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On the numerical range of sectorial forms
Antonius Frederik Maria ter Elst, Alexander Linke, Joachim Rehberg

ABSTRACT. We provide a sharp and optimal generic bound for the angle of the sectorial form associated

to a non-symmetric second-order elliptic differential operator with various boundary conditions. Conse-

quently this gives an, in general, sharperH∞-angle for theH∞-calculus on Lp for all p ∈ (1,∞) if the

coefficients are real valued.

1. INTRODUCTION

In the L2-theory of second-order divergence form operators it is classical that the numerical range of

the sesquilinear form a : W 1,2(Ω)×W 1,2(Ω)→ C given by

a(u, v) =

∫
Ω

µ∇u · ∇v

is contained in the sector with (half-)angle arctan M
m

, if the coefficient function µ admits the uniform

bound M and ellipticity constant m. Moreover, it is is well-known that the angle of the numerical

range sector has implications for resolvent estimates and for the holomorphic calculus, both for the L2-

realisation of the elliptic operator and the Lp-realisation, see below. Hence the question arises whether

the above angle is optimal. In this paper we show that one can improve the angle. The expression we

find is completely explicit in M and m, uniform in all matrices with uniform bound M and ellipticity

constantm. Moreover, it is optimal, see Example 2.5. All of this allows in Corollary 2.4 to give a sharper

estimate for the angle of the sector containing the numerical range.

Further, we provide resolvent decay for the operator Ap which is associated with the form a on Lp(Ω),

where p ∈ (1,∞). Uniform resolvent estimates for the elliptic operators are important for the treatment

of nonautonomous parabolic equations, see for example [19], [13], [18], [1], [22]. For an alternative

approach, not using the evolution system, see [17]. This use of uniform resolvent estimates is standard

nowadays, see [2, Chapter II], [15, Section 6.1].

In Section 3 we prove that the operator Ap admits a bounded H∞-calculus with (half-)angle smaller

than π/2. Using the better numerical range on L2(Ω), we obtain a betterH∞-angle on Lp(Ω) by ap-

plying the Crouzeix–Delyon theorem and a theorem of Kalton–Kunstmann–Weis. This enables sharper

estimates for the purely imaginary powers of the operators. Applying the Dore–Venni theorem one ob-

tains, as a byproduct, even maximal parabolic regularity on Lp(Ω) for all p ∈ (1,∞).

In Section 4 we consider as in [10] or [20] an elliptic operator subject to mixed boundary conditions and

domain inhomogeneities supported on a lower dimensional hypersurface. Such results are of use when

treating parabolic problems with dynamical boundary conditions, compare also [21].

2.NUMERICAL RANGE AND SPECTRAL THEORETIC CONSEQUENCES

Let H be a Hilbert space with H 6= {0} and let T be an operator in H with domain dom(T ). The

numerical range Λ(T ) of T is defined by

Λ(T ) = {(Tu, u)H : u ∈ dom(T ) and ‖u‖H = 1}.

A classical theorem of Hausdorff says that the numerical range is a convex set. For all θ ∈ [0, π) define

Σ(θ) = {r eiϕ : r ∈ [0,∞) and ϕ ∈ [−θ, θ]}.

Then Σ(θ) is closed and 0 ∈ Σ(θ).
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Proposition 2.1. Let T be a bounded operator in a Hilbert space H . Let E = 1
2i

(T − T ∗) be the

imaginary part of T . Suppose that T is coercive and let m > 0 be such that

Re(Tu, u)H ≥ m ‖u‖2
H .

for all u ∈ H . Then

(1) ‖E‖ ≤
√
‖T‖2 −m2

and Λ(T ) ⊂ Σ(arctan
√(‖T‖

m

)2 − 1).

Proof. DefineS = 1
2
(T+T ∗), the real part of T . ThenS is self-adjoint and (Su, u)H = Re(Tu, u)H ≥

m ‖u‖2
H for all u ∈ H . Hence ‖Su‖ ≥ m ‖u‖H for all u ∈ H .

Note that the operator E is self-adjoint. First suppose that the operator E has an eigenvalue such that

the modulus is equal to ‖E‖, that is, there exist u ∈ H and λ ∈ R such that Eu = λu, ‖u‖H = 1

and |λ| = ‖E‖. Then

‖T‖2 ≥ ‖Tu‖2 = ((S + iE)u, (S + iE)u)H

= ‖Su‖2 + ‖Eu‖2 − i(Su,Eu)H + i(Eu, Su)H

= ‖Su‖2 + ‖E‖2 − i λ (Su, u)H + i λ (u, Su)H

= ‖Su‖2 + ‖E‖2 ≥ m2 + ‖E‖2,

which implies (1).

