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Abstract 

In applications, solitary-wave solutions of semilinear elliptic equations 

/)..u + g(u, 'Vu)= 0 (x, y) E IR x f2 

in infinite cylinders frequently arise as travelling waves of parabolic equations. As 
such, their bifurcations are an interesting issue. Interpreting elliptic equations on 
infinite cylinders as dynamical systems in x has proved very useful. Still, there 
are major obstacles in obtaining, for instance, bifurcation results similar to those 
for ordinary differential equations. In this article, persistence and continuation of 
exponential dichotomies for linear elliptic equations is proved. With this technique 
at hands, Lyapunov-Schmidt reduction near solitary waves can be applied. As an 
example, existence of shift dynamics near solitary waves is shown if a perturbation 
µ h(x, u, 'Vu) periodic in x is added. 

1 Introduction 

In this article, semilinear elliptic equations 

(1.1) Uxx + f1.yu + g(y, u, Ux, \7yu) = 0 ( x, y) E IR x n, 

in infinite cylinders IR x n are investigated. Here, n is an open and bounded subset of IRn, 
and boundary conditions on IR x an should be added. Solitary waves are localized solutions 
u(x, y) of (1.1) satisfying 

lim u(x, y) = 0 
jxj-+oo 

uniformly for y E n. In applications, they frequently arise as travelling waves u( x - et, y) 

for parabolic equations 

(1.2) ( x, y) E IR x n. 

As such, their bifurcations to periodic waves or N-solitary waves resembling N copies of 
a primary solitary wave are interesting issues. Of importance is also their stability with 
respect to the parabolic equation _(1.2). Another issue is the numerical computation of 
solitary-wave solutions since it is in general impossible to obtain explicit expressions. Typ-
ical applications include problems in structural mechanics like rods and struts, chemical 
kinetics, combustion, and nerve impulses, see, for instance, [VVV94] and the comprehen-
sive bibliography therein. Existence of solitary waves or fronts has been proven for many 
equations of the form (1.1), see again [VVV94, Section 1.6.6] for references. Thus, in this 
paper, we will assume that a solitary wave of (1.1) exists, and shall study its bifurcations. 

In order to investigate elliptic equations in cylinders IR x n, it has proved very useful to 
consider them a dynamical system in the unbounded variable x. Properties like dissipa-
tivity, reversibility, Hamiltonian structure, and zero numbers have been exploited in order 
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to describe bounded solutions of such equations, see, for example, [Kir82], [Fis84], [Mie86], 
[Mie91], [CMS93], [Mie94a], and [Sch96]. The main technique has been reduction to lo-
cal center or global essential manifolds containing some or all bounded solutions of (1.1). 
For instance, Mielke derived bifurcation equations close to stationary [Mie86] and periodic 
[Mie94b] solutions on a center manifold. 

However, the use of geometric reductions like local center or global essential manifolds is 
limited. Finite-dimensional essential or inertial manifolds are only C1 smooth. Also, the 
reduction requires spectral gaps and works only for particular nonlinearities, see [Mie91] and 
[Mie94a]. On the other hand, finite-dimensional smooth local cent er manifolds exist only 
in the neighborhood of small solutions. Using analytical methods like Lyapunov-Schmidt 
reduction near solutions of (1.1) with large amplitudes may resolve these problems. 

Therefore, rather than studying the set of all bounded solutions of (1.1), we shall only 
investigate solutions close to solitary waves hoping to get a more detailed picture of the 
nearby dynamics. Interpreting the variable x as time, we write (1.1) as the first order 
system 

(1.3) ( :: ) = ( _:Y i:) (: )- ( g(y,u,~, \?yu) ) . 

Here, for each fixed x E IR, ( u, v) ( x) is a function of y E n contained in some func-
tion space depending on the boundary conditions on 80. A solitary wave of (1.1) cor-
responds to a homoclinic orbit of (1.3), that is to a solution (q(x), qx(x)) of (1.3) with 
limlxl-+oo(q(x), qx(x))-+ 0 in the underlying function space. 

There are two different techniques available for investigating homoclinic solutions. The 
first approach is to consider Poincare maps. However, (1.3) is still ill-posed and will not 
generate a semifl.ow. Thus it is not even possible to define a Poinca,re map. The second ap-
proach, which is adopted in this article, is entirely analytic and based on Lyapunov-Schmidt 
reductions. The heart of this technique are exponential dichotomies for the linearization of 
(1.3) 

(1.4) 
( 

Ux ) ( 0 id ) ( U ) 
Vx - -Ay - Dug - D"Vyu9 'Vy Dux9 V 

along the solitary wave (q(x), qx(x)). Here, derivatives of g are evaluated at (y, q, qx, "V'yq). 
Exponential dichotomies are projections onto x-dependent stable and unstable subspaces, 
say E 8 (x) and Eu(x), such that solutions (u,v)(x) of (1.4) associated with initial values 
(u, v)(xo) in the stable space E 8 (xo) exist for x > xo and decay exponentially for x-+ oo. 

In contrast, solutions (u, v)(x) associated with initial values (u, v)(xo) in the unstable space 
Eu(x0 ) solve (1.4) in backward x-direction x < x0 and decay exponentially for decreasing 
x. Existence of exponential dichotomies for ordinary, parabolic or functional differential 
equations is well known, see, for instance, [Cop78], [Hen81], and [HL86]. However, the 
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proofs known thus far rely on the existence of a semiflow. Even though in [San93] a 
functional-analytic framework for the existence on time intervals [r, oo) for larger has been 
developed, the global extension to the half line IR+ has been carried out using semiflows. 
In the context of elliptic equations, stable and unstable subspaces will both be infinite.-

. dimensional and the semiflow on the unstable subspace defined for backward x-direction 
cannot be inverted. Hence, (1.4) will not define a semiflow. 

In this article, we present a proof of the existence of dichotomies for equation (1.4). The 
proof employs a functional-analytic framework combining ideas from [San93] and [Sch96]. 
In the former work, exponential dichotomies for parabolic equations have been investigated 
using only integral equations. In [Sch96], an integral-equation based approach has been 
given for elliptic equations. We will derive an integral equation - see equation (2.4) -
solved by exponential dichotomies. In contrast to previous works on ordinary and parabolic 
differential equations, we cannot use semiflows or the Gronwall lemma for the reasons 
explained above. Also, the integrands arising in the integral formulation are not small 
preventing us from using contraction mapping principles. Instead, Fredholm's alternative 
is employed for proving existence of dichotomies on arbi.trary subintervals of IR+. The 
advantage of this approach is that it preserves the symmetry between stable and unstable 
subspaces in the definition of dichotomies and does not a priori distinguish a time direction. 

As a result, all bounded solutions of the nonlinear equation (1.3) staying close to the solitary 
wave for all values of x are accessible using Lyapunov-Schmidt reduction. For illustration, 
and as a first application, Melnikov's method for intersections of stable and unstable mani-
folds is extended to semilinear elliptic equations. Main result is the embedding of a shift on 
N symbols, with positive topological entropy, into the dynamical system generateq by the 
shift of bounded solutions close to the solitary wave, provided a small generic perturbation 
µ h(x, y, u, ux, "Vyu) periodic in x is added to (1.1). 

In a forthcoming paper, we will give other applications. In particular, algorithms for the 
numerical computation of homoclinic orbits in ordinary differential equations due to [Bey90] 
and others will be extended to elliptic equations. They will be justified by stability and 
convergence proofs. As another issue, bifurcations to periodic waves as well as N-solitary. 
waves close to a primary solitary wave will be investigated using techniques developed in 

[Lin90] and [San93]. 

We hope that the methods introduced here can be used to investigate stability of solitary 
waves with respect to the parabolic equation (1.2) using an extension of the Evans ftinction: 
Also, it may be possible to use this method to study elliptic equations for n = IRn provided 
the solitary wave is localized in the x and y variable, see the remark at the end of Section 2.1. 
Note that in this case essential manifolds will not exist due to the presence of continuous 

spectrum. 
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This article is organized as follows. In Section 2, existence of exponential dichotomies for 
abstract linear equations is shown. Smoothing properties for abstract linear and nonlinear 
equations are addressed in Section 3. In Section 4, the effect of small non-autonomous 
perturbations of an abstract autonomous equation is investigated. Finally, Section 5 is 
devoted to applications to semilinear elliptic equations, and an example on the infinite 
cylinder IR x (0, 7r)n is presented. 

Acknowledgement. DP was supported by the Deutsche Forschungsgemeinschaft (DFG) 
under grants La525/4-2· and La525/4-4. BS was partially supported by a Feodor-Lynen 
Fellowship of the Alexander von Humboldt Foundation. 

2 Exponential Dichotomies 

2.1 A class of abstract differential equations 

Let X be a reflexive Banach space, and A : D(A) C X -+ X be a closed unbounded 
operator such that its domain D(A) is dense in X. Then X 1 := D(A) is a Banach space 
when equipped with the norm lulx1 = lulx + IAulx. Let Z be some Banach space such 
that there are continuous embeddings 

x 1 4 z '--+ x. 
Later, Z is chosen as an interpolation space between X 1 and X. Moreover, let B E 

c0(J, L(Z, X)) be a continuous family of operators where JC IR is some interval. We will 
be mainly interested in J = IR, J = [r, oo) or J = (-oo, r]. 

Consider the differential equation 

(2.1) x =(A+ B(t)) x. 

A function x(t) defined on a closed interval J ~ IR is called a solution of (2.1) if 

(i) x(·) E C0(int J, X 1) n C1(int J, X), 

(ii) x(·) E C0 (J, Z), 

(iii) x(·) satisfies equation (2.1) on int J with values in X. 

