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Non-isothermal Scharfetter–Gummel scheme for electro-thermal
transport simulation in degenerate semiconductors

Markus Kantner, Thomas Koprucki

Abstract

Electro-thermal transport phenomena in semiconductors are described by the non-isothermal
drift-diffusion system. The equations take a remarkably simple form when assuming the Kelvin for-
mula for the thermopower. We present a novel, non-isothermal generalization of the Scharfetter–
Gummel finite volume discretization for degenerate semiconductors obeying Fermi–Dirac statis-
tics, which preserves numerous structural properties of the continuous model on the discrete
level. The approach is demonstrated by 2D simulations of a heterojunction bipolar transistor.

1 Introduction

Self-heating effects are a major concern in modern semiconductor devices, where the on-going minia-
turization of feature size leads to increased power loss densities. The optimal design of semiconductor
devices relies on numerical simulations, based on thermodynamically consistent models for the cou-
pled electro-thermal transport processes. The standard model for the simulation of self-consistent
charge and heat transport processes is the non-isothermal drift-diffusion system [1–3], which couples
the semiconductor device equations to a heat transport equation. The magnitude of the thermoelec-
tric cross effects (Seebeck effect, Thomson–Peltier effect) is governed by the Seebeck coefficient
(also thermopower ), which quantifies the thermoelectric voltage induced by a temperature gradient.
Recently [2], the non-isothermal drift-diffusion system has been studied using the so-called Kelvin
formula for the thermopower [4], which has two important implications: First, the Seebeck term in the
current density expressions can be entirely absorbed in a temperature-dependent diffusion constant
via a generalized Einstein relation. Second, the heat generation rate involves solely the three classi-
cally known self-heating effects without any further (transient) contribution. The model equations and
its key features are described in Sect. 2. In Sect. 3, we present a finite volume discretization based
on a novel, non-isothermal generalization of the Scharfetter–Gummel scheme for the discrete fluxes.
The scheme holds for Fermi–Dirac statistics and preserves numerous structural and thermodynamic
properties of the continuous system.

2 Non-isothermal drift-diffusion system

We consider the non-isothermal drift-diffusion system on Ω ⊂ Rd, d ∈ {1, 2, 3},

−∇ · ε∇Φ = q (C + p− n) , (1)

q∂tn−∇ · jn = −qR, (2)

q∂tp+∇ · jp = −qR, (3)

cV ∂tT −∇ · κ∇T = H. (4)
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M. Kantner, T. Koprucki 2

Poisson’s Eq. (1) describes the electrostatic potential Φ generated by the electron density n, the
density of valence band holes p and the built-in doping profile C . Here, q is the elementary charge
and ε is the (absolute) permittivity of the material. The transport and recombination dynamics of the
electrons and holes are modeled by the continuity Eqs. (2)–(3), where jn/p are the electrical current
densities and R is the (net-)recombination rate, which comprises several radiative and non-radiative
processes [5, 6]. Finally, cV is the volumetric heat capacity, κ is the thermal conductivity and H is the
heat generation rate.

The carrier densities are related with the quasi-Fermi potentials ϕn/p, the electrostatic potential Φ and
the (absolute) temperature T via the state equations

n = Nc (T ) F

(
q(Φ−ϕn)−Ec(T )

kBT

)
, p = Nv (T ) F

(
Ev(T )−q(Φ−ϕp)

kBT

)
, (5)

whereNc/v are the effective density of states,Ec/v are the band edge energies of the conduction and
the valence band, respectively, and kB is Boltzmann’s constant. The function F describes the occu-
pation probability of the electronic states. In the case of non-degenerate semiconductors (Maxwell–
Boltzmann statistics), F (η) = exp (η) is an exponential function. At high carrier densities, where
degeneration effects due to the Pauli exclusion principle (Fermi–Dirac statistics) must be taken into
account, F is typically given by the Fermi–Dirac integral F1/2 [6]. The approach outlined below, does
not rely on the specific form of F and is applicable to materials with arbitrary density of states and
degenerate or non-degenerate statistics [2].

