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ABSTRACT. We show that a regularized stationary Boltzmann equation with diffusive 
boundary conditions can be rigorously derived from a suitable stochastic N-particle 
system. 

1. INTRODUCTION 

Stochastic particle methods are widely used in the numerical simulation of rar-
efied flows, which are described at a mathematical level by the Boltzmann equation 
and hence convergence .results for such schemes are of practical interest. From a 
more fundamental point of view, in the study of these problems we are naturally 
led to tackle subtle difficulties related to the so called propagation of chaos which 
is an asymptotic (in the number of particles) statistical independence. Indeed the 
convergence we want to establish is nothing else but a law of large numbers for 
(somehow weakly) dependent random variables. For this reason results in this 

. direction are also of interest in the field of limit theorems for large systems of in-
teracting stochastic processes. We address the reader to Ref.s [CJ, [BI], [LP), [W], 
[PWZ], [GM] for results concerning convergence of stochastic particle systems to 
solutions of (regularized) Boltzmann equations. Unfortunately the situation is far 
from being satisfactory for many reasons whic;:h we are going to illustrate. 

The convergence results we mentioned above regard time dependent prob-
lems. Namely the empirical measure (that is a measure valued stochastic process) 
'Jv I::f:1 Ozi(t)(dz), where Zi(t) is the state of the i-th particle at time t, is weakly 
converging in probability to f(z, t), which is the solution of the Boltzmann equa-
tion with initial datum f(z, 0) = fo(z), the distribution density of each particle 
at time zero, assuming also that all the particles are independently distributed. 
Such a convergence is not expected to hold uniformly in time. However in most 
of the practical applications of these stochastic codes we deal with stationary non-
equilibrium situations, which we simulate in order to extract informations on the 
macroscopic quantities like profiles and fluxes. In other words we are interested 
in non-trivial stationary solutions to the Boltzmann equation. In this case the 
methods we have discussed so far are useless. In fact, even knowing the trend to 
a non-equilibrium stationary state for the Boltzmann dynamics (which is, inciden-
tally, not known but for simplified models), we could not conclude anything on the 
particle approximation of this asymptotic state, being the two limits N --+ oo and 
t --+ oo clearly not commutable. The systematic error of some particle simulation 
scheme for a stationary model Boltzmann equation was studied in [B]. An alterna-
tive approach to the construction of particle schemes for the stationary Boltzmann 
equation has been proposed in [BS]. 

In this paper we face the above mentioned problem for a gas in a bounded 
domain with diffusive boundary conditions at a possibly not constant temperature. 
We consider the unique stationary measure for the N-particle system and evaluate 
the distance between this and the N-fold product of the unique solution to the 
stationary ( cutoffed) Boltzmann equation with the same boundary conditions. We 
show that, if the mean free path inverse is sufficiently small, the L1 difference 
between the k-particle distrib:ution functions of such two measures, vanishes in 
the limit N --+ oo, for any fixed k. To do this we use a technique which we 
call v-functions. Such method is used in Ref. [CDPP] for time dependent problems 
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related to stochastic particle systems in a lattice, in Ref. [OP] for a one-dimensional 
stationary problem for a model equation, and it is indeed very efficient as we shall 
explain in section 3. 

Let us conclude by criticizing the present result. As we said, it holds for small 
mean free path inverse: this is consequence of the fact that we use a constructive . 
perturbative technique. Also the existence and uniqueness for stationary solutions 
of the Boltzmann equation is proven under the same smallness assumption. We do 
not even know whether recent approaches to the existence problem (see for instance 
[AN] for a suitably cutoffed Boltzmann equation in a slab) can be used to obtain at 
least the existence of solutions for our problem without this assumption. However 
the uniqueness of such solutions, which would be preliminary for the convergence 
problem we set, seems at the moment hard to be proven, even for a regularized 
equation as the one we consider. 

In the present paper the Boltzmann equation enjoys two regularizations. The 
first, and more important, is a spatial smearing, which is standard in the above 
quoted literature. Actually the existence theory for the true Boltzmann equation is 
up to now too poor to allow us to approach the real problem. In [OP] a model equa-
tion without spatial smearing has been successfully attacked, however such model 
is one-dimensional, that is much easier to deal. with. The second type of cutoff is on 
the set of possible velocities, which is essentially compact and bounded away from 
0. This last assumption is made to take a full advantage by the ergodic property 
of the Knudsen flow. We absolutely. need this .as a consequence of our ignorance of 
qualitative properties of the invariant measure for the N-particle system, which we 
only know to exist uniquely. In facts we think that the cutoff ori large velocities is 
only technical: it allows us to avoid difficulties which could obscure the real essence 
of the approach. 

