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Multi-dimensional modeling and simulation of
semiconductor nanophotonic devices

Markus Kantner, Theresa Höhne, Thomas Koprucki, Sven Burger,
Hans-Jürgen Wünsche, Frank Schmidt, Alexander Mielke, Uwe Bandelow

Abstract

Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic
devices is an important tool in the development of future integrated light sources and quantum
devices. Simulations can guide important technological decisions by revealing performance bottle-
necks in new device concepts, contribute to their understanding and help to theoretically explore
their optimization potential. The efficient implementation of multi-dimensional numerical simulations
for computer-aided design tasks requires sophisticated numerical methods and modeling tech-
niques. We review recent advances in device-scale modeling of quantum dot based single-photon
sources and laser diodes by self-consistently coupling the optical Maxwell equations with semi-
classical carrier transport models using semi-classical and fully quantum mechanical descriptions
of the optically active region, respectively. For the simulation of realistic devices with complex,
multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach
for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of
the photonic structures. For electrically driven devices, we introduced novel discretization and
parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semi-
conductors at cryogenic temperature. Our methodical advances are demonstrated on various
applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon
sources.

1 Introduction

Nanophotonic devices based on semiconductor nanostructures embedded in optical micro-resonators
enable a broad range of applications, including optical telecommunication and signal processing, photo-
voltaics, optical interconnects, medical imaging and sensing [1–5]. The optimal design of novel devices
tailored to specific applications is a considerable challenge, that can be assisted by mathematical
modeling and multi-dimensional numerical simulations. This requires efficient multi-physics TCAD
(technology computer-aided design) simulation tools, which allow for the calculation of electromagnetic
fields in photonic resonators, the electronic structure of semiconductor materials, the carrier transport
dynamics in complex device geometries and the interaction of light with electron-hole excitations in the
optically active nanostructures. TCAD simulation tools enable detailed studies of the complex interplay
of various processes in opto-electronic devices on different time and length scales. Numerical simu-
lations can provide information that are difficult to access experimentally, help to reveal performance
bottlenecks, reduce the development costs of new prototypes, and allow to assess the optimization
potential of particular design adaptations.

This chapter provides a survey on modeling fundamentals, recent advances in numerical methods and
several example applications. Basic concepts of semi-classical carrier transport theory and optical field
calculations are reviewed in Sec. 2. In Sec. 3, the focus lies on coupled opto-electronic modeling of
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Fig. 1. Modeling of semiconductor opto-electronic devices is a multi-physics problem that requires the self-consistent
coupling of physical models for the transport of charge carriers, optical fields and heating effects.

specific nanophotonic devices with quantum dot (QD) active regions. Here we outline a rate equation
based semi-classical QD laser model (Sec. 3.1) and a hybrid quantum-classical modeling approach
developed for QD-based single-photon emitting diodes (Sec. 3.2). Section 4 provides a review of
several recent advances in the development of numerical methods for the drift-diffusion system and
Maxwell’s equations. In particular, we highlight new discretization and path following schemes for
strongly degenerate semiconductors at cryogenic operation temperatures and mixed finite element
methods for the vectorial Maxwell’s equations with controlled high accuracy beyond the limits of
standard tools. The newly developed numerical methods and modeling approaches are demonstrated
with selected example applications in Sec. 5, including QD-based single-photon sources (Secs. 5.1,
5.4), vertical-cavity surface-emitting lasers (Sec. 5.2) and grating couplers (Sec. 5.3).

2 Basic concepts

The mathematical modeling of semiconductor opto-electronic devices is a multi-physics problem, that
requires the self-consistent solution of several different physical models, see Fig. 1. The key problems
are the description of the charge transport in semiconductor devices and the calculation of optical fields
in photonic resonators, which will be reviewed in Secs. 2.1 and 2.2, respectively. These two “building
blocks” are coupled by appropriate models for the light-matter interaction in the optically active region.
As the spatial and temporal scales involved in the problem vary drastically between different devices
(e.g., large-scale broad area lasers, miniaturized nanolasers or single-photon emitting diodes), there
is no general model for the description of the active region of opto-electronic devices. Hence, one
has to resort to approximations that are tailored to the characteristics of the particular device at hand.
Moreover, in the field of modeling of nanophotonic devices, one distinguishes between a semi-classical
theory (quantization of matter, classical optical fields) for conventional semiconductor lasers and a
fully quantum mechanical theory in quantum optical devices. In Sec. 3, the opto-electronic coupling is
presented in detail for vertical-emitting QD lasers (Sec. 3.1) and a QD-based single-photon emitting
diode (Sec. 3.2). As self-heating and other thermal effects often play a significant role in opto-electronic
devices [6–9], the generation and transport of heat is considered as a further building block. The
fully coupled thermo-opto-electronic problem allows for the description of various thermo-electric and
thermo-optical coupling effects. The consistent coupling of the physical models as sketched in Fig. 1
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Multi-dimensional modeling and simulation of semiconductor nanophotonic devices 3

is a non-trivial task and requires particular attention to guarantee important conservation laws and
consistency with fundamental thermodynamic principles.

The macroscopic models for charge and heat transport as well as the models for the optical fields
involve several material parameters and phenomenological relations, that need to be provided by
either experimental data or pre-computed microscopic calculations. This comprises, e.g., the electronic
band structure, carrier scattering rates, strain fields and optical dispersion relations. As above, there is
no general approach and the particularities depend on the device of interest. If certain microscopic
degrees of freedom strongly interact with the macroscopic variables, they can not be regarded as
fixed background parameters and need to be included as dynamically changing variables in the
self-consistently coupled model.

2.1 Electronic transport

The transport of charge carriers in semiconductor devices is described by the van Roosbroeck system
[10, 11], which is a system of three nonlinearly coupled partial differential equations on the computational
domain Ω ∈ Rd, d ∈ {1, 2, 3} that reads

−∇ · ε∇φ = q (C + p− n) , (1a)

∂tn−
1

q
∇ · jn = −R, (1b)

∂tp+
1

q
∇ · jp = −R. (1c)

The electrostatic interaction between the carriers is described by Poisson’s Eq. (1a), that determines
the electrostatic potential φ generated by the (net-)charge density q (C + p− n). Here, q denotes
the elementary charge, n is the density of electrons, p is the density of holes and C = N+

D − N
−
A

is the built-in doping profile. The dielectric constant ε = ε0εs is given by the vacuum permittivity ε0

and the relative permittivity of the material εs in the static limit. The continuity Eqs. (1b)–(1c) describe
the transport and recombination dynamics of the electrons and holes, respectively, where jn/p are the
charge current densities and R is the (net-)recombination rate.

2.1.1 Carrier densities, current densities and degeneration effects

Due to fast intraband scattering processes, the carrier densities in each band thermalize on a very
short time scale such that they can be described by quasi-equilibrium distribution functions. The carrier
densities are given via the state equations

n = NcF

(
µc + qφ− Ec

kBT

)
, p = NvF

(
Ev − qφ− µv

kBT

)
, (2)

where the quasi-Fermi energies µc and µv describe the filling of the respective bands. Here, Ec and
Ev denote the conduction and the valence band edge energy, T is the absolute temperature and kB
is Boltzmann’s constant. The conduction band and valence band effective density of states Nc and
Nv as well as the function F depend on the electronic density of states and the statistical distribution
function. Assuming Fermi–Dirac statistics and parabolic energy bands (effective mass approximation),
the function F is given by the Fermi–Dirac integral

F (η) = Fν (η) =
1

Γ (ν + 1)

∫ ∞
0

dζ
ζν

exp (ζ − η) + 1
, (3)
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Fig. 2. (a) Electron density in GaAs as a function of the quasi-Fermi energy µc for different temperatures. The carrier density
calculated using the Fermi–Dirac integral (solid lines) is compared with the Maxwell–Boltzmann approximation (dashed
lines). (b) Plot of the degeneracy factor gη (η) = g (F (η)) according to Eq. (6), which leads to an enhancement of the
diffusion current. Reprinted, with permission, from Ref. [12]. © 2016 Springer Science+Business Media.

where, e.g., ν = 1/2 in 3D bulk materials or ν = 0 in 2D systems (quantum wells). In the low
density limit (i.e., η < −1), degeneration effects due to Fermi–Dirac statistics are negligible such that
F (η) ≈ exp (η), see Fig. 2. This corresponds to the classical Maxwell–Boltzmann distribution in
kinetic gas theory.

The current densities are driven by the gradients of the quasi-Fermi energies

jn = Mnn∇µc, jp = Mpp∇µv, (4a)

where Mn and Mp are the respective carrier mobilities. In the thermodynamic equilibrium, the quasi-
Fermi energies become a common global constant µeq = const., such that the (net-)current flux is zero.
Using the carrier density relations (2), the current densities can be cast in the drift-diffusion form

jn = −qMnn∇φ+ qDn (n)∇n, jp = −qMpp∇φ− qDp (p)∇p, (4b)

where the diffusion coefficients Dn/p are connected with the carrier mobilities via the generalized
Einstein relations

Dn (n) =
kBTMn

q
g

(
n

Nc

)
, Dp (p) =

kBTMp

q
g

(
p

Nv

)
. (5)

The expressions (5) feature the carrier density-dependent degeneracy factor

g (x) = x(F−1)′ (x) , (6)

which describes a nonlinear enhancement (because of g (x) ≥ 1) of the diffusion current in the
case of degenerate carrier statistics. For F (η) = exp (η), one recovers the classical result g ≡ 1
corresponding to linear diffusion.

