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Global bifurcation analysis of limit cycles for a generalized van
der Pol system

Klaus R. Schneider, Alexander Grin

Abstract

We present a new approach for the global bifurcation analysis of limit cycles for a generalized
van der Pol system. It is based on the existence of a Dulac-Cherkas function and on applying two
topologically equivalent systems: one of them is a rotated vector field, the other one is a singularly
perturbed system.

1 Introduction

We consider a class of planar autonomous differential systems

dx

dt
= P (x, y, λ),

dy

dt
= Q(x, y, λ) (1.1)

depending on the scalar parameter λ. Our goal is to derive conditions on P and Q such that system
(1.1) has a unique limit cycle Γλ if λ belongs to some given interval Λ = {λ ∈ R : λ0 < λ <
λ1 ≤ +∞}. Additionally, we require that Γλ is ßtableïn the sense that Γλ is äsymptotically orbitally
stable"with respect to the time t and also ßtructurally stable"with respect to small perturbations of P
and Q. That means, we are looking for conditions guaranteeing the existence of a family of hyperbolic
orbitally stable limit cycles Γλ of system (1.1) for λ ∈ Λ.
Our approach to treat this problem is based on the bifurcation theory of planar autonomous systems
[1, 5, 6, 7, 10, 11] and on the existence of a Dulac-Cherkas function [4] which implies that any limit
cycle of system (1.1) is hyperbolic, thus, there is no multiple limit cycle.
We recall that λ = λb is said to be a bifurcation point of system (1.1) if there is some sufficiently small
open interval Λ̃ having λb as boundary point such that the phase portraits of system (1.1) for λ = λb
and λ ∈ Λ̃ are topologically different.
The existence of a Dulac-Cherkas function Ψ(x, y, λ) for system (1.1) implies that there is no bifur-
cation point connected with the bifurcation of limit cycles from a multiple limit cycle. If we additionally
assume that the level set

Wλ := {(x, y) ∈ R2 : Ψ(x, y, λ) = 0}

consists for λ ∈ Λ of a unique simple closed curve (we call it oval), then there exists at most one limit
cycle of system (1.1) in the phase plane, and if there is a limit cycle, it must surround the oval.
In order to exclude bifurcation points which are related to the bifurcation of a limit cycle from a homo-
clinic or heteroclinic orbit, we suppose that system (1.1) has only one equilibrium point in the finite part
of the phase plane.
Under the assumption that system (1.1) has a unique equilibrium point and admits the existence of a
Dulac-Cherkas function, it follows from the bifurcation theory of planar systems that there are exactly
four types of bifurcation points connected with the bifurcation of a hyperbolic limit cycle:
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(i). bifurcation from an equilibrium point (Andronov-Hopf bifurcation),

(ii). bifurcation from a continuum of closed orbits,

(iii). bifurcation from infinity,

(iv). bifurcation from a discontinuous closed orbit (in case of a singularly perturbed system).

For our approach we additionally assume that the boundary points λ0 and λ1 of the interval Λ are
bifurcation points and that there exists a planar system which is topologically equivalent to system
(1.1) and represents a rotated vector field. The last assumption can be used to prove that there is no
bifurcation point related with the bifurcation of a limit cycle from infinity.

Our paper is organized as follows. In Section 2 we introduce the notation of a Dulac-Cherkas function
including its main properties and recall the definition of a rotated vector field and its importance for
the bifurcation theory. A class of generalized van der Pol systems to which we apply our approach is
described in Section 3. In Section 4 we derive important properties of the considered class of planar
systems. The global bifurcation analysis of limit cycles together with the main result is presented in
Section 5. Results on the bifurcation of a limit cycle of relaxation type in singularly perturbed systems
are described in the Appendix.

2 Preliminaries

We denote by X(λ) the vector field defined by system (1.1). For the following we assume P,Q ∈
C1(R2 × Λ,R).

Definition 2.1. A function D ∈ C1(R2 × Λ,R) is called a Dulac function of system (1.1) in R2 for
λ ∈ Λ if div(DX) does not change sign in R2 for λ ∈ Λ.

Dulac functions can be used to establish the nonexistence of limit cycles or to estimate their maximum
number in some connected regions [3]. The concept of Dulac functions has been extended by L.
Cherkas [2]. The type of functions he has introduced is called Dulac-Cherkas function nowadays [4].

Definition 2.2. A function Ψ ∈ C1(R2 × Λ,R) is called a Dulac-Cherkas function of system (1.1) in
R2 for λ ∈ Λ if

(i). The set

Wλ := {(x, y) ∈ R2 : Ψ(x, y, λ) = 0} (2.1)

does not contain a curve which is a trajectory of system (1.1).

