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Unipolar drift-diffusion simulation of S-shaped current-voltage relations for
organic semiconductor devices

Jürgen Fuhrmann, Duy Hai Doan, Annegret Glitzky, Matthias Liero, Grigor Nika

Abstract

We discretize a unipolar electrothermal drift-diffusion model for organic semiconductor devices with Gauss–
Fermi statistics and charge carrier mobilities having positive temperature feedback. We apply tempera-
ture dependent Ohmic contact boundary conditions for the electrostatic potential and use a finite volume
based generalized Scharfetter-Gummel scheme. Applying path-following techniques we demonstrate that
the model exhibits S-shaped current-voltage curves with regions of negative differential resistance, only
recently observed experimentally.

1 Introduction

The temperature activated hopping transport of charge carriers in organic semiconductors results in a strong
interplay between electric current and heat flow. It gives rize to interesting phenomena like S-shaped Current-
Voltage (CV) relations with regions of negative differential resistance in Organic Light Emitting Diodes (OLEDs)
[12] or leads to inhomogeneous luminance in large-area OLEDs. Moreover, electrothermal effects influence the
performance of transistors [10].

As demonstrated in [12], p-Laplace thermistor models that describe the total current and heat flow in a device,
are able to capture the positive temperature feedback in OLEDs. Especially, they can reproduce experimentally
observed S-shaped CV-relations and inhomogeneous current density and temperature distributions in large-
area OLEDs. But, details such as separate electron and hole current flow, generation-recombination and related
heat productions, as well as energy barriers at material interfaces cannot be included.

In this paper, we present a numerical approximation of an electrothermal drift-diffusion model for organic semi-
conductor devices and study its ability to reproduce S-shaped CV-relations. For simplicity, for this proof of con-
cept we use vertically layered device structures.

2 Electrothermal Drift-Diffusion Description of Organic Semiconductor De-
vices

We restrict our considerations to the unipolar (n-doped) case, for the full model see [3]. Then the electrothermal
behavior is described in a drift-diffusion setting by PDEs for the electrostatic potential ψ, the electrochemical
potential ϕn, and the temperature T . In the device domain Ω we consider the stationary coupled system

−∇ · (ε∇ψ) = q(C − n),

−∇ · jn = 0, jn = −qnµn∇ϕn,
−∇ · (λ∇T ) = qnµn|∇ϕn|2 =: H.

(2.1)

This system results from the coupling of a generalized, unipolar van Roosbroeck system and a heat flow equa-
tion that includes the Joule heating as heat source. The dielectric permittivity is denoted by ε = ε0εr, q is the
elementary charge, C represents the doping density, and λ is the thermal conductivity.
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Additionally we take into account the specialities of organic semiconductors, namely i) the statistical relation
between chemical potential and charge carrier density is given by Gauss–Fermi integrals leading to bounded
charge carrier densities and ii) a mobility function µn depending on temperature, density, and electric field
strength. The mobility laws are fitted from a numerical solution of the master equation for the hopping transport
in a disordered energy landscape with a Gaussian density of states [11]. The charge carrier density n in (2.1) is
given by

n = Nn0(T )G
(q(ψ − ϕn)− EL(T )

kBT
;
σn(T )

kBT

)
, (2.2)

where kB is Boltzmann’s constant. We assume that the parameters EL (lowest unoccupied molecular orbital
level), σ2

n (its variance), andNn0 (total density of transport states) are only weakly temperature dependent such
that we neglect this weak temperature dependence in our investigations. We set

ηn = ηn(ψ,ϕn, T ) :=
q(ψ − ϕn)− EL

kBT
, sn = sn(σn, T ) :=

σn
kBT

.

The function G : R× [0,∞)→ (0, 1) is defined by the Gauss–Fermi integral

G(ηn, sn) :=
1√
2π

∫ ∞
−∞

exp

(
−ξ

2

2

)
1

exp (snξ − ηn) + 1
dξ.

According to [11], the mobility µn = µn(T, n, |∇ψ|) is a temperature, density and electric field strength
dependent function of the form

µn(T, n, F ) = µn0(T )× g1(n, T )× g2(F, T ), µn0(T ) = µn0c1 exp
{
−c2s

2
n

}
. (2.3)

For the considerations of our paper we set g1 = g2 ≡ 1 and take only the positive temperature feedback µn0

into account. System (2.1), (2.2) is closed by mixed boundary conditions for the drift-diffusion system combined
with Robin boundary conditions for the heat flow equation modeling a heat sink with fixed temperature Ta.

