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Modeling polycrystalline electrode-electrolyte interfaces:
The differential capacitance

Jürgen Fuhrmann, Manuel Landstorfer, Rüdiger Müller

Abstract

We present and analyze a model for polycrystalline electrode surfaces based on an improved
continuum model that takes finite ion size and solvation into account. The numerical simulation of
finite size facet patterns allows to study two limiting cases: While for facet size diameter dfacet → 0
we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid
surface, in the limit LDebye � dfacet, an ensemble of non-interacting single crystal surfaces is
approached. Already for moderate size of the facet diameters, the capacitance is remarkably well
approximated by the classical approach of adding the single crystal capacities of the contributing
facets weighted by their respective surface fraction. As a consequence, the potential of zero
charge is not necessarily attained at a local minimum of capacitance, but might be located at a
local capacitance maximum instead. Moreover, the results show that surface roughness can be
accurately taken into account by multiplication of the ideally flat polycrystalline surface capacitance
with a single factor. In particular, we find that the influence of the actual geometry of the facet
pattern in negligible and our theory opens the way to a stochastic description of complex real
polycrystal surfaces.

1 Introduction

The theoretical and experimental investigation of polycrystalline electrode surfaces provides valuable
information for the understanding of the performance for many types of real electrochemical devices.
Fundamental concepts like the structure of the electrochemical double layer, double layer capacitance,
Faradaic reaction rate equations and others are derived and verified experimentally for single crystal or
liquid metal electrodes. In either case, the physicochemical properties of these electrodes surfaces
can be idealized as entirely homogeneous. In contrast, real solid metal electrodes are most often
polycrystalline and therefore they expose different crystal facets to the electrolyte, leading to the
inhomogeneity of their physicochemical properties.

In this paper we propose a mathematically sound approach which allows to derive characteristics
of polycrystalline electrodes from a thermodynamically well founded model. We focus on double
layer capacitance and potential of zero charge as equilibrium properties. In particular, we aim at the
characterization of an ideal polycrystalline surface which is characterized by a large ratio between
facet size characterized by the diameter dfacet → 0 and the Debye length LDebye of the electrolyte.
In this regime, the influence of edge effects related to facet boundaries can be neglected such that
compact asymptotic equations defining potential of zero charge and potential dependent double layer
capacitance can be derived. Numerical simulations of the spatial charge distribution in the boundary
layers confirm that contributions from facet boundary effects indeed are marginal. Ultimately, we replace
discrete facet configurations by probability distributions of facets with identical physical properties. This
allows a very compact reformulation of the polycrystalline electrode properties in terms of convolution
integrals.
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TABLE 1 

Potent ia l  values (SCE) in mV of the capacity min imum for a (110)  silver e lectrode in NaF, 
NaC104 and KPF 0 solut ions 

Anion Co ncen t ra t ion /M 

0.1 0.04 0.02 0.01 0.005 

F -  - -1007  - -988 - -982 - -978 - -975 
C107~ - -993  - -983  - -980 - -977 - -975 
PF~ - -980  - -975  - -975 - -975 - -975 

Figure 3 shows the concentrat ion effect on C(E) curves in KPF6 (a) and 
KBF4 (b) solutions. With KPF6, for which the concentrat ion range is suffi- 
ciently extended,  the capaci ty  minimum potential  Em is independent  of 
concentration,  with an accuracy of +3 mV (Table 1); then, no specific adsorp- 
tion or a quite negligible one is inferred. In this case alone, Em is identifiable 
with the pzc, so the (110) silver electrode pzc is --0.975 + 0.005 V (SCE). As a 
consequence of this absence of specific adsorption, the capacity is lower at the 
positive maximum with respect to NaF or NaC104; the behaviour of PFg and 
BF7~ should be identical. From Table 1 it can be seen that  for the 0.005 M solu- 
tion E m is independent  of the nature of the anion. With low concentrations, 
o i for F- and CIOY, are small (O i < <  1 #C cm -2) and Em is not  experimentally 
sensitive to this phenomenon within the limits of accuracy. With each electro- 
lyte the E~ dependence on concentrat ion seems to become significant above 
O.O4 M. 

From Parsons and Zobel graphs [9], straight lines are obtained for all elec- 
trolytes~ their inverse slopes are equal to 1.22 (NaF), 1.17 (NaC104) and 1.10 
(KPF6). Since the weaker the specific adsorption the lower is the inverse slope, 
only for KPF6 is the roughness coefficient R value actually approached, so 1 < 
R < 1.10 + 0.05. 
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Fig. 3. C(E) curves for a (110) silver electrode.  Concent ra t ion  dependence  in (a) KPF6, and 
(b) KBF6 solutions.  
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Fig. 3. C(E) curves for a (110) silver electrode.  Concent ra t ion  dependence  in (a) KPF6, and 
(b) KBF6 solutions.  Figure 1: Left: Computed boundary layer capacity of a single crystal surface for different concentra-

tions of a non-adsorbing electrolyte. Right: Measured capacitance (Fig. 3.a of [VP86], reprinted the
permission of Elsevier)

Surfaces of polycrystalline electrodes in general exhibit a complex unstructured and random pattern of
facets with different crystallographic orientation as sketched in Fig. 2 left. It is well known that the electron
work function depends on the crystallographic orientation of a surface [HS79, TD95]. As a consequence,
the differential capacity and the corresponding potential of zero charge (PZC) of the surface in contact
to an electrolyte depend on the crystallographic orientation as well, cf. [Val81, Val82, Val89].

The development of the classical Gouy-Chapman-Stern-Grahame theory of the electrochemical double
layer [Gra47] strongly relied on experimental measurements at mercury electrodes. Since these
electrodes consist of a liquid metal, their clean surface in contact with an electrolyte typically can be
considered as ideally smooth and physical homogeneous. Thus, when trying to transfer the theory
from liquid to solid metal electrodes, first an awareness about the relevance of surface roughness
and individual properties of surfaces facets of different crystallographic orientation needed to be
established, cf. [Fru67]. Valette and Harmelin [VH73] first related careful capacity measurements of
silver single crystal surfaces with the corresponding experimental results for polycrystalline silver
electrodes. Although not explicitly written in [VH73], a relation of the form (1.1) for the capacity of the
polycristalline surface was assumed. In [BDL80, Vor81], equation (1.1) is derived and analyzed on the
basis of equivalent circuits derived from the Gouy-Chapman-Stern-Grahame model.