2.1.2 Recombination rate models

The (net-)recombination rate R in Eqs. (1b)–(1c) describes various radiative and non-radiative recombi-
nation and generation processes that lead to the annihilation or creation of electron-hole pairs. The dom-
inant processes in opto-electronic semiconductor devices are illustrated in Fig. 3. For Shockley–Read–
Hall recombination, spontaneous radiative recombination and Auger recombination (see Fig. 3 (a)–(c)),
the recombination rate takes the form [13]

R =

(
1− exp

(
−µc − µv

kBT

))∑
α

rα (µc, µv, φ) , (7)
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Fig. 3. Recombination processes in opto-electronic semiconductor devices: (a) Shockley–Read–Hall recombination of an
electron-hole pair via relaxation to an intermediate trap state within the band gap, (b) spontaneous radiative recombination,
(c) Auger recombination via an additional intraband scattering process and (d) stimulated recombination. The picture is
taken from Ref. [13].

where α labels the various processes and rα are process specific (non-negative) recombination rates,
that are derived from quantum mechanical perturbation theory (i.e., Fermi’s golden rule) [14, 15]. The
first factor in Eq. (7) controls the ratio between carrier generation and recombination and vanishes under
thermodynamic equilibrium conditions µc ≡ µv ≡ µeq. This reflects the detailed balance condition due
to the microscopic reversibility of the underlying kinetic equations. For details on the recombination rate
models rα we refer to Refs. [11, 16, 17]. Note that the stimulated recombination rate, see Fig. 3 (d), is
not of type (7), as it depends also on the photon number in the laser mode. We will come back to this in
Sec. 3.1.

2.1.3 Boundary conditions

The van Roosbroeck system (1) must be supplemented with boundary conditions modeling electrical
contacts (Ohmic contacts, Schottky contacts, gate contacts), semiconductor-insulator interfaces or
artificial boundaries of the computational domain ∂Ω. These are typically mixed conditions on disjoint
parts of the boundary given by either Neumann, Dirichlet or Robin boundary conditions. A generic
approach that is very useful for the implementation in numerical software tools are Robin boundary
conditions (boundary conditions of third kind)

n · ∇u+ αu (u− u0) = 0, (8)

where u ∈ (φ, µc, µv) is any of the basic variables, and n is the outward-oriented normal vector on ∂Ω.
The condition (8) is a weighted combination of homogeneous Neumann boundary conditions (αu → 0:
n · ∇u = 0) and Dirichlet boundary conditions (|αu| → ∞: u = u0). For details on specific boundary
condition models we refer to Refs. [11, 17, 18]. of this book

2.2 Optical fields

Optical processes in photonic devices are mathematically described by Maxwell’s equations in terms of
electric fields E(r, t) and magnetic fields H(r, t) in space r and time t. We briefly sketch the models
used in photonics, more detailed information can be found, e.g., in Ref. [19].

Here, we are interested in solutions for specific frequencies ω, therefore the time dependency of
the real electric field E(r, t) is expressed by means of the complex electric field E with E(r, t) =
Re (E exp (−iωt)). Since all field quantities are expressed in this way, the underline character is
dropped and all fields and current densities are complex vectors. In its simplest form, i.e., when the
entire electromagnetic field is generated by an impressed current density Jsource of frequency ω,
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Maxwell’s equations yield

∇× µ(r)−1∇× E(r)− ω2ε(r)E(r) = iωJsource(r). (9)

In Eq. (9) we identify the material properties as permittivity ε = εrε0 and permeability µ = µrµ0,
where ε0(µ0) and εr(µr) are the free space and relative permittivities (permeabilities). For all relevant
optical materials, the relative permeability is µr = 1, and the refractive index n is given by n =√
εr. For the applications discussed in this chapter, Eq. (9) is enhanced to cover three different

settings: (i) light scattering simulations, where external source fields Esource are present, (ii) resonance
mode computations, for investigation of the modal structure of the setup, and (iii) propagation mode
computation for investigation of waveguide structures. To cope with these situations, Maxwell’s equations
are used in properly adapted forms.

In scattering problems on unbounded domains a source field Esource is given which travels through
(unbounded) space, being itself a solution to Maxwell’s equations. Without a scattering object this
would be the only field, i.e., the total field E = Esource. But if it hits an object, a scattered field Escatt is
generated. We compute the field E = Esource + Escatt inside a computational domain Ω which we
also call the interior domain, in contrast to the exterior domain Ωext surrounding Ω. Further we denote
the boundary of the computational domain with ∂Ω.

Let the source field Esource(r), with r in the exterior domain, r ∈ Ωext = R3 \ Ω̄, be given. Then the
general scattering problem in 3D is defined by the following conditions:

1 Interior problem. The field on Ω obeys Maxwell’s equations, Eq. (9).

2 Exterior problem. The field in the exterior domain is a superposition of the source and the
scattered fields Esource and Escatt. Both obey Maxwell’s equations.

3 Continuity of the tangential data and their normal derivative along the boundary of the computa-
tional domain is fulfilled.

4 In the case of time-harmonic fields, the Silver–Müller radiation condition for the scattered field
holds true uniformly in all directions r,

lim
|r|→∞

|r|
[
(∇× Escatt(r))×

r

|r|
− iω

c
Escatt(r)

]
= 0, (10)

where c is the speed of light in the exterior domain.

A typical application of scattering problems is the computation of light fields in single-photon source
devices, see Secs. 3.2 and 5.1 and Ref. [20].

In resonance problems we consider Eq. (9) without sources (i.e., Jsource = 0) as an eigenvalue problem
with the unknown eigenvalue ω and the unknown resonance mode, the eigenvector E. Note that in
the case of active, dispersive media with complex-valued dielectric function ε(r, ω) or leaky optical
cavities (open boundary conditions, e.g., Silver–Müller radiation condition), Eq. (9) is in general a
non-Hermitian eigenvalue problem featuring complex resonance frequencies ω ∈ C. Here, Re (ω) is
the radial frequency of the optical field and Im (ω) corresponds to the width of the resonance (i.e., the
decay rate of the leaky optical mode) [21]. A special challenge is the treatment of the exterior domain.
Either the boundary conditions on the boundary of the computational domain are explicitly known, e.g.,
as a magnetic or electric wall, or methods from scattering problems are applied. A typical application of
resonance problems is the computation of cavity modes in semiconductor lasers. In Sec. 3.1 we outline
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Multi-dimensional modeling and simulation of semiconductor nanophotonic devices 7

the self-consistent coupling of the optical resonance problem with the electronic transport problem for
the simulation of QD lasers. Numerical results on cavity modes in vertical-cavity surface-emittig lasers
(VCSELs) are given in Sec. 5.2.

In mode propagation problems, again we consider Eq. (9) without sources. This time we specialize
the problem further to z-invariant problems: ε = ε(x, y). We take a fixed frequency ω and look for
solutions of the type E(x, y, z) = E(x, y)eikzz with a (unknown) phase velocity kz. We obtain an
eigenvalue problem for the waveguide mode E(x, y) together with its corresponding eigenvalue kz. A
typical application of mode propagation problems is the computation of propagation modes in active
devices and in integrated optical setups, see Secs. 3.1 and 5.3.

2.3 Thermodynamics

Thermal effects can play an important role in opto-electronic semiconductor devices. This includes, e.g.,
thermal lensing and temperature-dependence of the optical gain in semiconductor lasers or self-heating
in light-emitting diodes [22]. Next to an accurate modeling of thermal effects, the thermodynamic
consistency of the coupled system, i.e., the consistency of the model equations with fundamental laws
of (non-)equilibrium thermodynamics, is a major modeling issue.

In the framework of macroscopic device simulation, it is usually assumed that the transport and
generation of heat is governed by the classical heat transport equation. In combination with the van
Roosbroeck system (1), this enables the self-consistent description of several thermo-electric cross
effects including Joule heating, recombination heating and the Thomson–Peltier effect [7, 23–25].
Moreover, the fully consistent thermo-electric model requires modifications in the electronic transport
equations presented in Sec. 2.1. In particular, the current densities (4a) must be supplemented with
an additional driving force ∼ ∇T to account for the Seebeck effect. We refer to Refs. [23, 24, 26] for
details.

The full thermo-opto-electronic model (see Fig. 1) is required to be consistent with fundamental
principles of (non-)equilibrium thermodynamics. This comprises the consistency with the thermody-
namic equilibrium (detailed balance, microscopic reversibility), the consistency with the second law of
thermodynamics (non-negative entropy production rate), Onsager’s reciprocal relations [27] and the
preservation of conserved quantities (e.g., total charge, energy). The GENERIC (General Equation for
Non-Equilibrium Reversible-Irreversible Coupling) formalism [28, 29] of non-equilibrium thermodynam-
ics provides a universal approach to derive coupled and thermodynamically consistent multi-physics
models for, e.g., nanophotonic semiconductor devices, where fundamental physical properties are
encoded in the mathematical structure and symmetry relations of the operators and functionals driving
the system’s evolution [29, 30].