In [9] the solvability of the bipolar system including the full mobility functions (weak solutions of continuity equa-
tions and Poisson equation, entropy solution of the heat flow equation) is established.

In the non-isothermal case, the modeling of (ideal) Ohmic contacts requires local charge neutrality at the contact
for the actual temperature dependent state (ψ,ϕn, T ). For an applied voltage V , this leads to the nonlinear
relation at the contacts ΓDi ⊂ ∂Ω for the prescribed value ψ0 = ψ − V :

CDi(ψ;V, T ) := C −Nn0G
(q(ψ − V )− EL

kBT
;
σn
kBT

)
= 0. (2.4)

A straightforward generalization of the computational approach for the isothermal case would result in the ne-
cessity to update ψ0 for each modification of the temperature T , leading to an additional iterative loop for the
determination of each bias solution. To avoid this iteration, we use (2.4) directly as a nonlinear Dirichlet bound-
ary condition for the electrostatic potential ψ depending on T and treat it with the nonlinear solver along with all
other nonlinearities.

3 Discretization Scheme

We use a finite volume method and partition the computational domain Ω by a Voronoi mesh with m Voronoi
volumes {Vl}l=1,...,m and accompanying collocation points {xl}. The potentials ψ, ϕn, and the temperature
T are evaluated at each node xl. The discretized system corresponding to (2.1) is derived by integrating the
equations over each Voronoi volume Vl, applying Gauss’s theorem, and then suitably approximating the bound-
ary and volume integrals. We also add the subscript l in all quantities to denote their corresponding numerical
values at xl. In what follows, we will assume that the material parameters ε, µn0, Nn0, and λ are constant,
otherwise, suitable averages have to be used.
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The resulting surface integrals are split into two parts: integrals over interfaces between two adjacent Voronoi
boxes and integrals over boundary parts of the device:∫

∂Vl

−ε∇ψ · ν dΓ =
∑

Vr∈N (Vl)

∫
∂Vl∩∂Vr

−ε∇ψ · ν dΓ +

∫
∂Vl∩∂Ω

−ε∇ψ · ν dΓ,

∫
∂Vl

−jn · ν dΓ =
∑

Vr∈N (Vl)

∫
∂Vl∩∂Vr

−jn · ν dΓ +

∫
∂Vl∩∂Ω

−jn · ν dΓ,

∫
∂Vl

−λ∇T · ν dΓ =
∑

Vr∈N (Vl)

∫
∂Vl∩∂Vr

−λ∇T · ν dΓ +

∫
∂Vl∩∂Ω

−λ∇T · ν dΓ.

HereN (Vl) stands for the set of Voronoi volumes Vr which are adjacent to the Voronoi volume Vl. The integrals
over interfaces ∂Vl ∩ ∂Vr must be treated specifically in order to maintain the consistency of the numerical
solution, whereas the surface integrals over ∂Vl ∩ ∂Ω are evaluated by quadrature rules after replacing the
normal flux in the integrand by the corresponding boundary condition.

Numerical fluxes through interfaces ∂Vl ∩ ∂Vr. Whereas the integrals of −ε∇ψ · ν and −λ∇T · ν over
the interface ∂Vr ∩ ∂Vl are approximated by the conventional finite difference approximations∫

∂Vr∩∂Vl
−ε∇ψ · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)

|xl − xr|
ε (ψl − ψr)

(similarly for −λ∇T · ν), the corresponding integrals in the continuity equations require some extra effort∫
∂Vr∩∂Vl

jn · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)
|xl − xr|

J l;rn ,

where the numerical fluxes J l;rn are determined by a modification of the Scharfetter-Gummel scheme based on
averaging of inverse activity coefficients introduced in [6] and discussed with respect to degenerate semicon-
ductors in [5, 4]. We introduce some notation for the definition of the expressions J l;rn :

ψl,r :=
ψl+ψr

2
, ϕn;l,r :=

ϕn;l+ϕn;r

2
, Tl,r :=

Tl + Tr
2

, U l,rT :=
kBTl,r
q

, sl,rn :=
σn

kBTl,r
,

ηn;l := ηn (ψl, ϕn;l, Tl,r) , ηn;r := ηn (ψr, ϕn;r, Tl,r) , η
l,r
n := ηn (ψl,r, ϕn;l,r, Tl,r) ,

nl,r := Nn0G
(
ηl,rn ; sl,rn

)
, µl,rn := µn0 (Tl,r) .