In this work, we apply a recently derived model framework on the basis of continuum non-equilibrium
thermo-electrodynamics to describe a polycrystalline electrode-electrolyte interface cf. [DGM13, LGD16].
This model is capable to predict qualitatively and quantitatively the differential capacity of single crystal
electrodes with respect to the applied voltage and with respect to the salt concentration (see Fig. 1). For
a single crystal electrode in contact with a non-adsorbing electrolyte, the capacity is exclusively due to
the charging of the double layer. As long as the bulk electrolyte concentration is not too large, it shows
the typical symmetric camel shape capacitance curve, see Fig. 3 (left), where the potential of zero
charge (PZC) is located at the local capacity minimum and does not change with salt concentration.
The absolute value of the PZC depends on the crystallographic orientation of the metal surface, and
differences between two PZC values are known to correspond well to the respective differences of the
electron work function [TD95, LGD16],

For a polycrystalline electrode surface, we derive expressions of the double layer charge, the potential of
zero charge, and the differential capacitance and compare these to the (theoretically) more simple and
well understood case of single crystal surfaces. The model incorporates the pressure in the electrolyte
as a variable and the momentum balance, which ensures thermodynamic consistency. Further it allows
to account for volume exclusion effects of all species, and especially of the solvation effect. For a review
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Modeling polycrystalline electrodes 3

of the development of generalized Nernst-Planck models we refer to [KBA07] Within some reasonable
scaling it is a remarkable and non-obvious feature of the resulting model that double layer charge, and
subsequently the potential of zero charge, as well as the differential capacity can be determined from
solutions of an algebraic equation system, rather than solving space dependent differential equations.
This even holds true for a stochastic description of a polycrystalline electrode surface, which we show
within this work.

The inhomogeneity of the surface capacitance is commonly believed to cause so called ’frequency
dispersion’ in electrochemical impedance spectroscopy, cf. [Paj94], and the effects of surface inhomo-
geneity can be expected to have even more serious impact in the presence of Faradayic reactions. We
plan to investigate these non-equilibrium aspects in follow-up research.

General approach. We model the polycrystalline electrode surface by a regular surface pattern with
N > 1 different types of facets. Each facet corresponds to certain crystallographic orientation. To each
facet Σi, 1 ≤ i ≤ N , we assign the surface fraction si = |Σi|

|Σ| with
∑N

i=1 si = 1, where | · | denotes
the surface area, and a value of the electron work function. We show, based on our thermodynamic
model of Section 2, that the electric potential ϕ

s

i on each facet Σi is related to the work function, or

in our notation, to the chemical potential µ
s

i
e of surface electrons of the respective surface orientation.

The polycrystalline electrode Σ = ∪iΣi is then considered to be in contact to some electrolytic
solution ΩE, which is in thermodynamic equilibrium described by an improved Poisson-Boltzmann
equation with facet-wise constant boundary values for the electric potential. The adjacent space charge
layer in the electrolyte can be computed numerically. Figure 2 (right, bottom) shows a 3D numerical
computation of the electric potential iso-surfaces in the electrolyte ΩE for a periodical checkerboard
electrode surface. Based on such numerical solution we can compute, (i) the overall double layer charge
Qpoly as function of the applied voltage E, (ii) the potential of zero charge EPZC of a polycrystalline
electrode-electrode interface, and (iii) the corresponding double layer capacity Cpoly (see Figure 2 (right,
top) ). This approach is valid for arbitrary geometries and facet sizes The only assumption here is that
the intersecting lines between two facets do not have independent thermodynamic quantities.

For a non-adsorbing electrolyte 1 we have

(M0)


Qpoly = 1

|Σ|

∫
ΩE
q(x) dx = QBL

poly(E)

EPZC
poly = E s.t. QBL

poly(E) != 0

Cpoly =
dQBL

poly(E)
dE

=: CBL
poly(E)

(1.1)

A scale analysis of the boundary value problem yields two characteristic length scales of the model, the
typical diameter dfacet of the facets Σi and the Debye length LDebye of the electrolyte.

If the facet or facet diameter dfacet is large compared to the Debye length LDebye, the double layer
charge Qpoly can be obtained as a sum of the single facet boundary layer charges QBL, weighted
by their respective surface fraction si. Subsequently, the potential of zero charge EPZC

poly,∞ can be
determined from an algebraic equation system, and the differential capacity Cpoly obeys also an

1Note that specific adsorption is also discussed within this work.
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Figure 2: Sketch of the facet structure of a polycrystalline surface (left) and FEM computation of the
electric potential in the electrolyte in contact with a checkerboard polycrystalline surface (right) with
corresponding double layer charge Qpoly and capacity Cpoly as function of the applied voltage E.

Figure 3: Double layer charge and differential capacitance of a polycrystalline electrode determined
from (1.2) with s1 = s2 = 1

2 .

algebraic representation, i.e.

(M1)
dfacet

LDebye
→∞



Qpoly =
N∑
i=1

si · Q̂BL

(
E + 1

e0
µ
s

i
e − Eref

)
=: QBL

poly,∞(E)

EPZC
poly,∞ = E s.t. QBL

poly,∞(E) != 0

Cpoly =
N∑
i=1

si · ĈBL

(
E + 1

e0
µ
s

i
e − Eref

)
=: CBL

poly,∞(E) ,

(1.2)

where Q̂BL and ĈBL are nonlinear functions specified in section 2. The construction of the capacity
CBL

poly,∞ of a polycristalline electrode in the case of facets with two equal surface fractions is illustrated
in Fig. 3 (right). Remarkably, the potential of zero charge EPZC

poly,∞ of this polycrystalline surface in this
case is located at the capacity maximum and not at a local minimum of the curve!

For realistic polycrystalline electrodes, the consecutive labeling of all facets might be impractical. We
propose thus a stochastic description of the surface in terms of a probability density f , modeling
the surface fraction as function of the surface chemical potential of electrons. We derive in the limit
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Figure 4: Left: densities of the surface chemical potential µ
s
e given by normal distributions with different

standard deviation. Right: Capacity curves for the respective densities (solid —) and for the planar
single crystal case (dotted line · · · ). For large σ, the the capacity has a single maximum unlike the
camel shape for perturbations of the single crystal surface by small σ.

dfacet

LDebye →∞ the model

(M2) dfacet

LDebye
→∞


Qpoly = (f ∗QBL)(E) =: QBL

poly,∞,f (E)

EPZC
poly,∞,f = E s.t. QBL

poly,∞,f (E) != 0

Cpoly = (f ∗ CBL)(E) =: CBL
poly,∞,f (E)

(1.3)

Fig. 4 (left) shows two different distribution functions of the surface fraction and Fig. 4 (right) the
corresponding differential capacitance. Due to the smearing of the normal-distribution, the capacity
minima actually disappear, while the overall shape broadens. We discuss this aspect more in detail
within this work.

In the opposite limiting case, for a vanishing facet diameter dfacet → 0, the potential of zero charge is
given as the surface fraction weighted average of the corresponding single crystal quantities, while the
charge Qpoly and the capacity Cpoly remain non-linear expressions identical to the ones of a typical
single crystal surface, i.e.

(M3)
dfacet

LDebye
→ 0



Qpoly = Q̂BL(E + 1
e0

N∑
i=1

siµ
s

i
e − Eref ) =: QBL

poly,0(E)

EPZC
poly = Eref − 1

e0

N∑
i=1

siµ
s
e|Σi =: EPZC

poly,0

CBL
poly(E) = ĈBL

(
E − EPZC

poly,0
)

=: CBL
poly,0(E) .