3 Quantum dot based light-emitting devices

In this section, two different types of nanophotonic light-emitting diodes are considered, which are both
based on semiconductor quantum dots embedded in dielectric microcavities. First, in Sec. (3.1), we
describe some essential ideas on a comprehensive simulation approach to QD-based micro-cavity
lasers such as vertical-cavity surface-emitting lasers [31]. The model is based on a multi-species [32]
description of the transport, scattering [33] and recombination dynamics of charge carriers in extended
(bulk) or localized states (wetting layer (WL), QDs) coupled with the vectorial Maxwell equations (9). In
contrast to these laser devices, which are based on macroscopic QD ensembles, the single-photon
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sources considered in Sec. 3.2 contain only a single QD. For this case, we have developed a new hybrid
quantum-classical modeling approach [34–36], which combines the building blocks of Sec. 2 with a
Markovian quantum master equation [37] describing the evolution of the coupled QD-photon system.

3.1 Quantum dot lasers

Semiconductor QD lasers have been extensively studied for applications in telecommunication systems
and were shown to have a variety of excellent properties that are essentially linked to the discrete energy
spectrum associated with the three-dimensional carrier confinement provided by the QDs. Among
others, this includes enhanced opto-electronic efficiency and differential gain, increased temperature
stability, reduced threshold current and broader modulation bandwidth [3, 38].

In this section, we consider a semiconductor laser based on an ensemble of QDs embedded in an
electrically pumped micro-cavity. Most prominent examples are VCSELs, but also micro-disk and micro-
pillar resonators [39] belong to this type of lasers. These devices have a rather complicated geometrical
structure (in comparison with conventional Fabry–Pérot lasers) and their accurate mathematical
description requires a multi-dimensional simulation approach. A semi-classical description of such
devices is achieved by combining the van Roosbroeck system and the vectorial (optical) Maxwell
equations introduced in Secs. 2.1 and 2.2 with microscopic models for the nanostructured gain medium.

The optical field in the laser cavity is subject to the wave equation [40]

∇×∇× E (r, t) +
1

c2
0

∂2

∂t2

∫ ∞
0

dτ εr (r, t, τ)E (r, t− τ) = −µ0
∂

∂t
jsp (r, t) . (11)

The response function εr (r, t, τ) of the semiconductor depends parametrically on the slowly varying
carrier densities in the active region (time scale t) and fast dephasing processes, which lead to
polarization decay (time scale τ ). Here, the response function describes both, the optical gain as well
as cavity losses. The fluctuating current density jsp (r, t) induces a spontaneous polarization that is the
source of spontaneous emission. The electric field is expanded in quasi-normal modes (see Sec. 2.2).
For the sake of simplicity, we focus on the single-mode case E (r, t) = 1

2
e−iωtA (t)E (r) + c.c.

throughout this section, where the modal field E (r) and its complex resonance frequency ω solve the
source-free Helmholtz Eq. (9)

∇×∇× E (r)− ω2

c2
0

ε̃r (r, t, ω)E (r) = 0 (12)

with ε̃r (r, t, ω) =
∫∞

0
dτ eiωτεr (r, t, τ) and outgoing wave conditions (10) on ∂Ω. The evolution

equation for the slowly varying mode amplitude A (t) is derived under rather general conditions
following Refs. [40, 41]. With an appropriate normalization of the modal field, this can be cast into the
photon number equation

Ṅph = 2 Im (ω)Nph + rsp. (13)

In the single mode approach outlined here, only a small additive term describing the coupling of
modes under non-adiabatic conditions is omitted, which can be safely neglected in nanoresonators [40].
Expressions for the spontaneous emission rsp into the given mode, which is a very small quantity in the
lasers under consideration, can be found in Refs. [40–42]. Consequently, stationary lasing with a large
Nph requires an extremely small Im (ω) that thus can be disregarded everywhere except in the photon
number equation (13). Note that Im (ω) contains both, positive contributions from the amplification
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Fig. 4. (a) Sketch of a pin-diode laser structure with an embedded QD layer as optically active gain medium. (b) The
InAs-QDs are grown on a WL acting as an additional 2D-like carrier reservoir. (c) Schematic illustration of scattering
and recombination processes in the active region of the multi-species model. Carriers are injected from the bulk into
the WL states from where they enter the QDs by Coulomb scattering. Only the QD carriers contribute to the stimulated
recombination. Reprinted, with permission, from Ref. [32]. © 2016 Springer Science+Business Media.

by the QDs as well as negative contributions from optical cavity losses. In this sense, the classical
threshold condition corresponds to Im (ω) = 0.

The coupling of the electronic system to the optical field equations is mainly given by the stimulated
recombination rate

Rstim =
ε0

~

∫
Ω

d3r Im
(
ε̃r,QD (r, t, ω)

)
|E(r)|2Nph (t) , (14)

where ε̃r,QD (r, t, ω) is the contribution of the QDs to the permittivity function in Eq. (12). In order to
provide gain, i.e., Im

(
ε̃r,QD (r, t, ω)

)
> 0, the QDs must be sufficiently occupied with electron-hole

pairs. Here, the carrier transport from the contacts of the diode to the QDs comes into play. Current
flow towards the active layer is governed by the van Roosbroeck system (1) introduced in Sec. 2.1.
Within the active layer, the dynamics of the electronic system is more complex. The active region has a
complicated electronic density of states that features bulk scattering states, wetting layer scattering
states confined in one dimension but extended in the other two dimensions, and QD states that are
completely confined to individual QDs. The basic idea of a multi-species model (see Fig. 4) is to
regard carriers in different types of states as different distinguishable carrier species [32]. Just as in
the remaining parts of the device, the flow of bulk carriers within the active layer is also described
by the van Roosbroeck system. The coupling of bulk carriers to WL and QD carriers is achieved by
additional capture/ escape rates Ccap

n/p added on the usual recombination rate R on the right hand side
of the continuity equations (1b)–(1c). In the most simple case, quasi-equilibrium distributions can be
assumed, such that these rates are effectively modeled as [6, 43, 44]

Ccap
n =

n

τn

(
1− we

N sat
e,WL

)(
1− exp

(
− µc − µWL

c

kBT

))
Θ (r) ,

where τn is the characteristic scattering time, µWL
c is the chemical potential of the WL electrons and

Θ (r) is an indicator function that is one within the active region and zero outside. The second factor
describes a nonlinear reduction of the scattering rate due to state filling, where we is the sheet electron
density in the WL and N sat

e,WL is a saturation density. An analogous expression holds for holes. In order
to account for electrostatic interaction between bound and continuum carriers, the right hand side of
Poisson’s Eq. (1a) must be supplemented with the WL and QD carrier densities. Carrier transport within
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Fig. 5. (a) Calculated in (solid) and out-scattering (dahses)rates of electrons (solid) and holes (dotted) from the WL to the
QD states and (b) dephasing time T2 = Γ−1

2 as a function of the WL sheet density (we = wh). (c) Material gain spectra for
WL densities {4, 10, 20, 30}× 1011 cm−2. Reprinted, with permission, from Ref. [32]. © 2016 Springer Science+Business
Media.

the WL is described by 2D versions of the continuity Eqs. (1b), (1c) for the WL sheet carrier densities
we and wh supplemented accordingly by capture/ escape terms describing the scattering to both bulk
and QD states, see Fig. 4 (c). We refer to Ref. [32] for further details on the multi-species approach.

Finally, kinetic equations describing the occupation dynamics of the QD states have to be established.
For conventional laser models, this implies a drastic increase of complexity, because the QDs can
be occupied in several different configurations whose energies exhibit a rather wide inhomogeneous
broadening. Different such scenarios have been treated in the literature [45–49]. Here we restrict
ourselves to a rather simple approach based on conventional rate equations describing the dynamics
of the (average) QD electron and hole occupation probabilities ne and nh

∂tne = Se (ne, nh, we, wh)−Rstim (ne, nh, we, wh, Nph)−Rsp (ne, nh) , (15a)

∂tnh = Sh (ne, nh, we, wh)−Rstim (ne, nh, we, wh, Nph)−Rsp (ne, nh) , (15b)

where Sν = S in
ν (1− nν) − Sout

ν nν for ν ∈ {e, h} are the net-capture rates into the QDs and Rstim

and Rsp are the total stimulated and spontaneous recombination rates. The scattering rates S in
ν from

the 2D (WL) and 3D (bulk) reservoirs due to Coulomb interaction can be computed microscopically
using Fermi’s Golden Rule in second order screened Born–Markov approximation, where the screening
can be treated in the stationary limit using the Lindhard formula [33, 50, 51]. The computations involve
high dimensional integrals, that can be evaluated efficiently using the quasi-Monte Carlo method
[33, 52]. Assuming thermalized reservoirs (quasi-equilibrium), the in- and out-scattering rates are
related by the detailed balance principle involving the respective reservoir’s quasi-Fermi energy, e.g.,
Sout
e ∝ S in

e exp (−µWL
c /kBT ) [46]. The characteristic dependency of the microscopically calculated

Auger scattering rates (into a bound InGaAs-QD state) on the reservoir carrier density is shown in
Fig. 5 (a), see Refs. [32, 33] for details. The permittivity function describing the interband polarization of
the QD layer can be approximated as

ε̃r,QD (r, t, ω) =
|dc,v|2

ε0

NQD (ne + nh − 1)

∫
R

dE
G (E)

i (E − ~ω) + ~Γ2 (we, wh, E)
, (16)

where dc,v is the interband dipole moment, NQD is the QD (volume) density, G (E) is a Gaussian
distribution function describing the inhomogeneous broadening of the QD ensemble and Γ2 = T−1

2 is
the microscopically computed carrier-dependent dephasing rate [32, 53], see Fig. 5 (b). The imaginary
part of Eq. (16) is the material gain (with Lorentzian line shape) that enters the stimulated recombination
rate (14). Gain spectra for different reservoir carrier densities are shown in Fig. 5 (c).
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3.2 Single-photon sources

Emitters of non-classical light, such as single-photon sources and sources of entangled photon pairs,
are key components for many applications in the field of optical quantum communication, informa-
tion processing, computing and metrology [54, 55]. Semiconductor device simulation can assist the
development of engineered devices with optimized photon extraction efficiency and efficient current
injection schemes. In this section, we discuss a comprehensive modeling approach for electrically
driven QD-based single-photon emitting diodes. Our model is again based on the van Roosbroeck
system (1) and Maxwell’s wave equation (9), however, here the electro-optical coupling is described by
a fully quantum mechanical model for the coupled QD-photon system. The approach is demonstrated
by applications presented in Sec. 5.1 and Ref. [20].