With the above definitions and the Bernoulli function, B (x) = x
exp(x)−1 , the numerical fluxes J l;rn have the

form

J l;rn = −qNn0µ
l,r
n U

l,r
T

G
(
ηl,rn ; sl,rn

)
exp

(
ηl,rn
) [

eηn;lB

(
ψl − ψr
U l,rT

)
− eηn;rB

(
−ψl − ψr

U l,rT

)]
.

For the discretization of the full bipolar model taking into account the complete mobility functions from organics
including the factors g1 and g2 we refer to [3].

Numerical treatment of the boundary conditions on ∂Vl ∩ ∂Ω. The realization of no-flux and Robin
boundary conditions is based on the evaluation of the corresponding surface integrals by a midpoint quadrature
rule. Dirichlet boundary conditions are implemented using the Dirichlet penalty method: We replace the Dirichlet
boundary conditions for ϕn by jn · ν + Π(ϕn − V ) = 0, and treat them like Robin boundary conditions.
The penalty parameter Π is a large number which results in marginalizing the normal flux contributions. In or-
der to approximate the nonlinear Dirichlet boundary condition (2.4), we use a similar idea. We replace (2.4) by
−ε∇ψ + ΠCDi(ψ;V, T ) = 0 and treat the resulting boundary condition as a nonlinear Robin boundary con-
dition. Using this approach, the nonlinearity (2.4) can be treated without any additional iteration along with all the
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other nonlinearities in the resulting system of equations by the general Newton solver coupled to a parameter
embedding scheme.

Volume integrals. Whereas for the integral of the charge density C − n we use the midpoint rule, the integral
of the Joule heat H is approximated using the fluxes J l;rn ,∫

Vl

(C − n) dx ≈ mes (Vl) (Cl − nl),∫
Vl

H dx ≈
∑

Vr∈N (Vl)

mes (∂Vl ∩ ∂Vr)
2dim (Ω)

J l;rn (ϕn;l − ϕn;r) .
(3.1)

Here, we followed the idea proposed in [1] and exploited in [7] allowing to evaluate the Joule heating approxi-
mation for electrons and holes by edge contributions.

Path-following method for calculation of S-shaped CV-curves. For a device with two Dirichlet boundary
parts ΓD1 and ΓD2 , where on ΓD2 the potential is set to zero and on ΓD1 to the (spatially constant) externally
applied voltage V , we determine the CV-relation by calculating the current over ΓD1 . Since organic semiconduc-
tors show a pronounced electrothermal feedback that can lead to S-shaped CV-relations, a voltage controlled
simulation is unable to cover the full characteristic, since at the lower turning point of the S-curve one would not
find a point on the curve with increased voltage and only slightly increased current and related temperature, see
e.g. Fig. 1 a). For such voltage values, only points on the upper branch of the S-curve are available, related to
very different current and temperature values. In other words, for increasing voltage, if at all the method would
converge, one could only jump to the upper part of the S-curve and the (unstable) region of negative differential
resistance of the S-curve is impossible to resolve. Therefore we implemented a path-following method to trace
the S-curve. With the discrete equations for all Voronoi boxes {Vl} we arrive at a system of 3m coupled non-
linear algebraic equations for u = (ψl, ϕn;l, Tl)l=1,...,m of the form F (u, V ) = 0, F : R3m × R → R3m.
We adapt the technique described in [7, Sec. 5] which was used in [12] to simulate S-shaped CV-relations for
organic LEDs resulting from an electrothermal modeling by p-Laplace thermistor models to the drift-diffusion
setting.

4 Simulation Results

The finite volume method has been implemented in the prototype semiconductor device simulator ddfermi [2]
which is based on the PDE solution toolbox pdelib [8].