(1.4)

Outline. In the next Section 2, we first introduce the general equilibrium conditions of the applied
continuum model and appropriate material models. Then, the differential capacity of a single crystal
surface is introduced and characterized based on the model and a model for polycrystalline surfaces
is developed. Section 3 is devoted to an assessment of the results obtained by numerical solution of
the boundary value problem in 2D and in 3D for periodically patterned surfaces of finite size facets.
In particular, the limiting behaviour for extreme facet size parameters and the influence of surface
roughness on the length scale of the facets are analyzed. Section 4 contains a discussion of the

DOI 10.20347/WIAS.PREPRINT.2640 Berlin 2019
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polycrystal model in the case of large facet size, including the effects of adsorption and the stochastic
description of polycrystalline surfaces. We close with some concluding remarks in Section 5.

2 Continuum model

We use a continuum model that is based on a coupled volume-surface description of charged and
possibly reacting mixtures coupled with the electromagnetic field, see [DGM13, LGD16, DGM18]. In
this model, as a convention, each quantity defined in the volume has a corresponding quantity confined
to the electrode surface Σ. We use the same letters for bulk and surface quantities and indicate the
surface quantities by an underset ’s’. For a surface Σ we choose the orientation of the a normal vector
that we denote by ν. Then, we denote the adjacent bulk volumes by ΩE and ΩM, such that ν is the
outer normal of ΩE. For a generic function u in the volume, we can define the trace2 and jump at Σ by

u
∣∣K
Σ = lim

x∈ΩK→Σ
u(x) , K = E, M [[u]]Σ = u

∣∣E
Σ − u

∣∣M
Σ . (2.1)

Bulk positions far away from the surface Σ are denoted by xK and the evaluation of some function u(x)
the bulk points is denoted by uK = u(xK), K = E, M.

We restrict our considerations to the isothermal case, where the temperature T enters the equations
only as a constant parameter and on the surface there holds T

s
= T |EΣ = T |MΣ. Moreover, we only

consider the electrostatic case where the electric field is given as E = −∇ϕ. Excluding surface
dipoles, the electric potential ϕ is continuous at the surface, i.e. we can set ϕ

s
= ϕ|EΣ = ϕ|MΣ.

Description of mixtures. To refer to the constituents of a mixture on the surface Σ or the adjacent
volume domains ΩK, we use according index sets IΣ, resp. IK of species. For each constituent, we
denote the molecular mass by mα, the partial molar volume by υref

α , the charge number by zα, and the
number density of particles per m3 by nα, where α ∈ IK or α ∈ I§, respectively. Then, we introduce
the partial mass density ρα = mαnα. The free charge density is (K = M, E)

q =
∑
α∈IK

zαnα , q
s

=
∑
α∈I§

zαn
s
α . (2.2)

2.1 Model equations

The continuum model relies on balance equations in bulk and surface that are universal, i.e. independent
of the considered material. However, the equations contain material dependent constitutive quantities
which need appropriate modeling. By application of an entropy principle, cf. [DGM18], we guarantee
non-negative entropy production. The key ingredients for the material modeling are the free energy
densities3 ρψ, ρ

s
ψ
s

in the bulk and on the volume, respectively. Within this work, we assume a simple

material model with a constant dielectric susceptibility χ and thus consider free energy densities of the
still rather general structure

ρψ = ρψ̂(T, (nα)α∈IK)− 1
2χε0|∇ϕ|2 , ρ

s
ψ
s

= ρ
s
ψ̂
s
(T
s
, (n

s
α)α∈IΣ) . (2.3)

2The notation indicates that the definition can be made for both domains ΩE and ΩM in analogous manner. If u is not
defined in either ΩE or ΩM, the respective trace value is set to 0.

3Where not necessary, we omit the labels E or M for the volume domains.
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Modeling polycrystalline electrodes 7

The chemical potentials are defined as

µα = ∂ρψ

∂nα
, µ

s
α =

∂ρ
s
ψ
s

∂n
s
α

. (2.4)

By means of Gibbs-Duhem relations, we introduce the material pressure p and surface tension γ
s

as

p = −ρψ̂ +
∑
α∈IΩ

nαµα , γ
s

= ρ
s
ψ̂
s
−
∑
α∈IΣ

n
s
αµ
s
α . (2.5)

In the following, we neglect gravitation and restrict the presentation to planar interfaces with no tangential
transport on the surface.

Equilibrium bulk equations. The equilibrium of an incompressible mixture in a bulk domain Ω is
characterized by

−(1 + χ)ε0∆ϕ = q , (2.6a)

∇p = −q∇ϕ , (2.6b)

0 = ∇(µα + zαe0ϕ) for α ∈ IK . (2.6c)

The Poisson equation (2.6a) determines the electric potential, (2.6b) is the momentum equation, (2.6c)
states that the electrochemical potentials of all species are constant in equilibrium. We remark that
these equations are not independent, but (2.6a) and (2.6c) together with (2.5)(left) already imply (2.6b).

Equilibrium surface equations. On the surface Σ between the bulk domains Ω± the equilibrium is
given by

−[[(1 + χ)ε0∇ϕν]] = q
s
, (2.7a)

[[(p1 + (1 + χ)ε0(∇ϕ⊗∇ϕ− 1
2 |∇ϕ|

21))ν]] = 0 , (2.7b)

µ
s
α = µα|KΣ for α ∈ IK , K = E, M. (2.7c)

2.2 Specific material model

Bulk electrolyte material model. The electrolyte in the domain ΩE is a mixture of several species,
one of them being the solvent that we refer to by the index α = 0. The index set of the electrolytic
species is denoted by IE. The mole fractions yα of the constituents are defined as

yα = nα
n

with n =
∑
β∈IE

nβ . (2.8)

In many solvents, ions are solvated, meaning that a number κα of solvent molecules are bound into a
solvation shell around a center ion. Thus, the partial volume υref

α of a solvated ion in the electrolyte
is typically much larger than the partial volume of the solvent υref

0 . We consider the electrolyte as an
incompressible liquid mixture of free solvent molecules, undissociated species and solvated ions.4 The

4This is in contrast to the model of a mixture of undissociated species, the bare center ions and solvent molecules,
regardless whether they are free or bound into a solvation shell.
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J. Fuhrmann, M. Landstorfer, R. Müller 8

incompressibility of the mixture is characterized by the constraint

1 =
∑
α∈IΩE

υE
αnα . (2.9)

The free energy for an ideal mixture of solvated ions is derived and analyzed in [DGM13, LGD16,
DGLM18]. The chemical potentials in the incompressible limit are

µα = gref
α + υref

α (p− pE) + kBT ln(yα) , α ∈ IE , (2.10)

with reference Gibbs free energy gref
α = ψref

α + υref
α pE, with a constant reference energy ψref

α .

Let yE
α, ϕE and pE denote the values of the mole fractions, the electric potential and the pressure at

some bulk point xE in ΩE. In equilibrium, the constant electrochemical potentials according to (2.6c)
and the material model (2.10) then imply for the bulk mole fractions

equilibrium: yα = yE
α · exp

(
− zαe0

kBT
(ϕ− ϕE)− υref

α

kBT

(
p− pE)) in ΩE . (2.11)

Note that the pressure p in the electrolytic boundary layer can be expressed as a function of the potential
difference ϕ − ϕE by solving the condition (2.8) with the representations (2.11), i.e. the non-linear
implicit relation ∑

α∈IE

yE
α · exp

(
− zαe0

kBT
(ϕ− ϕE)− υref

α

kBT

(
p− pE))− 1 = 0 . (2.12)

yields p = p̂(ϕ− ϕE).