2.1 Kelvin formula for the thermopower

The electrical current densities are modeled as

jn = −σn (∇ϕn + Pn∇T ) , jp = −σp (∇ϕp + Pp∇T ) , (6)

where σn/p are the electrical conductivities and Pn/p are the thermopowers of the material. In this
paper, we choose the thermopowers according to the Kelvin formula as variational derivatives of the
entropy S with respect to the carrier densities

qPn = −DnS (n, p, T ) , qPp = +DpS (n, p, T ) , (7)

where D denotes the Gâteaux derivative. The Kelvin formula is the low frequency and long wavelength
limit of the microscopically exact Kubo formula [4]. It was shown to provide a good approximation
for several materials at sufficiently high temperature. The entropy is obtained from the free energy
F (n, p, T ) of the system.

We assume the free energy functional [1, 2]

F (n, p, T ) =

∫
Ω

dV

(
kBTF−1

(
n

Nc

)
n− kBTNcG

(
F−1

(
n

Nc

))
+ Ec(T )n (8)

+ kBTF−1

(
p

Nv

)
p− kBTNvG

(
F−1

(
p

Nv

))
− Ev(T )p

)
+

∫
Ω

dV fL (T ) +
1

2

∫
Ω

dV

∫
Ω

dV ′G (r, r′) ρ (r) ρ (r′) +

∫
Ω

dV Φextρ,

where the first to lines describe the free energy of the non-interacting electron-hole plasma (quasi-free
Fermi gas), fL is the free energy of the lattice phonons (ideal Bose gas), G is the antiderivative of F
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Non-isothermal Scharfetter–Gummel scheme for degenerate semiconductors 3

Fig. 1. Thermopowers Pn/p ac-
cording to Eqs. (9) as functions of
the reduced Fermi energy η (ar-
gument of F in Eqs. (5)) in units
of kB/q. The thermopowers are
plotted for F (η) = F1/2 (η)

and Nc/v ∝ T 3/2. The picture is
taken from [2].
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(i.e., G ′ (η) = F (η)), G (r, r′) is the Green’s function of Poisson’s equation and ρ = q (p− n) is
the mobile charge density. The potential Φext is generated by the built-in doping-profile and the applied
bias.

The free energy (8) recovers the state equations (5) via the variational derivative with respect to the
carrier densities Dn/pF := ∓qϕn/p, which is the defining relation for the quasi-Fermi potentials,
see [2]. The entropy functional is defined as the derivative of the free energy (8) with respect to the
temperature: S (n, p, T ) = −∂TF (n, p, T ) . Evaluation of Eq. (7) yields the thermopowers

Pn (n, T ) = −kB
q

(
TN ′c (T )

Nc (T )
g

(
n

Nc (T )

)
−F−1

(
n

Nc (T )

)
− 1

kB
E ′c (T )

)
, (9a)

Pp (p, T ) = +
kB
q

(
TN ′v (T )

Nv (T )
g

(
p

Nv (T )

)
−F−1

(
p

Nv (T )

)
+

1

kB
E ′v (T )

)
. (9b)

The temperature-dependency of the band edge energies can be modeled using, e.g., the Varshni
model [2, 5]. The function

g (x) = x
(
F−1

)′
(x) (10)

quantifies the degeneration of the carriers (g > 1 for Fermi–Dirac statistics; g ≡ 1 for Maxwell–
Boltzmann statistics). See Fig. 1 for a plot of the Seebeck coefficients (9).

2.2 Drift-diffusion currents and heat generation rate

The Kelvin formula has two important implications, which lead to a very simple and appealing form of
the thermoelectric cross effects in the system (1)–(4).

First, we rewrite the electrical current densities by passing from the thermodynamic form (6) to the
drift-diffusion form. By explicitly evaluating the gradient of the quasi-Fermi potentials using the state
equations (5), one observes that the Seebeck terms jn/p|Seebeck = −σn/pPn/p∇T cancel out exactly
from the expressions [2]. Using the conductivities σn = qMnn and σp = qMpp (with mobilities
Mn/p), one arrives at

jn = −qMnn∇Φ + qDn (n, T )∇n, jp = −qMpp∇Φ− qDp (p, T )∇p. (11)

We emphasize that in Eq. (11) – even though there is no explicit thermal driving force ∝ ∇T – the
Seebeck effect is fully taken into account via the (temperature-dependent) diffusion coefficients Dn/p.
The latter obey the generalized Einstein relations [7]

qDn = kBTMng (n/Nc (T )) , qDp = kBTMpg (p/Nv (T )) . (12)
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M. Kantner, T. Koprucki 4

Here, the degeneration factor (10) describes a nonlinear enhancement of the diffusion current due to
the degeneration of the electron-hole plasma. The flux discretization described in Sect. 3.1 is based
on the drift-diffusion form (11).