2. NOTATIONS AND RESULTS 

Let n c Rd, d = 2, 3 be an open set with smooth boundary in the physical 
space, V C Rd a compact set not containing the origin and [O, .T] an interval on the 
real line. Fo~ ( x, v, t) E n x V x (0, T] consider .the following cutoffed Boltzmann 
equation: 

Otp(x,v,t) + (v · Vx)p(x,v,t) = >..Q(p,p)(x,v,t) (2.1) 

with initial condition: 
p(x,v, 0) = po(x,v);::: 0 (2.2) 

and boundary conditions (n(x) is the outward normal in x E 80): 

p(x,v,t) = J(x,t)M(x,v) x E 80, v ·n(x)::; 0. (2.3) 

Here we have used the following symbols: ).. is a real parameter, 

Q(p,p)(x, v, t) = r dy r dv1 r ' deB(v, V1' e)h19(x, y)x((v*' v;) E v x V)) Jn lv lsd-1 
{p( x, v*, t)p(y, v;, t) - p( x, v, t)p(y, v1, t)} (2.4) 
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e is the unit vector in Rd, x is the characteristic function of its argument, 

v* =v+e·(v1 -v)e, v~ =v1 -e(·v1 -v)e, 

sd-l is the unit sphere. 
Moreover B, the collision kernel, has the following form: 

where l3 : JR x sd-1 ---+ JR+. We assume 

(2.5) 

(2.6) 

The function hf3, which acts as a spatial mollifier, belongs to L 00 , is vanishing for 
Ix - YI 2:: /3 and is such that J hf3(x, y)dy = 1. J, the incoming flux at x, is defined 
as 

. J(x, t) = r dv v. n(x )p(x, v, t). 
lv·n(x)"?:_O 

(2.7) 

Finally M is a bounded positive function defined on the set 

{(x,v)lx E 80,v E V,v · n(x)::; O}, 

which we require to satisfy the following normalization condition: 

f dv Iv. n(x)IM(x,v) = 1. 
lv·n(x)S:.0 

(2.8) 

This last assumption, together with the well known properties of Q, ensures the 
· conservation of the quantity: 

m(t) = j dx j dv p(x,v, t), (2.9) 

which we assume initially to be one so that we consider normalized solutions to 
problem (2.1)-(2.3). 

From a physical point of view, eq.s (2.1-3) describe a rarefied gas in a vessel 
with diffusive boundary conditions at possibly not constant temperature on the 
boundary. The collision operator Q differs from the usual one for the cutoff on the 
velocities and for the presence of the smearing function hf3. The true Boltzmann 
equation is recovered by removing the two cutoffs, that is letting hf3 ---+ 8 ( 8 is the 
8-function centered at the origin) and assuming V =JR d. 

It will be useful in the sequel to deal with the mild version of the above problem: 

p(t, x, v) = S(t)p0 ( x, v) + ,\ [ ds S(t - s )Q(p,p)(x, v, s) (2.10) 

where S(t) is the Knudsen semigroup, that is the solution to the initial boundary 
value problem : 

[ Bt + ( v · \7 x)] S ( t) Po ( x, v) = 0 (2.11) 
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(S(t)p0 )(x,v) == J(x,t)M(x,v) x E 80, v ·n(x)::; 0. (2.12) 

The solution to eq. (2.10) does exist unique, thanks to the Lipschitz continuity 
in L 1 ( x, v) of Q, due to the presence of the smearing function hf3 and (2.6). 

Here we are interested in the corresponding stationary equation: 

(v · Vx)g(x,v) = ;\Q(g,g)(x,v) (2.13) 

with boundary conditions (2.3) and the normalization property: 

j dx jdvg(x,v) = 1. 

Existence and uniqueness of a solution for a slightly different formulation for such 
problem (under suitable smallness assumption) will be established in Thm. 2.2 
below. For the moment we need a preliminary property of the Knudsen flow 
expressed by the following Theorem which will be proven in Appendix. 