Bulk metal material model. We consider a metal in the domain ΩM as a binary mixture of positive
metal ions M and free electrons e with ze = −1, i.e. IM = {M, e}. For the metal bulk free energy
density, we adopt the Sommerfeld model [Som28] and assume incompressibility, cf. [LGD16]. We do
not specify the model here, because as a consequence of the following surface material model, it turns
out that the metal bulk does not influence any of the results in this paper and therefore can be ignored.

Surface material model. The surface Σ between the domains ΩE and ΩM is considered as mixture
of the surface metal ions, surface electrons, electrolytic adsorbates and possibly reaction products of
the aforementioned species. The index set of surface constituents is denoted by IΣ with IE ∪IM ⊆ IΣ.
Note that we consider on the surface also a solvation effect, whereby each adsorbed ion binds κ

s
α

solvent molecules which propagates into the partial molar area aref
α .

We adopt the surface free energy model proposed in [LGD16]. In particular, the surface chemical
potential of the electrons is assumed to be a constant value depending only on the material and the
crystallographic surface orientation. We propose to choose this value related to the electron work
function WΣ of the surface Σ. Analogously to the metal volume, we have an incompressibility constraint
on the surface stating aref

M n
s
M = 1, where aref

M is the partial area of surface metal ions. On the

electrolyte side, we have to account for adsorption from the volume. Since the surface is not necessarily
completely covered with adsorbates, we introduce a number density of surface vacancies via

n
s
V = n

s
M −

∑
α∈IΣ\IM

aref
α

aref
M

n
s
α . (2.13)
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Then, we define the surface fractions of vacancies and adsorbates by

n
s

= n
s
V +

∑
α∈IΣ\IM

n
s
α , y

s
V =

n
s
V

n
s

and y
s
α =

n
s
α

n
s

for α ∈ IΣ \ IM . (2.14)

The chemical potentials of the surface species are

µ
s
α = ψ

s

ref
α + kBT ln

(
y
s
α

)
− aref

α

aref
M

kBT ln
(
y
s
V

)
for α ∈ IΣ \ IM , (2.15a)

µ
s
M = ψ

s

ref
M + kBT ln

(
y
s
V

)
− aref

M γ
s
, (2.15b)

µ
s
e = µ

s

ref
e (= const.) . (2.15c)

With respect to the same bulk point in the electrolyte as above, i.e. the values yE
α, ϕE and pE, the

surface mole fraction of the vacancies, the electrolytic adsorbates, and the surface reaction products,
have the representations in terms of the potential difference U = ϕ|Σ − ϕ∞,

y
s
V = exp

(
− aref

V

kBT
γ
s

)
. (2.16a)

y
s
α = yE

α exp
(
− ∆g̃α
kBT

− e0

kBT
zαU −

aref
α

kBT
γ
s

)
for α ∈ IE , (2.16b)

y
s
β =

∏
α∈IE

(yE
α)ναβ exp

(
− ∆g̃β
kBT

− e0

kBT

(∑
δ∈IE

νδβzδ
)
U −

aref
β

kBT
γ
s

)
for β ∈ IΣ \ IE \ IM ,

(2.16c)

where the amount of adsorbates and reaction products on the surface is controlled by the corresponding
Gibbs energies defined by

∆g̃α = ψ
s

ref
α − (ψE

α + υref
α pE) for α ∈ IE , (2.17a)

∆g̃β = ψ
s

ref
β −

∑
α∈IM

ναβ(µMα + e0zαU
M)−

∑
α∈IM

ναβ(ψE
α + υref

α pE) for α ∈ IE . (2.17b)

The above representations and the definition (2.14) of the surface mole fractions yield an algebraic
equation which determines the surface tension γ

s
as a function of U .

2.3 Planar single crystal surface

It is well known that at the surface Σ between a metal and an electrolyte a charged double layer exists,
which exponentially decays into the electrolyte bulk and has a width in the order of the Debye length

LDebye =

√
(1 + χ)ε0 kBT

e2
0 n

ref . (2.18)

For an electrolyte with a salt concentration of 0.1mol/L, the Debye length is in the order of one nm.
If the dimension of the considered experimental setup is considerably larger than LDebye, say in the
range of 1µm, it often is reasonable to consider the surface Σ as an infinite planar surface and the
electrolyte domain ΩE as a half space. In this simple geometric setting, all quantities can only depend
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on the spatial coordinate normal to Σ, which we denote in the following by x. For a flat surface Σ, we
can write the electrolyte up to the bulk point xE as ΩE = Σ× [0, xE]. Then, we define the boundary
layer- and the surface charge density by

QBL =
∫ xE

0
q dz Q

s
= −e0

∑
α∈IΣ\IM

zαn
s
α . (2.19)

In equilibrium, both quantities are completely determined by the potential difference U = ϕ
s
− ϕE .

It is a remarkable feature of the applied material model in Sect. 2.2 that it is possible to determine
the boundary layer charge density QBL as function of U 5 without needing to spatially resolve the bulk
equations (2.6)–(2.7), i.e.

QBL = sgn(U)
√

2ε0(1 + χ)(p̂(U)− pE) =: Q̂BL(U) . (2.20)

where p̂(U) is the material pressure determined from (2.12). Moreover, all surface mole fractions are
determined according to (2.16) and we get for the surface charge density

Q̂
s

(U) = −

∑
(α∈IE) zαe0y

s
α +

∑
(α∈IE)

∑
(β∈IΣ\IE,M ) ναβzαe0y

s
β

aref
V y

s
V +

∑
(α∈IΣ\IM ) a

ref
α y

s
α

. (2.21)

Thus, we can introduce the differential capacity as

Ĉ(U) = d

dU

(
QBL(U) +Q

s
(U)
)

= CBL(U) + C
s

(U) (2.22)

Under the standard assumption that the potential difference between an ideally non-polarizable refer-
ence electrode and the bulk electrolyte remains constant under potential variations, it is possible to
show [LGD16] that

U = ϕ
s
− ϕE = E + 1

e0
µ
s
e − Eref with Eref = const. , (2.23)

where E is the applied voltage in a three electrode setup, µ
s
e the surface chemical potential of electrons,

and Eref a constant which depends on the actual reference electrode. For a specific surface Σ, the
differential capacity in the absolute scale E is given by an appropriate shift of (2.22), i.e.

C(E) = Ĉ

(
E + 1

e0
µ
s
e − Eref

)
. (2.24)

2.4 Modeling of planar polycrystal surfaces

We consider now a planar surface Σ which is composed of N facets Σi, i.e. Σ = ∪Ni=1Σi as sketched
in Fig. 2. We denote by |Σi| the area of the facet Σi whereby the total area of Σ is |Σ| =

∑N
i=1 |Σi|

and surface fraction si := |Σi|
|Σ| . We make the assumption

(A1) The facet boundaries ∂Σi ∩ ∂Σj for i 6= j constitute no independent thermodynamic entities.