(ii). There is a real number k 6= 0 such that

Φ(x, y, λ, k) := (gradΨ, X) + kΨdivX ≥ 0 (≤ 0) ∀(x, y, λ) ∈ R2 × Λ, (2.2)

where the set
Vλ := {(x, y) ∈ R2 : Φ(x, y, λ, k) = 0}

has measure zero for λ ∈ Λ.
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The following two theorems describing the key properties of Dulac-Cherkas functions can be found in
[4].

Theorem 2.3. Let Ψ be a Dulac-Cherkas function of (1.1) in R2 for λ ∈ Λ. Then any limit cycle Γλ of
(1.1) in R2 is hyperbolic and it is orbitally stable (unstable) if the condition kΦΨ < 0(> 0) holds on
Γλ.

Theorem 2.4. Let Ψ be a Dulac-Cherkas function of (1.1) in R2 for λ ∈ Λ such that the set Wλ

consists of s ovals in R2. Then in the case k < 0 system (1.1) has at most s limit cycles in R2 and
any limit cycle surrounds an oval.

In what follows we describe a class of parameter depending autonomous systems (1.1) exhibiting
specific properties concerning the bifurcations and global behavior of limit cycles [9].

Definition 2.5. System (1.1) is said to define a one-parameter family of negatively (positively) rotated
vector fields for λ ∈ Λ in R2 if the equilibria of system (1.1) are isolated and the inequality

∆(x, y, λ) := P (x, y, λ)
∂Q(x, y, λ)

∂λ
−Q(x, y, λ)

∂P (x, y, λ)

∂λ
< 0 (> 0) (2.3)

holds at all ordinary points in R2 for λ ∈ Λ.

Remark 2.6. This condition can be relaxed by assuming that ∆ vanishes on a set of measure zero
and that no closed curve of this set is a limit cycle of (1.1).

Theorem 2.7. Suppose that system (1.1) represents a one-parameter family of negatively rotated
vector fields. Let {Γλ} be a family of hyperbolic stable limit cycles of system (1.1) with positive (that
means counterclockwise) orientation. Then Γλ contracts monotonically with decreasing λ, and the
family terminates at λ = λ∗ where Γλ∗ represents an equilibrium point.

3 A class of generalized van der Pol systems

In what follows we describe the class of planar systems to which our approach for a global bifurcation
analysis of limit cycles can be applied. We consider the Liénard system

dx

dt
=− y,

dy

dt
= x−λ(x2q − 1)y

(3.1)

in R2 for λ ∈ R and q ∈ N. It is obvious that (3.1) has a unique equilibrium point in the finite part of
the phase plane, namely the origin. The transformation λ → −λ, t → −t, x → −x leaves system
(3.1) invariant. Hence, we can restrict ourselves to study system (3.1) for λ ≥ 0. For λ = 0, system
(3.1) represents a linear conservative system with the first integral x2 + y2 = c2.
For q = 1 system (3.1) represents the famous van der Pol system

dx

dt
=− y,

dy

dt
= x−λ(x2 − 1)y.

(3.2)

It is well known that system (3.2) has the following properties [9]
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(i). For λ > 0, system (3.2) has a unique limit cycle Γλ which is hyperbolic and stable.

(ii). The periodic solution (xλ(t), yλ(t)) of (3.2) corresponding to Γλ is for small λ sinusoidal like
and for large λ of relaxation type.

Our goal is to to establish the same properties for the system (3.1) for q ∈ N by a global bifurcation
analysis. For this purpose we first derive two systems which have the same phase portrait as system
(3.1).
Using for λ > 0 the scaling

x̄ = λ
1
2qx, ȳ = λ

1
2q y (3.3)

then system (3.1) takes the form

dx̄

dt
=− ȳ,

dȳ

dt
= x̄+ λȳ − x̄2qȳ.

(3.4)

Since the transformation (3.3) is a diffeomorphism for λ > 0, system (3.1) and system (3.4) have
the same topological structure of their trajectories for λ > 0. Especially, they have the same number
of limit cycles with the same stability behavior. But we have to note that for λ = 0 the topological
structure of the trajectories of system (3.1) and system (3.4) are different, in particular, system (3.1) is
linear and conservative, whereas system (3.4) is nonlinear and has no nontrivial closed orbit.
Applying the transformation for λ > 0

t := λτ, η := x, ξ := −y
λ
− x+

x2q+1

2q + 1
(3.5)

we get from (3.1)

dξ

dτ
= −η,

1

λ2
dη

dτ
= ξ + η − η2q+1

2q + 1
.