The second implication of the Kelvin formula concerns the heat generation rate H . The commonly ac-
cepted model for H , which was derived by Wachutka [3] from fundamental laws of linear irreversible
thermodynamics, takes a particularly simple form, when assuming the Kelvin formula for the ther-
mopower. One obtains (see Appendix A)

H =
∑

λ∈{n,p}

1

σλ
‖jλ‖2 −

∑
λ∈{n,p}

T jλ · ∇Pλ + q (ϕp + TPp − ϕn − TPn)R, (13)

which involves solely the three classically known self-heating effects, namely Joule heating (first term),
the Thomson–Peltier effect (second term) and recombination heating (last term). Any further (tran-
sient) contributions, which necessarily arise for thermopowers different from the Kelvin formula (7), do
not occur in the model.

3 Finite volume discretization

We assume a boundary conforming Delaunay triangulation of the computational domain Ω ⊂ Rd,
d = {1, 2, 3}, and obtain the finite volume discretization [6] of the (stationary) system (1)–(4) by
integration over the (restricted) Voronoï cells as

−
∑

L∈N(K)

sK,Lε (ΦL − ΦK) = q|ΩK | (CK + pK − nK) , (14a)

−
∑

L∈N(K)

sK,LJn,K,L = −q|ΩK |RK , (14b)

+
∑

L∈N(K)

sK,LJp,K,L = −q|ΩK |RK , (14c)

−
∑

L∈N(K)

sK,LκK,L (TL − TK) =
1

2

∑
L∈N(K)

sK,L (HJ,K,L +HT−−P,K,L) + |ΩK |HR,K . (14d)

Here, |ΩK | is the volume of the K-th Voronoï cell, sK,L = |∂ΩK ∩ ∂ΩL|/ ‖rL − rK‖ is a geometric
factor and N (K) is the set of adjacent nodes of K . The subscripts K , L indicate evaluation on the
respective nodes or edges. The discrete heat sources are

HJ,K,L = −
∑

λ∈{n,p}

Jλ,K,L (ϕλ,L − ϕλ,K + Pλ,K,L (TL − TK)) , (15a)

HT−−P,K,L = −
∑

λ∈{n,p}

TK,LJλ,K,L (Pλ,L − Pλ,K) , (15b)

HR,K = q (ϕp,K + TKPp,K − ϕn,K − TKPn,K)RK , (15c)

where we used a technique involving a weakly converging gradient developed in [8] for the discretiza-
tion of the Joule and Thomson–Peltier terms (see [2] for details).
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3.1 Generalized Scharfetter–Gummel scheme

A robust discretization of the flux projections Jn/p,K,L = (rL − rK) · jn/p is obtained by integrating
Eq. (11) along the edge KL := {r (x) = x rL + (1− x) rK , x ∈ [0, 1]}, while assuming the elec-
tric field, the current density and the mobility to be constant along KL. The temperature is assumed
to be an affine function between adjacent nodes: T (x) = xTL+(1− x) TK , x ∈ [0, 1]. In the case
of Fermi–Dirac statistics (with g 6= 1), the resulting two-point boundary value problem on x ∈ [0, 1]

kBT (x)g

(
n(x)

Nc (T (x))

)
dn

dx
= q (ΦL − ΦK)n(x) +

Jn,K,L
Mn,K,L

, n(0) = nK , n(1) = nL,

can be solved approximately, by freezing the degeneracy factor (10) to a suitable average gn/p,K,L [7,
9]. One obtains the non-isothermal Scharfetter–Gummel scheme

Jn,K,L = Mn,K,LkBTK,Lgn,K,L (nLB (Xn,K,L)− nKB (−Xn,K,L)) , (16)

withXn,K,L = q (ΦL − ΦK) / (kBTK,Lgn,K,L) and the Bernoulli functionB (x) = x/ (exp (x)− 1)
(holes analogously). The averaged degeneracy factor (consistent with the thermodynamic equilibrium
[7, 9]) and the logarithmic mean temperature read

gn,K,L =
ηn,L − ηn,K

log (F (ηn,L) /F (ηn,K))
, TK,L = Λ (TL, TK) =

TL − TK
log (TL/TK)

. (17)

The scheme (16) is a non-isothermal generalization of the scheme developed in [7, 9].