5The typeface Q̂ indicates that this is a function U = ϕ
s
− ϕE and not the applied voltage E.
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Thus, each facet Σi can be treated as a finite size planar single crystal surface, and we can apply
the material model of Sect. 2.2 on each facet Σi separately. Since the surface density of metal ions
depends on the cystallographic orientation of the surface, the material parameter aM is different for
each individual facet Σi. As a consequence, in the absence of adsorption to the surface, the surface
tension γ

s
differs between the facets Σi.6 In addition, we have to assign to each facet Σi a constant value

of µ
s
e, which has to be related to the electron work function on a surface of the respective cystallographic

orientation. Because all facets are connected by electric conductors, the electrochemical potential of
the electrons is constant over all grains Ωi adjacent to the respective facets Σi, i.e.

(µ
s
e − e0ϕ

s
)|Σi = (µe − e0ϕ)|Ωi

= (µe − e0ϕ)|Ωj = (µ
s
e − e0ϕ

s
)|Σj .

(2.25)

Between each two surfaces, we thus have the pairwise potential difference

ϕ|Σj − ϕ|Σi = 1
e0

(µ
s
e|Σj − µ

s
e|Σi) . (2.26)

Patterned planar surface. As in the single crystal case before, we can expect boundary layers that
decay exponentially from the surface Σ into the electrolyte bulk. The length scale of the boundary layer
is given by the Debye length according to (2.18) and the electrolyte bulk can be characterized by certain
constant far field values yE

α, ϕE and pE in a distance from the surface that is large compared to LDebye.
We assume that the electrolyte in ΩE is not influenced by any other boundary layer than the one at Σ.
Given the applied potential E − Eref and a pattern of facets Σi with according constant values of µ

s
e,

we choose some value µ̄
s
e and set ϕE = −(E −Eref )− 1

e0
µ̄
s
e. Then, the state in the electrolyte in ΩE

is given by the boundary value problem

−(1 + χ)ε0∆ϕ = q(ϕ, p) in ΩE , (2.27a)

1 =
∑
α∈IE

yα(ϕ, p) in ΩE , (2.27b)

ϕ|Σi = 1
e0

(µ
s
e|Σi − µ̄

s
e) on Σ , (2.27c)

∇ϕ→ 0 far away from Σ , (2.27d)

where yα(ϕ, p) is given by (2.11) for α ∈ IE and q determined from yα according to (2.2) and (2.9).
The surface charge density can be determined by (2.21) on each facet Σi separately and we get

Q
s
|Σi = Q̂

s

(
E − Eref + 1

e0
µ
s
e|Σi
)

(2.28)

Thus for the surface Σ, we conclude

Q
s

poly(E) =
N∑
i=1

si Q̂
s

(
E − Eref + 1

e0
µ
s
e|Σi
)
. (2.29)

6One has to be careful with an interpretation of this fact. Surface tension of planar solid surfaces is difficult to measure
and one has to distinguish between the ’thermodynamic’ surface tension and the ’interfacial tension’, cf. [DGLM18].
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Upon solution of the boundary value problem, the boundary layer charge density is computed from

QBL
poly(E) = − 1

|Σ|

∫
ΩE
q(x) dx , (2.30)

Finally, the total surface charge is Qpoly(E) = QBL
poly(E) + Q

s
poly(E) and the differential capacity of

the patterned surface is computed by taking the derivative with respect to the applied potential E.

Ensemble of planar single crystal surfaces. The total boundary layer charge density can be
decomposed into the contributions adjacent to the different facets Σi, viz.

QBL =
N∑
i=1

si Q
BL
Σi with QBL

Σi = − 1
|Σi|

∫
ΩE∩(Σi×R)

q(z) dz . (2.31)

Since boundary effects propagate into the interior with a length scale according to the Debye length
(2.18), boundary effects due to the finite size of Σi can be neglected once the characteristic facet
diameter is sufficiently large, i.e. LDebye � dfacet. Then, the charge density in front of Σi is well
approximated by the boundary layer charge (2.20) at a planar single crystal with the same material
parameters as Σi, i.e.

QBL
Σi − Q̂

BL

(
E − Eref + 1

e0
µ
s
e

)
→ 0 for

LDebye

dfacet
→ 0 . (2.32)

Thus, in the limit of large facets, the boundary layer charge density QBL
poly of the polycrystal is given by

the according density of an ensemble of non-interacting (infinitely large) planar single crystal surfaces,
all in contact with the same electrolyte, viz.

QBL
poly(E) =

N∑
i=1

si Q̂
BL

(
E − Eref + 1

e0
µ
s
e

)
, (2.33)

The boundary layer capacity related to (2.33) is given by(1.1). As (2.28) can be applied independent of
the size of dfacet, we conclude

Cpoly(E) =
N∑
i=1

si Ĉ

(
E − Eref + 1

e0
µ
s
e

)
. (2.34)

3 Surfaces of finite size pattern and approached limit relations

In order to keep the focus of this Section sharp, we assume here that the electrolyte is non-adsorbing.
If in addition also adsorption has to be take in to account, surface charge and surface capacity can be
computed in purely algebraic manner by a post-processing step applying (2.29) and its derivative with
respect to the applied potential, respectively.

3.1 Pattern of two equally sized facets

We consider first the most simple configuration of a symmetric bi-crystalline surface, where N = 2,
s1 = s2 = 1/2. We choose an average potential µ̄

s
e such that µ

s
e|Σ1−µ̄

s
e = −(µ

s
e|Σ2−µ̄

s
e) = −0.1eV
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Table 1: Physical constants and parameters used in the numerical simulations
dielectric constant ε0 = 8.85418781762× 10−12C/(V m)
Boltzmann constant kB = 1.3806488× 10−23J/K
elementary charge e0 = 1.602176565× 10−19C
Avogadro number NA = 6.02214129× 1023mol−1

temperature T = 298.15K
reference pressure pref = 1× 105Pa
dielectric susceptibility χ = 15
solvation number κα = 10
reference number density nref = 1

υref
0

= 55.5mol/L

specific volumes υref
α = (1 + κα) υref

0

Figure 5: Left: profile of the electric potential for different diameters of the surface stripes. Right:
capacity curves for different electrolyte concentrations, where solid lines (—) refer to the algebraic
solution according to (1.1), FEM solution for facet size dfacet = 3.07 nm is indicated by markers (+),
and for dfacet = 12.28 nm by dashed lines (- - ).

On the surface, we thus have the boundary values ϕ
s
|Σi = Φi for i = 1, 2 with Φ1 = −Φ2 = −0.1V.

The simplest realization of this configuration consists of a pattern of parallel stripes with alternating
prescribed potential. Here, we let dfacet denote the width of the stripes. With an appropriate choice of
the coordinate system, the boundary values can be described by a 1D-function such that

ϕ
s
(x) =

{
Φ1 for 2 |x| < dfacet ,

Φ2 for 2 |x− dfacet| < dfacet ,
(3.1)

and periodic continuation. Accordingly, the potential and the charge density in the electrolyte domain
z > 0 can be determined from a 2D-FEM computation by integration of the free charge q in space
according to (2.30). The choice of the boundary values implies that in the far field the potential
approaches ϕ→ ϕE = −(E−Eref )− 1

e0
µ̄
s
e. Plots of the electric potential for E = Eref − 1

e0
µ̄
s
e and

an electrolyte with a bulk concentration of 0.1mol/L and the remaining parameters according to Tab. 1
are given in Fig. 5 (left). In the upper plot, where the facet size was chosen as dfacet = 10LDebye ≈
12.28 nm, one can observe that the piece-wise constant boundary data to a large extend propagates
into the electrolyte and decays with increasing distance to the boundary. To the contrary, in the lower
plot, where dfacet = 5

2L
Debye ≈ 3.07 nm, the profile of the potential is dominated by facet boundary

effects such that the regions of parallel iso-lines almost disappear.

