with Vk replaced by Vk,0. Clearly, the right-hand
side of the modified (4.3) is given by

−∂x3 [Vk,0u]
(
(x′, xf,3)>

)
:=

∫
R2

2∂4
y3
G
(
(x′, xf,3)>, (y′, 0)>

)
u
(
(y′, 0)>

)
dy′.

We do not know whether this modified (4.3) always has a solution. Therefore, by DS=DSxf,3 we

denote a space of functions v=u|R3
0
∈C3,κ

b (R2)=C3,κ
b (R3

0) with exponent 0<κ≤1 s.t. there is a
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solution f2 of the modified (4.3) with f2∈C l
b(R2) for all integers l≥0. Unfortunately, the solution f2

is not unique. The general solution of the modified (4.3) is the sum of the partial solution f2 and a
homogeneous solution of the two-dimensional Helmholtz equation (cf. Lemma 5.1). We easily obtain
the formal result

〈theory〉
Proposition 8.2. i) For v=u|R3

0
∈C3,κ

b (R2), there exists a solution of (8.1), possibly without condition
(1.4), if and only if v is in the space DS. If v∈DS, then a particular solution is given by

u(~x ) = v(x′) + [DtNv]
(
(x′, 0)>

)
x3 +

∫ x3

0

(x3 − t) [Vk,0v]
(
(x′, t)>

)
dt, (8.2) laRepr

[Vk,0v](~x ) :=

∫
R2

∂3
y3

Φ
(
~x, (y′, 0)>

)
v(y′) dy′, (8.3) newDefVk

[DtNv]
(
(x′, 0)>

)
:= f2(x′)−

∫ xf,3

0

[Vk,0v]
(
(x′, t)>

)
dt (8.4) newDefDtN

with f2∈C l
b(R2), l≥0 a solution of the modified (4.3) with right-hand side −∂x3Vk[v](x′, xf,3) re-

placed by −∂x3Vk,0[v](x′, xf,3) (cf. (8.3)).
ii) Suppose there is a linear operator DtN2 : DS→C2

b (R2) mapping v to a solution f2 of the modi-
fied (4.3). Define the mapping DtN by (8.4) with f2 =DtN2v. Moreover, for the current proposition,
replace item iii) of (HSRC) by the alternative condition ∂x3u|R3

xf,3
=DtN2 u|R3

0
. Then, for any v∈DS,

there exists a unique solution of (8.1), which takes the form (8.2).

Proof. Obviously, the function u defined in (8.2) fulfills the Dirichlet boundary condition u|R3
0
=v and

(HSCR) possibly without (1.4). If v∈C2
b (R2), then Prop. 6.2 implies (∆x′ +k

2I)v(x′)=−[Vk,0v](x′, 0),
and the inhomogeneous Helmholtz equation (∆x′ +k

2I)DtN2v(x′)=−∂x3 [Vk,0v](x′, 0) follows from
the modified (4.3) for f2 and from

∂x3 [Vk,0v](x′, xf,3)− ∂x3 [Vk,0v](x′, 0) =

∫ xf,3

0

∂2
x3

[Vk,0v](x′, t)dt

= −(∆x′ + k2I)

∫ xf,3

0

[Vk,0v](x′, t)dt.

Note that the condition v∈C3,κ guarantees the existence of the boundary value ∂x3 [Vk,0v](x′, 0) as
a finite part integral (cf. (2.8) and (2.11)). In other words, the assumptions of Prop. 4.1 are fulfilled and
u defined by (8.2) is a Helmholtz solution. Consequently, u is a solution of (8.1) and part i) of the
proposition follows. Part ii) is obvious.

To avoid the impractical assumptions in Prop. 8.2, we have to require a stronger condition on v. Using
semigroup theory, existence can be shown e.g. for v the sum of an L2 function and a function, the
Fourier transform of which is a bounded Radon measure (cf. [3]).

〈exi〉
Proposition 8.3. Suppose that v is either in AVκ, κ>0, or in DDτ , 0≤τ <1 or in FCk. Then there
exists a unique solution of (8.1). For v∈AVκ with κ≥1, this solution is even uniformly bounded .

Proof. In the case of DDτ , the function uDD is the solution due to part iii) of the proof to Lemma 7.2.
For the case of AVκ and FCk, the function up of (7.11) is the solution in accordance with the parts i)
and ii) of the proof to Lemma 7.2. Alternatively, for v∈AVκ with κ>0, we can use the double layer

DOI 10.20347/WIAS.PREPRINT.2669 Berlin, December 20, 2019/rev. June 10, 2022



Radiation condition 31

operator

u(~x ) =

∫
R2

2∂y3G
(
~x, (y′, 0)>

)
u
(
(y′, 0)>

)
dy′

=

∫ ∞
0

2∂y3G
(
~x, (x1 + r, x2, 0)>

)
av(u, x′, r)rdr,

|u(~x )| ≤ c

∫ ∞
0

x3

r2 + x2
3

r1−κdr = cx1−κ
3

∫ ∞
0

1

s2 + 1
s1−κds,

which implies the uniform boundedness for κ≥1 and the weak boundedness for κ>0.