Theorem 2.1. There exists a unique probability density g which is stationary 
under the action of the Knudsen fl.ow i.e. 

S(t)g = g foT all t E JR.+ (2.14) 

Moreover for any 'T/ > 0 there exists T( 'T/) > 0 such that, for any t 2:'.: T( T/) and for 
any probability density f, it is: 

(2.15) 

Remark. We stress that the assumption for the velocities to stay bounded away 
from 0 implies the independence of T(ry) from the probability density f, which is 
of great importance to prove our main result. 

We now establish also existence and uniqueness for the stationary solu-
tion of the boundary value problem (2.13): 

Theorem 2.2. If;\ is sufficiently small, there exists a unique probability density 
· g which is invariant for the fl.ow (2.10): 

g = S(t)g + >.. l ds S(t - s)Q(g,g) (2.16) 

and is globally attractive: 

where p(t) is any solution io (2.10) and c is some constant. 

The proof of this theorem, which is essentially perturbative, is given in Appendix. 
Now we introduce the N-particle process which gives the approximation, in the 

limit N -t oo, to problem (2.1 )-(2.3). Let 
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and for the sake of simplicity put 

(2.17) 

We define the generator of the N-particle process, for any function <.f> as: 

(2.18) 

where 
N 

a{Jee(<.f>)(ZN) = L(vi. VxJ(<.f>)(ZN) (2.19) 
i=l 

(with diffusive boundary conditions to be specified, see eq. (2.24-25) below) and 

(2.20) 

being 
(2.21) 

Note that Gf;'ee is the generator of N independent particles moving freely. The 
outgoing velocity v of each particle after a collision with the boundary at the point 
x, is distributed according to the probability density given in (2.8). In other words 
exp{(Gf;'ee)*t} = SN(t), where SN(t) is the product of operators acting on a single 
particle, namely: 

N 

SN(t) = rrsi(t) (2.22) 
i=l 

where Si(t) is the Knudse;n semigroup associated to the particle i. Therefore the 
process described by the generator G N consists in free motion (including the diffu-
sive boundary conditions) of the N-particle system and random collisions. These 
last take place at random times, with random impact parameter e. The particles of 
the pair involved in the collision have mutual distance less than f3 and their outgo-
ing velocities after the i~teraction follow the deterministic law (2.5). This model, 
introduced in Ref. [C] is sometimes called "soft balls" model. 

If the system is initially distributed according to a probability density JN (ZN), 
its time evolution is given by JN ( t) = exp{( G N )*t} JN. In other words: 

N 

8tfN(zN,t) + L(v; · 'Vx.)fN(zN,t) = ~G~mpfN(zN,t) (2.23) . 
i=l 

with initial conditions JN(zN,O) = JN(ZN) and with boundary conditions: 

5 
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for all i = 1, ... N, with ZN(i) = (z1 ... Zi-1, Zi+1 ... ZN) and 

(2.25) 

If we consider the stationary version of (2.23).-(2.24), that is : 

N 
2)v; · 'VxJfN(ZN) = ~GiJ/mpjN(ZN) 
i=l 

(2.26) 

with the boundary conditions (2.24-25), we can state the following result, which is 
proven in Appendix: 

Theorem 2.3. For all N > 0 there exists a unique probability density JN = 
JN (ZN) which is invariant under the N -particle process. 

The main goal of this paper is to compare the stationary distribution JN with 
the one-particle stationary distribution g constructed in Thm. 2.2. To this pur-
pose we introduce the k-particle distribution functions associated to the probability 
density JN : 

k = 1, ... N -1. (2.27) 

Introducing analogously the k-particle distribution functions for the time de-
pendent distribution fN(zN, t), we obtain from (2.23) and (2.24) the well known 
BBGKY hierarchy of equations: 

8tff' (Zk, t) + G{ree ff' (Zk, i) = 

,\ jump N ( . ) N - k N ( ) 
N Gk ik zk, t + ,\ N Ck,k+1ik+1 zk, t ' 

with boundary conditions: 

Here: 

k=l, ... ,N-1 (2.28) 

Xi E an Vi. n(xi) ~ 0. 
(2.29) 

(2.30) 

Note that by Thm. 2.3 it follows that the unique solutions to the stationary 
version of problem (2.28) are those defined in (2.27). 