We are particularly interested in solutions with some prescribed exponential behavior. 
Throughout, range and kernel of an operator Lare denoted R(L) and N(L), respectively. 

Definition (Exponential Dichotomy) 
Equation (2.1) is said to possess an exponential dichotomy in Z on the interval J C IR if 
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there exists a family of projections P(t) fort E i such that 

P(t) E L(Z), P 2(t) = P(t), P(·)z E C 0(J, Z) for any z E Z 

and there exist constants K, 77 > 0 with the following properties. 

• Stability. For any s E J and z E Z, there exists a unique solution x 8 (t; s, z) of {2.1) 
defined fort 2:: s in J with x 8 (s; s, z) = P(s)z and 

for all t 2:: s with t E J. 

• Instability. For any s E J and z E Z, there exists a unique solution xu(t; s, z) of 
{2.1) defined fort :::; s in J with xu(s; s, z) = (id-P(s) )z and 

for all t :::; s with t E J. 

• Invariance. The solutions x 8 (t; s, z) and xu(t; s, z) satisfy 

x 8(t;s,z) E R(P(t)) for all t 2:: s with t,s E J 

xu(t; s, z) E N(P(t)) for all t:::; s with t, s E J. 

First, we shall give sufficient conditions such that the equation 

(2.2) x=Ax, 

that is (2.1) with B(t) = 0, has an exponential dichotomy on IR in X. These conditions 
are not necessary for the existence of dichotomies, but shall be used later in deriving the 
main perturbation and continuation result. 

Hypothesis 1 Suppose that there is a constant C such that 

IJ(iµ - A)-1 JJL(X) $ JµJ~ 1 

for allµ E IR. Leto> 0 such that I Re .-\j > o for any;\ E cr(A). 

Lemma 2.1 Assume that Hypothesis 1 is met. Then equation {2.2) has an exponential 

dichotomy on IR in X. The projections P(t) =PE L(X) do not depend on t and commute 

with A on D(A). Moreover, -PA and (id-P)A are sectorial operators with domains dense 

in R(P) and N(P), respectively. 
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Proof. The resolvent estimate allows for an application of [Bur72, Lemma 3.1]. Note that 
Hypothesis (3.1) in [Bur72] is satisfied on account of Hypothesis 1. B 

We define P_ = P, P+ = id-P and A_= -P_A, A+= P+A, and let X_ = R(P_) and 

X+ = R(P+)· Then, 

on X_ x X+. 

By Lemma 2.1, the operators A_ and A+ are sectorial. Thus, they generate analytic 
semigroups 

eA+t = ~fr e,\t(.\ - A)-1 d.\, t~O 
27ri r + 

e-A_t = ~fr e>.t(>, - A)-1 dA, t 2 0. 2m r _ 

Here, the curves r + = - r _ are asymptotic to re±icp, r --+ oo, 0 < cp <. ~, see, for instance, 
[Bur72]. Note that both generators A_ and A+ have their spectrum in the right half 
plane. With the constant 5 appearing in Hypothesis 1, the semigroups satisfy the growth 

conditions 

for some constant C and all t 2 0. As a matter of fact, the projection P is given by 
Px = limt-+O e-A-tx. 

Finally, we define the interpolation spaces X.t = D(A+) and X~ = D(A~) for a 2 0, see 
[Hen81) or (Yos74), and set Xa. = X.t x X~. Then the semigroups e-A+t and e-A_t satisfy 

for some constant C and all t > 0. In addition, the projection P obtained in Lemma 2.1 is 
in L(Xa.) for any a< 1. 

From now on, we take J = IR+. The cases J = IR-, J = [T, oo) and J = (-oo, T] can 
be treated similarly. The perturbation B(t) appearing in (2.1) should'satisfy the following 

hypotheses. 

Hypothesis 2 There exist a E (0, 1) and fJ > 0 such that B E C 0119 (1R+, L(Xa., X)). 

Moreover, there are E > 0 and t* 2 0 such that llB(t)llL(xa,x) ~ E for all t 2 t*. 

Hypothesis 3 The only bounded solution x(t) of {2.1) or its adjoint equation on IR+ with 
x(O) = 0 is the trivial solution x(t) = 0. 
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Here, the adjoint equation is given by 

(2.3) e =-(A*+ B(t)*) ~' ~EX*. 

Note that, under the assumptions made on A and B_(t), the adjoint operators A* and B(t)* 
considered with range in X* satisfy the same hypotheses as X is reflexive, see [Paz83, 
Section 1.10], [Hen81, Section 7.3], and [Kat66, Chapter III]. 

Finally, as mentioned in the introduction, some compactness properties will be needed later 
on. Thus, we assume that either A has compact resolvent 

Hypothesis 4 Suppose that the inverse A-1 is a compact operator in L(X). 

or else the operators B ( t) are sums of compact and small operators 

Hypothesis 5 There exist families S, K E co,1?(1R+, L(Xa, X)) such that B(t) = S(t) + 
K(t) and llS(t)llL{X°',X)::; E for all t E IR+. Moreover, there exists a subspace X c X with 

compact inclusion such that D(A) n X is dense in X, Ax EX for any x E D(A) n X and 

K(t) : xa -7 X is bounded uniformly in t E IR+. 

Hypothesis 5 may be useful when considering elliptic equations on IR x IRn with localized 
solutions u(x, y) such that lu(x, y)I ::; Ce-01YI for some()> 0 uniformly in x. Then B is a 
differential operator with coefficients decaying exponentially in y, and X can be chosen as 
a function space with exponential weights. 

Note that the adjoint operators A* or B(t)* regarded as closed operators with range in X* 
satisfy Hypothesis- 4 or 5 whenever A or B(t) do, see the references cited above. 

2.2 Perturbation and continuation of exponential dichotomies 

We call a closed subspace E of xa admissible if 

dimN(P+IE) = codimP+E = k < oo 

holds. The main theorem of this section can now be stated. 

Theorem 1 Suppose that Hypothesis 1 is satisfied. Choose 'T] such that 0 ::; 'fJ < 8 where 

8 appears in Hypothesis 1. Then there are constants Eo > 0 and C > 0 with the following 

properties. Assume that Hypotheses 2 and 3 are met with E ::; Eo. In addition, either 

Hypothesis 4 or Hypothesis 5 is satisfied. 

Then equation (2.1) has an exponential dichotomy in xa with rate ry. 
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Furthermore, the projections P(t) are Holder continuous in t with values in L(Xa). The 

range g; of P(O) is uniquely determined and satisfies 

z E Es= R(P(O)) ==;.. z = P_z + P+(So + Ko)z 

for some operators So and Ko with llSol!L(xa) ~ GE and Ko compact in L(Xa.). For 

any admissible complement Eu of Es there exists a unique exponential dichotomy with 

R(P(O)) =Es and N(P(O)) = Eu. In particular, admissible complements do exist. 

It is straightforward to generalize Theorem 1 in that perturbations of the non-autonomous 
equation (2.1) instead of the autonomous equation (2.2) are considered. In that case, we 
have to require that the solutions xs(t; s, z) and xu(t; s, z) of (2.1) map xa. into xa+o for 

some positive e and are Holder continuous between these spaces. We will not state a result 
but refer the reader to Section 3 where the necessary regularizing properties are proved. 

Theorem 1 shows that, up to factoring a finite-dimensional subspace of the stable subspace 
Es, the range R(P(O)) =Es is close to the space R(P-). Hence, dimensions.can be counted 
on account of the compactness assumptions 4 or 5. 

Corollary 1 Suppose that A and B(t) satisfy the assumptions of Theorem 1 for both t E 

IR+ and t E IR-. Denote the projections of the exponential dichotomies by P+(t) and P_(t) 

fort 2: 0 and t ~ 0, respectively. Then R(P+(O)) nR(P-(0)) is finite-dimensional. 

We point out that, under the assumptions of Theorem 1, exponential dichotomies actually 
exist for any complement Eu of Es and not just for admissible choices. Indeed, let L : 
R(id-P(O))--?- R(P(O)) be a bounded operator such that graphL = gu.. Then, define 

P(t) .- P(t) - xs(t; 0, ·) L xu(O; t, ·) t 2: 0 
xs(t; s, ·) .- x 8 (t; s, ;) F(s) t 2: s 2: 0 
xu(t;s,·) .- (id-F(t)) xu(t; s, ·)(id -P(s )) s 2: t 2: 0, 

and x is an exponential dichotomy of (2.1) such that R(F(O)) = graphL, see [San93]. 

If the perturbation B(t) tends to zero as t --?- oo, we expect the projection P(t) of the 
exponential dichotomy to converge to the spectral projection P _. This is made precise in 
the following corollary. 

Corollary 2 Suppose that A and B(t) satisfy the assumptions of Theorem 1 and, in ad-

dition, 

t 2: 0 

holds for some constants 6, e > 0. Then, the rate 1] appearing in Theorem 1 can be chosen 

in the range 0 ~ 1] ~ <5 and we have 
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for some constant C > 0. 

Next, we state a theorem characterizing equations having exponential dichotomies on the 
real line IR. 

Theorem 2 Suppose that the assumptions of Theorem 1 hold for both t E IR+ and t E IR-. 
Then, x(·) = 0 is the only bounded solution of equation {2.1) on t E IR if and only if 
equation {2.1} has an exponential dichotomy on IR. 

The remainder part of this section will be occupied with the proofs of the theorems and 
the corollaries.· 

2.3 Proof of Theorem 1 

We write x = (x8, xu) and z = z_ + z+ E xa with z_ = P_z, z+ = P+z, and whenever 
confusion is impossible xs(t; s, z) = xs(t, s), xu(t; s, z) = xu(t, s). 