Now we introduce the subspace DD−1 of DD0 by the formula (cf. (1.9))

DD−1 :=
{
v∈Cb(R2) : ∃cv>0, ∃vs∈C2

b (R2), ∃v0∈C2(R2) s.t.

v = vs + vi, (∆x′ +k
2I)vs = 0, vi := (∆x′ +k

2I)v0, and

|v0(x′)| ≤ cv(1 + |x′|)−1, ∀x′∈ R2,

|∂xjv0(x′)| ≤ cv(1 + |x′|)−1, j = 1, 2,∀x′∈ R2
}
.

For example, the function v0 could be like v0(x′)=(1+|x′|2)−1 sin((1+x2
1)−1 sin(x2

1)), for which vi
is bounded but does not decay for x1→∞.

Proposition 8.4. Consider all the v∈DD−1. Then the corresponding splitting v=vi+vs is unique.

Proof. We have to show that nontrivial Dirichlet data cannot satisfy both, the two-dimensional Helm-
holtz equation (∆x′ +k

2I)v = 0 and the representation v = (∆x′ +k
2I)v0. We shall suppose both

and show v≡0.

From the Helmholtz equation, we get, for any test function ϕ, that 〈v, (∆x′ +k
2I)ϕ〉=0. Now we

substitute the representation of v as the image of the Helmholtz operator and choose the test func-
tion ϕ=χlv0 with χl(x′) :=χ0

l (|x′|), where χ0
l ≥0 denotes a cut-off function with χ0

l ≡1 on the
segment [0, l] and χ0

l ≡0 on the exterior [l+1,∞) of the larger segment [0, l+1]. Surely, we may
suppose that χl and its first and second order derivatives are uniformly bounded over R2 by a con-
stant independent of l. The supports of the derivatives of χl are contained in the annular domain
{x′∈R2 : l≤|x′|≤ l+1}. Then, due to the estimates for v0 and ∂xjv0,

0 =
〈
(∆x′ + k2I)v0, (∆x′ + k2I) [χlv0]

〉
=

〈
χl(∆x′ + k2I)v0, (∆x′ + k2I)v0

〉
+
〈
(∆x′ + k2I)v0,

[
v0∆x′χl + 2

2∑
j=1

∂xjχl∂xjv0

]〉
=

〈
χl(∆x′ + k2I)v0, (∆x′ + k2I)v0

〉
+O(1).

Consequently,〈
χL+1(∆x′ + k2I)v0, (∆x′ + k2I)v0

〉
=

〈
χ1(∆x′ + k2I)v0, (∆x′ + k2I)v0

〉
+

L∑
l=1

〈
[χl+1 − χl](∆x′ + k2I)v0, (∆x′ + k2I)v0

〉
= O(1).
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If the last truncated sum of nonnegative terms is uniformly bounded, then the infinite sum is conver-
gent, and we arrive at 〈

(∆x′ + k2I)v0, (∆x′ + k2I)v0

〉
< ∞.

In other words, x2 7→ v(x′)=(∆x′ +k
2I)v0(x′) is square integrable over R2 and we may apply the

Fourier transform F . As a solution of the Helmholtz equation the square integrable Fourier transform
F [v] satisfies (k2−|ξ|2)F [v](ξ)=0. Thus F [v] and v are zero.

The space DD−1 is algebraically the direct sum of the space of Helmholtz solutions plus the space
of all images of the Helmholtz operator. If the metric of the function space corresponds to the uniform
convergence over bounded subdomains, then the space of Helmholtz solutions is closed. However,
the space of images is not. For example, the function x′ 7→ei(αx1+βx2) with α2+β2 =k2 is the limit of
functions x′ 7→ei(αx1+βx2) with α2+β2 6=k2 (cf. the subsequent example i)). It would be nice to have
an intrinsic description of the spaces DDτ . Instead, we only recall important functions belonging to
the spaces DD0 and AVκ:

i) The space DD0 contains all exponential functions x′ 7→v(x′)=ei(αx1+βx2), i.e., the traces of
the plane-wave functions. For α2+β2 =k2, the function v=vs is a two-dimensional Helmholtz
solution and, for α2+β2 6=k2, the function v is an image (∆x′ +k

2I)v0 with v0 = 1
−α2−β2+k2

v.