Now we introduce the infinite Boltzmann hierarchy, that is the (formal) 
limit as N -+ oo of the BBGKY hierarchy, i.e.: 

(2.31) 
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with initial and usual boundary conditions. 
It is. useful to consider the mild form of it, that is: 

fk(t) = Sk(t)f2 + >. [ dsSk(t- s)Ck,k+dk+1(s) k = 1, 2, ... (2.32) 

We denote by P(t) the solution operator of the infinite hierarchy (2.32) that is 
(P(t)f°)k = fk(t). P(t) acts on sequences f 0 = {!Zh=i...00 , fZ E L1 ((n x V)k). 

Analogously we can define pN(t)fN = JN(t) to be the solution operator of the 
following finite hierarchy of equations: 

k = 1,2, .. . N. (2.33) 

Notice that eq. (2.33) fork= N is the mild version of (2.23) and the full hierarchy 
is the mild version of ( 2. 28) . 

Since (2.33) is a finite system of linear equations, it can easily be solved uniquely 
in L 1(dZk), namely J{!(t) are obtained by in~egrating fN(zN, t), unique solution 
to (2.23). . 

By iterating formula (2.32) we arrive to the following formal series expansion for 
the solution to equation (2.31 ): 

00 

(P(t)J0 )k = fk(t) = L Anak,n(t)f2 (2.34) 
n=O 

with 

(2.35) 
It is possible to show that the series in (2.34) converges in L 1 if the quantity 

)..t is sufficiently small, so that, under such hypothesis, the solution to (2.32) does 
exist unique. The method employed is the same as in [LP] and [PWZ], inspired 
by the well known result due to Lanford (see [L] and [CIP]) in a L00-setup for the 

. not regularized Boltzmann equation. Here we find the additional difficulty of the 
diffusive boundary conditions. However, working in Li, this is not a problem, since 
the only property we need of the free flow is the isometry (see (2.36) below). 

We will show the convergence of the series (2.34) as well as the asymptotic 
equivalence (for N --+ oo) of the operators pN (t) and P(t). 

Before stating Theorem 2.4 below, we stress two fairly evident estimates of the 
terms in the series (2.34): 

llSk(t)fkllL1 = llfkllL1 (2.36) 
and 

llCk,k+1fk+i llL1 ::; kallh+i llL1 (2.37) 
where 

a= 2 sup! de q(z, z', e). (2.38) 
z,z' 
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Theorem 2.4. Suppose )d < 8
1a. Then given any sequence {/2 h=l. .. oo such that 

11/2 llLi = 1, the series (2.34) is absolutely convergent in L 1 ((0 x V)k) for all k > 0. 
Moreover given the sequence f N = {f f:h=l...N of k-particle densities, we have: 

(2.39) 

for some con.st ant c2 independent off N. 

Remark. Since P(t) is defined as acting on infinite sequences, in (2.39) we mean 
(P(t)fN)k = 0 for k > N. 

Proof. By (2.35), using {2.36) and (2.37) we have: 

II ( ) 0 II k(k + 1) ... (k + n - l) ( )nil 0 II ' k( )n ak,n i f k Li ::; 
1 

ta f k+n Li ::; 2 2ta . n. 
(2.40) 

Therefore the series (2.34) converges for 2ia>.. < 1. 
Let us ·define: 

DN(i) = [PN(i) - P(i)]fN, (2.41) 

Bf (t) = ~ [ dsSk(t - s)G{""'P(pN (s)JN)k, (2.42) 

N ).k t N N Ek (i) = - N lo dsSk(i - s )Ck,k+1(P (s )! h+1· (2.43) 

By (2.32) and (2.33) we have: 

Df (t) =Bf (t) + Ef (t) +.A [ dsSk(t - s)Ck,k+1Df+1(s), k = 1,2, ... N -1. 