(3.6)

System (3.6) is of special interest in the case of large λ, since it represents a singularly perturbed
system. The transformation (3.5) is a diffeomorphism, therefore, system (3.6) and system (3.1) are
topologically equivalent for λ > 0.
Summarizing our investigations we have the following result

Lemma 3.1. The systems (3.1), (3.4) and (3.6) are topologically equivalent for λ > 0 and q ∈ N.

4 Special properties of the class of generalized van der Pol sys-
tems

Lemma 4.1. Systems (3.1), (3.4) and (3.6) have for λ ∈ R a unique equilibrium point in the finite part
of the phase plane at the origin. It is an unstable focus for 0 < λ < 2 and an unstable node for λ ≥ 2.
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Theorem 4.2. The function

Ψ(x, y) ≡ x2 + y2 − 1 (4.1)

is a Dulac-Cherkas function for system (3.1) in the phase plane for λ > 0.

Proof. From (3.1) we get

divX(λ) ≡ −λ(x2q − 1), (gradΨ, X(λ)) ≡ 2λ(x2q − 1)y2.

By (2.2) we have for k = −2

Φ(x, y, λ,−2) := (gradΨ, X(λ))− 2ΨdivX(λ)

= 2λ(x2 − 1)2(1 + x2 + x4 + ...+ x2q−2) ≥ 0

for λ > 0, (x, y) ∈ R2, and q ∈ N. According to Definition 2.2 , Theorem 4.2 is proved.

Theorem 4.3. System (3.1) has for λ > 0 at most one limit cycle Γλ. If Γλ exists, it is hyperbolic,
stable and surrounds the unit circle.

Proof. By (2.1) the zero-level set Wλ for the Dulac-Cherkas function Ψ defined in (4.1) consists of the
unit circle. Thus, according to Theorem 2.4, system (3.1) has at most one limit cycle and, if it exists, it
surrounds the unit circle. Since outside the unit cycle the relations Ψ(x, y) > 0, Φ(x, y, λ,−2) ≥ 0
hold, a possible limit cycle Γλ is stable according to Theorem 2.3.

Corollary 4.4. The systems (3.1), (3.4) and (3.6) have at most one limit cycle Γλ. If Γλ exist, it is
hyperbolic, stable and positively oriented.

Theorem 4.5. If λ increases and crosses the value λ = 0, then Andronov-Hopf bifurcation takes
place for system (3.4): a unique limit cycle Γ̂λ bifurcates from the origin. Γ̂λ is hyperbolic, stable and
positively oriented.

Proof. The linearization of system (3.4) at the origin takes the form

dx̄

dt
=− ȳ,

dȳ

dt
= x̄+ λȳ.

(4.2)

The corresponding eigenvalues µ1(λ) and µ2(λ) are conjugate complex for λ > 0 and can be written
in the form

µ1,2(λ) =
λ

2
± i
√

4− λ2
2

. (4.3)

Thus, the origin is an unstable focus for 0 < λ < 2, it is an unstable node for λ ≥ 2.

To study the stability and multiplicity of the origin for λ = 0 we represent the eigenvalues µ1,2(λ) for
0 ≤ λ < 2 in the form

µ1,2(λ) = a(λ)± ib(λ), a(λ) =
λ

2
, b(λ) =

√
4− λ2

2
.
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By means of the coordinate transformation

u = a(λ)x̄+ ȳ, v = −b(λ)x̄

system (3.4) takes the form

du

dt
=a(λ)u− b(λ)v − v2q

b(λ)2q

(
u+

a(λ)

b(λ)
v
)
,

dv

dt
=b(λ)u+ a(λ)v.

(4.4)

Introducing polar coordinates

u = r cosϕ, v = r sinϕ

system (4.4) is in a sufficiently small neighborhood of the origin and for 0 ≤ λ < 2 equivalent to the
differential equation

dr

dϕ
=
∞∑
i=1

ki(ϕ, λ)ri, (4.5)

where

k1(ϕ, λ) =
a(λ)

b(λ)
=

λ√
4− λ2

. (4.6)

For λ = 0 we have
dr

dϕ
= −r2q+1(sinϕ)2q(cosϕ)2 +O(r4q+1) (4.7)

which implies

k1(ϕ, 0) ≡ 0, k2(ϕ, 0) ≡ 0, ..., k2q+1(ϕ, 0) ≡ −(sinϕ)2q(cosϕ)2. (4.8)