If α2+β2 6=0, then the exponential function is inAV1/2 due to the fact that av(v, x′, r) satisfies

av(v, x′, r)=2π ei(αx1+βx2)J0(
√
α2+β2 r).

ii) The space DD0 contains all decaying functions v∈Cb(R2), with v(x′)=O(|x′|−3/2−ε) for
|x′|→0 and fixed positive ε. Indeed, such a function is an image v=(∆x′ +k

2I)v0 with

v0(x′) =
i

4

∫
R2

H
(1)
0

(
k|x′ − y′|

)
v(y′) dy′.

By the same argument, we even get AV3/2+ε ⊂ DD0. Obviously, the space AVκ contains all
decaying functions v∈C1

b (R2), with v(x′)=O(|x′|−κ) for |x′| → 0 and fixed positive κ.

iii) The space DD0 contains all traces y′ 7→G(~x, (y′, 0)>) of point source functions for fixed
~x 6∈R3

+∪ R3
0. Indeed, such a trace is an image according to

(∆y′ +k
2I)
(
eik|~x−(y′,0)>|

)
= (ik)

eik|~x−(y′,0)>|

|~x−(y′, 0)>|
+k2 e

ik|~x−(y′,0)>|x2
3

|~x−(y′, 0)>|2
+(ik)

eik|~x−(y′,0)>|x2
3

|~x−(y′, 0)>|3
,

G
(
~x, (y′, 0)>

)
= (∆y′ +k

2I)
1

4π(ik)

{
eik|~x−(y′,0)>|

− ix2
3

4

∫
R2

H
(1)
0

(
k|y′−z′|

) [k2eik|~x−(z′,0)>|

|~x−(z′, 0)>|2
+

(ik)eik|~x−(z′,0)>|

|~x−(z′, 0)>|3

]
dz′

}
.

Similarly, the traces of all the derivatives y′ 7→ ∂αx

~x ∂
αy

~y G(~x, (y′, 0)>) with multi-indices αx and
αy are contained in DD0. These function belong to AV1 in accordance with example ii).

iv) Now look at the traces y′ 7→G2D((x1, x3)>, (y1, 0)>) of ~y 7→G2D((x1, x3)>, (y1, y3)>) for
fixed (x1, x3)>6∈R2

+∪ R2
0. Such a trace function is the image (∆x′+k

2I)v0, where v0 is the y2-
independent solution (y1, y2)> 7→v0((y1, y2)>)=v0(y1) of the ordinary differential equation
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(∂2
y1

+k2I)v0 =G2D((x1, x3)>, (y1, 0)>). Namely, supposing x1 =0 without loss of generality,
we obtain

v0(y1) =

∫ |y1|
0

eik(|y1|−t) − e−ik(|y1|−t)

2ik

i

4
H

(1)
0

(
k
√
t2 + x2

3

)
dt,

v0(0) = v′0(0) = 0,

v0(y1) = O(1) +

√
2

kπ
eiπ/4 i

4

∫ |y1|
0

eik(|y1|−t) − e−ik(|y1|−t)

2ik

e−ik
√
t2+x23√

t2 + x2
3

1/2
dt

= O(1) +

√
2

kπ
eiπ/4 i

4

∫ |y1|
0

eik(|y1|−t) − e−ik(|y1|−t)

2ik

e−ikt√
t2 + x2

3

1/2
dt

= O(1)−
√

2

kπ
eiπ/4 1

8k
e−ik|y1|

∫ |y1|
0

1√
t2 + x2

3

1/2
dt = O

(
|y1|1/2

)
for |y1|→∞, due to the asymptotics of the Hankel function (cf. [1], Sect. 9.2.7). In other words,
the traces y′ 7→G2D((x1, x3)>, (y1, 0, 0)>) belong to a “two-dimensional” version of DD1/2.
Clearly, the potential Vk,0[v0] is absolutely integrable since∣∣∣∣∫

R2

∂3
y3
G
(
~x, (y′, 0)>

)
v0

(
(y′, 0)>

)
dy′
∣∣∣∣ ≤ c

∫
R

∫
R

1

|~x− (y′, 0)>|3
dy2|y1|1/2dy1

≤ c

∫
R

1

|(x1, x3)> − (y1, 0)>|2
|y1|1/2dy1.