We give a proof of concept that electrothermal drift-diffusion models from Sec. 2 can exhibit S-shaped CV-
relations and restrict our simulations to a 340 nm thick, uniformly n-doped layer that is contacted by two metal
layers. Due to the high conductivity of the metal layers we assume that the potential is constant here and neglect
the metal layer entirely. Instead, we prescribe Dirichlet boundary conditions on the parts ΓD1 and ΓD2 . On ΓD2

the potential is set to zero and on ΓD1 to the externally applied voltage V . We determine the CV-relation of
the organic device by calculating the current over ΓD1 . We found a parameter range leading to a pronounced
occurrence of S-shaped CV-relations. The used parameters are collected in Table 1.

Table 1: Simulation parameters
parameter value parameter value parameter value

ε 4.0 ε0 EH 0.0 eV Nn0 1021 cm−3

λ 0.4 Wm−1K−1 Ta 220 K µn0 0.8 cm2V−1s−1

κ 103 . . . 105 Wm−2K−1 c1 1.0 doping 5 · 1018 cm−3

σn 0.05 . . . 0.08 eV c2 0.4 thickness 340 nm

To discuss the phenomenon of S-shaped CV-relations and their appearance in dependence on physical pa-
rameters, we present two types of parameter variations. In Fig. 1 a), b) we study the influence of the disorder
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Figure 1: CV-characteristics using the electrothermal drift-diffusion model for different disorder parameters σn
(Fig. a)), Fig. b) shows the resulting maximal temperature in the device for κ = 104 W/(m2K). Fig. c) depicts
CV-curves for different thermal outcoupling regimes and σn = 0.08 eV

parameter σn on the electrothermal interaction in the device. The resulting CV-relations are depicted in Fig. 1 a),
Fig. 1 b) shows the maximal device temperature over the applied voltage. Whereas for σn = 0.05 eV no S-
shaped CV-relation occurs, although such behavior evolves for higher σn. With increasing σn the first turning
point of the curve moves to a higher applied voltage but the related current density decreases and the ’S’ be-
comes more pronounced. Fig. 1 c) contains CV-relations for a variation of the thermal outcoupling conditions
realized by Robin boundary conditions of the form λ∇T · ν + κ(T − Ta) = 0 on ∂Ω for different values of
κ. Better cooling broadens the ’S’, for the two turning points the applied voltage as well as the current density
increase. The exemplary variations of physical parameters show that the complex nonlinear interplay leads to
strong variations in the shape of the CV-characteristics.

5 Conclusion and Remarks

We presented a discretization scheme for the electrothermal drift-diffusion model (2.1) for organic semiconductor
devices. We formulated temperature dependent nonlinear Dirichlet boundary conditions for the electrostatic
potential (2.4) at Ohmic contacts, which take into account the shift of the equilibrium potential due to changing
device temperature.

We used a finite volume based generalized Scharfetter-Gummel scheme implemented in the prototype semicon-
ductor device simulator ddfermi [2] on top of the PDE solver toolbox pdelib [8]. Via a path-following technique,
we demonstrated that the model and its discretization for certain parameters exhibit the phenomenon of an S-
shaped CV-relation with regions of negative differential resistance. The ability to simulate S-shaped CV-relations
using drift-diffusion type electrothermal models is to our knowledge a novelty. Although CV-relations have been
observed experimentally in [12], there is a need to be properly modeled in order to understand and optimize the
device behavior.
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Figure 2: Simulated Joule heat densities [W/cm3] (source terms in the heat flow equation) in an organic transistor
that demonstrate the change of the electrothermal regime when opening the channel by increasing the gate
voltage from 0V (left) to 1V (right) for a fixed source-drain voltage of 1V.
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Besides device characteristics, our model (2.1) and its discretization are capable to describe the spatially re-
solved electrothermal behavior of real 3D organic semiconductor devices in terms of charge carrier densities,
current densities, potentials, temperature distributions. Fig. 2 compares the produced Joule heat densities for
an organic thin-film transistor with fixed source-drain voltage of 1V when the channel is opened by raising the
gate voltage from 0V (left) to 1V (right).

Simulations for real organic device structures and realistic physical parameters help to estimate the region of a
stable working regime guaranteeing the absence of material destruction due to overheating. Furthermore, the
description of the spatially resolved electrothermal behavior of real devices is very important for understanding
the effect of thermal switching, device degradation, device breakdown and local heating (hot spots) in large area
devices.
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