(2.44) 
Iterating (2.44) n - 1 times, with n ::; N - k, we obtain: 

n-1 1t 1ti 1tm.-i 
Df(i) = L Am ... di1 ... dim 

m=O 0. 0 0 

t ti tn-i 
).n lo lo ... lo di1 ... din 

Sk(i - il)Ck,k+l · ·. Sk+n-1(in-l - in)Ck+n-1,k+n(in)Df+n(in) (2.45) 

By (2.34), (2.40) and the assumption A.i < 8
1a, it follows: 

(2.46) 

so that, after elementary calculation, we can bound the L 1 -norm of the last term 
in the right hand side of (2.45) by the quantity 4 · 4k( ~ )n. 
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Moreover we have: 

and 

so that (2.45) implies: 

llEN( )II k2~ta k t L1 ~ ~ 

2k+1 1 
llDf (t)llL 1 ~ N L (2.\ta)m+ 1 (k + m)2 + 4 · 4k(2" t 

m~O 

The thesis follows by putting n == N - k. D 

(2.4 7) 

(2.48) 

(2.49) 

Remark. The above result can be used to sho:w the convergence of the solutions of 
the N-particle system to the solution of our Boltzmann equation. Indeed Thm. 2.4 
shows the existence and uniqueness of the solutions to hierarchy (2.32) for short 
times. Assume that the initial datum is factorizing i.e. Jf;' == ff> k where Jo is some 
one-particle probability density. Then it is easy to show that the unique solution of 
the hierarchy (2.32) we have constructed is of the form fk(t) == !® k(t), where f(t) 
solves the Boltzmann equation (2.1) with initial datum f 0 • This property is called 
propagation of chaos. Thus we have shown that ff: (t) -+ !® k(t) for all k > 0, 
in L 1 and for short times. On the other hand t must be smaller than a numerical 
constant independent of f°, so that the procedure can be iterated in time to show 
that the convergel?-ce is global (see [LP], [PWZ] for, details). 

Coming back to the stationary problem, we conclude this section by formulating 
the main result of this paper which will be proven in the next section. We 
recall that g denotes the stationary solution to the boundary value problem (2.13) 
constructed in Thm. 2.2 and we set: 

k 

9k(Zk) ==IT g(zi)· (2.50) 
i=l 

We also recall that ff: denotes the k-particle distribution of the unique invariant 
measure of the N-particle system. We can prove: 

Theorem 2.5. There exists Ao > 0 such that for any,\ ~ Ao and any integer k 2:: 1 
it is: 

for some constant c not depending on .\, k, N . 
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3. PROOF OF THEOREM 2.5 

We introduce a formalism which plays a very important role in what follows. 
Let I C N be a bounded set of indices and let III represent its cardinality. Given 
two families of symmetric functions ¢ = {¢I }r cN and 'ljJ = { 'ljJ I }r cN, we give the 
following definition of* product: 

(¢ * 'l/J)I(Z1) = L ¢J(ZJ)'l/J1v(Z1v), 
J~I 

where we are using the notation Z1 == {zili EI}. 
Let us put: 

and finally let us define: 
vf == (gl_ * f N)I 

, where we set ff'(Z1) = ff'(Z1) if III= k. 
We assume that 

-N N f 0 = 90 = V0 = 1 · 
We want to stress that, if it were: 

ff (Z1) =IT f(zi) 
iEI 

then, 
III 

vf (Z1) = IT[g(zi) - f(zi)]. 
i=l 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

'(3.5) 

This means, in a' sense, that the functions vN represent the product of the differences 
better than the difference of the products which we would have to deal with. 

By (3.4) it follows that the definition (3.3) can be inverted to obtain: 

(3.6) 

and this implies, as it can be easily seen, that 

llffY - 9kllL1 ~ L llvf llL1 · (3.7) 
JCI, J=P0 

Therefore we will prove Thm. 2.5 by estimating v,N. 

As a c,onsequence of Thm. 2.1, we have the following: 

Lemma 3.1. For any 71 > 0 there exists a T( 77) such that, fort > T( 77) and k E N 
it is 

(3.8) 

Remark. Had we considered directly the difference JJ' - 9I in place of vf, at the 
best we would have obtained llSk(t)(JJ' - g1)llL 1 ~ TJllff' - g1llL1 and this is not 
sufficient for our purpose. 
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Proof. 
The Knudsen process is a collection of independent one-particle processes. More-

over it is a .consequence of the definition of vN that 

J dz; vf (Z1) = 0 

for any i = 1, 2, ... III. Thus, to prove the Lemma it is enough to prove that, for all 
'1] > 0, there exists T(TJ) such that, fort> T(TJ), for all u ~ u(z),u E L1 , satisfying 
J udz = 0, one has: 