Next, the applied potential is varied in positive and in negative direction and the boundary value problem
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Figure 6: Left: numerical grid on refinement level 3. Right: computed capacity curves for different levels
of grid refinement.

(2.27) is solved. From this solution, the free charge density q and QBL(E) are computed. Fig. 5 (right)
shows the resulting capacity for different electrolyte concentrations in dependence of the facet size
dfacet. We observe for increasing facet size dfacet a convergence of the computed capacity curves to
the algebraic solution (1.1). As expected, the convergence is slower for more dilute electrolytes where
the Debye length is comparably larger. We conclude that the relevant quantity for the convergence
is the facet size relative to the Debye length LDebye. Thus, for the algebraic result (1.1) to be a good
approximation, a polycrystalline surface has to be more coarse faceted when used in connection with a
dilute solution, than in the case of a more concentrated solution. Another observation is, that in the
potential range outside of the lowest and the largest position of the maxima, the algebraic expression is
always a good characterization of the polycrystalline surface, independent of the facet size.

In addition, 3D-FEM simulations with a checkerboard pattern of the surface were performed where the
boundary values are given by periodic continuation of

ϕ
s
(x, y) =

{
Φ1 for max(|x|, |y|) < dfacet , sgn(x y) > 0 ,
Φ2 for max(|x|, |y|) < dfacet , sgn(x y) < 0 .

(3.2)

The observations from the 3D computations are analogous as for the 2D case. Since for given dfacet,
the length of the contact lines in the checkerboard pattern is double compared to the striped pattern
represented by the 2D case, convergence for increasing facet size is a bit slower here. Together, the 2D
and the 3D results indicate that the shape of the facets is not relevant as long as the facet diameter dfacet

is sufficiently large compared to the Debye length LDebye. We conclude that already the covered surface
fraction of the facets and the corresponding single crystal capacities fully determine the capacity of a
polycrystalline surface of sufficiently large facet size.

As FEM simulations in 3D are computationally expensive, we used anisotropic grids with a mesh
grading with respect to the a-priori known structure of the potential, see Fig. 6. To check that the
grid is sufficiently fine, we compared the resulting capacity curves from numerical solutions of the
boundary value problem (2.27) on different refinement levels of the initial meshe. Refined mesheson
the refinement levels 3, 4 and 5 consisted of 2 601, 18 513 and 139 425 nodes, respectively. Fig. 6
shows the convergence of the computed capacity curves when refining the mesh.
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Figure 7: Left: capacity curves for 0.1mol/L electrolyte and different facet size parameters (dashed
lines - - ). Limits for large facet diameter (blue, solid —) and vanishing facet diameter (red, solid —).
Right: lines show the position of the PZC of the patterned surface in dependence of the facet size dfacet

for different bulk concentrations. The circles on the to indicate the values of EPZC
poly according to (1.1)

that are approached for dfacet →∞ and the dashed line refers to EPZC
poly,0 according to (1.4).

3.2 Characterization of PZC and limiting behaviour

In the previous section, we did not discuss the PZC for the patterned polycrystalline surface. The
reason is that due to the symmetry, i.e. s1 = s2, it always coincides with the chosen reference potential.
In order to introduce some non-symmetry, we slightly modify the configuration to N = 2, s1 = 1/3,
s2 = 2/3, and again set Φ1 = −Φ2 = −0.1V. For a 2D-FEM simulation of this configuration, we
choose

ϕ
s
(x) =

{
Φ1 for 2|x| < dfacet ,

Φ2 for |x− 3
2 d

facet| < dfacet ,
(3.3)

with periodic continuation of the boundary data. As in the previous example, we again observe that the
capacity of the patterned surface approaches (1.1) for large facet sizes dfacet, see Fig. 7 (left). From
the computed boundary charge as a function of the applied potential according to (2.30), we can now
determine the potential of zero charge of the patterned surface with finite dfacet. We observe that for a
fixed facet size dfacet, the PZC is not constant but increases with the bulk electrolyte solution, cf. Fig. 7
(right). Moreover, the potential range, in which the PZC varies with respect to the bulk concentration,
gets wider for increasing dfacet. As a limit for dfacet →∞, the PZC reaches the values we get from the
surface fraction weighted averaging of single crystals according to (1.1). Since the capacity of a planar
single crystal is approximately quadratic at its PZC, the boundary layer charge behaves almost cubic.
Thus, one should not expect, that the linear combination of single crystal capacities would attain its
PZC at the respective linear combination of the individual PZCs.

In addition, another limit is of interest, however more from a theoretical point of view. Let us consider
dfacet → 0, although a pattern at the atomic length scale or even blow that scale can not be realized in
practice. We observe, that for dfacet → 0, the capacity curve changes from the three-maxima shape
according to (1.1) into the typical two-maxima or camel shape that is well known from the planar single
crystal. In fact, for dfacet → 0, the capacity converges to the capacity of a planar single crystal surface
where the PZC is determined as the sum of the PZCs on the contributing facets weighted by their
respective surface fraction si according to (1.4). Moreover, this limit of the PZC is independent of the
bulk electrolyte concentration.
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Figure 8: Electric potential for an electrolyte of 0.1mol/L salt concentration in contact with a symmetric
bi-crystal surface at the applied potential E = Eref − 1

e0
µ̄
s
e. Top: flat surface, i.e. hmax = 0, bottom:

differently oriented facets with hmax = 1.54nm.

3.3 Surface roughness

Because of surface roughness, the actual surface area of real surfaces is larger compared to their
ideally plain counterparts which are characterized by their so called visible surface area. As a measure
of this effect, the surface roughness factor W is introduced as the quotient of the real surface area
over the visible. Surface roughness appears on a large range of different length scales, from ’physical
inhomogeneity’ on the atomic length scale to ’geometric roughness’ on a macroscopic scale of several
µm. A lot of attention was devoted to the analysis of ’geometric’ surface roughness which in experi-
ments may be caused e.g. by electrode pre-treatment like polishing. In the context of electrochemical
impedance analysis, roughness is then often analyzed in the framework of fractal geometry, where on
the larger scales, an interaction of the boundary layer with bulk transport properties of electrolyte has to
be expected.