Now we consider the general case. Let ε > 0. It follows from the spectral theorem that there exists a

self-adjoint bounded operator P such that ‖P‖ ≤ ε and the operator E + P has an eigenvalue such

that the modulus equals ‖E + P‖. Apply the above to the operator S + i(E + P ) and note that this

operator has the same coercivity constant m. One obtains the estimate

‖E‖ − ε ≤ ‖E + P‖ ≤
√
‖T + iP‖2 −m2 ≤

√
(‖T‖+ ε)2 −m2.

Finally take the limit ε ↓ 0.

The inclusion is easy since

| Im(Tu, u)H | = |(Eu, u)H | ≤ ‖E‖ ‖u‖2 ≤
√
‖T‖2 −m2

m
Re(Tu, u)

for all u ∈ H . �

The estimate (1) is sharp. Equality occurs for example if T = I+iE, whereE is a bounded self-adjoint

operator.

We apply Proposition 2.1 to sectorial forms associated to second-order differential operators.

Theorem 2.2. Let Ω ⊂ Rd be open and µ : Ω→ Cd×d be a bounded measurable function. Suppose

that there exists an m > 0 such that Reµ(x)ξ · ξ ≥ m |ξ|2 for all ξ ∈ Cd.
Define the sesquilinear form a : W 1,2(Ω)×W 1,2(Ω)→ C by

a[u, v] =

∫
Ω

µ∇u · ∇v.

Then

(2) a[u] ∈ Σ(κ)

DOI 10.20347/WIAS.PREPRINT.2667 Berlin 2019



Sectorial forms 3

for all u ∈ dom(a), where κ = arctan
√(

M
m

)2 − 1 and M = ess supx∈Ω ‖µ(x)‖. Here ‖ · ‖ is the

usual operator norm on L(Cd).

Proof. Let u ∈ W 1,2(Ω). If x ∈ Ω, then one can apply Proposition 2.1 to the operator µ(x) on Cd to

deduce that (µ∇u · ∇u)(x) ∈ Σ(κ). Now integrate over x ∈ Ω. �

The angle of the sector for a sectorial form gives resolvent bounds for the associated operator, see

[14] Theorem V.3.2. The following situation for j-elliptic forms gives a particularly nice description. For

j-elliptic forms and the associated m-sectorial operators we refer to [3] Section 2.

Theorem 2.3. Let V , H be Hilbert spaces, a : V × V → C a sesquilinear form, j : V → H a

continuous linear operator and κ ∈ [0, π
2
). Suppose that a[u] ∈ Σ(κ) for all u ∈ dom(a) and that

j has dense range. Further suppose that a is j-elliptic. Let A be the operator associated with (a, j).

Then σ(A) ⊂ Λ(A) ⊂ Σ(κ) and

‖(A+ λ I)−1‖H→H ≤
1

d(−λ,Σ(κ))

for all λ ∈ C with −λ 6∈ Σ(κ).

Proof. Since a is j-elliptic, the operator A is m-sectorial. Hence σ(A) ⊂ Λ(A) by [14] Theorem V.3.2.

Let f ∈ dom(A) with ‖f‖H = 1. Then there exists a u ∈ V such that j(u) = f and a[u, v] =

(Af, j(v))H for all v ∈ V . Therefore (Af, f)H = a[u, u] ∈ Σ(κ). So Λ(A) ⊂ Σ(κ). It follows from

[14] Theorem V.3.2 that ‖(A+λ I)−1‖H→H ≤ 1

d(−λ,Λ(A))
for all λ ∈ C with−λ 6∈ Λ(A). This implies

the inequality in the theorem. �

We return to second-order differential operators.

Corollary 2.4. Adopt the assumptions and notation as in Theorem 2.2. Let V ⊂ W 1,2(Ω) be a closed

subspace such that C∞c (Ω) ⊂ V and let aV = a|V×V . Let AV be the m-sectorial operator associated

with the form aV . Then σ(AV ) ⊂ Λ(AV ) ⊂ Σ(κ). Moreover, let θ ∈ (κ, π
2
). Then

‖(AV + λ I)−1‖2→2 ≤
M

m sin θ −
√
M2 −m2 cos θ

1

|λ|

for all λ ∈ Σ(π − θ).