The following mild formulation of equation (2.1) is the key to our approach. 

e-A-(t-s)z_ = xs(t, s) + e-A_tx~(O, s) + 100 

eA+(t-r) B(r)xs(r, s) dr 
t t s -!. e-A-(t-r)B(r)xs(r,s)dr+ { e-A-(t-r)B(r)xu(r,s)dr 

(2.4) s lo . 
eA+(t-•)z+ = xu(t,s)-e-A_tx';'_(O,s) - J.t eA+(t-r)B(r)xu(r,s)dr 

0 s 00 

+ 1 ;,-A-(t-r)B(r)xu(r,s)dr- J. eA+(t-r)B(r)x'(r,s)dr. 

Here, t ~ s ~ 0 in the first and s ~ t ~ 0 in the second. equation of (2.4). We will see that 
solutions of (2.4) are in fact the evolution operators arising in the definition of exponential 
dichotomies. In particular, we will prove that the projections of the exponential dichotomy 
are given by P(t)z = xs(t; t, z) and (id-P(t))z = xu(t; t, z) for solutions xs(t; s, z) and 
xu(t; s, z) of (2.4). The operator xu(o; 0, ·) is determined by the choice of the complement 
Eu. 

Notice that the integrands appearing in (2.4) are not small since B might have large norm. 
Therefore,· it is not possible to use the contraction mapping theorem for solving equation 
(2.4). 

The outline of the proof is as follows. First, it is proved that equation (2.1) and (2.4) are 
equivalent. Then, setting s = 0, the subspace Es = R(P(O)) consisting of bounded solution 
on IR+ is constructed using the Fredholm alternative. Next, suppose that an admissible 
complement EU of Es in xa has been chosen. Then, for a fixed choice of EU' it is shown 
that equation (2.4) has a unique solution (xs(·,s),xu(·,s)) for any fixed s ~ 0 satisfying 
xu(o, s) E Eu. Finally, we verify that these solutions are strongly continuous ins and that 
they satisfy the semigroup properties. 
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Lemma 2.2 Suppose that x = (x 8
, xu) solves equation (2.4) for some z E xa. Then, 

x8 
( ·, s) and xu ( ·, s) solve (2.1) on the intervals J = [ s, oo) and J = (0, s], respectively. 

Conversely, any two solutions x1 (·), x2 (·) of (2.1) on J1 = [s, oo) and J2 = (0, s] are 

solutions of (2.4) with X 8 (t, s) = x1(t), xu(t, s) = x2(t) and z = x1(s) + x2(s). 

Proof. Suppose x = (x 8
, xu) solves equation (2.4). Then, by [B:en81, Lemma 3.5.1], 

the integral operators are continuously differentiable in t since the family B ( t) is Holder 
continuous. Thus, for t i- s, we can differentiate with respect to t and obtain that 

x8 (t, s) = (A+ B(t))x8 (t, s) t > s 
xu(t, s) (A+ B(t))xu(t, s) t < s. 

Therefore, Ax8 (t, s) and Axu(t, s) are continuous, too, and x8 (t, s) and xu(t, s) are solutions. 

Conversely, suppose that x1(t) and x2 (t) solve (2.1). As xi(·) are bounded for i = 1, 2, they 
are solutions of 

x 1 (t) - e-A-(t-s)x~(s) + r e-A-(t-r)B(T)x1 (T)dT - {oo eA+(t-r)B(T)x1(T)dT ls lt . 
x2(t) - e-A-tx~(O) +eA+(t-s)x~(s) + l eA+(t-T) B(r)x2(r)dr 

+lot e-A-(t-T) B( r)x2 ( r)dr, 

by integration. Setting z = x1 (s) + x2 (s), we obtain equation (2.4). 

For a fixed choice of 7J E. [O, c5), and for any t 2:: 0, define 

(2.5) 

equipped with the norms I · I xt and I · I xt, respectively, and set Xt = xts x xtu. 

We construct the stable subspace consisting of bounded solutions of (2.1) defined on IR+. 

For fixed z E xa, we shall solve the equation 

(2.6) - ,.p s <poz = .1.QX , 

for x 8 E X0, where 

(i'ox')(t) = x'(t) - l e-A-(t-T) B(r)x'(r) dr + l"' eA+(t-T) B(r)x'(r) dr 

and (cp0z)(t) = e-A_tz fort 2:: 0. Thus, equation (2.6) coincides with the first equation in 
(2.4) evaluated at s = 0 with xu = 0. It is straightforward to verify that <Po : xa -+ X0 is 
bounded. 

Lemma 2.3 The operator To E L(X0) is Fredholm with index zero. 
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Proof. It is straightforward to show that To is a bounded operator from X0 into itself. 

The operator To is of the form To= id +Ii+ h, where 11 and 12 are the integral operators 

(lix')(t) = - l e-A-(t-T) B( r)x' ( r) dr 

(I2x')(t) = ['° eA+(t-r) B(r)x'(r) dr. 

We claim that I1 and 12 can be written as sums of arbitrarily small, bounded operators 8j 

and compact operators Kj for j = 1, 2. Apparently, this will prove the lemma. 

For any t* 2:: 0, we may decompose 11 = 81 +Kl according to 

(K1x')(t) = l 
(S1x')(t) · = { 

-l e-A-(t-T) B(r)x'(r) dr 
t* 

-e-A-(t-t*) lo e-A-(t*-r)B(r)xs(r) dr 

0 fort:::; t* 

- r e-A-(t-r)B(r)x 8 (r)dr fort 2:: t*. 
it* 

for t :::; t* 

for t 2:: t*, 

As 81x8 and Kix8 are continuous at t = t*, they map X0 into itself. Moreover, for large 
t*, we have 

ll81llL(X. 8 ) :::; C sup llB(t)llL(xa,x) :::; CE. 0 t'2_t* 

It remains to prove that Kl is compact. The proof for compactness of K1 depends on 
whether Hypothesis 4 or 5 is satisfied. 

First, assume that Hypothesis 4 is met. Restricting the images K 1x 8 to the interval [O, t*], 
it follows that Kl maps X0 continuously into c0,K([O, t*], XK) for some small l'i, > O, see 
[Hen81, Lemma 3.5.1]. As A has compact resolvent, the inclusion XK y. X is compact. 
Thus, by Arzela's theorem, the space c0,K([O, t*], XK) is precompact when regarded as 
a subset of ,.YO. Thus, Kl is a compact operator as it is the coin.position of the above 
restriction with the bounded multiplication operator associated with 

id for 0 :::; t :::; t* 
e-A-(t-t*) for t* :::; t. 

Next, assume that Hypothesis 5 is met. Then the proof is similar to the one above. Note 
that B(t) = 8(t) + K(t) with 8 small. Subsume the part of Kl associated with the 
operator 8(t) into 81 . The remaining term of Ki associated with K(t) is compact. Indeed, 
it maps Xcf continuously into c0,K([O, t*], X) since e-A-(t-r) maps .i into itself. Finally, 
c0,K([O, t*], X) is a precompact' subset of Xcf. 

The proof for l 2 is similar. II 

We denote the stable subspace at t == 0 by 

E 8 := (To-1 (R(<Po)))(O) = {z E xa; 3x8 E Xo with ToX 8 = <Poz}. 

11 



In other words, Es consists of all initial values yielding bounded solutions on [O, oo ). Note 
that Es is closed as To is Fredholm, see Lemma 2.3, and R( <Po) is closed. 

Lemma 2.4 The equality 

dimN(P-IEs) = dimN(To) = codimR(To) = codimx_ P_Es = ks 

holds for some ks < oo. 

Proof. We start by showing the first equality. The mapping 

N (To) r-7 N ( P-1 Es) 
xs(·) 1-7 xs(o) 

is well defined, continuous and one-to-one by the uniqueness assumption 3. It is also onto 
by construction of Es. This proves dim N ( P _I Es) = dim N (To) = k < oo. 

Next, choose a complement V_ of P_Es in X_. By construction, for any z E V_, the map 
t-+ e-A-tz is not contained in R(T0). Thus the mapping z E V_ -+ e-A-·z E X0 maps the 
complement V_ of P_Es in X_ one-to-one into a complement of R(To) in XQ. This implies 
codimx_ P_Es ~ codimR(To) = k. 

We shall use the adjoint equation 

(2.7) e =-(A*+ B(t)*)e, e EX* 

to show equality. Note that results obtained so fat apply to the adjoiri.t equation as well, 
see the comments in Section 2.1. It is easy to see that 

d 
-(e·x)=O dt 

for arbitrary solutions e and x of (2.7) and (2.1), respectively. Since all bounded solutions 
xs satisfy the estimate jx8 (t)lxa ~ Ce-11tlxs(o)jxa, any bounded solution of the adjoint 
equation has to annihilate Es at t = 0. Call E! the subspace of X* consisting of initial 
values e(o) of bounded solutions for (2.7). Next, we apply the arguments obtained thus far 
to the adjoint equation. The configuration space X* can be written as X.f. x X~. Therefore, 
using the arguments given so far, the stable subspace satisfies 

oo > dimN (P~IE:) = k* ~ codimx+ P~E!. 