3.2.1 Photon extraction efficiency and Purcell factor

The single-photon emission of a QD is modeled as radiation of a harmonically oscillating electric dipole
polarized in the plane perpendicular to its growth axis [56]. The frequency domain electric current
density Jsource of such a dipole with strength vector j at a position r0 is given by

Jsource(r) = j δ(r− r0), (17)

which enters the time-harmonic wave equation (9) as a source term. The spontaneous emission rate of
the QD depends on the local density of photonic states of its specific surrounding. This is denoted as
Purcell effect [57] and quantified by the dimensionless Purcell factor FP . That is the total emitted power
Psource of the dipole source in a structured area relative to its emission power Pbulk in a homogeneous
environment with the same background material (with refractive inde nb), and is calculated as follows
[58]:

FP =
Psource

Pbulk
= Psource

(
nbµ0ω

2

12πc0

|j|2
)−1

. (18)

The Purcell factor is closely related to the quality factor Q ∝ FP which characterizes the leakiness of a
device. A typical way to determine the Q-factor is to calculate the corresponding resonance frequency
ω = Re (ω) + i Im (ω) which is an eigenvalue solution to a resonance problem, see Sec. 2.2. With
this, the Q-factor is obtained from

Q = − Re (ω)

2 Im (ω)
= Re (ω) τ , (19)

where τ is identified as the resonance mode lifetime.

Furthermore, one is often interested in the extraction efficiency η, i.e., in the amount of emitted light of
power Pout that is coupled to a specific direction and numerical aperture or into a specific mode. Thus,
η can be calculated as

η =
Pout

Psource
. (20)

A numerical study on the optimization of geometry parameters for the maximization of the light extraction
efficiency from a QD-based single-photon source is reviewed in Ref. [20].

3.2.2 Hybrid quantum-classical modeling of quantum light-emitting diodes

This section describes a comprehensive modeling approach for the device-scale simulation of QD-
based electrically driven single-photon sources. In contrast to the semi-classical approach followed in
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Fig. 6. Schematic representation of the hybrid quantum-classical model system (21). A quantum system described
by a Lindblad-type master equation is self-consistently coupled to the semi-classical transport equations for the freely
roaming continuum carriers. Both subsystems exchange charge by capture and escape of carriers and interact via their
self-consistently generated electric field. Adapted, with permission, from Ref. [34]. © 2017 American Physical Society.

the laser model described in Sec. 3.1, the description of the quantum optical properties of the radiation
generated by non-classical light sources requires a fully quantum mechanical modeling approach in
order to access, e.g., the second-order auto-correlation function g(2) (τ). This can be achieved using
the second quantization formalism to describe the dynamics of the bound QD carriers coupled to the
cavity photons of the optical modes supported by the resonator [38, 50]. The QD-photon system is
an open quantum system that is coupled to its macroscopic environment (continuum carriers in the
surrounding semiconductor, background radiation, phonons). This leads to dissipative dynamics that
are conveniently described by a Markovian quantum master equation in Lindblad form for the (reduced)
density matrix ρ of the open system [37].

The hybrid quantum-classical modeling approach developed in Refs. [34, 59] is based on the self-
consistent coupling of the Lindblad master equation with the van Roosbroeck system. This allows for a
multi-scale simulation of electrically driven quantum light sources, where the quantum optical properties
of the QD-photon system and the spatially resolved injection current in realistic semiconductor device
geometries can be calculated out of one box. The model equations read [34]

−∇ · ε∇φ = q (C + p− n+Q (ρ)) , (21a)

∂tn−
1

q
∇ · jn = −R− Sn (µc, µv, φ; ρ) , (21b)

∂tp+
1

q
∇ · jp = −R− Sp (µc, µv, φ; ρ) , (21c)

∂tρ = − i
~

[H, ρ] +D (µc, µv, φ) ρ. (21d)

The model is based on a separation of freely roaming continuum carriers and bound carrier confined
to the QD (Born approximation). The transport and recombination of continuum carriers is described
by the van Roosbroeck system (21a)–(21c), which is extended by additional terms that constitute the
coupling to the open quantum system. The coupling terms describe the bound charge density Q and
the (net-)scattering rates Sn and Sp between the continuum and bound QD states. The state of the
quantum system is described by the (reduced) density matrix ρ, which evolves according to the Lindblad
master Eq. (21d). A schematic illustration of the model system (21) is given in Fig. 6.

The HamiltonianH of the open quantum system must be chosen appropriately to the particular problem
at hand. In quantum optical problems, a typical Hamiltonian takes the form

H = H0 +HCoul +HLM. (22a)
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The single-particle energies of the electrons, holes and photons are given by

H0 =
∑
i

εe,ie
†
iei +

∑
i

εh,ih
†
ihi +

∑
i

~ωia†iai, (22b)

where ελ,i (λ ∈ {e, h}) denote bound QD energy levels and ~ωi are the energies of the cavity
photons. The fermionic creation and annihilation operators ei and e†i (or hi and h†i ) obey the usual
anti-commutator relations, whereas the canonical commutator relations hold for the bosonic photon
operators ai and a†i . The Coulomb interaction between the bound carriers is described by [50, 60]

HCoul =
1

2

∑
i,j,k,l

(
V e,e
i,j,k,le

†
ie
†
jekel + V h,h

i,j,k,lh
†
ih
†
jhkhl − 2V e,h

i,j,k,le
†
ih
†
jhkel

)
, (22c)

where V λ,λ′

i,j,k,l are the Coulomb matrix elements. The light-matter interaction Hamiltonian (in the dipole-
and rotating wave approximation) reads [38]

HLM =
∑
i,j,k

(
gi,j,keihja

†
k + g∗i,j,kakh

†
je
†
i

)
, (22d)

where gi,j,k are the light-matter coupling coefficients (including also the optical selection rules). A
central feature of the Hamiltonian (22) is

[H, N ] = 0, (23)

where N =
∑

i e
†
iei −

∑
i h
†
ihi is the charge number operator. Hence, the Hamiltonian part of

Eq. (21d) conserves the charge of the quantum system.

Irreversible processes (e.g., capture/ escape of carriers from continuum states to the QD, intraband
carrier relaxation, spontaneous emission, pure dephasing and out-coupling of cavity photons) that arise
due to the coupling of the open quantum system to its macroscopic environment are described by the
dissipation superoperator

D (µc, µv, φ) ρ =
∑
α∈I

∑
ν,`

γα (ν, `;µc, µv, φ)LAα(ν,`)ρ, (24)

where γα is a microscopic transition rate that depends on the state (µc, µv, φ) of the macroscopic
system, LAρ = AρA† − 1

2
{A†A, ρ} is the Lindblad superoperator, Aα (ν, `) is a quantum jump
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operator and α labels the respective dissipative processes. The jump operators are required to obey
the eigenoperator relations

[H, Aα (ν, `)] = −hνAα (ν, `) , [N,Aα (ν, `)] = −`Aα (ν, `) , (25)

where hν is the transition energy (with Planck’s constant h) and ` ∈ Z quantifies the amount of charge
exchanged by the interaction. For each forward process Aα (ν, `), the dissipation superoperator (24)
involves also the corresponding backward process A†α (ν, `) = A (−ν,−`). The respective forward
and backward transition rates are related by a (generalized) Kubo–Martin–Schwinger condition [13]
and satisfy the quantum detailed balance relation in the thermodynamic equilibrium. Due to its additive
structure, the dissipation superoperator (24) can be separated as

Dρ = D0ρ+Deρ+Dhρ, (26)

where the index set I was decomposed into disjoint subsets I = I0 ∪ Ie ∪ Ih. This corresponds to
a classification of the admitted dissipative processes with respect to their action on the charge of the
quantum system. Here, D0 leaves the charge of the quantum system invariant (i.e., ` = 0), whereas
De and Dh describe the exchange of electrons and holes (with ` = ±1 for one-particle exchange
processes), respectively.