(3.9) 

Indeed, denoting by u+ and u- the positive and negative part of u respectively, 
setting 

(3.10) 

we have by Thm .. 2.1: 

llS(t)ullLi = llS(t)u+ - S(t)u-i1L 1 ~ 

u+ u-
AllS(t)( A) - 9llL1 + AllS(t)( A) - 9llL1 ~ 2ATJ = TJllullL1. (3.11) 

D 

We recall that (PN(t)fN)I =ff for all I such that 0 <III~ N and (P(t)g)I = 
9I for all I with III > 0. We extend this invariance property to the empty _set, that 
is (see ( 3 .4)): 

(3.12) 

We also put: 
(3.13) 

For any finite set of indices I, we have: 

(3.14) 

Before going on in the estimate of vN, we introduce a suitable norm. Given an 
infinite sequence of L 1-functions cf>= { cPk} and a real number a we set: 

(3.15) 

Putting 
Rf (t) :-- (gj_ * [PN (t) - P(t)]J1")I (3.16) 

11 



by Theorem 2.4 and (3.12) and (3.13) it follows that for a = 3log3 (from now on 
fixed) and >..t < 8~, we have: 

Indeed suppose III = k, 

so that (3.17) follows. 
Since (g1- * g )r = 0 if III > 0, we have by (3.4), (3.12) and (3.14): 

where, by (3.6) we have put 

'l/;1 = L vf 91\s,· 'l/J0 = 0. 

We prove the following result. 

SCI 
ISl>O 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Lemma 3.2. Let T/ be a positive real number and choose T(T/) as in Lemma 3.1. 
Then, for any integer k > 0 and t > T( T/) the following estimate holds: 

(3.21) 

with Dk = 2k(l + k2k-lea)(i + 2a>..t(ea + 1)), provided that>.. and T/ are so small 
to satisfy: ea[¥+ 2a>..t(ea + 1)] < 1. 
Proof. To prove the Lemma, we write the expansion already introduced in (2.34-
35). More precisely: 

where 
k+r-l 
L c~+r-l,k+r = Ck+r-l,k+r 
ir=l 

(3.22) 

r=l,2, ... ,n 

that is c~+r-l,k+r is the contribution due to the collision of the ir-th particle 
(among the k + r - 1 particles) with the k + r-th. Let us indicate by Ir the set of 
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indices {1, 2, ... , r} and by I(k, n) the set h+n \ h = {k + 1, ... , n }. Then by the 
definition of 'l/; it is: 

(3:23) 

We now select among the particles in S1 those which do not interact with any other 
particle. To this end, we consider the set J = S1 \ { i 1 , ... , in} and notice that: 

'(3.24) 

Defining n(s1,j) = max(s1 - j, 1), (3.22) can be rewritten as: 

k S1 

(P(t)'l/;)k = Sk(t)'l/;k + L L L L L L 
s1=0 S1<;;J1c j=O J<;;_S1 n>n(s1,j) i1, ... ,in 

IS1 l=s1 I Jl=i 

fr x(ir ¢:_ J) t L x(s1 + s2 >'O) [ ['- .. [n-l dt1 ... dtn 
r=l s2=0 8 2 <;;.I(n,k) 0 0 0 

IS2l=s2 

Shv(t - t1)C~:__i,k-i+lSI1c\JLJ{ii}(t1 - t2) ... C~k_i+n-l,k-i+n 
N . 

SJ(t)vs1 LJS2 9In+1c\S1 LJS2 (3.25) 

Here we are using the notation SA(t) = ITiEA Si(t) and hence SA(t) represents the 
Knudsen semigroup associated with the free motion of the particles with labels in 
.A... . 

(3.25) follows from the fact that we have selected the set J of particles non 
interacting with the rest and hence SJ(t) commutes with all other operators. 

By Lemma 3.1, for 77 > 0 and t > T(77) we have: 

Moreover 

Thus, using the equality 

n . (k-j+n-1)! L II x ( ir r:. J) = . ( k - j)' , 
i1 , ... ,in r=l 

by (2.37) we arrive to the formula 
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(2a.\tr (k - j + n - 1)! a(s1+s2) ( ) 
I (k _ ')I e X S1 + S2 > Q . n. J . 