Hence, using that E! annihilates Es, we obtain 

k* - dimN (Pt.IE:) ~ dimN (P-t.IAnnih.(Es)) 
= dim{(e-,o} E (X~)* x (Xt)*; e- · z_ = 0 \:/z_ E R(P_Es)} 
- codimx_ (P _E8

) ~ k. 
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Repeating the same argument for the adjoint system and using reflexivity of X, yields 

and 

k = k** < codim * P* Es < k* < k - X+ + * - - ' 
where the strict inequality holds if and only if dimN(P-IEs) > codimx_ (P_Es). 111 

Next, choose a complement Eu of Es in xo: subject to 

To accomplish this, choose for instance complements E'!!.. and E'+. of P_Es in X~ and 
N(P-IEs) in X.+, respectively. Then E'!!.. x E+ c X~ x X.+ is a complement of Es in xo: 
satisfying the above condition with ku = ks. 

For any closed subspace E ~ X, we define the closed subspace 

of Xl x xtu. This incorporates a fixed choice of Eu = N(P(O)) into our functional analytic 

setting. 

For fixed s, the right hand side of equation (2.4) defines an operator denoted T5 

(2.8) 

while the left hand side defines a bounded operator 'Ps : xo: -7 x[-+ given by 

(2.9) 
(cpsz)s(t) = e-A-(t-s)z_ 
(cpsz)u(t) = eA+(t-s) z+ 

with bound independent of s. 

t 2:: s 2:: 0 
0 ~ t ~ s, 

Proposition 1 For any fixed s 2:: 0, the operator Ts defined by {2.8) is an isomorphism, 

when considered as a map Ts : X°!u ---+ xf-+. 

Proof. First, notice that Ts is well-defined and bounded independently of s. Indeed, Ts is 
bounded as an operator from xs x xu into itself and its bound does not depend ons. Also, 
for any admissible choice of Eu, the range of Ts is included in x[-+, so Ts is well-defined. 
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Indeed, the only term appearing in the equation for xu in (2.4) which does not belong to 
x+ is the integral 

However, this term vanishes at t = 0. 

We claim that 

(i) N(Ts) = {O} and 

(ii) Ts is Fredholm with index zero for B = 0. 

By arguments similar to those given in Lemma 2.3, we conclude from (ii) that T5 is Fredholm 
with index zero for any -perturbation B satisfying Hypothesis 2 for c small enough. Note 
that c can be chosen independent of s since it depends only on the norm of P _ and the 

decay rates 8 and 77. Then the first assertion shows that Ts is one-to-one and thus, using 
the second assertion (ii), onto. Therefore, by the closed graph theorem, T 5 is continuously 
invertible. 

I 

With a slight abuse of notation, but for the sake of clarity, we write elements ( x 5 
( ·), xu ( ·)) E 

X5 as (x 5
(·, s), xu(-, s)) indicating the domain of definition. 

We first prove (i). Suppose that T5 (x5, xu) = 0 for some (x 5
, xu) E X!u. This implies 

xu(s, s) = -x5 (s, s) by adding the two equations in (2.4). Thus, the function 

(2.10) -s( .) { xu(t, s) x t,O := 
-x5 (t, s) 

for 0 ::; t ::; s 

for s ::; t ::; oo 

is continuous. Using the definition (2.9) of cp, we claim that x5 (t, 0) solves 

(2.11) T0 (x5,0) = cp0 (x:(o,o),x+(o,o)) = cp0 (x~(O,s),x+.(o,s)), 

that is, 

e-A-tx~(O, s) = x5 (t, 0) + J.00 

eA+(t-r) B(T)x5 (T, 0) dT 
t t - lo e-A-(t-r) B(T)x5 (T, 0) dT (2.12) t 2:: 0 

x'.J-(0,s) = - lo°" e-A+rB(r)X'(r,O)dr t = 0. 

By assumption, (x 5
, xu) satisfies (2.4) for z_ = z+ = 0, that is 

(2.13) 

0 = x 5 (t, s) + e-A_t x~(O, s) + J.00 

eA+(t-r) B( T)x 5 (T, s) dT 

-1t e-A-(t-r)B(r)x'(r, s) dr +in' e-A-(t-r) B(r)xu(r, s) dr 
s t 0 

0 = xu(t, s) - e-A_t x~(O, s) - f. eA+(t-r) B(T)xu(T, s) dT 
0 s 00 

+ /, e-A-(t-r)B(T)xu(T,s)dT- f. eA+(t-r)B(T)x5 (T,s)dT 
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fort 2 s and t :::;; s, respectively. Using (2.10) and distinguishing the cases t :::;; s and t 2 s, 
it is seen that (2.12) and (2.13) are identical. 

Thus xs(t,0) solves (2.11). However, xs(o,o) = xu(o,s) E EU and, at the same time, 
belongs to Es as it is a bounded solution of (2.4) at s = 0. Therefore xs(o, 0) = O vanishes 
since Eun Es = {0}. By the uniqueness hypothesis 3, we conclude xs (t, 0) = O for all t 2 O, 
which proves (i). 

It remains to prove (ii). For B = 0, the equation Ts(xs, xu) = (gs, gu) E XsX+ reads 

(2.14) 
x+(t,s) g:j_(t,s), 
x+(t,s) = g+(t,s), 

x~(t, s) g~(t, s) - e-A_tx~(O, s) 
x~(t,s) = e-A-tx~(O,s). 

First, suppose that g = (gs,gu) = 0. Then, for any x~(O,s) satisfying (x~(O,s),O) E 

N(P+]Eu ), we get a unique solution of (2.14) in X!u. Note that dimN(P+!Eu) = ku~ On 
the other hand, we can solve for any g provided g+ (0, s) E P +Eu which defines a subspace 
of x;+ of codimension ku. This proves (ii) and thus the proposition. 11 

Finally, we show the assertions of Theorem 1. 

Proof of Theorem 1. Similar to (2.5), we define the function spaces 

with 

and set 

xs = {x E c0(D5, xa); lxlxs := SUP(t,s)EDS e111t-s1 lx(t, s)lxa < 00} 
xu = {x E c0(Du,xa); lxlxu := SUP(t,s)EDU e111t-sllx(t,s)lxa < oo} 

Ds = {(t,s); t 2:: s 2 O} and Du= {(t,s); s 2:: t 2 O}, 

XE = {(xs,xu) E xs x Xu; xu(O,s) EE for alls 2:: 0} 

for any closed subspace E of xa. As before, the left hand side of (2.4) defines a bounded 
operator 

Let T be the operator defined by the right hand side of (2.4). We shall solve Tx = cpz. 

We claim that T: xEU --r xx+ is an isomorphism. Notice that T is well-defined - see the 
proof of Proposition 1 - and continuous. 

Assuming that x E N(T), we get x(·, s) E N(Ts) for any s 2:: 0 whence x(·, s) ~ 0 by 
Proposition 1. Thus N(T) = {0}. 

It is more difficult to prove that T is onto. Due to Proposition 1, there exists a unique. 
family x(·, s) solving T8 x(·, s) = 'PsZ for any fixed s. This family solves Tx = cp provided 
x(·, ·) E xEu. In particular, we have to show that x(·, s). is continuous in s and decays 
exponentially uniformly ins. Denoting the unique solution (x 8

, xu) of Ts(xS, xu) = 'PsZ by 
(x 8 (t; s, z), xu(t; s, z)), we shall prove the following. 
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(i) Invariance and semigroup properties. 
X8 

( t· T X8 
( T S Z)) = X8 

( t· S Z) ' ' ~ ' ' ' t?:_T?:_S 
x 8 (t; T, xu(r; s, z)) = 0 T :'.S t, S 
xu(t; T, xu( Tj s, z)) = xu(t; s, z) t'.ST'.SS 
xu(t· T x 8 (T s z)) - 0 '' '' - T ?:_ t, S. 

(ii) Continuity. 
x 8

(·; ·, z) and xu(-; ·, z) are continuous. 

(iii) Exponential decay. 
lx 8 (t; s, z)lxa ::; ce-77lt-sl lzlxa t ?:. s 
lxu(t; s, z)lxa ::; ce-77 lt-sl lzlxa t ::; s. 

First consider (i). Let T?:. s, and define z := x 8 (T; s, z) and 

(2.15) 
y8 (t) := x 8 (t; T, 2) = X 8 (t; T, X 8 (T; s, z)) 
yu(t) := xu(t;T,z) = xu(t;T,x8 (T;s,z)) 

t ?:_ T 
t::; .T. 

By definition, (y8, yu) = (x8, xu)(·; T, z) solves Tr(y8, yu) = 'PrZ, that is, 

(2.16) 
e-A-(t-r)z_ = (Tr(y8,yu))s(t) 
eA+(t-r) 2+ = (T,. (y8, Yu) )u ( t) 

t ?:_ T 
t ::; r, 

where (Try) 8 and (Try)U are the components of Try in x; = x; x x;:. 
On the other hand, using the definition z = x 8 (T; s, z), we obtain 

(2.17) i = e-A-(r-•)z_ - e-A-rx~(O;s,z) - lo' e-A-(r-u)B(a)xu(a;s,z)da 

- ['" eA+(r-u) B(a)x'(a; s, z) da + J.r e-A-(r-u) B(?")x'(a; s, z) da. 

Substituting (2.17) into (2.16) yields 

(2.18) 

e-A-(t-s) z_ = [8 e-A-(t-u) B(a)xu(a; s, z) da 
lo T -1 e-A-(t-u) B(a)x8 (a; s, z) da 

+e-A-tx~(O; s, z) + (Tr(y8, yu)) 8 (t) 
0 = ['" eA+(t-u) B(a)x'(a; s, z) da + (Tr(Y', yu))u(t), 

for t ?:. T and t ::; T, respectively. Regarding (y 8
, yu) as unknowns, we can uniquely solve 

(2.18) since Tr is invertible. Thus the unique solution (y8
, yu) is given by (2.15). On the 

other hand, it is straightforward to calculate that 

y8 (t) = x 8 (t; s, z) t?:. T 
yti(t) = 0 t :'.S T 
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solves (2.18) as well, proving two of the four identities in (i). The remaining two are proved 
in a similar way, see also (San93]. 