Finally, the quantum system couples back to the drift-diffusion system via the QD charge density Q and
the scattering rates Sn,p. The charge density of a single QD can be described by the expectation value
of the charge number operator

Q (ρ) = −w (r) tr (Nρ) , (27)

where w (r) is a (normalized) spatial profile function that describes the localization of the QD carriers
and phenomenologically replaces the absolute square of the many-body QD carriers wave function
(see Fig. 7). The macroscopic (net-)scattering rates in Eqs. (21b)–(21c) read

Sn (uw, ρ) = +w (r) tr (NDe (uw) ρ) , (28a)

Sp (uw, ρ) = −w (r) tr (NDh (uw) ρ) , (28b)

where uw = (〈µc〉w, 〈µv〉w, 〈φ〉w) (with 〈φ〉w =
∫

d3r w (r)φ (r, t) etc.) denotes the spatially
averaged state of the macroscopic system in the vicinity of the QD. The scattering rates (28) summarize
all microscopic charge transfer processes between the macroscopic and the quantum mechanical
subsystem and are – just like the bound charge density (27) – localized according to the spatial profile
function w. The microscopic scattering rates for the capture and escape of electrons γα∈Ie and holes
γα∈Ih are obtained by microscopic calculations [33, 51, 61–63] and need to be parametrized in terms
of the macroscopic potentials uw. With the choice of (27)–(28), the hybrid system (21) inherently
preserves the total charge [34].

3.2.3 Extension by Schrödinger–Poisson system

The hybrid system (21) can be extended by a self-consistent Schrödinger–Poisson system for the
QD carriers to account for the quantum confined Stark effect [35, 36]. This extension is necessary
to describe (bias-dependent) energy shifts of the QD excitons and the detuning of the light-matter
interaction. To this end, the system (21) must be coupled to a (stationary) Schrödinger equation for
each band

H0
e (φ)ψe,i = εe,iψe,i, H0

h (φ)ψh,i = εh,iψh,i, (29)
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Fig. 8. Schematic representation of the extended hybrid quantum-classical modeling approach featuring a self-consistent
Schrödinger–Poisson system, see Sec. 3.2.3 for details. Reprinted, with permission, from Ref. [35]. © 2019 Society of
Photo-Optical Instrumentation Engineers (SPIE).

which describes the (envelope) wave functions ψλ,i and one-particle energies ελ,i, λ ∈ {e, h}, of
the QD electrons and holes in a suitably chosen confinement potential. The Schrödinger Eqs. (29)
are posed on a subdomain Ω0 ⊆ Ω of the full computational domain and are supplemented with
outgoing wave conditions on ∂Ω0. The one-particle Hamiltonians H0

e,h (φ) depend on the device’s
internal electric potential φ in the vicinity of the QD, which is subject to Poisson’s Eq. (21a). As a result,
the (previously static) one-particle energies in the Hamiltonian (22b) are replaced by the eigenvalues of
Eqs. (29), which depend dynamically on the state of the QD’s macroscopic environment. Due to the
dependency on the electric potential, this is in general a non-Hermitian eigenvalue problem [64], whose
solutions are quasi-bound resonance modes with complex energy eigenvalues. The imaginary part
of the eigenvalues describes the resonance’s decay rate. Close to flat band conditions, however, the
decay rate is very small and can be safely neglected such that the wave functions are normalized as∫

Ω0
d3r |ψλ,i (r)|2 = 1 for λ ∈ {e, h}. In this extended version of the hybrid quantum-classical model,

the spatial profile function w (r) localizing the coupling terms (27)–(28) is replaced by the absolute
squares of the (numerically calculated) QD wave functions |ψλ,i (r)|2 [35]. With the correspondingly
modified QD charge density Q (ρ) entering Poisson’s Eq. (21a), this yields a self-consistently coupled
Schrödinger–Poisson problem. A schematic representation of the coupling scheme of the extended
system is shown in Fig. 8.

The extended system (21) & (29) allows for several additional modeling refinements: Just like the single-
particle energies ελ,i, also the Coulomb matrix elements V λ,λ′

i,j,k,l in Eq. (22c) depend on the state of
the QD’s macroscopic environment, because of (i) the variation of the wave function envelopes in the
self-consistently calculated electric potential and (ii) because of screening by the continuum charge
carriers in the vicinity of the QD. In Ref. [35], the plasma screening has been taken into account using
the static, long wavelength limit of Lindhard’s formula [50]. Finally, the light-matter coupling constants
gi,j,k (in Eq. (22d)) and the spontaneous emission rates (corresponding γα∈I0 (ν, `) in D0) can be
supplemented with the respective wave function overlap integrals.

3.2.4 Electro-optical coupling

The key process in QD-based quantum light sources is the spontaneous emission of single photons
due to the recombination of bound electron-hole pairs. This is a dissipative process, that is contained in
the (charge-conserving) dissipation superoperator D0. In the limit of very leaky, low Q resonators, the
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corresponding microscopic transition rate is given by the Weisskopf–Wigner decay rate [37]

γα∈I0 (ν, ` = 0) = FP
(2π)3nb|dc,v|2ν3

3π~ε0c3
0

(1 + nph (hν)) , (30)

where dc,v is the interband dipole moment, nb is the refractive index of the background material and
nph (hν) = (exp (βhν)− 1)−1 is the thermal photon number at the respective electronic transition
energy hν. The Purcell factor FP defined in Eq. (18) quantifies the modification of the free space decay
rate due a modified local density of photonic states at the position of the QD.

3.2.5 Consistency with thermodynamic principles

The hybrid quantum-classical model system (21) has several appealing thermodynamic properties,
which served as a major principle in the construction of the coupled system [13, 34]. Most strikingly,
the system (21) satisfies the second law of thermodynamics, as it was shown to have a non-negative
entropy production rate [34]. Moreover, it is consistent with the thermodynamic equilibrium, where the
solution obeys the (quantum) detailed balance relation (microscopic reversibility) and minimizes the
equilibrium grand potential

Φeq (n, p, ρ) = F (n, p, ρ)− µeq

∫
Ω

d3r (n− p−Q (ρ)) .

Here, F(n, p, ρ) is the hybrid free energy functional that comprises both classical and quantum
mechanical energy contributions [34].

The hybrid system is consistent with the GENERIC formalism (see Sec. 2.3) of non-equilibrium
thermodynamics [65]. The construction is based on gradient structures for both the van Roosbroeck
system (see Refs. [65, 66]) and the dissipation superoperator (24). The latter was first described in
Ref. [67], where the central object is the Onsager operator

K (ρ) 2 =
1

2
βγ̃
([
A†, C−βhνρ [A,2]

]
+
[
A, Cβhνρ [A†,2]

])
, (31)

which involves the tilted Kubo–Mori operator

CαρA = e−
1
2
α

∫ 1

0

ds esαρsAρ1−s. (32)

The transition rate γ̃ in Eq. (31) is connected with the scattering rates in Eq. (24) via γ = γ̃ exp (±1
2
βhν).

For a quantum jump operator A obeying [H, A] = −hνA, the Onsager operator (31) maps the deriva-
tive of the quantum mechanical free energy contribution DρF = H + kBT (log ρ+ I) (where I is
the identity operator) to the dissipation superoperator

∂tρ|diss = −K (ρ) DρF = γ̃
(
e

1
2
βhνLAρ+ e−

1
2
βhνLA†ρ

)
.

Within the GENERIC approach, the non-negativity of the corresponding dissipation rate is guaranteed
by construction and follows immediately from the non-negativity of the Onsager operator K (ρ) ≥ 0
[67]

− 1

T

dF
dt

= − 1

T
tr (DρF ∂tρ) = − 1

T
tr

(
DρF

(
− i
~

[H, ρ]−K (ρ) DρF
))

= +
1

T
tr (DρF K (ρ) DρF) ≥ 0.

Onsager’s reciprocal relations are reflected by the self-adjointness K (ρ) = K† (ρ). Without the
gradient structure, the consistency with the second law of thermodynamics relies on Spohn’s inequality
[68].
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4 Numerical methods

4.1 Numerical methods for the drift-diffusion equations

The numerical solution of the van Roosbroeck system requires a highly specialized discretization
scheme, in order to preserve essential structural properties of the continuous system on the discrete
level. Due to sudden jumps of the doping concentration (e.g., pn-junctions) or the material composition
(heterostructures), the equations are typically stiff, such that it is highly desirable to obtain stable
solutions also on rather coarse grids without additional smallness conditions. These problems have
been, to a large extent, overcome by the finite volume discretization method together with the flux
discretization scheme developed by Scharfetter and Gummel [69]. In this section, we outline the finite
volume Scharfetter–Gummel method for the numerical solution of the van Roosbroeck system (1).
Moreover, we discuss generalizations of the approach for strongly degenerate semiconductors and its
application at cryogenic operation temperatures.