We want to concentrate on the effect of surface roughness on the boundary layer capacitance and
therefore consider only deformations of an ideally plain surface that is on a length scale of the facet size
dfacet. We return to the setting of the symmetric bi-crystal of Sect. 3.1 and let the surface be given by

dfacet

hmax h(x) =
{
x for 2|x| < dfacet ,

(dfacet − x) for 2|x− dfacet| < dfacet ,
(3.4)

where the parameter hmax is the maximal elevation of the surface over the supporting pane, see Fig. 8.
This results in a surface roughness factor of

W =
√

(dfacet)2 + (hmax)2

dfacet
. (3.5)

We performed 2d FEM simulations of the boundary layer in dependence of the applied potential and
the electrolyte concentration varying the surface roughness parameter relative to the Debye length as
hmax/LDebye = 5

8 , 5
4 , 5

2 . The respective surface roughness factors according to (3.5) are W = 1.002,
1.0078, 1.031. We observe that with increasing hmax, the capacity curves deviate stronger from the
calculated capacity of the perfectly smooth surface, see Fig. 9 left. Moreover, Fig. 9 right indicates that
surface roughness can be very accurately taken into account by multiplying the surface roughness
factor W to the capacity of the perfectly plain surface, i.e.

C(E) = W (hmax)CBL
poly(E). (3.6)
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Figure 9: Left: detail of the boundary layer capacity for different electrolyte concentrations and surface
roughness with hmax = 0.38 nm (markers +), hmax = 0.77 nm (· · · ) and hmax = 1.54 nm (- - )
. Right: correction by surface roughness factor according to (3.5).

4 Discussion of the idealized polycrystal

Within this discussion, we always apply the limit of large facet size LDebye � dfacet, keeping in mind,
that this limit is already well approached for dfacet = 10LDebye.

4.1 Difference of PZC

In the previous section, we have kept potential difference between the two considered facets constant
(viz. 0.2 V), However, this difference is a material dependent characteristic quantity that varies between
different materials or different crystallographic orientations. While differences of the PZC, respective µ

s
e,

between differently oriented surfaces are considered minor for some metals, e.g. ’low melting metals’
like Cd, Sn, Pb, Zn and Bi, cf. [Vor81, TD95], considerable differences between the low index facets
are reported for e.g. Ag, Au, Cu, Pt and W, cf. [DKW15]. Thus, we examine the situation of an
bi-crystal with equal surface fractions s1 = s2 = 1/2 and vary the difference of the surface chemical
potential of the electrons ∆µ

s
e = µ

s
e|S1 − µ

s
e|S1 between 0eV and 0.8eV. This corresponds to varying

the boundary values such that 0V ≤ Φ1 − Φ2 ≤ 0.8V. We observe, that for Φ1 − Φ2 < 0.115V
the capacity retains the typical camel shape. For 0.115V < Φ1 − Φ2 < 0.375V there is a three
maximum shape, whereas for larger potential differences between the facets, we have a four-maximum
configuration that allows to identify the local extrema of the individual facets, see Fig. 10. Once more,
we stress that experiments on should be aware of the fact that for a polycrystalline surface the PZC in
general is not found at a local capacity minimum! For for sufficiently large potential difference Φ1 − Φ2,
the PZC will in general be between the inner two local maxima of the capacity but only for specific
configuration of the surface fractions si, the PZC is located at a local capacity minimum. Even more, for
moderate Φ1 − Φ2, the PZC is located near a local capacity maximum!

4.2 Adsorption to the surface

To study the effect of adsorption, we return to the simple configuration of a symmetric bi-crystal in
Sect. 3.1, i.e. we choose N = 2, s1 = s2 = 1/2. We assume that the adsorption energies ∆gα do
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Figure 10: Capacity curves for varying difference ∆µ
s
e = µ

s
e|S1 − µ

s
e|S1 for a bi-crystal with equal

surface fractions s1 = s2.

Figure 11: Left: Capacity curves for an adsorbing electrolyte and different bulk electrolyte concentrations
where the higher peak at potentials more positive than the PZC is due to adsorption of anions. Right:
Construction of the capacity of a polycrystal surface as the sum of the single crystal capacities of the
contributing facets weighted by their surface fraction.

not differ between the different facets. In particular, by the choice of

∆gA = −0.25eV, ∆gC = +1eV, ∆gS = −0.0735eV . (4.1)

we assume, that cations effectively do not adsorb while anions and the solvent are allowed to adsorb to
the surface. For simplicity and clarity of presentation, we do not consider surface reactions like solvation
shell stripping or electron transfer reactions. An extension is straightforward by applying (2.16c) for
the reaction products and (2.21) for the surface charge. According to (2.29), the surface capacity of a
patterned surface only depends on the material parameters of the contributing facets and their surface
fractions si, but not on the facet geometry or the facet size parameter dfacet. Thus, we can combine (1.1)
and (2.29) to conclude that for large facet size, the capacity of a perfectly plain polycrystal surface is

Cpoly =
N∑
i=1

si Ĉ

(
E − Eref + 1

e0
µ
s
e|Σi
)
. (4.2)

As already known for single crystal surfaces, if there is adsorption from the electrolyte, the PZC
depends on the electrolyte and its bulk concentration, cf. e.g. [LGD16]. The same also holds true for the
polycrystal and we conclude from (1.1) and (2.29) that7 for LDebye < dfacet →∞, the determination of

7In the case dfacet → 0 the analogous result holds true, due to (1.4) and (2.29).
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Figure 12: Top left: surface pattern as used in the 3D-FEM simulations of Sect. 4.3. Top right and
bottom row: capacity curves, when assigning the indicated different boundary values on the facets.

EPZC
poly requires the solution of the non-linear algebraic equation

0 =
N∑
i=1

si Q̂

(
EPZC

poly − Eref + 1
e0
µ
s
e|Σi)

)
. (4.3)

4.3 Multiple different facets

The above results can easily be extended to more complex polycrystalline surfaces with many facets
of different type. We consider the case of N = 4 different types of facets Σ1,Σ2,Σ3,Σ4 with the
respective surface fractions s1 = 4/9, s2 = s3 = 2/9, s4 = 1/9. Also, we want to have junction
points where more than two different facets meet. One possible simple realization on a 2D surface
is the periodic symmetric continuation of the pattern sketched in Fig. 12. The boundary data is given
as ϕ

s
= Φi on Σi, for i = 1, 2, 3, 4. We choose Φ1 = −Φ2 = −0.1 V. First, we let Φ4 = Φ1 and

Φ3 = Φ2 and get slightly non-symmetric capacity curves8, see Fig. 12. Next, we change Σ3 such that
Φ3 = −.061 V while still Φ4 = Φ1. Finally, set Φ4 = .085 V and keep the remaining boundary values
as before, see Fig. 12 bottom line.

As in Section 3.1, we checked convergence of the capacity calculated from 3D-FEM simulation for
finite facet size dfacet to the limit equation (1.1) for dfacet →∞ and grid convergence of the numerical
solutions.

8This situation is equivalent to the slightly non-symmetric case N = 2 and s1 = 5/9, s2 = 4/9.
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4.4 Stochastic distribution of surface patterns

A precise measurement of all surface facets and their corresponding work functions is extremely
expensive, if possible, and even measurements on very similar facets may contain some scatter. Hence,
the input values for the mathematical model of the foregoing section can only be determined to a
certain precision, which has to be taken into account when realistic polycrystalline surfaces are to be
described. We sketch therefore a stochastic description of the polycrystalline surface based on the
derived deterministic model and provide some numerical examples of the double layer capacity.