Proof. Evidently, aV [u] ∈ Σ(κ) for all u ∈ V by Theorem 2.2. Now apply Theorem 2.3 with j : V →
L2(Ω) the identity map. Then σ(AV ) ⊂ Λ(AV ) ⊂ Σ(κ) and

‖(AV + λ I)−1‖2→2 ≤
1

d(−λ,Σ(κ))

for all λ ∈ C with −λ 6∈ Σ(κ). Then the assertion follows by elementary trigonometry. �

Example 2.5. We present an example of an elliptic differential operator with real coefficients such that

the angle κ in (2) is optimal.

Let Ω ⊂ R2 be a non-empty open bounded set. Choose µ(x) =

(
1 1

−1 1

)
for all x ∈ Ω and

V = W 1,2(Ω). Define u ∈ W 1,2(Ω) by u(x, y) = −x + y + i(x + y). A straightforward calculation

gives a[u] = (4− 4i) |Ω|. Also m = 1 and M =
√

2. So κ = π
4

and it cannot be improved.
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3. BOUNDED H∞-CALCULUS AND MAXIMAL PARABOLIC REGULARITY

Let Ω ⊂ Rd be open connected and µ : Ω→ Rd×d be a bounded measurable function. Suppose that

there exists an m > 0 such that Reµ(x)ξ · ξ ≥ m |ξ|2 for all ξ ∈ Cd. Let M = ess supx∈Ω ‖µ(x)‖
and set

κ = arctan

√(M
m

)2

− 1.

In this section we consider realisations of the elliptic operator with (real) coefficients µ with mixed

boundary conditions on the space Lp(Ω).

Define the sesquilinear form a : W 1,2(Ω)×W 1,2(Ω)→ C by

a[u, v] =

∫
Ω

µ∇u · ∇v.

Let D be a closed subset of ∂Ω. We denote by W 1,2
D (Ω) the closure in W 1,2(Ω) of the set

{u|Ω : u ∈ C∞c (Rd) and D ∩ suppu = ∅}.

Moreover, defineW1,2
D (Ω) to be the closure of

{u : u ∈ W 1,2(Ω) and D ∩ suppu = ∅}

in W 1,2(Ω). Define aW = a|W 1,2
D (Ω)×W 1,2

D (Ω) and aW = a|W1,2
D (Ω)×W1,2

D (Ω). Then aW and aW are

closed sectorial forms. Let AW and AW be the operators associated with the forms aW and aW , re-

spectively. Roughly speaking,AW andAW are two versions of elliptic operators with Dirichlet boundary

conditions on D and Neumann boundary conditions on ∂Ω \D.

Theorem 3.1. For all p ∈ [1,∞] the semigroups generated by −AW and −AW extend consistently

to contraction semigroups on Lp(Ω), which are C0-semigroups if p ∈ [1,∞) and they are bounded

holomorphic if p ∈ (1,∞).

Proof. It suffices to show that the semigroups generated by −AW and −AW are submarkovian. Then

the other statements follow by duality, interpolation, and [16] Proposition 3.12.

The semigroup generated by −AW is submarkovian by [16] Corollary 4.10. It follows from [16] Corol-

lary 4.10 and Theorem 2.13, applied to the operator with Neumann boundary conditions, that (1 ∧
|u|) sgnu ∈ W 1,2(Ω) and

Re a[(1 ∧ |u|) sgnu, (|u| − 1)+ sgnu] ≥ 0

for all u ∈ W 1,2(Ω). Hence one deduces that (1 ∧ |u|) sgnu ∈ W1,2
D (Ω) for all u ∈ W 1,2(Ω) with

D ∩ suppu = ∅. Since {u ∈ W 1,2(Ω) : D ∩ suppu = ∅} is dense inW1,2
D (Ω), it follows from [16]

Theorem 2.13 3’⇒1 that the semigroup generated by −AW is submarkovian. �

For all p ∈ [1,∞) we denote by −AW,p and −AW,p the generator of the C0-semigroup on Lp(Ω)

which is consistent with the semigroup generated by −AW and −AW .

We suppose that the reader is familiar with the concept of bounded H∞-calculus and refer for details

to [9] and [5]. We wish to prove upper bounds for theH∞-angle of the operators AW,p and AW,p, first

for p = 2 and then for all p ∈ (1,∞).