Next, we shall prove (ii). This is achieved by comparing the solutions x(·, s + h) and x(·, s) 
for small h. First, we take h > 0 and fix z E xa. wi_th lzlxa = 1. The case h < O is proved 
similarly. Define 

= { 
x 5 (t, s + h) 
z-xu(t,s+h) 
xu(t, s + h) 

t '?:. s + h 
s+h"?:.t"?:.s 
t ~ s. 

Then, Yh E X!u since yfi is continuous at t = s +h. With an abuse of notation, we will 
denote the norms I· lxE by II ·II in this paragraph. We claim that the estimate 

t 

(2.19) llTsYh -Tsx(·, s)ll ~ o(l) (1 + llYhil) 

holds for some function o(l) satisfying o(l) --+ 0 ash tends to zero. Assume for the moment 
that (2.19) is true. Since the inverse of Ts is continuous, we then have 

llYh - x(·, s)ll ~ C1llTsYh -Tsx(·, s)ll ~ _o(l)(l + llYhll) ~ o(l)(l + llYh - x(·, s)ll + llx(·, s)jl) 

for some constant C1 > 0 independent of h which we subsume into the o(l) term. Therefore, 
we conclude that llYh - x(·, s)il = o(l)--+ 0 ash tends to zero. Thus, in order to prove (ii), 

it suffices to prove (2.19). 

Note that, by definition, Ts+hx(·, s+h) = 'Ps+h· We shall compare TsYh with Ts+hx(·, s+h). 
Consider t ~ s first. Using equation (2.4) and the definition of Yh, we obtain 

. J.s+h (TsYh)u(t) = (Ts+hx(·, s + h))u(t) - s eA+(t-r) B(r)xu(r, s + h) dr 

J.
s+h 

- s eA+(t-r) B(r)(z - xu(r, s + h)) dr . 

= eA+(t-s-h)z+ + o(l) O(e-77 lt-si) (1 + llYhll), 

since the arguments in the integrals are bounded by llx(·, s + h)ll which is bounded by 

1 + llYh II· Next, consider t 2'.: s +h. Then 

J.
s+h 

(TsYh) 5 (t) = (Ts+hx(·,s+h)) 5 (t)- e-,-A_(t-r)B(r)(z-xu(r,s+h))dr 
s s 

+J. e-A-(t-r)B(r)xu(r,s+h)dr 
s+h 

= e-A-(t-s-h)z_ + o(l) O(e-77 lt-sl) (1 + llYhll) 

holds. It remains to considers~ t ~ s +h. 

(TsYh) 5 (t) = z - (Ts+hx(·, s + h))u(t) - J.'e-A-(t-r) B(r)(z - xu(r, s + h)) dr 

+ 1.•+h eA+(t-r) B( r)z dr + J.s e-A-(t-r) B( r)xu( r, s + h) dr 

= z - eA+(t-s-h)z+ + o(l) O(e-77 lt-si) (1 + llYhil). 
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Summarizing the above inequalities and using T8 x(·, s) = cp8 , we obtain 

t;::: s + h 
s+h;:::t;:::s 
tss 

for some remainder term with norm llRll = o(l) (1 + llYhl!). This completes the proof of 
inequality (2.19). 

It remains to show (iii). In order to prove uniform exponential decay for x 8
, it suffices 

to consider t, s ;::: t* for some t* large. Indeed, as x8 
( t; s, z) = x8 

( t; t*, x 8 
( t*; s, z)) for 

t > t* > s, we can employ boundedness of x 8 (t;s,z) on t,s s t* and obtain the result in 
full generality. Up to this point, we have investigated the operator T on the interval [O, oo). 
However, we may as well restrict to [ t*, oo). On this smaller interval, T is continuously 
invertible as T = id +I for some integral operator I which is small in norm on [ t*, oo) 
as B is small, see the proof of Lemma 2.3 or [San93]. Thus the operators. x 8 (t; s, ·) have 
uniform exponential bounds fort;::: s ;::: t*. The arguments for xu are similar. Note that, 
by calculating the norm of I, the constant Eo determining. the largest admissible norm of 
B ( t) on [ t*, oo) depends only on the choice of the exponent 7J. 

Thus, T is onto and therefore continuously invertible. Finally, we construct the exponential 
dichotomy. Let 

P(t)z = x8 (t; t, z). 

By the semigroup property (i), P(t) is a projection. Moreover, P(t) is bounded as T-1 is. 
The invariance properties of R(P(t)) and N(P(t)) follow immediately from the invariance 
property (i). The uniform exponential bounds can be obtained from the uniform bounds 
on X 8 and xu. 

Finally, by inspecting (2.4), we have 

z EE' ===} z = P_z - fo00 

e-A+T B(r)x'(r; 0, z) dr 

as xu(o; 0, z) = (id-P(O))z = 0. It has been proved in Lemma 2.3 that the integral 
operator is the sum of a compact operator and an operator with norm less than C E for 
some constant C independent of E. 

This completes the proof of Theorem 1. 

2.4 Proof of the corollaries and Theorem 2 

Proof of Corollary 1. The corollary follows easily from the characterization of the stable 
subspaces in Theorem 1. Ill 
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Proof of Corollary 2. It is straightforward to verify that the right hand side of the 
integral equation (2.4) is well-defined and an isomorphism from xEu to xx+ even for 

'f} = 5 provided B(t) decays exponentially as t-+ oo. This proves the claim concerning the 
choice of 'f/· 

The projection P(t) satisfies 

(2.20) P(t)z = z_ - e-A_tx'.'..(O; t, z) - l e-A-(t-r) B( r)xu( r; t, z) dr 

+ f 00 

e-A+(t-r)B(r)x8 (r;t,z)dr. ' it 
We shall prove the corollary using the assumption that B ( t) decays exponentially with rate 
B. Using (2.20) and Theorem 1, we have 

IP(t)z - z-lx• :::; le-A_t x'.'..(O; t, z)lx• + 1 l e-A-(t-r) B(r)xu(r; t, z) drlx• 

+I["' e-A+(t-r) B(r)x'(r; t, z) drlx• 
t ' 

< ce-(o+~)tlzlx· + cG I fo (1 + (t - r)-")e-•(t-rJ e-er e-~(t-rl drl lzlx· 

+cG I [xo (1 + (t - r)-")e-O(r-t) e-er e-~(r-t) drl lzlx• 

< C( e-(8+71 )t + e-Bt) lzlxa, 

which proves the corollary. 1111 

Proof of Theorem 2. If (2.1) has an exponential dichotomy P(t) on IR, any bounded 
solution x(t) ·satisfies (id-P(O))x(O) = 0, since x(t) is bounded for t 2:: 0. Similarly, 
P(O)x(O) = 0 on account of boundedness of x(t) for t ::::; 0. Therefore, x(O) = 0, which 
implies x( ·) = 0 by the uniqueness hypothesis 3. 

Assume conversely, that x(·) = 0 is the only bounded solution of (2.1) on IR. The mild 
formulation (2.1) can be written as 

Denote the corresponding projections of the exponential dichotomies by P(t) and Q(t) 
defined fort E IR+ and t E IR-, respectively. We have R(P(O)) n R(id-Q(O)) = {O}, since, 
by assumption, equation (2.1) has no bounded non-trivial solution on IR. On the ·other 
hand, Lemma 2.4 guarantees that R(id-Q(O)) is an admissible complement to R(P(O)) in 
the sense that we can construct an exponential dichotomy on IR+ with associated projection 
F(t) such that R(F(O)) = R(P(O)) and N(F(O)) = R(id-Q(O)). By the same token, an 
exponential dichotomy exists for t E IR- such that the associated projection at t = 0 is 
again given by F(O). Thus, the projections are continuous at t = 0, whence we obtain an 
exponential dichotomy on IR. 1111 

19 



3 Regularity and nonlinear equations 

In this section, we use the notation 

x 8 (t; s, z) = <I> 8 (t, s)z, 

xu(t; s, z) = <I>u(t, s)z, 

t ?:. s 

t ::; s, 

where z E xa. We shall verify some additional properties for the families <!> 8 
( t, s), 0 ::; s ::; t 

and <I>u(t, s), s?:. t?:. 0 of evolution operators. The statements are similar to the parabolic 
case, where the ranges R(<I>u(t, s)) are finite-dimensional fort::; s. 

Theorem 3 Assume that A and B(t) satisfy the conditions of Theorem 1. Then the evo-
lution operators <!> 8 

( t, s) with t ?:. s have the following properties. 

{i) For any t?:. s, <I> 8 (t, s) has a bounded extension to X satisfying <I> 8 (t, t) = idx and 
<I> 8 (t, r)<I> 8 (r, s)z = <I> 8 (t, s)z for all t?:. r?:. sand any z EX. 

{ii) <!> 8 (t, s), t ?:. s is strongly continuous in (t, s) with values in L(Xf3) for any 0 ::; f3 < 1. 

{iii) F9r any 0 ::; 7, f3 < 1, there is a constant C > 0 such that <!> 8 (t, s) E L(X'Y, Xf3) for 
t > s and 

holds. 

Analogous properties hold for <I>u(t, s) with t::; s. 

Proof. The assertion of the theorem is similar to [Hen81, Theorem 7.1.3]. However, the 
Gronwall-type lemma used in the proof therein is not available in the present setting. The 
integral operators appearing in (2.4) are nonlocal in time and cannot be made small. Thus, 
we have to proceed in a different way. For the sake of clarity, we take the exponential 
weight 'T/ = 0. 