4.1.1 Finite volume method

In this section, we briefly sketch the finite volume method on unstructured grids using restricted Voronoï
cells as control volumes. For a detailed introduction we refer to Ref. [70]. We assume a partition
of the computational domain Ω =

⋃
K ΩK into control volumes ΩK . These control volumes are

typically constructed from the dual mesh of a boundary conforming Delaunay triangulation [71], whose
elements are called restricted Voronoï cells. The discretization of the continuous equations is achieved
via integration over the control volumes and application of the divergence theorem. In the following,
we use the electrostatic potential φ and the quasi-Fermi potentials φn = −µc/q, φp = −µv/q as
basic variables. In the most simple case (homogeneous material, homogeneous Neumann boundary
conditions), we obtain the discrete van Roosbroeck system as [70]

F
φ
(i)
K

=
∑

L∈N (K)

sK,LD
(i)
K,L − q |ΩK |

(
CK + p

(i)
K − n

(i)
K

)
, (33a)

F
φ
(i)
n,K

= q |ΩK |
(
n

(i)
K − n

(i−1)
K

)
+ ∆ti

(
q |ΩK |R(i)

K −
∑

L∈N (K)

sK,Lj
(i)
n,K,L

)
, (33b)

F
φ
(i)
p,K

= q |ΩK |
(
p

(i)
K − p

(i−1)
K

)
+ ∆ti

(
q |ΩK |R(i)

K +
∑

L∈N (K)

sK,Lj
(i)
p,K,L

)
. (33c)

The discrete carrier densities are

n
(i)
K = n(φ

(i)
K , φ

(i)
n,K) = NcF (η

(i)
n,K), η

(i)
n,K = −

Ec − qφ(i)
K + qφ

(i)
n,K

kBT
,

p
(i)
K = p(φ

(i)
K , φ

(i)
p,K) = NvF (η

(i)
p,K), η

(i)
p,K = +

Ev − qφ(i)
K + qφ

(i)
p,K

kBT
,

with nodal values u(i)
K = u (rK , ti), u ∈ {φ, φn, φp}, evaluated at the K-th node rK and time ti (see

Fig. 9). The discrete recombination rate reads R(i)
K = R(φ

(i)
K , φ

(i)
n,K , φ

(i)
p,K). The geometrical factors

are the volume |ΩK | of the K-th cell and the edge factor sK,L = |∂ΩK ∩ ∂ΩL| / ‖rK − rL‖, see
Fig. 9. For time-discretization, we employ an implicit Euler method with time step ∆ti = ti − ti−1. The
summation in the flux terms extends over all neighboring cells L ∈ N (K) adjacent to the K-th cell
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Fig. 9. Delaunay triangulation (grey lines) of a given point set (black dots) and corresponding Voronoï cells (red lines). The
discrete flux (blue arrow) between the two control volumes K and L is given by the projection jK,L along the edge KL
(see text). The flux is weighted by the edge factor sK,L. The picture is taken from Ref. [13].

and involves the discrete flux projections

D
(i)
K,L = (rL − rK) ·D(i) = −ε(φ(i)

L − φ
(i)
K ),

j
(i)
n,K,L = (rL − rK) · j(i)n ,

j
(i)
p,K,L = (rL − rK) · j(i)p .

The discretization of the carrier fluxes j(i)
n/p,K,L requires special attention and will be carried out using

the Scharfetter–Gummel method outlined in Sec. 4.1.2. The linear system

F (φ1 . . . φN , φn,1 . . . φn,N , φp,1 . . . φp,N) = 0 (34)

is solved using a Newton iteration method. Alternatively, a Gummel iteration [72] or combined Gummel–
Newton iteration [73] can be used, which rely on decoupling, linearization and block-wise solution of
the full problem.

4.1.2 Generalized Scharfetter–Gummel scheme for Fermi–Dirac statistics

The typically exponentially varying doping profiles (and therefore also carrier densities) in semiconductor
devices lead to numerical instabilities when using the standard finite difference discretization. In
particular, the naive discretization approach results in spurious oscillations and may cause unphysical
results such as negative carrier densities [70, 74]. A robust discretization scheme for the drift-diffusion
current was introduced by Scharfetter and Gummel [69], who explicitly solved the current density
expressions (4b) as a separate differential equation along the edge KL between two adjacent nodes
of the mesh (we drop the time step index)

q (φL − φK)

kBT
=

∫ nL

nK

dn
g (n/Nc)
jn,K,L

qMn(φL−φK)
+ n

. (35)

Assuming a constant discrete flux jn,K,L, the integral (35) can be carried out analytically in the case of
Maxwell–Boltzmann statistics (g ≡ 1) , leading to a discrete current formula

jn,K,L = MnkBT

(
nLB

(
q (φL − φK)

kBT

)
− nKB

(
−q (φL − φK)

kBT

))
. (36)
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Fig. 10. Comparison of the classical and the modified Scharfetter–Gummel schemes (36) and (37) with a numerically exact
solution of Eq. (35). The nodal carrier densities are nK = 1 × 1018 cm−3 and nL = 3 × 1018 cm−3. GaAs material
parameters are taken from Ref. [17]. The current density projection is scaled with jn,0 = MnkBTNc. The picture is taken
from Ref. [13].

The exponential terms in the Bernoulli function B (x) = x/ (ex − 1) reflect the characteristics of
the doping profile and allow for numerically stable calculations. The so-called Scharfetter–Gummel
scheme (36) smoothly interpolates between the central difference scheme for diffusive currents and
the upwind scheme for convective flows. With the advent of the Scharfetter–Gummel discretization it
became possible to accurately deal with the stiff solutions of the van Roosbroeck system on coarse
grids such that practically relevant devices could be studied with a reasonable computational effort [75].
With some modifications, the method is used in many TCAD simulation tools [76, 77].

In the case of degenerate carrier statistics, the classical Scharfetter–Gummel scheme (36) breaks
down and generalizations of the scheme are required. This is important, e.g., in semiconductor
lasers operating at high carrier densities, organic semiconductors with Gaussian quasi-bands [78] or
quantum light emitting diodes operating at extremely low temperatures [79, 80]. For weakly degenerate
semiconductors following the Blakemore approximation [81], an exact generalization of the Scharfetter–
Gummel scheme was obtained in Ref. [82], however, in the strongly degenerate case no closed solution
of the problem (35) exists, such that one has to resort to approximations. We highlight the approach
developed in Refs. [83, 84], which relies on averaging of the degeneracy factor g → gn,K,L along the
edge. This leads to

jn,K,L = MnkBTgn,K,L

(
nLB

(
q (φL − φK)

kBTgn,K,L

)
− nKB

(
−q (φL − φK)

kBTgn,K,L

))
(37a)

with

gn,K,L =
ηn,L − ηn,K

log (F (ηn,L))− log (F (ηn,K))
. (37b)

The modified Scharfetter–Gummel scheme (37) preserves many structural properties such as the
consistency with the thermodynamic equilibrium and the drift- or diffusion dominated limits, while being
highly accurate independent of the actual carrier statistics or the density of states function [84–86].
Figure 10 shows a comparison of the classical and the modified Scharfetter–Gummel schemes (36) and
(37) with a numerical solution of the integral equation (35) obtained using Gauss–Kronrod quadrature
[85, 87] in the strongly degenerate limit. We refer to Refs. [88–91] for other generalizations of the
Scharfetter–Gummel scheme. The scheme (37) has been used for the simulation of the current flow in
single-photon emitting diodes operating at cryogenic temperatures, in Ref. [34, 35] and Secs. 5.1, 5.4
and [20].
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with permission, from Ref. [12]. © 2016 Springer Science+Business Media.

4.1.3 Electronic transport simulation at cryogenic temperatures

At cryogenic temperatures the numerical solution of the system (33) is a challenging task and subject
to serious convergence issues. Next to strong degeneration effects and sharp internal layers at pn-
junctions and heterointerfaces, the major obstacle in achieving convergent solutions is the extreme
depletion of minority carrier densities in the cryogenic limit. The temperature dependence of the carrier
densities is given in Eq. (2) and plotted in Fig. 2 (a). As a consequence of the very low thermally
activated carrier densities, the Jacobian matrix of the discrete van Roosbroeck system (33) is singular
in finite precision arithmetics [12, 92, 93], such that the numerical solution of Eq. (34) is extremely
sensitive to round-off errors and unfeasible using standard routines.

Indeed, the condition number estimate of the Jacobian matrix for a simple 1D-pin diode problem shown
in Fig. 11 (a) reveals an exponential increase of the condition number for decreasing temperatures, as
long as the diode is biased below the threshold voltage. Beyond threshold, the condition number of
the cryogenic problems suddenly drops to the rather moderate value of the room temperature problem
(300 K), which can be solved with standard methods. The drop of the condition number correlates with
the onset of current flow as shown in Fig. 11 (b). This observation motivates the two-step temperature
embedding scheme introduced in Ref. [12]. Starting from the thermodynamic equilibrium solution at an
elevated temperature (e.g., room temperature), the bias is raised beyond the device’s threshold voltage
until flat band conditions are attained. In a second step, the temperature parameter is successively
decreased until the cryogenic working point is reached. Finally, the actual computations of interest can
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Fig. 12. Continuation scheme for transport simulation at cryogenic temperatures. After reaching flat band conditions at an
elevated temperature, a solution at the cryogenic working point is obtained by successively lowering the device temperature.
Reprinted, with permission, from Ref. [12]. © 2016 Springer Science+Business Media.
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be carried out in the vicinity of flat band conditions. The approach is illustrated in Fig. 12 and circumvents
the numerically intractable regime, by avoiding configurations with extreme carrier depletion.

We refer to Ref. [12] for a discussion of the application of the temperature embedding scheme in
transport simulations in wide gap semiconductors (e.g., III-nitrides, SiC), where similar numerical
problems exist.

4.2 Finite-element approach to Maxwell’s equations

In this section we sketch the finite-element approach to Maxwell’s equations by stating Eq. (9) in its
weak form in Sec. 4.2.1 and by summarizing in Sec. 4.2.2 the finite-element expansion and specific
implementations for applications discussed in Sec. 5.