Theorem 3.2. Adopt the assumptions and notation as in the beginning of this section.

DOI 10.20347/WIAS.PREPRINT.2667 Berlin 2019
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(a) Suppose that 1Ω 6∈ W 1,2
D (Ω). Then for all ε > 0 the operator AW admits an H∞-calculus on

the sector Σ(κ+ ε)◦. Stronger,

‖f(AW )‖2→2 ≤
(

2 +
2√
3

)
ess sup
z∈Σ(κ+ε)◦

|f(z)|

for all f ∈ H∞(Σ(κ+ ε)◦).

(b) Suppose that 1Ω ∈ W 1,2
D (Ω). Then for all δ, ε > 0 the operator AW + δ I admits an H∞-

calculus on the sector Σ(κ+ ε)◦. Stronger,

‖f(AW + δ I)‖2→2 ≤
(

2 +
2√
3

)
ess sup
z∈Σ(κ+ε)◦

|f(z)|

for all f ∈ H∞(Σ(κ+ ε)◦).

Similar statements are valid for the operator AW instead of AW .

Proof. ‘(a)’. Since Ω is connected, the operator AW is injective. Moreover Λ(AW ) ⊂ Σ(κ) by Corol-

lary 2.4. Then the claim follows from the Crouzeix–Delyon theorem [4] Theorem 1.

‘(b)’. Let δ > 0. Then the operator AW + δ I is injective and Λ(AW + δ I) ⊂ Σ(κ). Then one can

argue as in Statement (a).

The proof for AW is word-by-word the same. �

Next we consider the operators on Lp(Ω).

Theorem 3.3. Adopt the assumptions and notation as in the beginning of this section. Let p ∈ (1,∞)

and set κp = (1− |1− 2
p
|)κ+ |1− 2

p
| π

2
. Then one has the following.

(a) Suppose that 1Ω 6∈ W 1,2
D (Ω). Then for all ε > 0 the operator AW,p admits anH∞-calculus on

the sector Σ(κp + ε)◦.

(b) Suppose that 1Ω ∈ W 1,2
D (Ω). Then for all δ, ε > 0 the operator AW,p + δ I admits an H∞-

calculus on the sector Σ(κp + ε)◦.

Similar statements are valid for the operator AW,p instead of AW,p.

Proof. ‘(a)’. The semigroup (e−tAW )t>0 is positive by [16] Corollary 4.3. Hence by consistency and

density the semigroup (e−tAW,p)t>0 is positive for all p ∈ [1,∞). Since −AW,p is injective and the

generator of a positive contraction semigroup, it follows from Duong [7] Theorem 2 that for all θ ∈ (π
2
, π)

the operator AW,p admits anH∞-calculus on the sector Σ(θ)◦.

Finally we use interpolation. Suppose p ∈ (2,∞) and ε > 0. For all n ∈ N with n > p we interpolate

between 2 and n. Let θn ∈ (0, 1) be such that 1
p

= θn
2

+ 1−θn
n

. Then limn→∞ θn = 2
p
. Now the

operator AW,2 admits an H∞-calculus on the sector Σ(κ + ε)◦ and the operator AW,n admits an

H∞-calculus on the sector Σ(π
2

+ ε)◦. One deduces from [12] Proposition 4.9 that the operator AW,p
admits anH∞-calculus on the sector Σ(θn κ+(1−θn) π

2
+ε)◦. Taking n large enough, the statement

follows.

If p ∈ (1, 2), then the proof is similar, or one can use duality.

‘(b)’. The proof is similar.

For the operatorsAW,p the argument is almost the same. The only thing that is not immediately clear is

the positivity of the semigroup. But that can be deduced as at the end of the proof of Theorem 3.1. �

DOI 10.20347/WIAS.PREPRINT.2667 Berlin 2019
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We emphasise that κp <
π
2

for all p ∈ (1,∞). As an application of Theorem 3.3 we obtain bounded

imaginary powers with constant smaller than π
2

.

Corollary 3.4. Adopt the assumptions and notation as in the beginning of this section. Let p ∈ (1,∞)

and let κp ∈ [κ, π
2
) be as in Theorem 3.3. Then for all ε > 0 there exists a c > 0 such that ‖(AW,p +

I)is‖p→p ≤ c e(κp+ε)|s| and ‖(AW,p + I)is‖p→p ≤ c e(κp+ε)|s| for all s ∈ R.