Repeating the arguments of part iii) of the proof to Lemma 7.2, we conclude that the fundamen-
tal solution ~y 7→G2D((x1, x3)>, (y1, 0)>) with fixed (x1, x3)> 6∈R2

+∪ R2
0 satisfies (1.2) and

the condition (HSRC). By the same proof, even any derivative of this function satisfies condition
(HSRC). However, any two-dimensional Helmholtz solution u2D, satisfying the two-dimensional
Sommerfeld radiation condition, is a superposition of such functions. In other words, any Helm-
holtz solution ~y 7→u2D((y1, y3)>) with a two-dimensional Helmholtz solution u2D satisfying the
two-dimensional Sommerfeld radiation condition, fulfills the condition (HSRC).

v) By definitionDD0 contains all solutions u∈C2
b (R2) of the two-dimensional Helmholtz equation.

These function are contained in AV1/2, since av(v, x′, r)=v(x′)J0(kr).

9 Uniqueness for the Dirichlet problem on thin layers

〈sLay〉
For a height hL>0 and an index pair l′∈Z2, we introduce ΩL :={~x∈R3 : 0<x3<hL} and the
cylindrical domain ΩL,l′ :={~x∈ΩL : |x′−l′|<4}. We consider the Dirichlet problem

∆u(~x ) + k2u(~x ) = 0, ∀~x ∈ ΩL,

u
(
(x′, 0)>

)
= v0(x′), ∀x′ ∈ R3

0, (9.1) DiPrLa
u
(
(x′, hL)>

)
= vhL(x′), ∀x′ ∈ R3

hL
,

sup
l′∈Z2

‖u‖H1(ΩL,l′ )
<∞

with prescribed bounded and continuous Dirichlet data v0 and vhL .
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Lemma 9.1. If the positive width hL is less than π/k, then any solution of the Dirichlet problem (9.1)
over the layer ΩL of thickness hL is unique.

Proof. Of course, we have to prove that any solution of the homogeneous problem (9.1) is trivial.
Suppose u is a solution of (9.1) with v0≡0 and vhL≡0. Then we extend u to a function over R3 by

u(~x ) :=

{
u
(
(x′, z3)>

)
if x3 = z3 + (2m)hL, 0 ≤ z3 ≤ hL, m ∈ Z

−u
(
(x′, hL − z3)>

)
if x3 = z3 + (2m+ 1)hL, 0 ≤ z3 ≤ hL, m ∈ Z

,

which is (2hL) periodic w.r.t.x3. Since this extended u and the normal derivatives ∂x3u are continuous
through the interface planes R3

mhL
, m∈Z, the function u is a periodic Helmholtz solution over R3.

Consequently, the modulated Fourier coefficients v̂m, defined by

u
(
(x′, x3)>

)
=

∑
m∈Z

ûm(x′)eiπmx3/hL , (9.2) FoSe

ûm(x′) :=

∫ 2hL

0

u
(
(x′, x3 − z3)>

)
eiπ(x3−z3)m/hLdz3,

v̂m
(
(x′, x3)>

)
:=

∫ 2hL

0

e−iπz3m/hlu
(
(x′, x3 − z3)>

)
dz3 = ûm(x′)e−iπx3m/hL ,

are Helmholtz solution for any m∈Z. In other words, the function ûm satisfies (∆x′−%2
mI)ûm=0

with %m :=
√

(πm/hL)2−k2. The average av(ûm, x
′, r) defined in (1.7) satisfies the corresponding

Bessel equation over the real half axis and is smooth at zero. Since the Bessel function r 7→Y0(i%mr)
is singular at zero (cf. [1], Sect. 9.1.89) and since the Bessel function r 7→J0(i%mr) is unbounded for
r→∞ (cf. [1], Sect. 9.2.1), the solution av(ûm, x

′, r) is zero. Using (9.2) and the differentiated (9.2),
we get av(u|R3

x3
, x′, r)=0 and av(∂x3u|R3

x3
, x′, r)=0. Taking the derivative of av(u|R3

x3
, x′, r)=0,

we additionally get ∂rav(u|R3
x3
, x′, r)=0. Now Green’s identity yields, for any ~x with 0<x3<hL

u(~x ) =

∫
{~y:|y′−x′|<R,x3=hL}

{∂y3G(~x, ·)u−G(~x, ·)∂y3u}

−
∫
{~y:|y′−x′|<R,x3=0}

{∂y3G(~x, ·)u−G(~x, ·)∂y3u}

+

∫
{~y:|y′−x′|=R,0<x3<hL}

{∂rG(~x, ·)u−G(~x, ·)∂ru} .

Substituting y′=x′+r(cosφ, sinφ)>, the differentiated fundamental solutions depend on r but not
on φ such that all the integrals turn to integrals w.r.t. r and u, ∂x3u, ∂ru appears only via multiplication
by the averages av(u|R3

x3
, x′, r), av(∂x3u|R3

x3
, x′, r), ∂rav(u|R3

x3
, x′, r). Since these averages are

zero, the integrals are zero, and we conclude u(~x ) = 0.
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