(3.26) 

Now we separate from the rest the term corresponding to s 1 == 0 and obtain: 

ll(P(t),P)k - Sk(t)..Pkl!L, :S: llvNlla2k :~_)2a>.tt t (:)e"''2 + 
n2::1 s2=l 

Since 

it follows: 

ll(P(t)7/J)k - Sk(t)7/JkllL1 ::; llvNlla2k L(2a.\tt(l +ear+ 
. n~l 

By the hypothesis on .\, 2a.\t(l + ea) ::::; 1 so that we have: 

N k 2a.\t(l + ea) 
ll(P(t)'ljl)k-Sk(t)'ljlkilL1::::; llv lla2 1 _ 2a.\t(l+ea)+ 

llvNlla 2k t ( k) e"" f (s~) ( ~ )j [2a.\t(l + ea)]si-j. (3.29) 
1 - 2a.\t(l +ea) si=l s1 j=O J · 2 

After a few simple calculation, we arrive to: 

2k 
ll(P(t)'ljl)k - Sk(t)wkllL1::::; llvNllal - 2a.\t(l +ea) x 

{2a.\t(l +ea)+ [1+ea(~+2a.\t(l + ea))]k -1} . (3.30) 

Using the elementary inequality 

(3.31) 

and again the smallness assumption on .\, we obtain: 
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N 2k(l + k2k-lea) 71 a 
!Iv II a 1 _ 2a.\t(l +ea) ( 2 + 2a.\t(l + e )] 

and the Lemma is proven. D 

We have by Lemma 3.1 and recalling the definition (3.20) of 'if;: 

for ea71 :::; 1. 

k 

llSk(t)1fikllL1 :::; L L llSk(t)vj! 91>:\JllL1 :::; 
j=l JCJk 

IJT=i 

k .k 

L L T/jllvYllL1 ::; llvNll" L C)T/ie"i = 
j=l Jr;h. j=l ] 

IJl=i 

llvNlla[(l + ea71)k -1]:::; llvNllak2k-lea71, 

From Lemm.a 3.2 and (3.33) it finally follows that: 

8k N 
ll(P(t)'if;)ki1L1:::; 21 _ 2a.\'t(l +ea) llv Ila· 

(3.32) 

(3.33) 

(3.34) 

Now the proof of the Theorem is nearly complete. The estimate (3.34) together 
with the fact that (P(t)'l/;)0 == d, imply for 2a.\t(l +ea)<~: 

ll(gj_ * P(t),P )k llL, :::; 4llvN II" t (~) 8j :::; 
. 1 ] J= 

k 

4llvNlla(71+2a.\~(ea + 1))2ea L (~) 23i ·:::; 
. 0 ] J= 

8llvNlla(71+2a.\t(ea + l))eagk. (3.35) 
Thus 

Now we can fix the parameters .\, T, 71. We recall that a == 3log3, and choose 
7J :::; 3.}ea . Consequently we fix t == T( 71) as in Lemma 3.1. Finally we choose ,\ in 
such a way that ea2a.\t( ea + 1) :::; 3

1
2 • Then we have: 

and, by (3.19) and (3.37), . 
llvNlla :::; 2llRN (t)lla 

so that (3.17) concludes the proof. 
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APPENDIX 

Proof of Theorem 2.1. 
Consider S(t) the Knudsen flow and Pt(x',v';x,v) the transition probability 

densities given by: 

J Pt(x1
, v'; x, v )f(x1

, v1)dx1 dv.1 = S(t)f(x, v) (A.1) 

for f E L 1 (0 x V). For any final state ( x, v) trace the backward trajectories x - sv 
up to the instant (say t) of the collision with the boundary. Denote y = x-vt E 80 
the point of the collision. We set 

M(/3) = {(x,v) En x VIM(y,v)n(y). v 2 /3 > O}. (A.2) 

Then if ( x, v) E M(/3) and for to = 4l, 
inf inf Pt 0 ( x', v'; x, v) 2 / > 0. 
x' ,v' (x,v)EM(,B) 

(A.3) 

Here 8 denotes the modulus of the smallest velocity, while d is the diameter of n. 
Inequality (A.3) is almost evident. Indeed tracing the forward trajectory x1 +tv' 

up to the instant (say t 1) of the collisions with the boundary, we denote Y1 = x' +v't1 
the hitting point. 