3.2 Structure-preserving properties

The discrete system (14)–(16) has several structure-preserving properties that hold without any small-
ness assumption. The conservation of charge is immediately guaranteed by the finite volume dis-
cretization [6]. Moreover, the scheme (16) is robust in both the drift- and diffusion dominated limits,
as it interpolates between the upwind scheme for Xn,K,L → ±∞ (strong electric field) and a central
difference scheme for Xn,K,L = 0 (pure diffusion). The latter involves a discrete analogue of the
nonlinear diffusion constant (12) using gn,K,L as in Eq. (17). For the analysis of further properties,
which address the consistency with thermodynamics, it is convenient to recast the formula (16) into a
discrete analogue of its thermodynamic form (6):

Jn,K,L = −σn,K,L (ϕn,L − ϕn,K + Pn,K,L (TL − TK)) . (18)

The edge-averaged discrete conductivity, which is implicitly taken by the Scharfetter–Gummel dis-
cretization, is a “tilted” logarithmic mean Λ of the carrier densities

σn,K,L =
qMn,K,L

sinhc
(

1
2
Xn,K,L

)Λ

(
nL exp

(
−1

2
Xn,K,L

)
, nK exp

(
+

1

2
Xn,K,L

))
, (19)

with sinhc (x) = sinh (x)/x. The thermopower Pn,K,L, which is required in Eq. (15a), reads

Pn,K,L = −kB
q

[
log

(
Nc (TL)

Nc (TK)

)
gn,K,L

log (TL/TK)
− 1

kB

Ec (TL)− Ec (TK)

TL − TK

− (TL − TK,L) ηn,L − (TK − TK,L) ηn,K
TL − TK

]
.

(20)
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Fig. 2. (a) Cross section of a GaAs/ AlGaAs-HBT. Due to symmetry, only half of the device is simulated. The doping
densities are: N+

D = 4 × 1019 cm−3 (emitter cap), N+
D = 2 × 1017 cm−3 (emitter), N−

A = 3 × 1019 cm−3 (base),
N+

D = 2 × 1016 cm−3 (collector) and N+
D = 5 × 1018 cm−3 (subcollector). (b) Calculated collector current IC as a

function of the collector-emitter voltage UCE for different base-emitter voltages UBE with (solid lines) and without (dashed)
self-heating effects.

The scheme is manifestly consistent with the thermodynamic equilibrium (no current for ϕn,K = ϕn,L
and TK = TL) and the limiting cases of either vanishing chemical (ϕn,K = ϕn,L: pure Seebeck
current) or thermal (TK = TL: isothermal drift-diffusion) driving forces. The discretization guarantees
the non-negativity of the Joule heat term

HJ,K,L =
∑

λ∈{n,p}

σλ,K,L |ϕλ,L − ϕλ,K + Pλ,K,L (TL − TK)|2 ≥ 0 (21)

(using Eqs. (15a) and (18)) and subsequently also the consistency with the second law of thermody-
namics on the discrete level [2]. Due to its structure-preserving properties, the scheme (16) was found
to be significantly more accurate than the conventional non-isothermal Scharfetter–Gummel-type dis-
cretization approach. See [2] for a detailed analysis.

4 Numerical simulation of a heterojunction bipolar transistor

The approach is demonstrated by numerical simulations of the GaAs/ AlGaAs-based heterojunction
bipolar transistor (HBT) shown in Fig. 2 (a). We assume ideal ohmic contacts with perfect heat sink-
ing (Tcont = 300 K) and homogeneous Neumann boundary conditions else. The material parame-
ters, including temperature-dependent models for the band edge energies, mobilities and the thermal
conductivity, are taken from [5]. The validity of the Kelvin formula for GaAs was studied in [2]. The
calculated current-voltage curves (with and without self-heating effects) are shown in Fig. 2 (b).

The temperature distribution and the heat generation rate are plotted in Fig. 3 for different collector-
emitter voltages. The Thomson–Peltier effect is found to cool the AlGaAs/ GaAs heterojunctions (emit-
ter/ emitter cap and emitter/ base junction, blue color in Fig. 3 (b, d)) and heats up the collector/ subcol-
lector junction. With increasing current densities (i.e., increasing collector-emitter voltage), the relative
importance of Joule heating increases, until it becomes the dominant effect. This leads to a strong
temperature increase in the collector region close to the symmetry axis. Recombination processes
additionally heat the base region below the base/ emitter junction, but were found to be of minor im-
portance in the present study.
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Fig. 3. Simulated temperature distribution and self-heating power density H at stationary operation with (a, b) UCE = 2V
and (c, d) UCE = 4V. The basis-emitter voltage is UBE = 1.6V in both cases.