Consider the set ISµ of all possible values of the surface electron chemical potential µ
s
e on the surface

S, e.g. ISµ = {µ
s

1
e, . . . , µ

s

J
e }. We denote with Σµ all facets which have the value µ for µ

s
e, i.e.

Σµ = ∪i∈IµΣi with Iµ := {i ∈ {1, . . . , N}|µ
s

i
e = µ} , (4.4)

to switch the facet labeling from a consecutive numbering of all facets to values of µ
s
e. We may thus

write

N∑
i=1

si =
∑
µ∈ISµ

sµ

∫ ∞
−∞

δ(ω − µ) dω with sµ =
∑
i∈Iµ

si , (4.5)

where δ is the Dirac-distribution and consider thus

f(ω) :=
∑
µ∈ISµ

sµδ(ω − µ) (4.6)

as probability density since

N∑
i=1

si =
∫ ∞
−∞

f(ω)dω = 1 . (4.7)

For realistic polycrystalline electrodes, the Dirac-distribution might smear to Normal-distributions,
whereby f becomes a continuous function.

The charge QBL
poly stored in the polycrystalline boundary layer thus rewrites as

QBL
poly =

N∑
i=1

siQ̂
BL

(
E − Eref + 1

e0
µ
s

i
e

)
(4.8)

=
∑
µ∈ISµ

sµ

∫ ∞
−∞

δ(ω − µ)Q̂BL
(
E − Eref + 1

e0
ω
)
dω (4.9)

=
∫ ∞
−∞

f(ω)Q̂BL
(
E − Eref + 1

e0
ω
)
dω (4.10)

= (f ∗ Q̂BL)(E − Eref ) . (4.11)

With the convolution operator ∗ we obtain thus a very compact typeface for QBL
poly in terms of the

distribution function f(ω), which describes the facet density parametrized in terms of µ
s
e. The potential
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of zero charge EPZC
poly is thus (implicitly) defined via (f ∗ Q̂BL)(E − Eref ) != 0 and the double layer

capacity

CBL
poly =

N∑
i=1

siĈ
BL

(
E − Eref + 1

e0
µ
s

i
e

)
(4.12)

=
∫ ∞
−∞

f(ω)ĈBL
(
E − Eref + 1

e0
ω
)
dω (4.13)

= (f ∗ ĈBL)(E − Eref ) . (4.14)

Note that Q̂BL and ĈBL remain the non-linear functions described in section 2.

In order to show the consequences of the smearing of the convolution operator ∗ on the non-linear
functions of CBL we consider the following example. Consider a normal distribution of facets with
respect to its mean value (µ

s
e − µ̄

s
e) = 0 where σ is the standard deviation , see Fig. 4.

For small standard deviation like σ = 0.025, the resulting capacity according to (1.3) is close to the
single crystal capacity, see Fig. 4. However, for σ = 0.2, the local capacity minimum has disappeared
and there is only a single capacity maximum. Due to the symmetry of the chosen density f(ω), the
PZC is located at the capacity maximum. We want to stress, that this particular configuration of facets
with a broad scatter of the individual facet properties is very different from the limit related to (1.4)
where on each finite size part of the surface a large number of accordingly small facets are considered.

Next, we want to investigate the effect of a polycrystal surface mainly covered by facets of low index
surfaces like (100), (110) and (111). For the low index facets of Ag we chose values of µ

s
e related to

the (negative) work function as given in Table 2. To describe a non-ideal Ag polycrystal, we consider a
probability density that consists of normal distributions around the potentials of the low index facets and
a standard deviation small enough, such that the peaks do not overlap, see Fig. 13 where σ = 0.025
is chosen. The resulting capacity curve remains close to the capacity of an ideal polycrystal with
equal surface fractions si = 1

3 for i = 1, 2, 3. Moreover, we perturb the configuration such that an
equi-distribution in a 1V potential range is superimposed. As a result, we obtain a much more smooth
capacity curve. The pure equi-distribution for ω(u) results in a capacity similar to the normal distribution
with large standard deviation.

Table 2: Recommended values for the electron work function on Ag surfaces according to [DKW15].

surface (110) (100) (111)
work function 4.10 eV 4.36 eV 4.53 eV
µ
s
e − µ̄

s
e +0.2 eV −0.06 eV −0.23 eV

5 Conclusions

By the approach of numerically solving an improved Poisson-Boltzmann problem for patterned surfaces
we provide justification for classical simple equations describing the capacity of polycrystalline surfaces.
The classical formulas [BDL80, Vor81] have been developed from simple models of the electrochemical
double layer at a time before the measurement of clean single crystal surfaces was brought to perfection
by [Val81, Val82, Val89]. The improved double layer model [DGM13, DGM18] was successfully validated
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Figure 13: Left: different probability densities describing the surface chemical potential of electrons on
a Ag-polycrstal where the surface is covered by facets close to the three low index facets (100), (110)
and (111) (blue), the low index facets and additionally an equi-distribution other facets (red), an a pure
equi-distribution of facets (yellow). Right: Capacity curves for the respective densities (solid —) and
capacity of the ideal polycrystal of only the three low index facets with equal surface fraction (dotted
line · · · ).

against these most reliable experimental data [LGD16] and now allows to turn the attention from the
single crystal to the less specific conditions of polycrystalline surfaces.

While for a not too small facet size parameter dfacet, the result for the capacity of a polycrystalline
surface is the expected surface fraction weighted average, some caution is required when considering
PZC. Due to the non-linearity in the relation between applied potential and boundary layer charge, the
PZC is not given by a weighted average and moreover, it also varies with the electrolyte concentration.
The result for dfacet → 0 can be interpreted in the way that for an amorphous solid material or a liquid
material the surface is inhomogeneous on an infinitesimal scale such that the surface properties for
each point are independent. Both limits, for large and for small facet size, allow a to get rather clear
picture of the electrochemical double layer at pattered surfaces like polycrystal surfaces. Moreover,
the results justify the simple correction for rough surfaces by a multiplication with a single geometry
dependent factor.

Another interesting aspect is the possibility to develop a stochastic description of complex polycrystalline
surfaces. The results indicate that assembly of an electrode from a huge number of particles with
different properties can be represented by a distribution function with a large standard deviation. As a
consequence, the capacity of such a surface does not show the typical single crystal camel shape or
multiple clearly separated maxima but a rather constant capacity over a broader potential range. In light
of this result, the function of supercapacitors can be explained by the inhomogeneity of the fine faceted
granular electrode surface.

Outlook. In the modeling of the patterned surfaces with finite facet size parameter dfacet, we neglected
distinguished contributions from the facet boundary lines. While the according effects on the capacity
might be neglected for large enough facets, accurate description of the finite size facet structure might
require an extension of the underlying thermodynamic continuum model to line thermodynamics.

Surface reactions like solvation shell striping of adsorbed ions can be included into the presented
models for polycrystalline surfaces in a straightforward manner. The same also holds true for electron
transfer reactions, as long as the reaction products do not leave the surface. In the presence of
Faradayic currents additional length scales for the non-equilibrium transport of ions have to be taken
into account. In non-equilibrium, surface roughness on larger length scales might lead to interactions of
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bulk transport an layer charging causing deviations from ideal behavior of perfectly plain surfaces.
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