Since (x,v) E M(/3) the transition (y,v) -t (x,v) is performed with positive 
probability density. So we still have to connect the points y1 and y within the 
remaining time T = t0 - t - t 1 . Note that ~ ~ T ~ 3l. The connection can be done 
by choosing a sequence of intermediate points Yi on the boundary, i = 2, ... k, such 
that !Yi - Yi-1 I = d/2 and the trajectory Y1 -t Y2, .. . Yk -t y ·is performed with 
velocities v1 ... Vk such that lvi I E ( 5, 25). 

As a consequence of (A.3) and the fact that M(/3) has a positive measure, we 
have: 

inf { min(Pt0 (x',v';y,w),Pt 0 (x,v;y,w))dydw 2:: c > 0. (A.4) 
x' ,v';x,v} M(,B) 

Furthermore setting ( z = ( x, v)) : 

P(z1
, z) =Pt, (x 1

, v'; x, v ), S f(z) = J dz' P(z', z)f(z') = S(to)f(z), (A.5) 

we construct a joint representation SR of Sf and S g, in terms of a joint represen-
tation Roff and g, by putting: 

J P(z1,Z1;z,Z)R(z1,Z1)dz1dZ 1 = SR(z;Z) (A.6) 

where: 
P(z', Z'; z, Z) = .X(z; z', Z')5(z - Z)+ 
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(P(z',z)->-.(z;z',Z'))(P(Z',Z)->-.(Z;z 1,Z1)) 

1 - J dz)..(z; z1
' Z 1

) 
(A.7) 

Inserting (A. 7) in ( A.6) it is easy to verify that SR is indeed a joint representation 
of Sf and S g, provided that R is a joint representation of f and g. Introdueing 
now the discrete distance d, namely d(z, Z) == 1 if z =J. Z and d(z, Z) == O if Z = z, 
by the inequality: 

1 - j dzA(z; z', Z') ~ 1 - e 

which is a consequence of (A.4), we easily find that: 

•. J d(z, Z)SR(z, Z) ~ (1 - e) J d(z, Z)R(z, Z). 

The above inequality cart be iterated and since 

llSJ - Sg!IL, ~ J d(z, Z)SR(z, Z), 

we get 

where the constant C is independent off E Li (0 x V). 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

Finally we conclude that there exists a unique stationary probability density g 
for which: 

(A.12) 

where b == ~. 
Thus (A.12) implies (2.15). D · 

Proof of Theorem 2.2. Let p == p(x, v, t) and l == l(x, v, t) be two solutions of the 
initial boundary value problem (2.1-3), with initial conditions p0 and lo respectively. 
Writing the evolution equation in mild form (2.10), we have: 

p(t) - l(t) = S(t)(po - lo)+). l da S(t - a)Q(p(a) + l(a),p(a) - l(a)) (A.13) 

where Q(f, g) is the symmetrized collision operator (2.4). 
By (A.12) and the same argument leading to (3.11) ,we have that, if h == h(x,v) 

has the property J h == 0, then 

(A.14) 

Since J Q(f,g) == 0 for any pair of functions f and g, we have (cf. (2.38)): 

(A.15) 

so that, using the Gronwall lemma: 

(A.16) 
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Therefore, if A < 2ba, there exists a probability density g which is the umque 
global attracting point for the flow described by eq. (2.1) and also the umque 
invariant solution for such evolution problem. D 

Remark. It is not hard to show that g solves the stationary equation ( Gfree )* g + 
.\Q(g, g) = 0 and also the boundary value problem (2.13). In particular the trace of 
g on the boundary does exist. These considerations are not relevant for the present 
analysis so that we do not go further. 

Proof of Theorem 2.3. We follow closely ref. (GLP] where the same result has been 
obtained in a more difficult context. 

The existence of JN is obvious by the compactness of the state space of the · 
process. Indeed the ergodic mean is weakly relatively compact and any cluster 
point cannot fail to be invariant. The uniqueness is a consequence of the same 
arguments used for the Knudsen flow. Indeed, it is enough to observe that for a 
fixed time t, the probability of each particle of the system to perform a collisionless 
motion is strictly positive. 
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