We denote by r(ϕ, λ, r0) the solution of (4.5) satisfying r(0, λ, r0) = r0 > 0. For sufficiently small
r0, this solution can be represented as

r(ϕ, λ, r0) =
∞∑
i=1

hi(ϕ, λ)ri0. (4.9)

Substituting (4.9) into (4.5), we get a system of differential equations for determining the functions hi.
Using the initial conditions h1(0, λ) = 1, hi(0, λ) = 0 for i = 2, ..., the functions hi(ϕ, λ) can be
determined uniquely. We obtain

dh1
dϕ

= k1(ϕ, λ)h1,

which implies by (4.6)

h1(ϕ, λ) = exp
(
ϕ

λ√
4− λ2

)
, (4.10)

for λ = 0 we have by (4.8)

dh1
dϕ
≡ 0,

dh2
dϕ
≡ 0, ...,

dh2q+1

dϕ
= k2q+1(ϕ, 0) = −(sinϕ)2q(cosϕ)2.
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Thus, it holds

h1(2π, 0) = 1, h2(2π, 0) = 0, ..., h2q(2π, 0) = 0, h2q+1(2π, 0) = −
∫ 2π

0

(sinϕ)2q(cosϕ)2dϕ < 0.

(4.11)
The number of positive zeros of the function d(r0, λ) := r(2π, λ, r0)− r0 determines the number of
the limit cycles of system (3.4) near the origin. For sufficiently small r0, d(r0, λ) can be represented
in the form

d(r0, λ) =
∞∑
i=1

αi(λ)ri0. (4.12)

For system (3.4) we get by (4.10)

α1(λ) = h1(2π, λ)− 1 = exp
(

2π
λ√

4− λ2
)
− 1. (4.13)

The coefficients αi(0) are called Lyapunov numbers of the origin. They are determined by the relations

α1(0) = h1(2π, 0)− 1, αi(0) = hi(2π, 0), i = 2, .... (4.14)

The first non-vanishing Lyapunov number determines the multiplicity of the origin. For system (3.4) we
have

α1(0) = 0, α2(0) = 0, ..., α2q(0) = 0, α2q+1(0) = −
∫ 2π

0

(sinϕ)2q(cosϕ)2dϕ < 0, (4.15)

that is, the origin is a focus of multiplicity q of system (3.4) for λ = 0. Introducing the function

g(r0, λ) :=
∞∑
i=1

αi(λ)ri−10 , (4.16)

the function d(r0, λ) in (4.12) can be represented as

d(r0, λ) = r0g(r0, λ). (4.17)

From (4.16) and (4.13) we get

g(0, 0) = 0, g′λ(0, 0) = α′1(0) = π.

By the implicit function theorem there is a smooth function h : R+ → R such that λ = h(r0) solves
the equation g(r0, λ) = 0 and satisfies

h(0) = 0, h′(0) = −
g′r0(0, 0)

g′λ(0, 0)
= 0.

From g(h(r0), r0) ≡ 0 and (4.15) we obtain

h′′(0) = 0, ..., h(2q)(0) = 0, h(2q+1)(0) = −g
(2q+1)
r0 (0, 0)

g′λ(0, 0)
= −α2q+1(0)

π
> 0.

Thus, to each sufficiently small r0 > 0 there exists a unique positive value λ = h(r0) such that
g(h(r0), r0) = 0. By (4.17) and Corollary 4.4 we can conclude that to each sufficiently small λ > 0
there exists a unique small hyperbolic stable limit cycle Γλ of system (3.4) which is positively oriented.
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Corollary 4.6. According to Lemma, 3.1 system (3.1) has for sufficiently small λ a unique limit cycle
which is hyperbolic, stable and positively oriented.

Theorem 4.7. System (3.4) represents a negatively rotated vector field.

Proof. If we use the notation of system (1.1) for system (3.4) we obtain

P (x̄, ȳ, λ) ≡ −ȳ, Q(x̄, ȳ, λ) ≡ x̄+ λȳ − x̄2qȳ.

By (2.3) we have

∆(x, y, λ) ≡ −ȳ2 ≤ 0,

that is, by Definition 2.5 and Remark 2.6, system (3.4) represents a one-parameter family of negatively
rotated vector fields.

Remark 4.8. We note that the systems (3.1) and (3.6) do not have the property of a rotated vector
field. This property is not invariant under topological equivalence.