4.2.1 Variational formulation

We start from the curl-curl-equation (9) for the electric field without sources, multiply with the complex
conjugate of a vectorial test function v, and integrate∫

Ω

dV v∗ ·
(
∇× µ−1∇× E

)
− ω2

∫
Ω

dV v∗ · εE = 0. (38)

Integration by parts yields∫
Ω

dV (∇× v∗) ·µ−1 (∇× E)−
∫
∂Ω

dA ·
(
v∗ ×

[
µ−1∇× E

])
−ω2

∫
Ω

dV v∗ ·εE = 0. (39)

Expressions of this type are the building blocks for the variational formulation of the Maxwell scattering
problem. Let the source field data Esource and∇× Esource at the boundary ∂Ω of the computational
domain Ω be given. A typical variational form of the scattering problem reads, see e.g., Ref. [19]:

Find E ∈ U :

a(v,E) =

∫
∂Ω

dA ·
(
v∗ ×

[
(µc)−1∇× Esource

])
+ aext (v,g) (40)

∀v ∈ U with

a(·, ·) = aint(·, ·) + aext(·, ·),

aint(v,E) =

∫
Ω

dV (∇× v∗) · µ−1 (∇× E)− ω2

∫
Ω

dV εv∗ · E,

aext(v,g) =

∫
Ωext

dV (∇× v∗) · (µc)−1 (∇× E)− ω2

∫
Ωext

dV εcv∗ · E

and g is an arbitrary tangentially continuous function with

g(∂Ω) = Esource(∂Ω), g(∞) = 0,

and

(µc)−1 =
1

|J |
JTµ−1J, εc = |J | J−1εJ−T .

The function space U ensures the tangential continuity of the vectorial fields and the existence of the
first weak derivative. The exterior domain Ωext undergoes a special treatment in terms of complex
continuation of the spatial coordinates to ensure an exponential decay of the scattered field. Practically
this is achieved by a transformation of the material properties µ and ε, where J is the Jacobian of this
transformation.
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4.2.2 Patch-wise tangential continuous, polynomial approximation on unstructured grids

The finite element method (FEM) is based on a variational formulation of Maxwell’s equations con-
structed from integral expressions on the computational domain, such as Eq. (40). The FEM does not
use any approximation to Maxwell’s equations itself, except the discretization of the geometry. However,
it approximates the solution space in which one seeks a reasonable approximation to the exact solution.

The solution space of FEM is constructed by subdividing the computational domain into small, easy-to-
handle patches and by providing a number of tailored polynomials on each patch for the approximation
of the solution. The patches together with these local polynomials are called finite elements. Common
examples of finite elements are triangles and rectangles in 2D and tetrahedrons and cubes in 3D.
The polynomials are mostly constant, linear, quadratic and cubic expressions. These locally defined
polynomial spaces are pieced together in a way that tangential continuity of the electric and magnetic
field across the boundaries of neighboring patches are ensured. Once these local approximations with
proper continuity conditions have been realized, these are inserted into the variational equation. Finally,
this yields a linear system whose solution is a piecewise polynomial approximation of the exact solution.
In summary, the two basic steps in each finite element method for Maxwell’s equations are:

1 Find a variational formulation of Maxwell’s equations.

2 Construct a suitable set of finite elements based on polynomials defined on local geometric
patches. This transforms the variational formulation into a discrete, algebraic problem.

This concept has a number of remarkable properties:

• Complex geometrical shapes can be accurately treated, e.g., roundings can be approximated
well and easily.

• The finite element mesh can easily be refined and adapted to properties of the solution, e.g., for
resolving singularities at corners.

• High order approximations are available and ensure fast convergence.

In order to achieve improved solution methods for Maxwell’s equations in 3D we addressed a series of
numerical problems:

Hierarchic hp-adaptive finite elements

Due to the multi-scale properties of typical nanophotonic structures, conventional finite element dis-
cretizations based on tetrahedrons or hexahedrons are ineffective. We found it necessary to use mixed
meshes composed of tetrahedrons, hexahedrons, prisms and pyramids. Following Ref. [94], we used
an advanced setting based on hierarchical finite elements up to order 9, where the finite elements
are associated to the geometric entities edge, face and cell. E.g., for prism elements, this gives the
possibility to use high-order finite elements in lateral direction, where the lateral size of the element can
be large, and low-order finite elements in vertical direction, where the height of the elements must be
small due to the thin layers. See Fig. 15 for a typical model of a VCSEL which contains multiple length
scales. We also use adaptive schemes which allow to choose between local refinement of the mesh
element size h or local refinement of the polynomial order p of the finite elements, or combinations
thereof [95, 96]. This results in discretizations on unstructured, locally refined meshes with polynomial
order varying over the different mesh elements, so-called hp-FEM discretizations [97].

DOI 10.20347/WIAS.PREPRINT.2653 Berlin 2019



Multi-dimensional modeling and simulation of semiconductor nanophotonic devices 23

Fig. 13. Some examples of decompositions of pyramids, prisms, tetrahedrons, and hexagons. An efficient modeling of
nontrivial geometries requires a careful bookkeeping of the elements and their neighborhood relations.

Modeling the geometry

For the optimization of the entire structure it is necessary to define a parameterized model of the
geometry. Whereas for standard problems advanced computer-aided design (CAD) tools are available,
the analysis of VCSELs and other optical structures requires a number of additional features: These
are the use of mixed meshes, the modeling of isolated structures embedded into heterogeneous and
unbounded exterior domains, and the treatment of exact periodic boundaries. Based on the open
source kernels OpenCascade1 and PythonOCC2 we developed a CAD-tool which meets these needs
plus the standard operations like set operations, extrusions, sweeping, revolving. Examples of mesh
elements and their refinement are displayed in Fig. 13.

Specific implementations for rotationally symmetric geometries and for highly singular fields

We implemented FEM based methods in order to treat the singular fields in the vicinity of dipole sources
by a subtraction-field approach. Further, this treatment has been extended to rotationally symmetric
geometries, where the field radiated by the dipole can be expanded in a series of rotationally symmetric
functions [56]. This approach has been applied in order to model single-photon sources [98].

5 Applications

The models and computational methods described in the previous subsections have been applied in
order to simulate and to design various nanoelectronic and nanophotonic devices. This includes active
devices like VCSELs [99–102], edge-emitters [8, 9, 32, 103–105], QD-based single-photon devices

1www.opencascade.com
2www.pythonocc.org

DOI 10.20347/WIAS.PREPRINT.2653 Berlin 2019

https://www.opencascade.com
http://www.pythonocc.org


M. Kantner et al. 24

[34, 56, 79, 98, 106–111] and organic light emitting diodes [22, 112]. Also passive devices have been
investigated, including metallic and dielectric nanoantennas [113–117] and -resonators [118–124],
dielectric, nanostructured waveguides [95, 125, 126], plasmonic and dielectric metamaterials [127–130],
and couplers for integrated optics applications [115, 131, 132]. In this section we shortly outline some
of these applications.

5.1 Quantum dot single-photon sources

Single-photon sources are fundamental building blocks of future quantum communication networks [5,
133]. Self-assembled semiconductor QDs are excellent candidates for the realization of single-photon
sources in the solid state as they can be easily integrated in dielectric micro-resonators and provide
outstanding optical properties in terms of the suppression of multi-photon emission events and a high
degree of photon indistinguishability [55, 134, 135]. The emission properties of the QD, in particular
the rate of spontaneous emission [57], can be enhanced by tailoring the geometry of its surrounding
structure. Moreover, the efficiencies with which the generated photons are extracted into a specific
direction or coupled into an optical fiber depend strongly on the geometry of the photonic resonator [56,
106, 136].
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Fig. 14. Simulation of a QD-based single-photon source featuring a monolithically fabricated microlens structure at the
surface. (a) Numerically optimized geometry (lens diameter, lens height, QD position, fiber distance) for optimal photon
extraction into a single mode fiber. The energy density of the scattered electromagnetic field is color-coded. The picture
is adapted with permission from Ref. [56]. © 2018 Optical Society of America (OSA). (b) Calculated bias dependence of
the power spectrum P (ω) in a QD-based single-photon emitting diode using the hybrid modeling approach described in
Secs. 3.2.2–3.2.3. The exciton line (X ) is blue shifted due to a combination of the quantum confined Stark effect and plasma
screening. The resonance with the cavity mode (C) appears at U ≈ 1.516 V [35]. (c) 2D cross section of the spatially
resolved current injection at I = 2.75 nA (U = 1.49 V DC bias) and T = 30 K. The geometry of the p-i-n diode structure
is the same as in Fig. 14 (a). Left: Electron density n (color coded) and current density jn (arrows point in the direction
of electron flux). Right: Hole density p (color coded) and current density jp. In the low-injection regime, the scattering of
continuum carriers to the QD is the dominant loss term in the transport equations, such that the QD notably contributes to
current guiding. Adapted with permission from Ref. [35]. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE).
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By numerical simulations of the scattering problem described in Sec. 2.2 for a harmonically oscillating
electric dipole (see Sec. 3.2.1), we have optimized the geometry of the QD-based single-photon
source featuring a microlens structure at the surface. The optimized geometry is shown along with
the energy density of the scattered electromagnetic field in Fig. 14 (a). The geometry optimization in
the high-dimensional parameter space (lens diameter, lens height, QD position, fiber distance and
fiber core diameter) was carried out using a Bayesian optimization approach [56, 137]. For a detailed
description of the numerical method and optimization results, we refer to Ref. [20].