Proof. Apply Theorem 3.3 to the function z 7→ zis. �

Corollary 3.5. Adopt the assumptions and notation as in the beginning of this section. For all p ∈
(1,∞) the operators AW,p and AW,p satisfy maximal parabolic regularity in Lp(Ω).

Proof. This follows from the Dore–Venni theorem [6] and Corollary 3.4. �

We emphasise that Ω is merely an open connected (non-empty) set. It does not need to have the

doubling property, nor to be bounded.

4. AN OUTLOOK TO MORE GENERAL MEASURE SPACES

In this section we consider a bounded domain and an elliptic operator with complex coefficients subject

to mixed boundary conditions and domain inhomogeneities supported on a lower dimensional hyper-

surface, enforcing a jump in the conormal derivative.

Let Ω ⊂ Rd be open, bounded and connected. Let D ⊂ ∂Ω be closed. Further let Γ0 be a Borel

subset of Ω which is a (d − 1)-set in the sense of Jonnson–Wallin (see [11] Subsection VII.1.1), that

is, there are c1, c2 > 0 such that

c1 r
d−1 ≤ Hd−1(B(x, r) ∩ Γ0) ≤ c2 r

d−1

for all x ∈ Γ0 and r ∈ (0, 1], where Hd−1 is the (d − 1)-dimensional Hausdorff measure. We

emphasise that Γ0 does not have to be closed. Finally, we suppose that every element of ∂Ω \D
admits a bi-Lipschitz chart.

Set Γ = Γ0∪(∂Ω\D). Let ρ be the restriction ofHd−1 to the set Γ. Define L2 = L2(Ω∪Γ, dx+dρ).

There is a natural isomorphism from L2 onto L2(Ω, dx)⊕L2(Γ, dρ). We identify L2 with L2(Ω, dx)⊕
L2(Γ, dρ) in the natural way. In this section we consider an m-sectorial operator in L2.

For all u ∈ L1,loc(Ω) define the function Tru by

dom(Tru) = {x ∈ Γ : lim
r↓0

1

|Ω ∩B(x, r)|

∫
Ω∩B(x,r)

u(y) dy exists}

and

(Tru)(x) = lim
r↓0

1

|Ω ∩B(x, r)|

∫
Ω∩B(x,r)

u(y) dy

for all x ∈ dom(Tr ). (See [11] Section VIII.1.1.) It follows from [20] Proposition 2.8 that Tru ∈
L2(Γ, dρ) for all u ∈ W 1,2

D (Ω). Define j : W 1,2
D (Ω)→ L2 by

j(u) = (u,Tru) ∈ L2(Ω, dx)⊕ L2(Γ, dρ).

By [20] Lemma 2.10(i) the map j is continuous and has dense range.

DOI 10.20347/WIAS.PREPRINT.2667 Berlin 2019



Sectorial forms 7

Theorem 4.1. Adopt the above notation and assumptions. Let µ : Ω → Cd×d be a bounded measur-

able function. Suppose that there exists an m > 0 such that Reµ(x)ξ · ξ ≥ m |ξ|2 for all ξ ∈ Cd.
Define the sesquilinear form a : W 1,2

D (Ω)×W 1,2
D (Ω)→ C by

a[u, v] =

∫
Ω

µ∇u · ∇v.

Define κ = arctan
√(

M
m

)2 − 1 and M = ess supx∈Ω ‖µ(x)‖. Let A be the m-sectorial operator in

L2 associated with (a, j). Then σ(A) ⊂ Λ(A) ⊂ Σ(κ). Moreover, let θ ∈ (κ, π
2
). Then

‖(A+ λ I)−1‖L2→L2 ≤
M

m sin θ −
√
M2 −m2 cos θ

1

|λ|
for all λ ∈ Σ(π − θ).

Proof. This follows from Theorems 2.2 and 2.3. �

Let us mention that this provides an adequate functional analytic instrument to give equations with

dynamical boundary conditions like

∂tu−∇ · µ∇u = fΩ on I × (Ω \ Γ0),

u = 0 on I ×D,

∂tu+ ν · µ∇u = f1 on I × (∂Ω \D),

∂tu+ [νΓ0 · µ∇u] = f0 on I × Γ0,

u(0) = u0 on Ω ∪ (∂Ω \D),

a precise meaning, inclusively its quasilinear variants, see [20]. For a strict derivation of dynamical

boundary conditions in various physical contexts see [8].
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