5 Conclusions

The Kelvin formula for the thermopower yields a remarkably simple form of the non-isothermal drift-
diffusion system. The specific form of the current density expressions, which contain the thermal driv-
ing forces only implicitly, allow for a non-isothermal generalization of the Scharfetter–Gummel scheme
for Fermi–Dirac statistics that was previously presented in [7, 9]. The discrete flux scheme is consistent
with fundamental thermodynamic relations on the discrete level.

A Derivation of the heat equation

In the following, the heat equation (4) will be derived from an integral from of the total energy balance.
The total energy is obtained from the free energy and the definition of the entropy (see Sect. (2.1)) as

E (n, p, T ) = F (n, p, T ) + TS (n, p, T ) = F (n, p, T )− T∂TF (n, p, T ) .

Using the free energy functional (8), one obtains

E (n, p, T ) =

∫
Ω

dV

(
TN ′c (T )

Nc (T )
kBTNc (T ) G

(
F−1

(
n

Nc

))
+ (Ec(T )− TE ′c(T ))n

+
TN ′v (T )

Nv (T )
kBTNv (T ) G

(
F−1

(
p

Nv

))
− (Ev(T )− TE ′v(T )) p

)
+

1

2

∫
Ω

dV

∫
Ω

dV ′G (r, r′) ρ (r) ρ (r′) +

∫
Ω

dV Φextρ+

∫
Ω

dV uL (T ) ,

(22)
where uL = fL (T )− T∂TfL (T ) is the energy density of the lattice phonons.

The (volumetric) heat capacity of the system is defined as the variational derivative of the total energy
(22) with respect to the temperature

DTE (n, p, T ) = cV . (23a)
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Moreover, one obtains

DnE (n, p, T ) = −qϕn + kBT

(
TN ′c (T )

Nc (T )
g

(
n

Nc (T )

)
−F−1

(
n

Nc (T )

)
− 1

kB
E ′c (T )

)
,

DpE (n, p, T ) = +qϕp + kBT

(
TN ′v (T )

Nv (T )
g

(
p

Nv (T )

)
−F−1

(
p

Nv (T )

)
+

1

kB
E ′v (T )

)
,

which, if we assume the thermopowers according to the Kelvin formula (9), can be written as

DnE (n, p, T ) = −q (ϕn + TPn) , (23b)

DpE (n, p, T ) = +q (ϕp + TPp) . (23c)

The total time derivative of the energy functional (22) reads

d

dt
E (n, p, T ) =

∫
Ω

dV

(
DTE (n, p, T )

∂T

∂t
+ DnE (n, p, T )

∂n

∂t
+ DpE (n, p, T )

∂p

∂t

)
=

∫
Ω

dV

(
cV
∂T

∂t
− q (ϕp + TPp − ϕn − TPn)R

+ jn · ∇ (ϕn + TPn) + jp · ∇ (ϕp + TPp)

)
−
∮
∂Ω

dA ·
(

(ϕn + TPn) jn + (ϕp + TPp) jp
)
,

where we used Eq. (23) and the continuity equations (2)–(3).

The energy dissipated from the system is given by the heat and electrical energy fluxes leaving the
domain through the boundary

d

dt
E (n, p, T ) = −

∮
∂Ω

dA · jQ −
∫

ΓD

dA · (ϕnjn + ϕpjp) , (24)

where the heat flux density is known as jQ = −κ∇T + TPnjn + TPpjp [2]. Here, ΓD ⊂ ∂Ω
denotes the electrical contacts. On the remaining part of the boundary Γ = ∂Ω\ΓD, we assume no-
flux boundary conditions n · jn/p = 0, as the charge carriers can not leave the domain there. Finally,
using the divergence theorem, we obtain the heat transport equation as a local form of the energy
balance equation (24)

cV
∂T

∂t
−∇ · κ∇T = −jn · ∇(ϕn + TPn)− jp · ∇(ϕp + TPp)− q(ϕp + TPp − ϕn − TPn)R,

where the right hand side coincides with the heat generation rate as given in Eq. (13).

Note that the appealing form (13) of the heat generation rate is a consequence from using the Kelvin
formula for the thermopowers in Eqs. (23b)–(23c). For different models for the thermopowers, addi-
tional (transient) terms will occur in the heat generation rate [2].
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