In the interest of compactness and scalability, the realization of electrically driven single-photon sources
is highly attractive for practical applications. We employed the hybrid quantum-classical modeling
approach [34, 35, 59] described in Sec. 3.2.2 to simulate the electro-optical performance of the
electrically contacted single-photon source shown in Fig. 14 (c) (same geometry as in Fig. 14 (a)). Our
device-scale simulation approach allows for a comprehensive characterization of the single-photon
emitting diode, as it describes the spatially resolved carrier injection into the QD, see Fig. 14 (c), along
with the quantum optical features (e. g., second-order correlation function, photon generation rate, line
broadening due to excitation-induced dephasing etc.) of the coupled QD-photon system. With the
inclusion of the Schrödinger–Poisson system (see Sec. 3.2.3), the approach allows to describe line
shifts of the exciton due to a combination of the quantum confined Stark effect and plasma screening
[35], see Fig. 14 (b). A detailed description of the numerical results is given in Ref. [20].

5.2 Vertical-cavity surface-emitting lasers

VCSELs are highly miniaturized light sources with unique properties and with important applications,
e.g., in optical communications [138]. The optical design of a VCSEL cavity includes finding optimum
parameters for dimensions of the various cavity layers, of top and bottom distributed Bragg reflectors, as
well as for apertures or further optical structures. For the design, typically the fundamental resonances
of the structure can be used, as physically observable quantities like the resonance wavelength, the
quality-factor, and the properties of the radiated far-field can be deduced from these. However, solving
the Maxwell eigenvalue problem corresponding to Eq. (9) in this case is involved due to the different
geometrical scales of the problem: thin layers of few nanometers thickness need to be resolved at a
wavelength around one micron and at a total size of the device of about 10 microns in three dimensions
[139], see Fig. 15 (a). In some cases, cylindrical symmetry can be used to reduce the numerical
complexity, other cases do not involve such symmetries. We have demonstrated that using higher-order,
adaptive finite-element methods can yield relative accuracies of the resonance wavelength of better
than 10−8 and of the quality-factor of better than 10−5 [99] for a standard, rotationally symmetric
VCSEL setup, following a design from the literature [139]. Further, convergence to a level of better than
10−5 for the resonance wavelength and 10−2 for the quality-factor has been demonstrated for a fully
3D setup, using elements of fourth polynomial order on a tetrahedral discretization [99]. In the same
context, also coupled thermo-optical simulations have been demonstrated. These allow to quantitatively
determine the impact of thermal lensing in VCSELs.

The developed methods have been applied to design single-mode VCSELs by engineering of the
oxide-aperture geometry and to interpret experimental results from realized structures [100, 101].
A numerically computed electric field distribution is plotted in Fig. 15 (b). For further details on the
engineering of the opto-electronic design of VCSELs we refer to Refs. [141, 142].
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(a)
(b)

Fig. 15. (a) 2D cross section of a cylindrically symmetric VCSEL (setup as in Ref. [140]), the inset shows a detail of the
finite element triangulation, including part of the 5 nm thin and 6 µm wide gain region (orange color ). (b) Visualization of the
computed electric field of the fundamental mode with a resonance wavelength of λ = 980 nm.

5.3 Grating couplers

By using nanostructured high refractive-index materials photonic integrated circuits can be realized
with a small footprint. However, it is challenging to couple light between optical fibers and such
integrated circuits. For this purpose grating couplers have been proposed to be a viable, efficient and
broadband solution [143]. Optical design of grating couplers typically aims at reducing losses and
thereby maximizing the coupling efficiency, which is typically defined as the optical power flux in an
output waveguide directing the light from the coupler to the photonic integrated circuit divided by the
optical power flux in the input optical fiber. The coupling efficiency is derived from the electromagnetic
near field distribution which is obtained from simulating Eq. (9) in the form of a scattering problem.
Therein the source field typically is the propagation mode in the optical waveguide, and the power flux
in the output waveguide is obtained from the overlap integral between the near field distribution with the
guided propagation modes of the output waveguide.

When a 2-dimensional (2D) model is sufficient, triangular meshes and 2D finite elements can be used,
such that typical computation times are in the range of few seconds, which enables fast optimizations
and parameter studies. However, for accurate determination of coupling efficiencies often a full 3D
model is required instead. As the computational domain in this case is relatively large (several tens of
micrometers in each dimension) the problem is computationally demanding. For numerically solving this
problem in 3D we use higher-order finite elements on prismatoidal and tetrahedral meshes. We have
shown that this allows for obtaining results with relative numerical errors of the coupling efficiency as
small as about 10−3 for typical setups [131]. Figure 16 shows a prismatoidal mesh and visualizations
of computed field distributions for a 3D grating coupler model. Also, results from a related convergence
study are shown. Further, the developed methods have been used to design grating couplers capable
of coupling both, fundamental and higher order modes from and to multimode fibers [132, 144]. In a
related context, the methods have also been used to design and optimize coupling between integrated
optical waveguides and plasmonic waveguides [115].
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Fig. 16. (a) Visualization of a part of the mesh discretizing a 3D grating coupler model (blue: Si waveguide, red: SiO2

buffer layer, green: Si substrate, coordinate axes: red/green/blue: x/y/z). (b) Detail of the mesh at oblique viewing angle.
(c) Convergence: Relative error of the field energy in simulations with varied finite element degree (pxy (pz): polynomial
order of the finite elements defined on prismatoidal mesh elements in horizontal (vertical) direction) as a function of CPU time
T (specific problem setup as defined in [131]). (d) Visualization of the computed field intensity distribution in a cross-section
through the waveguide layer. (e) Visualization of the computed field intensity distribution in a vertical cross section through
the center of the device. (f) Visualization of the corresponding phase distribution of the electromagnetic field.

5.4 Efficient current injection into oxide-confined pn-diodes

Current injection into single QDs embedded in vertical pn-diodes featuring oxide apertures is essential
to realize small-scale, integrable single-photon emitting diodes based on the buried stressor growth
technique [145–149]. This requires efficient electrical pumping of sub-micron sized regions under
pulsed excitation to achieve control over the carrier population in the central QDs. In Ref. [79] we
reported on experimental and theoretical evidence for a rapid lateral spreading of the injection current
after passing the oxide aperture in conventional pin-diode designs. This observation clearly contradicts
the naively expected current flow indicated by the red arrows in Fig. 17 and indicates a breakdown of the
current confining properties of oxidized apertures at low injection currents and cryogenic temperatures
(which are the typical operation conditions of single photon emitting diodes). A theoretical analysis of
the phenomenon by means of numerical simulations of the van Roosbroeck system (1) revealed the
absence of carrier recombination in the intrinsic region of the diode as the primary reason for the lateral
current spreading. Due to their long life time, the electrons have an enhanced diffusion length, that
enables the excitation of parasitic QDs in the outer regions of the mesa, see Fig. 17. By an alternative
design employing p-doping down to the oxide layer, the current spreading can be suppressed resulting
in an enhanced current confinement and increased injection efficiencies [79]. For a detailed discussion
of this application we refer to Ref. [150].
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Fig. 17. Illustration of a single-photon emitting diode based on site-controlled nucleated QDs using the buried stressor
approach. The electroluminescence map reveals optical activity of parasitic QDs in the outer region of the mesa, which
indicates insufficient current confinement by the oxidized aperture. The naively expected current path is indicated by red
arrows. The electroluminescence map is reprinted from Ref. [79].

6 Conclusion and Outlook

The computer-aided design and optimization of nanophotonic devices requires efficient numerical
methods and modeling techniques. We have developed novel modeling approaches for the multi-
dimensional, device-scale simulation of single-photon sources and laser diodes based on semiconductor
QDs. To this end, we have coupled the optical Maxwell equations with semi-classical transport theory
(van Roosbroeck system) by appropriate models for the optically active region. This includes a multi-
species model for semiconductor lasers with QD active region featuring a semi-classical description of
the optical response and microscopically calculated Coulomb effects (scattering, gain, dephasing). For
QD-based single-photon emitting diodes, we developed a hybrid quantum-classical modeling approach,
which combines the spatially resolved description of the carrier transport and optical fields with a
fully quantum mechanical model for the light-matter interaction based on quantum master equations
(featuring a dissipative Jaynes–Cummings model).

The application of our models to the numerical simulation of realistic devices with complex, multi-
dimensional geometries and heterostructure designs asks for efficient discretization methods. For the
solution of Maxwell’s equations we introduced a novel hierarchic, hp-adaptive finite element approach
using mixed meshes adapted to the multi-scale properties of the photonic structures. This allows
for improved performance in comparison to standard finite element methods , and for numerical
solutions with controlled accuracy. For the electronic transport problem , the cryogenic operation
temperatures of QD-based single-photon sources impose several numerical challenges due to (i) the
strong degeneration of the electron-hole plasma and (ii) the extreme depletion of the minority carrier
densities. We presented a generalized finite volume Scharfetter–Gummel scheme, to accurately
discretize the drift-diffusion equations for strongly degenerate semiconductors, taking the Pauli-blocking
fully into account (Fermi–Dirac statistics). In addition, we developed a temperature-embedding method
to overcome the stability issues of the discrete carrier transport problem at very low temperatures. The
modeling approaches and numerical techniques are demonstrated on various applications, including
VCSELs, grating couplers and single-photon sources.

The demonstrated advances in self-consistent modeling and multi-dimensional numerical simulation
of nanophotonic devices can reveal the performance bottlenecks in new device concepts, contribute
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to their understanding and help to theoretically explore their optimization potential. This makes nu-
merical simulation an important tool, guiding important technological decisions in the development of
future nanophotonic and quantum devices, such as on-chip single-photon sources and nanolasers for
integrated quantum photonic circuits.
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