As we already noted, system (3.6) represents for λ � 1 a singularly perturbed system. For this
system we verify the validity of the assumptions (C1) − (C3) in the Appendix for ε = 1

λ2
. Identifying

(3.6) and (6.1) we have

f(ξ, η) ≡ −η, g(ξ, η) ≡ ξ + η − η2q+1

2q + 1
. (4.18)

Hence, assumption (C1) is fulfilled. Also, the condition (C2) is obviously valid. Setting g(ξ, η) = 0 in
(4.18) we get

ξ = ϕ(η) := −η +
η2q+1

2q + 1

satisfying ϕ(0) = 0, ϕ′(0) = −1. The equation ϕ′(η) = 0 has exactly two real roots η = ±1, where
ϕ′′(−1) < 0, ϕ′′(+1) > 0. Thus, the conditions (C1) − (C3) of Theorem 6.1 in the Appendix are
satisfied. Applying this theorem to system (3.6) we obtain

Theorem 4.9. System (3.6) has for sufficiently large λ > 0 a unique limit cycle Γ̄λ which is hyperbolic,
stable, positively oriented and located near the closed curve Z0.

5 Global bifurcation analysis

From Theorem 4.5 it follows that system (3.4) has for sufficiently small λ a hyperbolic stable limit cycle
Γ̂λ which shrinks to the origin as λ tends to zero. According to Theorem 4.7, system (3.4) represents
a negatively rotated vector field. By Theorem 2.7 we can conclude that Γ̂λ expands monotonically with
increasing λ. Hence, there exists the possibility that Γ̂λ tends to infinity if λ increases to some finite
value λ̄. In order to ensure that Γ̂λ exists for any λ > 0, we consider the equivalent system (3.6). By
Theorem 4.9, system (3.6) has for sufficiently large λ a unique stable hyperbolic limit cycle Γ̄λ. Since
system (3.4) is topologically equivalent to system (3.6), we can conclude that system (3.4) has for
sufficiently large λ a hyperbolic stable limit cycle Γ̃λ which is positively oriented. Taking into account
that system (3.4) represents a rotated vector field, we obtain that Γ̃λ contracts monotonically as λ is
decreasing. Since the origin is an unstable equilibrium point of system (3.4) for λ > 0, there is no
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Andronov-Hopf bifurcation point for λ > 0, and we can conclude that Γ̃λ for decreasing λ terminates
at an Andronov-Hopf bifurcation from the origin for λ = 0. From the property that system (3.4) has
for all λ > 0 at most one limit cycle we get that the limit cycle Γ̂λ of system (3.4) coincides with the
limit cycle Γ̃λ. Therefore, there exists a family Γλ of hyperbolic stable limit cycles of system (3.4) for
λ > 0. Using the equivalence of the systems (3.1), (3.4) and (3.6) we have the result

Theorem 5.1. System (3.1) has for all positive λ a unique limit cycle Γλ which is hyperbolic and stable.

Summarizing our investigations we can state that the use of Dulac-Cherkas functions combined with
transformations which preserve the topological structure of the phase portrait simplify the global bifur-
cation analysis of limit cycles.

6 Appendix. Bifurcation of a limit cycle in a singularly perturbed
system

Consider the singularly perturbed system

dx

dt
= f(x, y),

ε
dy

dt
= g(x, y)

(6.1)

under the following assumptions
(C1). f, g ∈ C2(R2,R), ε is a small positive parameter.
(C2). The origin is the unique equilibrium point of system (6.1) in the finite part of the phase plane. It
is unstable for ε > 0. The trajectories surrounding the origin are positively oriented.
(C3). g(x, y) = 0 has the unique simple solution x = ϕ(y), where ϕ ∈ C2(R2,R) and satisfies

ϕ(0) = 0, ϕ′(0) < 0.

ϕ′(y) = 0 has exactly two real roots y− and y+ satisfying

y− < 0, ϕ′′(y−) < 0, y+ > 0, ϕ′′(y+) > 0.

Using assumption (C3) we can define a closed curve Z0 in the phase plane consisting of two finite
segments of the curve x = ϕ(y) bounded by the points D = (y−−, ϕ(y+)), A = (y−, ϕ(y−)) and
C = (y+, ϕ(y+)), B = (y++, ϕ(y−)) (see Fig.1) and of two finite segments of the straight lines
x = ϕ(y−) and x = ϕ(y+) bounded by the points A,B and D,C respectively (see Fig.1).

The following theorem is a special case of a more general theorem by E.F. Mishchenko and N. Kh.
Rozov in [8].

Theorem 6.1. Under the assumptions (C1)− (C3), system (6.1) has for sufficiently small ε a unique
limit cycle Γε in a small neighborhood of Z0 which is hyperbolic, stable and positively oriented.
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Fig.1. Closed curve Z0.
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