First, we prove (i) and (ii). Note that the claims are true if f3 ?:. a by applying Theorem 
I to the space Xf3. Thus, we would like to solve the equation Tx = r.pz for z E Xf3 with 
/3 < a. However, r.pz is continuous with values in xa only for t -:f. s, but satisfies an estimate 

. as t-+ s, and similarly for (r.pz)u(t). 

The key idea is to subtract the part coming from the autonomous equation, that is the 
operator r.pz, from the solution x(t, s). So, define 

y1(t; s, z) = x(t; s, z) - (r.pz)(t - s). 
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The new unknown y1 solves the equation Ty1 = v}z where r.p1 is given by 

r.p1 z = (id -T)r.pz. 

Again, the_ crucial point is continuity of r.p1 as t ---7 s. We claim that r.p1 is continuous with 
values in X 1 for any r < 1 - a+ (3, and satisfies the slightly better estimate 

as t ---7 s, and similarly for ( r.p1 z) u. Assuming that the claim has been proved, we may 
proceed by induction. Let 

k-1 
yk = x - L (id-T)ir.pz 

i=O 

which solves the equation 
(3.1) 

By the same arguments as in the first step, we shall see that the right hand side of this 
equation is continuous for z E Xf3 with values in xa provided k(l - a) >a - (3. 

So, we have split the solution x in a well-behaving, continuous part yk and explicitly given 
discontinuous parts (id-T)ir.pz, which behave better than r.pz. Choosing k large enough, 
we can solve equation (3.1) as its right hand side is continuous with values in xa. 
From this observation, (i) and (ii) follow immediately. Indeed, the explicit part 

k-1 L (id -T)ir.pz 
i=O 

extends to Xf3 for any (3 < a. Therefore, it suffices to prove the smoothing property for 
the operators (id-T)i. 

The function.r.p1z = (id-T)r.pz is given by 

(rp1z)'(t, s) = - J.00 
eA+(t-r) B(r)e-A-(r-•)z_ dr 

+ 1t e-A-(t-r) B(r)e-A-(r-•)z_ dr -1' e-A-(t-r) B(r)e-A+(r-•)z+ dr, 
s t 0 

(r.p1z)u(t,s) = 1 eA+(t-r)B(r)e-A+(r-s)z+dr 
0 s . 00 -f. e-A-(t-r)B(r)e-A+(r-•)z+dr+ 1 eA+(t-r)B(r)e-A-(r-•)z_dr, t :s; s, 

see (2.4), as the exponential terms disappear due to the definition of r.pz. Note that. this 
property is preserved under the iteration (id-T)k for the same reason as in the proof of 

Proposition 1. 

First, consider the integral 

(fig )(t, s) = J.00 

eA+(t-r) B( r)g( r, s) dr 
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where g(t, s) is continuous fort> s with values in xa: satisfying 

lg(t, s)lxa :::; Cjt - si-e 

as t --+ s for some B > 0. Notice that l1 is continuous for t > s with values in xa:. We 
estimate 

l(lig)(s + h, s)lxa < I f
00 

eA+(s+h-r)B(r)g(r,s)drl ' 
ls+h xa 

< c I roo e8(s+h-r) is+ h - r1-a: is - ri-e drl 
ls+h 

< ChI-a-e 

ash--+ 0 for some constants C and 6 independent of h. Thus, as claimed, the exponent e 
is decreased by 1 - a. The calculations for the other integral operators are similar, and we 
will omit them. 

The proof of (iii) is completely analogous to the above and we will omit it, too. • 

Theorem 1 and 3 are used for obtaining existence of solutions of inhomogeneous linear 
equations 

x =(A+ B(t))x + j(t) f E C0 (1R+, X) 

as well as nonlinear equations 

x =(A+ B(t))x + G(µ, x) 

with G(O, 0) = DG(O, 0) = 0. The associated weak formulation is given by 

e-A-(t-s)z_ = xs(t,s)+e-A_tx~(O,s) 

(3.2) 

+ 1.00 

eA+(t-r) ( B(r)xs(r, s) + F(xs(r, s)) )dr 
tt -1 e-A-(t-r) ( B(r)xs(r, s) + F(xs(r, s)) )dr 
SS 

+lo e-A-(t-r)(B(r)xu(r,s) +F(xu(r,s)))dr 

eA+(t-s)z+ = xu(t,s)-e-A-tx~(O,s) -l eA+(t-r) ( B(r)x"(r, s) + F(x"(r, s)) )dr 
so 

+ f e-A-(t-r)(B(r)xu(r,s) +F(xu(r,s)))dr 
lt

00 -J. eA+(t-r) ( B( r)xs( r, s) + F(xs ( r, s))) dr, 

where Fis replaced by either for G. In the former case, using Theorem 1 and 3, existence 
is easily obtained, see [Hen81, Theorem 7.1.4]. In the latter case, the right hand side of 
(3.2) de~nes a differentiable map from xEU to xx+ with T/ = 0. Also, the linear part is 
invertible as T is. Thus, we may employ an implicit function theorem and obtain solution 
operators <I?s(t; s, z) and <I?u(t; s, z) for t ~ s and 0 :::; t :::; s for small z E xa: depending 
smoothly on z. 
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4 Transverse homoclinic orbits in periodically perturbed equa-

tions 

In this section, we extend the Melnikov theory, see, for instance, [Mel63] or [Pal84], for 
intersections of stable and unstable manifolds to the general class of differential equations 
investigated in the previous sections. With the exception of the proof of Theorem 4, we 
can closely follow the presentation in [Pal84], and will only indicate the changes necessary 
to adapt the proofs given therein to the situation studied here. We refer to [Bla86] and 
[Pet93J for proofs for parabolic equations. 

Throughout this section, we assume that A is a closed operator on X satisfying Hypotheses 
1 and 4 stated in Section 2. Consider the following small non-autonomous perturbation of 
an autonomous nonlinear equation 

(4.1) x =Ax+ G(x) + µH(t, x, µ) (x, µ) E xa x IR 

for some fixed a E [O, 1). Suppose that G E C1•1(Xa, X) with G(O) = O and DG(O) = O. 
The perturbation H belongs to C 1(1R x xa x IR, X) such that, in addition, 

t--+ DtH(t, x, µ) and x--+ DxH(t, x, µ) 

are locally Holder and Lipschitz continuous, respectively, in the sup-norm. Furthermore, 
His periodic in t with period p, that is H(t + p, ·, ·) = H(t, ·, ·) for all t E IR. 

Hypothesis 6 Assume that A meets Hypotheses 1 and 4. Suppose that equation (4.1) has 

a homoclinic orbit forµ= 0, that is a solution q(t) E C1 (1R,Xa)nC0 (1R,X1 ) with q(t)--+ 0 

as t --+ ±oo. We assume that q(t) is the only bounded solution (up to constant multiples) 

of the variational equation 

(4.2) x =Ax+ DG(q(t))x 

along q(t). Furthermore, it is required that the operator DG(q(t)) satisfies Hypothesis 3. 

Note that Hypothesis 2 is met for the variational equation for any E > 0 since q(t) --+ 0. 

With these assumptions at hand, the adjoint equation 

iJ =-(A*+ DG(q(t))*)y 

has a unique, up to scalar multiples, bounded solution 'lj;(t). Furthermore, by Theorem 1, 
equation ( 4.2) and its adjoint equation have exponential dichotomies on the intervals IR+ 

and IR-. Moreover, the results of Section 3 apply to the nonlinear equation ( 4.1), and all 
bounded solutions close to the homoclinic orbit are given by (3.2). 
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We define the Melnikov integral 

(4.3) M(f3) = L: (H(t - {3, q(t), 0), ,P(t)) dt 

for (3 E 8 1 = [O, p]/ rv. Note that M is C 1 in (3. The next theorem characterizes transverse 
intersections of the stable and unstable manifold of zero (more precisely, of the unique 
hyperbolic p-periodic orbit µ-close to zero). 

Theorem 4 Assume that Hypotheses 1, 4, and 6 are met. If there is a number f3o E 8 1 

such that M (f3o) = 0 and M' (f3o) #- 0, then there exist positive constants µo and c5o such 
that equation (4.2) has a unique solution x(t, µ) for anyµ with 0 < lµI < µo satisfying 

sup lx(t, µ) ~ q(t + f3o)lxa :::; c5o. 
tEIR 

As a matter of fact, 

sup lx(t, µ) - q(t + f3o)lxa = O(µ) 
tEIR 

as µ -+ 0 and the variational equation 

(4.4) iJ =(A+ DG(x(t, µ)) + µDxH(t, x(t, µ), µ))y 

has an exponential dichotomy on IR. 

Proof. First, we prove the existence of x(t, µ). We introduce a new variable z by 

x(t) = q(t + (3) + z(t + (3) (3 E IR, 

and write equation ( 4.1) in the form 

(4.5) i = Az + DG(q(t))z + F(t, z, µ, (3). 

with 

F(t, z, µ, (3) = G(q(t) + z) - G(q(t)) - DG(q(t))z + µH(t - (3, q(t) + z, µ). 

On account of Theorem 1 and the hypotheses made, we know tha~ the linear part of equation 
(4.5), that is equation (4.2), has an exponential dichotomy on IR+ and IR-, respectively. 
As in Section 3 and Theorem 3, we denote the solution operators of ( 4.2) by ~i ( t, s) and 
~!(t, s) for t 2:: s E IR+ and s 2:: t E IR+, respectively, and by ~~(t, s) and ~~(t, s) for 
t :::; s E IR- and s :::; t E IR-, respectively. We decompose the subspaces of bounded 
solutions for t -+ ±oo according to 

R(~i(O, 0)) = Y1 E9 spanq(O) and R(~2(0, 0)) = Y2 E9 spanq(O). 
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Solutions of the nonlinear equation ( 4.5) are bounded on IR+ and IR-, respectively, if and 
only if there exist 6 E Y1 and 6 E Y2 such that 

z1 (t) = <I!i(t, 0)6 + l <I!f(t, r )F( r, z1 ( r ), µ, ,6) dr 

-["' <I!'t.(t, r)F(r, z1 (r), µ, ,6) dr 

z2(t) <I!2(t, 0)6 + l <D2(t, r)F( r, z2( r), µ, ,6) dr 

+loo <I!Ht, r)F(r, z2(r), µ, ,6) dr 

fort E IR+ 

fort E IR-, 

respectively. Thus, for any 6 E Y1 and 6 E Y2 near zero, we get bounded solutions 
z1(t;6,/3,µ) and z2(t;6,/3,µ) of equation (4.5) fort E IR+ and t E IR-, respectively, by 
the implicit function theorem, see Theorem 3. The maps (6, /3, µ) --+ z1(t;6, /3, µ) and· 
(6, /3, µ) --+ z2(t; 6, /3, µ) are C1. Next, for any smallµ, we seek e = 6 + 6 E Y1 E9 Y2 and 
/3 E 8 1 such that z1(0; e, /3, µ) = z2(0; e, /3, µ). This is equivalent to solving the equation 

( 4.6) ( <I!t{O, 0) - <I!2(0, O))~ = ]_°
00 

<I!2(0, r)F( r, z2(r, 6, ,6, µ), µ, ,6) dr 

+ fo00 

<I!J.(0, r )F( r, z1 ( r, 6, ,6, µ), µ, ,6) dr. 

According to the proof of Theorem 1, L = ~i (0, 0) - ~2(0, 0) E L(Xa) is a Fredholm oper-
ator with index zero, null space N(L) = spanq(O) and range R(L) = {77 E xa; (77, 'lf.;(O)) = 
O}. Therefore, using Lyapunov-Schmidt reduction, it follows that equation ( 4.6) is solvable 

near /3 = /30 if and only if L: (H(t - ,Bo, q(t), O), .,P(t)) dt = o L: (D13H(t - ,Bo, q(t), 0), .,P(t)) dt of o 

for some f3o E 8 1 . The solution is given by x(t, µ) = q(t + /3(µ)) + z(t + /3(µ), µ) with 
/3(·) E C1((-µ0 ,µo), IR) and /3(0) = /30. This proves the first part of the theorem. 

It remains to show that equation ( 4.4) has an exponential dichotomy on IR. On account of 
Theorem 1, equation (4.4) has an exponential dichotomy on IR+ and IR-, respectively, for 
any smallµ. 

For a bounded solution y(t) of equation (4.4), we set y(t) = x(t, µ) + w(t) such that 

(4.7) w = (A+ DG(x(t, µ)) + µDxH(t, x(t, µ), µ) )w - µDtH(t, x(t, µ), µ) 

- . (A+ DG(q(t, µ)) )w + ( DG(x(t, µ)) - DG(q(t, µ)) + 
µDxH(t, x(t, µ), µ) )w - µDtH(t, x(t, µ), µ) 

= (A+ DG(q(t, µ)) )w + O(µ)w - µDtH(t, x(t, µ), µ). 
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Lyapunov-Schmidt reduction shows that this equation has a bounded solution if and only 
if 

M(µ) .- j_: ( (DG(x(t, µ)) - DG(q(t + {3(µ))) + µDxH(t, x(t, µ), µ) )w(t, µ) 

-µDtH(t, x(t, µ), µ), 'lj;(t + /3(µ))) dt 

= o, 

where w(t,µ) = O(µ) solves the invertible part of (4.7). However, on account of w(t,µ) = 
O(µ), we have 

iif(µ) = -µ i: (D1H(t, x(t, µ), µ) + O(µ), ,P(t + (3(µ) )) dt, 

which is non-zero since M'(/30) =f=. 0. An application of Theorem 2 shows that equation 
( 4.4) has an exponential dichotomy on IR. II 

We proceed by proving the shac;lowing lemma, see also [Bla86] for a proof for the parabolic 
case. We consider the slightly more general nonlinear equation 

(4.8) x = Ax + F( t, x) 

with FE BC1 (1R x xo:,x) for some a E [O, 1) and DxF(t, ·)being Lipschitz. Note that F 
is not necessarily periodic in t. 

Theorem 5 Assume that Hypotheses 1 and 4 are met. Furthermore, suppose equation 
(4.8) has solutions u_n1 (t), uk(t), and Un 2 (t) for -n1 < k < n2 defined on the intervals 
Ln1 = (-oo, t~n1 J, Ik = [tk-1,-tk], and In2 = [tn2 , oo) for -n1 < k < n2, respectively, such 
that 

(i) the variational equation 

iJ =(A+ DxF(t, Uk(t)))y 

has an exponential dichotomy on Ik with projections Pk(t), exponent 8 and bound K for 
-n1 ~ k ~ n2. Also, Hypotheses 2 and 3 are met for the variational equations. 

Then, there exists a positive constant Eo such that the following holds. For any E with 
0 < E < Eo there exists a constant v( E) > 0 such that, if in addition 

(iii) Juk-1(tk-1) - uk(tk-1)Jxa ~ v(E), and 

(iv) JIPk-1(tk-1) - Pk(tk-1)llL(Xa) ~ v(e), 

are met, equation (4.8) has a unique bounded solution x(t) on IR satisfying 

Jx(t) - uk(t)Jxa < E 
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Proof. We define a function u(t) for t E IR by u(t) = uk(t) for t' E h. Then, u(t) 
is Holder continuous except at the points tk. For any fixed 'Y > 0, there is a function 
B(t) E L00 (1R, X) with suptEIR IB(t)lx < 'Y such that F(u(t), t) + B(t) is Holder continuous 
on IR. We approximate u(t) by the unique bounded solution z(t) of the equation 

z = Az + F(u(t), t) + B(t). 

Since the equation z = Az has an exponential dichotomy on IR, the above equation has a 
unique solution. We have the estimate 

ju(t) - z(t)lxa ~ C(1 + v) 

for some constant C > 0. Thus, for v and/ sufficiently small, and due to Hypothesis (ii), 

iJ = (A+ DxF(t, z(t)))y 

has an exponential dichotomy on IR, see [Pal84] for the details. 

Finally, we introduce new coordinates x(t) = z(t) + w(t) and write equation ( 4.8) in the 
form 

w = (A+ DxF(t, z(t)))w + F(t, z(t) + w) - F(t, z(t)) - DxF(t, z(t))w 

+F(t, z(t)) - F(t, u(t)) - B(t). 

For 'Y and v small, we thus obtain a unique solution of equation ( 4.8) employing an implicit 
function theorem. LI 

We now define the· Bernoulli shift. Let N be a positive integer and 

SN= {(ak)kEZZi ak E {O, ... , N - 1} for all k E Z} 

with the product topology. The shift a : SN --+ SN, defined by (a(a))k = ak+l, is a 
homeomorphism. 

Corollary 3 Assume that the hypoth~ses of Theorem 5 are met and that, in addition, 
F(t, x) is periodic in t with period p. Moreover, suppose that (4.8) has a bounded solution 
v(t) and a T-periodic solution u(t) such that 

(i) the variational equation 
iJ = Ay + DxF(t, v(t))y 

has an exponential dichotomy on IR and 

{ii) lv(t) - u(t)lxcx --+ 0 as ltl --+ oo. 
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Then there are co > 0 and functions MN(·) for each N E IN such that, for given € with 
0 < € ~ co and m 2::: MN(c) the following holds. For any a E SN, equation (4.8) has a 
unique bounded solution xa(t) defined on IR satisfying 

(4.9) lxa(t + (2k - l)mT) - v(t + akT)lxa ~ € 

fort E [-mT, mT] and for all k E 7L.. The map cp(a) = xa(O) is a homeomorphism onto a 
compact subset ~ of xa. Furthermore, 

is true for any a E SN. 

Xa(2mp) E ~ 

Xa(2mp) = Xu(a)(O) = cp(a(a)) 

Proof. The conditions of Theorem 5 are satisfied for k E [-no, no] and no E IN if we define 
uk(t) = v(t + akT - (2k - l)mT) and tk = 2kmT form large enough. Thus, for any no, 
we obtain a solution Xano that satisfies inequality (4.9) for k E [-no, no]. The sequence 
of solutions { Xano }noEIN is a Cauchy sequence on compac~ intervals and converges to the 
solution Xa· The remaining part of the proof is similar to the one given by Palmer [Pal84, 
Corollary 3.6]. 1111 

We can interpret the statement of the corollary as follows. The solution v(t) has N parts 
which correspond to the time segments 

[-mT,mT], [(-m + l)T, (m + l)T], ... , [(-m + N - l)T, (m + N - l)T]. 

The solution xa(t) shadows one of these N parts of v(t) in each time segment 

[(2k - 2)mT, 2kmT] 

but switches randomly from one part to another. 

5 An application to semilinear elliptic equations 

In this section, we shall apply Melnikov's method as developed in the last section to semi-
linear elliptic equations. First, we have to relate the abstract equation investigated in the 
previous sections to elliptic equations. Then, elliptic equations on infinite cylinders are 
considered. We state conditions guaranteeing that the theory developed in the present 
paper applies. Finally, a concrete example on the infinite cylinder IR x (0, 7rr is presented. 
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5.1 Abstract elliptic equations 

Let Y be a Hilbert space and L : D ( L) C Y --+ Y a densely defined, strictly positive and 
self-adjoint operator. Moreover, denote the fractional power spaces associated with L by 
ya. In particular, Y1 = D(L). Finally, suppose that g: ya--+ Y is a nonlinearity of class 

Ck for some a E [O, 1) which we will fix from now on. We shall be interested in the abstract 
elliptic equation 
(5.1) Uxx - Lu= g(u) x E IR 

for u E ya. 

Consider the operator 

(5.2) 
( 

0 id ) 1 1 A = L O : Y1 x y2 --+ y2 x Y. 

Then Lemma 2.1 applies. In fact, the projections P± are given by 

_ 1 ( id ±L-t ) 1 1 P± - - 1 : y2 x Y --+ y2 x Y, 
2 ±L2 id 

and the operators A± by 

_ 1 ( Lt ±id) A± - -2 1 _ • 
. ±L L2 

As a matter of fact, the fractional powers are given by 

Aa - -1 ( L 5f ±L a;i ) 
± - 2 ±L~ L]-

with associated fractional power spaces xa = Y 11a x y]-. Consider the equation 

(5.3) 
d 

dx v = Av + G ( v) 

with G(v) = (O,g(v)). As g : ya --+ Y is ck, we see that G: X 0 --+ X is Ck as well. 
Furthermore, it is straightforward to show that A has compact resolvent whenever L has. 

Therefore, it suffices to verify the assumptions made on L and g stated at the beginning of 
this section in order to apply the results in Section 2 and 4 to equation (5.3) which is (5.1) 
written as a first order system in x. We emphasize that similar statements hold if (5:1) is 

of fourth order in x. 

5.2 Semilinear elliptic equations on infinite cylinders 

Consider a scalar semilinear elliptic equation 

( x, y) E IR x n. 
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Here, µ is a small real parameter, h is periodic in x with period p and n c IRn is an open 

bounded domain with smooth boundary. For the sake of simplicity, we consider Neumann 
boundary conditions 

(5.5) (x, y) E IR x an 

where v denotes the outer normal of an. Let Y = L2 (n). Then L = -.6.y + u is a 
self-adjoint and positive operator with compact resolvent and dense domain 

Y1 = D(L) = {u E H 2 (n); avu = 0 on an} 

in Y, see, for instance, [GT83]. Furthermore, we assume that the nonlinearities g and h 
map the space ya smoothly into Y for some a E [O, 1). Depending on the dimension of n, 
this may require some nonlinear growth restrictions for which we refer to the literature. 

The uniqueness assumption 3 is met under very weak conditions on equation (5.4). Indeed, 
Cordes [Cor56, Satz 5] proved that any solution u of class C2 satisfying 

(5.6) 
Uxx + .6.yu + a(x, y)ux + b(x, y)\lyu + c(x, y)u = 0 

u(O, y) = ux(O, y) = 0 

(x, y) E IR x n 
yEn 

vanishes identically u(x, y) = 0 on IR x n provided the coefficients a, b, and c are locally 
Lipschitz continuous. 

Suppose that q(x, y) is a homoclinic solution of (5.4) forµ= 0 satisfying lim1xJ-4oo q(x, y) = 
0. In addition, assume that qx(x, y) is the unique, up to scalar multiples, bounded solution 
of 

(5.7) Vxx + .6.yv + Duxg(y, q, qx, \lyq)vx 

+Dvyug(y, q, qx, Vyq)\lyv + Dug(y, q, qx, Vyq)v = 0, 

which is of the form (5.6). Also, as limlxl-4oo q(x, y) = 0, the coefficients converge for 
Ix I --+ oo to functions depending only on y. 

Thus, the theory developed in the previous sections applies. Indeed, using the results in 

the previous subsection, it is possible to write (5.4) as an evolution equation 

(5.8) d 
dx v = Av + G(~) + µH(x, v) 

where 

A= ( 0 id) 
-.6.y +id 0 

and 

G(v)(y) = 
-g(y, V1, V2~ 'ilyv1) - Vi ) 

-µh(x, y, :1, v2, 'ilyv1) ) . 
H(x, v)(y) = 
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The linearization 
d 

dx v = Av + DG(q, qx)v 

at the homoclinic solution satisfies Hypothesis 3 whenever, for instance, Cordes' result 
applies to (5.7). Also, the smallness assumption 2 is always satisfied based on the above 
remarks. 

5.3 An example on an infinite cylinder 

As an example, we taken= (0, ?rr and consider 

(5.9) Uxx + 1 2 ilyu - u + u2 + µ(1 + h(y)) cos x = 0 ( x, y) E IR x ( 0, 7r) n, 

for n E IN with Neumann boundary conditions 

for (x, y) E IR x 80. 

Here, 'Y i= 0, and h(y) is a smooth function with zero mean, that is Jn h(y) dy = 0. Note 
that the nonlinearity is analytic forµ = 0. Hence the uniqueness hypothesis 3 is satisfied 
since any solution of either (5.9) or its linearization is analytic as well. Though the domain 
n is not smooth, equation (5.9) fits into the setting of the last section. Alternatively, the 
reader may consider the n-dimensional unit· ball using spherical harmonics instead of the 
trigonometric expansion employed below. 

We remark that the reduction to essential manifolds developed by Mielke [Mie94a] applies 
to equation (5.9) provided n = 1. However, as pointed out in the introduction, the re-
sulting manifold will only be of class C1. For n > 1, the results in [Mie91] do not apply 
since they require that the nonlinearity is independent of x. Also, the example can be 
modified easily such that the spectral gaps are not arbitrarily large as required by any 
inertial-manifold reduction - replace, for instance, n as defined above by 11.i=l (0, aj?r) with 
rationally independent constants aj > 0. 

Rewrite equation (5.9) according to 

d~ ( :~ ) ( - 72 ~Y + 1 ~ ) ( :~ ) - ( v~ + µ(1 +
0 
h(y)) cos x ) 

= Av + G(v).+ µH(x, v). 

Let k E IN() be a multi-index and define lkl 2 := ~J=l kJ. Then; the eigenvalues of the linear 
operator A are given by 

fork E IN() 

with associated eigenfunctions 

w± - cosk· 
( 

1 ) n 
k (y) - ±y'l + 72lkl2 ,[ ;Y fork E IN0. 
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In the invariant subspace Wo = span {wt, w0}, the homo clinic solution 

(
3 1 3 1 1 ) (q(x), qx(x)) = 2 sech 2x, - 4 sech 2x tanh 2x 

of (5.9) is found forµ= 0. Consider the variational equation 

(5.10) 
d . 

dx v =(A+ DG(q(x)))v. 

It turns out that the subspaces Wk = span{wt,w;;} are invariant under the flow of (5.10) 
for k E IN0. In the subspace Wk, equation (5.10) reads 

(5.11) Wxx - (1 + r 2 lkl 2 
- 2q(x))w = 0 x E IR, 

where w(x) is the amplitude. We are interested in the set of bounded solutions to this 
equation. First consider the spectrum of the operator 

(5.12) Lw = Wxx - (1- 2q(x))w x E IR. 

The spectrum of L is given by isolated simple eigenvalues Ao = ~' A1 = 0, and A2 = -~ 
with eigenfunctions wo(x) = sech~(~x) and w1(x) = qx(x). The remainder part (-oo, -1] 
of the spectrum is essential spectrum. See [San96, Lemma 2.1] for the proofs. 

Now suppose that 

(5.13) for all l E IN. 

Then the linearized equation (5.11) has non-trivial bounded solutions only for k = 0 and 
Hypothesis 6 holds by non-degeneracy of the homo clinic orbit in the plane Wo. Therefore, 
Theorem 4 and Corollary 3 apply once (5.13) is met. Note that, in particular, (5.13) is met 
if [ > {!. 
In passing, we re:qiark that the subspace Wo becomes normally hyperbolic for r --+ oo. 
In this case, equation (5.9) is posed on a thin domain as can be seen by rescaling the y 

variable. 

It remains to calculate the Melnikov integrals. The bounded solution of the adjoint eq_uation 
d 

dx v =-(A*+ DG(q(x))*)v 

is given by 

(-'l/Jx(x), 'lf;(x)) = (-qxx(x), q:t(x)). 

Therefore, we obtain 

M(f3) = 1: k qx(x)(l+ h(y)) cos(x - (3.) dy dx 

= rrn 1: q(x) sin(x - j]) dx 

= rrn /_
00 

. 
3 

h sin(x - j]) dx 
-00 1 +cos x 

6rrn+l 
= -.-h- sinj). sm 7r 
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For f3 = 0, we have M(O) = 0 and M'(O) =J. 0. Thus, the conclusions of Theorem 4 and 
Corollary 3 apply to this particular example. 

Note that, for non-zero h(y) andµ =J. 0, the subspace Wo is no longer invariant whence the 
solutions ensured by Corollary 3 do have non-trivial y-dependence. These solutions can be 
viewed as complicated equilibria u(x, y) of the parabolic equation 

(5.14) Ut = Uxx + { 2 ~yU - U + u2 + µ(l + h(y)) COS X (x, y) E IR x (0, 7rr 
on the cylinder IR x (0, 7rr. Moreover, for small c, the above results still hold if a term 
µcux is added to (5.9). Then Corollary 3 ensures existence of many travelling-wave solutions 
u(x - µet, y) of (5.14) with non-trivial spatial dependence travelling with non-zero speed 
µc. 
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